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Theory of momentum-resolved phonon spectroscopy in the electron microscope
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We provide a theoretical framework for the prediction and interpretation of momentum-dependent phonon
spectra due to coherent inelastic scattering of electrons. We complete the approach with first-principles lattice
dynamics using periodic density functional theory and compare to recent electron energy-loss measurements
on cubic and hexagonal boron nitride performed within a scanning transmission electron microscope. The
combination of theory and experiment provides the ability to interpret momentum-dependent phonon spectra
obtained at nanometer spatial resolution in the electron microscope.
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I. INTRODUCTION

The quantitative description of the thermal physics of solid
materials in terms of quantized lattice vibrations, phonons, is
one of the major achievements of condensed-matter physics in
the 20th century. Lattice dynamics is central to the theories of
phenomena including structural phase transitions, supercon-
ductivity, thermal expansion, thermal conductivity, stability
of polymorphs, and much more. Laboratory techniques to
measure phonon spectra using light including infrared and
Raman spectroscopy are powerful and widely deployed across
laboratories, but the energy-momentum relation of the photon
probe restricts the interaction with phonons to involve essen-
tially zero momentum transfer. Consequently, only a subset of
phonon modes at the long-wavelength limit may be measured
using optical probes.

Inelastic neutron scattering (INS), pioneered by Brock-
house [1], was the major development which enabled the
full measurement of phonon spectra at all phonon wave
vectors—the first momentum-resolved spectroscopy. This was
followed by inelastic x-ray scattering (IXS) [2,3, and refer-
ences therein]. Such techniques have been the mainstay of
phonon spectroscopy in crystalline solids for half a century.
However, their application is limited by the scarcity and ex-
pense of INS and IXS spectrometers, which must be based at
reactor, accelerator, or synchrotron sources. The requirement
to grow single-crystal specimens also limits their widespread
use, particularly in the case of neutrons where crystal sizes
of 20–1000 mm3 are needed. The spatial resolution of INS is
larger than 1 cm, and while x-ray spot sizes in the micrometer
range can easily be obtained, counting rates and experimental
timescales mostly preclude spatially resolved studies.
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Electrons have been used since the 1960s in a reflection
geometry to measure the average surface response of materials
[4,5]. Recent advances in source monochromation mean that
it is now possible to measure phonon spectra in a transmission
electron microscope using electron energy-loss spectroscopy
(EELS) with a resolution of 15 meV or better [6]. This adds
a complementary technique to the methods above, with the
additional advantages of nanometer spatial resolution [6,7] of
the phonon spectrum, alongside atomically resolved chemical
and structural analysis, all within the same instrument.

The geometrical constraints in reflection EELS mean that
the theoretical treatments used are not applicable to trans-
mission EELS. For the transmission geometry, two different
scattering regimes have been identified by Dwyer et al. [7]:
dipole scattering and localized vibrational scattering. Dipole
scattering involves small momentum transfer and Radtke et al.

[8] have used density functional theory to model EEL spectra
in this regime. To interpret momentum-dependent spectra, we
must consider the localized vibrational scattering regime.

The theory of INS from phonons was developed in a very
general formalism by van Hove [9], and can be adapted to
any radiative probe for which the interaction Hamiltonian is
known. In this paper we present its extension to coherent in-
elastic scattering of electrons from phonons and apply it to the
case of momentum-resolved EELS experiments performed in
a scanning transmission electron microscope (STEM). This
formalism enables the prediction of scattering cross section
as a function of momentum and energy transfer and makes
possible a quantitative comparison with EELS experiments.
It reveals the fundamental physics shared between inelastic
scattering of electrons, neutrons, and photons, and attempts
to unify the theories of EELS, INS, and IXS. In contrast,
previous work has looked at specific cases [10–12], been
used to interpret the q = 0 modes in a nanocube [13,14], has
looked at the spatial effects of beam geometry [15], or dealt
with the dipole (q ≈ 0) scattering regime [8,16]. We apply
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this general method to predict the phonon contribution to the
EEL spectrum of two polymorphs of boron nitride and make
a direct comparison to their recently measured momentum-
resolved spectra [17].

II. SCATTERING FACTOR FORMALISM

As the energy transfer that occurs in the scattering process
is small compared to that of the scattered particle, the double-
differential cross section is given by the Born approximation
as [18]

d2σ

d�dk1
=

1

N

N0V
∑

n0,n1
Pn0 k2

1 |〈n0, k0|Hinter|n1, k1〉|
2δ

(

En0 + E0 − En1 − E1
)

(2π )2h̄( j0)z

, (1)

where n0 and n1 are the initial and final states of the material
with energies En0 and En1 , respectively, k0 and k1 are the
initial and final states of the scattered particle with energies
E0 and E1, respectively, Hinter is the Hamiltonian for the
interaction of the particle with the material, ( j0)z is the current
density of the beam of particles in the z direction, Pn0 is
the probability of finding the material in state n0 before
scattering, N is the number of scatterers in the material, N0

is the number of electrons in state k0, and V is the volume
of the unit cell. The scattered particles could be photons,
neutrons, or fast electrons. For the different particles, the form
of the interaction Hamiltonian and expressions for the current
density are different. A fast electron will interact with both
the electrons and nuclei in the sample and the interaction
Hamiltonian can be written as

Hinter(r) =
−e

4πǫ0

∫

ρtot(r′)

|r − r′|
dr′, (2)

where r is the fast electron position, r′ is the material co-
ordinate, e is the magnitude of charge of an electron, and ρtot

is the total charge density containing both the nuclear and
electronic contributions. Here we have assumed a material
with no spin density in the ground state. Retardation effects
have also been neglected. Before and after the scattering
event, the fast electron and material do not interact, so we
can write |n0, k0〉 = |n0〉|k0〉 and |n1, k1〉 = |n1〉|k1〉. By in-
cluding the full interaction Hamiltonian in Eq. (1), defining
the momentum transfer from the fast electron to the sample as
q = k0 − k1, approximating the fast electron as a plane wave,
writing the energy transfer as h̄ω, and writing ( j0)z as N0

V
h̄k0
m

,
Eq. (1) becomes

d2σ
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Following Van Hove [9], the double-differential cross section
can be written in terms of a scattering function, S(q, ω),

d2σ

d�dE1
=

m2e2

h̄4q4ǫ2
0 4π2

k1

k0

1

N
S(q, ω). (4)

To determine S(q, ω) we follow the general approach of
Sinha [19] and Burkel [20] who considered x-ray scatter-
ing from phonon vibrations. We first assume that the to-
tal charge density can be expressed as a sum of atomic
charge densities. This is clearly a major simplification, and
we return to this approximation later. We also assume har-
monic lattice dynamics in a crystal and can hence express

the lattice vibrations expressed as phonon eigenvectors. By
neglecting processes involving multiple phonons, we obtain
an expression for S(q, ω) for the creation of phonons by a fast
electron:

S(q, ω) =

∣

∣

∣

∑

i

F (q, Zi )e
−Wi (q)[q.ei(q0, j)]M−1/2

i eiq·ri

∣

∣

∣

2

×
1

ωq0 j

δ
(

ω − ωq0 j

)

, (5)

where there are i atoms per unit cell at positions ri, Mi and
Zi are the mass and atomic number of atom i, ei(q0, j) is
the phonon eigenvector with wave vector q0 (defined in the
first Brillouin zone), and polarization branch j at atom i and
e−2Wi (q) is the Debye-Waller factor. F (q, Zi ) is given by

F (q, Zi ) = fatom,i(q) + Zie, (6)

where fatom,i(q) is the atomic form factor.
Equation (5) contains a term, q · ei(q0, j), which is the

dot product between the momentum transfer and the phonon
eigenvector. This means that only modes with motion in
the same direction as the momentum transfer will appear
in the spectra. Rez [10] obtained an expression for the dif-
ferential cross section in the case of a fast electron inter-
acting with a stretch vibration in a diatomic molecule and
there are clear similarities between his equation for that
specific case and our general equation. Rez commented on
the implications of the q · e(q0, j) term and also pointed
out the connection between the cross section and the loss
function [the imaginary part of −1/ǫ(E , q) where ǫ(E , q)
is the energy and wave-vector-dependent dielectric func-
tion]; more details of the relationship can be found in
Ref. [18].

The scattering function formalism developed above en-
ables us to go beyond simply comparing momentum-
dependent EEL spectra to phonon band structures and un-
derstand the relative contributions of the different modes to
the spectra. It has been developed to understand scattering in
which there is finite momentum transfer, a regime known as
the localized vibrational scattering regime [7]; a correct treat-
ment of the q = 0 term should also include dipole scattering
[7,8,16] rather than solely impact scattering.

Comparison with the scattering factor formalism

for x rays and neutrons

The single-phonon scattering factor obtained for the in-
teraction of electrons with phonons is very similar to
those obtained for x rays and neutrons, highlighting the
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complementary nature of the techniques. For x rays, the
double-differential cross section for energy loss can be written
as [19,20]

d2σ

d�dE1
=

e4

m2c4

k1

k0
|ǫ∗

0 · ǫ1|
2S(q, ω), (7)

where ǫ0 and ǫ1 are the polarization vectors of the incoming
and outgoing photons. The scattering function S(q, ω) is given
by

S(q, ω) =

∣

∣

∣

∑

i

fatom,i(q)e−Wi (q)[q · ei(q0, j)]M−1/2
i eiq·r

∣

∣

∣

2

×

〈

nq0 j + 1
〉

ωq0 j

δ(ω − ωq0 j ). (8)

To obtain the neutron-scattering function, the atomic form
factor is replaced by the Fermi scattering length, b [20,21].
In all three cases, x rays, neutrons, and electrons, there is a
q · ei(q0, j) term, showing that the same bands contribute to
the spectra produced by the scattering of fast electrons, x rays,
and neutrons.

The double-differential cross section for neutrons varies as
q2. For x rays the q2 dependence is counteracted by the atomic
form factor, which also has a q dependence. Consequently,
there is an optimal range of q vectors for which the cross sec-
tion will be greatest. The range will be material dependent but
is generally well outside the first Brillouin zone. Equation (5)
appears to have a q2 dependence which, when combined with
the q−4 term in Eq. (4), results in a q−2 dependence. However,
F (q, Zi) is also q dependent and the overall variation depends
on the degree of ionicity in the crystal [10]. In addition, for
the q = 0 case to be described correctly, an additional dipole
term should be included. In contrast, the cross section for
neutrons has a q2 dependence and for x rays there is an
optimal range of q values for data collection. From a practical
point of view, this means that experimental data using these
techniques is rarely collected from the first Brillouin zone
as large values of q will give a greater signal. When using
electrons, the signal will be strongest within the first Brillouin
zone.

As mentioned in the Introduction, the spatial resolution
achievable with fast electrons is much greater than that of
either x rays or neutrons. The energy and momentum resolu-
tion, however, are not as good. In the experiments carried out
here, the energy resolution was 18–40 meV (increasing with

increasing q) and the momentum resolution was ±0.5 Å
−1

.
This compares with typical energy and momentum resolutions

of 0.6–6 meV and 0.01–0.1 Å
−1

for x rays [2,22]. For neu-
trons, the energy and momentum resolution depends on the
application and specific instrument and it can be defined us-
ing a three-dimensional (3D) resolution ellipsoid [23]. Some
reactor-based sources can achieve μeV resolution [24]. The
high-resolution instrument MAPS [25] can achieve an energy
resolution of 0.4 meV for neutrons with incident energies of
25 meV, but this increases to 30 meV for incident energies of
2000 meV. Infrared and Raman spectroscopies are both pow-
erful and widely used methods for measuring phonons but,
rather than measuring phonon dispersions, they are essentially

limited to probing q = 0 and so provide complementary ways
of exploring q = 0 transitions.

III. APPLICATION TO CUBIC AND HEXAGONAL

BORON NITRIDE

A. Experimental details

Based on earlier experimental procedures for acquiring
momentum-resolved core and valance EEL spectra in the
(scanning) transmission electron microscope [(S)TEM] (see,
e.g., Refs. [26,27], and references therein), we use the elec-
tromagnetic scan coils of the STEM to accurately control
the range, magnitude, and direction of momentum transfers
accepted by the circular spectrometer entrance aperture. Thus
our momentum-resolved spectra are acquired serially [27],
rather than in parallel [26]. By carefully balancing the si-
multaneously achievable spatial and momentum resolutions,
we probed phonon dispersions along high-symmetry direc-
tions of the first Brillouin zones of cubic and hexagonal
BN, using an ∼1 nm electron probe, a momentum resolution

	q = ±0.5 Å
−1

, and an energy resolution 	E = 18–40 meV
(increasing with increasing q) [17].

All experimental work was carried out on a Nion Ultra-
STEM100MC dedicated STEM [28], equipped with a Gatan
Enfinium EEL ERS spectrometer (optimized with high sta-
bility electronics). The microscope was operated at an ac-
celeration voltage of 60 kV, in order to minimize electron
beam induced irradiation damage. No postacquisition de-
noising or deconvolution routines were used for any exper-
imental spectrum. In each spectrum shown in Fig. 1 (and
in the figures in the Supplemental Material [12]), the zero
loss peak (ZLP) tail contribution was subtracted by fitting
a power-law function over an energy-loss window preced-
ing the lowest energy-loss peak. In addition, the intensity
of the experimental spectrum for each q vector has been
normalized.

In inelastic neutron spectroscopy, it is necessary to de-
termine the full resolution ellipsoid, expressing energy and
momentum resolutions in terms of energy loss and momentum
transfer [23]. In our case, the momentum resolution (	q =

±0.5 Å
−1

) is limited by beam convergence and spectrom-
eter acceptance angles (both with a half-angle of 3 mrad),
while the energy resolution (	E ) is approximately constant
as a function of momentum transfer. Experimentally, 	E is
measured as the full width at half maximum (FWHM) of
the quasielastic ZLP. Due primarily to instrumental instabil-
ities, along with electron-atom Compton scattering [29], the
measured ZLP FWHM effectively increases from 18–20 meV
(near the optical limit) to 30–40 meV for larger momen-
tum transfers. The ZLP broadening due to instrumental in-
stabilities increases with q due to the significantly longer
exposure times required at higher q (from 0.1 s near the Ŵ

point up to 90 s at the Brillouin zone boundaries). In light
of the above-mentioned factors, the more involved proce-
dure for determining the full resolution ellipsoid [23] was
not deemed appropriate. For a more detailed discussion of
the experimental procedure and associated parameters, see
Ref. [17].
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FIG. 1. Experimental (black) and simulated (blue) phonon EEL spectra for (a) the Ŵ-X direction in cubic BN and (b) the Ŵ-K direction in

hexagonal BN. Each spectrum is labeled by the corresponding q vector in units of Å
−1

, given to one decimal place.

B. Details of first-principles calculations

The phonon eigenvalues and dispersions for cubic boron
nitride (cBN) and hexagonal boron nitride (hBN) have been
calculated with density functional theory code CASTEP [30]
using norm-conserving pseudopotentials and the Perdew-
Burke-Ernzerhof exchange-correlation functional. A geome-
try optimization was first carried out on both crystal structures
using a cut-off energy of 850 eV and a k-point sampling of

2π × 0.03 Å
−1

, and the structures were optimized until the
forces on each atom did not exceed 0.001 eV/Å. Phonon
dispersions were then calculated using density functional
perturbation theory (DFPT) with Fourier interpolation used
to calculate the dynamical matrices on a finer grid [31].
The DFPT calculations used a cut-off energy of 850 eV, a

k-point spacing of 2π × 0.03 Å
−1

, a phonon k-point spacing

of 2π × 0.07 Å
−1

, and a fine phonon k-point path spacing of

at most 2π × 0.05 Å
−1

. The numerical parameters were all
carefully checked so that their value did not influence the final
phonon dispersions.

C. Interpretation of the experimental spectra

using the scattering factor formalism

Momentum-resolved phonon EEL spectra from both cBN
and hBN are shown in Fig. 1. These spectra can be un-
derstood using the scattering factor obtained above for the
interaction of a fast electron with the vibrational modes of the
material. The effects of charge transfer are significant in BN
polymorphs, and as an initial approach to incorporating these
effects we replace F (q, Zi ) in Eq. (6) with

F (q, Zi ) =
fatom,i(q)(Zi − Z∗

i )

Zi

+ Zie, (9)

where Z∗
i is the Mulliken charge computed for atom i. Details

of the effect of this approximation on the simulated EEL
spectra are given in [12].

The quantity that has been calculated for comparison with
experiment is

J =
1

q4

∣

∣

∣

∑

i

(

fatom,i(q)(Zi − Z∗
i )

Zie
+ Zi

)

e−Wi (q)

× [q · ei(q0, j)]M−1/2
i eiq·ri

∣

∣

∣

2 1

ωq0 j

, (10)

where the phonon eigenvectors and frequencies, Debye-
Waller factors, and Mulliken charges are computed using
density functional theory (DFT), and atomic-form factors are
taken from the literature. J can be thought of as a relative
intensity and it tells us which of the different modes contribute
toward the spectrum and by how much compared to the other
modes. The calculated EEL spectrum is constructed by com-
bining Gaussians centered on each of the phonon energies,
scaled by J . The FWHM for the Gaussians was 20 meV,
similar to the experimental resolution. For modes which have
an eigenvector orthogonal to q, J will be zero and they will
not contribute to the spectrum.

Simulated spectra for cBN are included in Fig. 1(a) and
a further comparison between spectra in the Ŵ-K direction is
included in [12]. For comparison with experiment, the simu-
lated loss function has been scaled to match the maximum in
the experimental data. As the q = 0 term is not well defined,
a spectrum has been simulated for q = 0.01 for comparison
with the experimental data. The q = 0 experimental spectrum
will have a dipole term, which has not been included here, as
well as contributions from small values of momentum transfer
as a result of the experimental geometry. Figure 2 shows the
corresponding part of the phonon dispersion with the color of
the modes corresponding to how much the modes contribute
to the spectrum. Due to the large variation in intensity across
the Brillouin zone, it has been plotted on a log10 scale. As can
be seen from the figure, only two of the six phonon modes
predicted by DFT for cBN contribute to the spectra; one of
these is an optical branch and the other an acoustic branch.
For the other modes, the atomic motion is perpendicular to q.
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FIG. 2. Comparison of experimental and computed dispersion relations for cBN (left) and hBN (right). Upper panel: Calculated phonon
dispersion spectra. The bands are colored according to their intensity on a log10 scale. Inactive bands are shown in black. Middle panel:
Experimental intensity, normalized by the value of the intensity in the upper branch. The momenta at which the data was recorded is shown by
dashed vertical lines and the plot is generated by interpolating between the datapoints. The computed DFT band structure is shown in green.
Lower panel: Computed intensity, normalized by the value of the intensity in the upper branch.

Figure 3 shows the different relative contributions of the two
bands for the different scattering particles (electrons, x rays,
and neutrons). The variation in intensity is much greater in
the case of fast electron scattering. Four modes contribute in
the Ŵ-K direction [12]. In that case, a lower energy mode
dominates at higher values of q and the spectrum appears to
shift as |q| increases.

There is some discrepancy between the experimental and
simulated spectra in Fig. 1. There are two approximations in
the simulations which are likely to account for this. The first is
that the simulations have been carried out for a single q value
whereas the momentum resolution of our experimental data is

±0.5 Å
−1

. The second is the simple model that has been used
for charge transfer.

Experimental and simulated data for the Ŵ-K direction in
hBN are shown in Fig. 1(b). The corresponding part of the
Brillouin zone showing the contribution of the different modes
is shown in Fig. 2. In this case, four of the 12 DFT-predicted
modes contribute to the spectra. Previous work by Serrano
et al. [32] has shown good agreement between DFT phonon
band structures and IXS data from hBN as well as with
published reflection EELS data from [33]. Our DFT phonon
band structures are very similar to those reported by Serrano
et al. [32] but the agreement between our simulated and
experimental data for hBN is not as good in the cBN case and
this is likely to be due partly to our treatment of the so-called
LO-TO splitting. In an infinite crystal, the longitudinal optical
(LO) mode is blue-shifted by the interaction between macro-
scopic electric fields generated by displaced ions as q → 0
and the ionic charges. In a crystal of finite thickness, joint

electromagnetic cavity and phonon modes known as phonon
polaritons appear with energies intermediate between the
LO and TO values. These modes display strong dependence
when thickness is comparable to the optical wavelength. Our
calculations have included the LO-TO splitting expected for
an infinite crystal while the experimental data was collected
from a crystal of a thickness where the phonon polaritons are
expected to show significant thickness dependence [16,17].
Michel and Verberck [34] calculated the phonon dispersion
of hBN multilayers. Their work shows this effect will only
affect the upper two branches that contribute toward the
spectrum. Near the Ŵ point the two branches are further apart
in the case of an infinite crystal and the difference between a
multilayer and 3D crystal decreases as q → K. Theoretically,
the uppermost branch dominates near the Ŵ point and so the
simulations will overestimate the peak position. For the other
values of q, the lower branch dominates and so the simulations
will be less affected. This is what we see in Fig. 1(b).

Another factor contributing to the discrepancy between
simulation and experiment is the experimental geometry. The
experimental momentum resolution results in data being col-
lected over a small range of q vectors; this is currently not
included in our calculations. In addition, our calculations
include in-plane contributions only while the curvature of the
Ewald sphere will mean that the contribution of modes with
an out-of-plane q component will increase as q increases. This
is seen in our data where, for larger values of q, the match
between experiment and theory is less good. The experimental
peak positions are close to phonon energies in the dispersion,
but not ones that would be expected to contribute toward the
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FIG. 3. Calculated phonon spectra for the Ŵ-X direction in cBN (a) and the relative intensities for the contributing bands in the case of
scattering of fast electrons (b), x rays (c), and neutrons (d). Note: in the case of scattering of electrons the contributions of the bands is shown
on a log10 scale.

spectrum due to the q · e(q0, j) term. The finite size of the
probe may also have an effect on the spectrum with local
inhomogeneities, such as defects, resulting in breaking of
symmetry making the q · e(q0, j) term become nonzero. Data
showing the Ŵ-M direction shows similar trends (see [12]).

IV. CONCLUSION

The scattering function formalism developed here high-
lights the fundamental similarities between the scattering of
electrons, neutrons, and x rays, as well as the differences
resulting from the Coulombic interaction. In addition to this,
the experimental setup used to collect EELS data means that
finite momentum and spatial resolution will also possibly need
to be considered when interpreting experimental data.

In this paper we have formulated a general expression for
the interaction of a fast electron with phonon vibrations inside
a STEM. We have applied this approach to understand the dif-
ferences in momentum-resolved EEL spectra from different

polymorphs of BN. The simulated spectra match well with the
experimental data and allow us to understand which modes are
contributing to the spectra. This is a general approach and will
allow interpretation of experimental data from a large variety
of materials.
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