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Theory of Nanometric Optical Tweezers
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We propose a scheme for optical trapping and alignment of dielectric particles in aqueous
environments at the nanometer scale. The scheme is based on the highly enhanced electric field
close to a laser-illuminated metal tip and the strong mechanical forces and torque associated with these
fields. We obtain a rigorous solution of Maxwell’s equations for the electromagnetic fields near the tip
and calculate the trapping potentials for a dielectric particle beyond the Rayleigh approximation. The
results indicate the feasibility of the scheme. [S0031-9007(97)03687-9]

PACS numbers: 42.50.Vk, 33.80.Ps, 41.20.Bt, 78.70.–g

Optical trapping by highly focused laser beams has
been extensively used for the manipulation of submicron-
size particles and biological structures [1]. Conventional
optical tweezers rely on the field gradients near the focus
of a laser beam which give rise to a trapping force to-
wards the focus. The trapping volume of these tweezers
is diffraction limited. Near-field optical microscopy en-
ables the optical measurements at dimensions beyond the
diffraction limit and makes it possible to optically moni-
tor dynamics of single biomolecules [2]. The potential
application of optical near fields to manipulate atoms or
nanoparticles has been discussed in Ref. [3]. In this Let-
ter, we present a new methodology for calculating rigor-
ously and self-consistently the trapping forces acting on a
nanometric particle in the optical near field and propose a
novel high-resolution trapping scheme.

The proposed nanometric optical tweezers rely on the
strongly enhanced electric field at a sharply pointed metal
tip under laser illumination. The near field close to the tip
mainly consists of evanescent components which decay
rapidly with distance from the tip. The utilization of
the metal tip for optical trapping offers the following
advantages: (1) The highly confined evanescent fields
significantly reduce the trapping volume; (2) the large
field gradients result in a larger trapping force; and (3)
the field enhancement allows the reduction of illumination
power and radiation damages to the sample.

High resolution surface modification based on the field
enhancement at laser-illuminated metal tips has been re-
cently demonstrated [4]. It is essential to perform a
rigorous electromagnetic analysis to understand the under-
lying mechanism for the field enhancement. Our analysis
is therefore relevant not only to optical tweezers, but also
to other applications, such as surface modification, nonlin-
ear spectroscopy and near-field optical imaging.

To solve Maxwell’s equations in the specific geome-
try of the tip and its environment, we employ the multiple
multipole method (MMP) which recently has been applied
to various near-field optical problems [5]. In MMP, elec-
tromagnetic fields are represented by a series expansion of
known analytical solutions of Maxwell’s equations. To

determine the unknown coefficients in the series expan-
sion, boundary conditions are imposed at discrete points
on the interfaces between adjacent homogeneous domains.
Once the resulting system of equations is solved and the
coefficients are determined, the solution is represented by
a self-consistent analytical expression.

Figure 1 shows our three dimensional MMP simulation
of the foremost part of a gold tip (5 nm tip radius)
in water for two different monochromatic plane-wave
excitations. The wavelength of the illuminating light is
l  810 nm (Ti:sapphire laser), which does not match
the surface plasmon resonance. The dielectric constants
of tip and water were taken to be ´  224.9 1 1.57i

and ´  1.77, respectively [6]. In Fig. 1(a), a plane
wave is incident from the bottom with the polarization
perpendicular to the tip axis, whereas in Fig. 1(b) the
tip is illuminated from the side with the polarization
parallel to the tip axis. A striking difference is seen for
the two different polarizations: in Fig. 1(b), the intensity

FIG. 1. Near field of a gold tip in water illuminated by two
different monochromatic waves at l  810 nm. Direction and
polarization of the incident wave are indicated by the k and E
vectors. The figures show contours of E2 (factor of 2 between
successive lines). The scaling is given by the numbers in the
figures (multiples of the exciting field). No enhancement at the
tip in (a); enhancement of ø3000 in (b). The field in (b) is
almost rotationally symmetric in the vicinity of the tip.
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enhancement at the foremost part of the tip is ø3000

times stronger than the illuminating intensity, whereas no
enhancement beneath the tip exists in Fig. 1(a) [7]. This
result suggests that it is crucial to have a large component
of the excitation field along the axial direction to obtain
a high field enhancement. Calculations of platinum and
tungsten tips show lower enhancements, whereas the
field beneath a dielectric tip is reduced compared to the
excitation field.

Figure 2 shows our calculation of the induced surface
charge density for the two situations shown in Figs. 1(a)
and 1(b). The incident light drives the free electrons in
the metal along the direction of polarization. While the
charge density is zero inside the metal at any instant of
time (=== ? E  0), charges accumulate on the surface of
the metal. When the incident polarization is perpendicular
to the tip axis [Fig. 1(a)], diametrically opposed points on
the tip surface have opposite charges. As a consequence,
the foremost end of the tip remains uncharged. On the
other hand, when the incident polarization is parallel
to the tip axis [Fig. 1(b)], the induced surface charge
density is almost rotationally symmetric and has the
highest amplitude at the end of the tip. In both cases the
surface charges form an oscillating standing wave (surface
plasmons) with wavelengths shorter than the wavelength
of the illuminating light. While the field enhancement has
been calculated in the electrostatic limit [8], the presence
of surface plasmons indicates that it is essential to include
retardation in the analysis.

With the field distribution around the tip determined,
the gradient force for a Rayleigh particle can be easily
calculated as

F  say2d=E2, (1)

where a is the polarizability of the particle [9]. The
particle tends to move to the higher intensity region
where its induced dipole has lower potential energy. The
assumptions inherent in Eq. (1) are that the external field

FIG. 2. Induced surface charge density corresponding to
Fig. 1(a) (left) and Fig. 1(b) (right). The surface charges form
a standing wave in each case. In Fig. 1(a), the surface charge
wave has a node at the end of the tip, whereas in Fig. 1(b)
there is a large surface charge accumulation at the foremost
part, responsible for the field enhancement.

is homogeneous across the particle and that the particle
does not alter the field E in Eq. (1). These assumptions,
however, do not hold for a nanometric particle close to
the tip as shown in our calculation (Fig. 3). The intensity
contours are distorted around a dielectric sphere (´  2.5,
10 nm diameter) and the field inside the sphere is highly
inhomogeneous.

To overcome the limitation of Rayleigh approximation,
we performed a rigorous treatment of the trapping force
by applying the conservation law for momentum [10],

d

dt
hGm 1 Gemj 

Z

≠V

T ? n dS . (2)

≠V denotes a surface enclosing the particle and n is
the outwardly directed normal unit vector. The total
mechanical and electromagnetic momenta inside ≠V are
denoted by Gm and Gem, respectively. T designates
Maxwell’s stress tensor given by

T  ´0´EE 1 m0mHH 2
1

2
s´0´E2 1 m0mH2d I .

(3)

Here, I denotes the unit dyad and ´, m are the dielectric
constant and magnetic permeability of the surrounding
medium, respectively. For time-harmonic excitation, the
time average of dGemydt is zero and the net mechanical
force can be expressed as [11]

F 

ø
dGm
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¿



Z

≠V

kT ? nl dS , (4)

where k. . .l denotes the time average. We find that for a
particle in the vicinity of the tip, the magnetic contribution
to the force is approximately 2 orders of magnitude lower
than the electric one.

FIG. 3. Perturbation of the near field by a particle being
trapped (´  2.5, 10 nm diameter). The field inside the particle
is highly inhomogeneous, requiring rigorous calculation of the
trapping force. The arrow indicates the direction of the trapping
force. Same scaling as in Fig. 1(b).
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FIG. 4. Trapping potential of a particle (d  10 nm, ´  2.5) in the vicinity of the tip. (a) Potential energy surface in the (x, z)
plane (the tip is indicated by the shadow on the bottom plane). (b),(c) Normalized potential energy evaluated along the x and z
directions, respectively.

To obtain the force field, the calculation was repeated
for different center positions of the particle. The trapping
potential (U) of a particle located at ro was then deter-
mined by

Usr0d  2
Z r0

`
Fsrd dr . (5)

For a particle of diameter d  10 nm, Fig. 4(a) shows
the potential energy surface in the (x, z) plane determined
from a grid of 40 3 50 positions. Figures 4(b) and 4(c)
show cross sections of the trapping potential along the
forward and transverse directions of the tip. Since the
trapping potential is almost rotationally symmetric, we
show only results for the (x, z) plane. The potential is
normalized with the illuminating intensity I0 and with kT

(k  Boltzmann constant, T  300 K).
The potential in the (x, y) plane is quasiharmonic near

the potential minimum [Fig. 4(b)]. According to the
theory of Brownian motion of a particle in a harmonically
bound potential [12], the variance in the x direction near
the potential minimum (x  0) is given by

kx2l  kT

√

≠2U

≠x2

!21

. (6)

A similar equation holds for the y direction. It follows
that for a trapping accuracy of 5 nm (kx2l1y2 or k y2l1y2),
Eq. (6) necessitates that I0  65 mWymm2. If the tip is
placed in the focus of a diffraction limited beam of area
0.1 mm2, the required laser power is 6.5 mW, which is a
nondestructive power level for nonresonant illumination.

The trapping potential is sensitively dependent on the
curvature and material of the tip, as well as the size, shape,
and dielectric constant of the particle being trapped.
Smaller spheres require higher trapping power, because
the polarizability of the particle scales with its volume.

A sharper tip is preferred for trapping smaller particles.
Although it is generally easier to trap larger particles,
there is also an upper limit for the particle size. With a
particle considerably larger than the tip radius, the rapidly
decaying fields close to the tip affect only the nearest part
of the particle’s surface.

The highly inhomogeneous field near the tip also exerts
a mechanical torque on the particle being trapped. This
torque can be calculated from a conservation law for
angular momentum, similar to Eq. (2). Our calculation
showed that the resulting torque tends to align the long
axis of an ellipsoidal particle towards the tip [Fig. 5(a)].
The final alignment of the particle, however, is dominated
by the trapping potential (associated with the net trapping
force). The alignment of the particle in Fig. 5(c) is
shown to be more stable than that in Fig. 5(b). With its
long axis perpendicular to the tip axis, a larger fraction
of the particle’s volume is immersed into the highly
inhomogeneous field near the tip.

A practical concern for the proposed tweezers is laser
heating of the tip. High temperatures could cause sample
damage and induce convection at the surface of the tip.
Accounting only for heat transport by conduction, the
temperature distribution is determined by

= ? skt=Td 2 cprsdTydtd  pabs , (7)

where kt , cp , and r are the thermal conductivity, the
heat capacity, and the specific density, respectively. For
water we used the values kt  0.61 3 1026 Wysmm Kd,
cp  4.18 JysgKd, r  0.997 3 10212 gymm3, and for
gold we applied kt  3.17 3 1024 Wysmm Kd, cp 

0.129 JysgKd, r  19.3 3 10212 gymm3. The source
term, pabs, denotes the absorbed power density given
by the solution for the electromagnetic fields pabs 

s1y2d Rehjp ? Ej  sE2y2d Imh´j, where j is the induced
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FIG. 5. Alignment of a prolate particle (long axis 10 nm,
short axes 5 nm, ´  2.5). (a) The field exerts a mechanical
torque on the particle and tends to align its long axis towards
the tip. Because the potential energy is lower for case (c) than
for case (b), the particle is more stable when trapped with its
axis transverse to the tip. Same scaling as in Fig. 1(b).

current density. We solved Eq. (7) numerically, using
the finite difference time domain method [13]. Tip and
environment were divided into 60 3 60 3 160 cubic
cells with a grid size of 4 nm. A time step of Dt 

5 3 10217 s was used to ensure numerical stability.
Figure 6 shows the calculated steady-state temperature

distribution for I0  65 mWymm2. DT is the tempera-
ture increase with respect to the original temperature
(300 K, for example). A maximum of DT  11.1 K is
reached inside the tip at the location of the maximum
absorption [Fig. 1(b)]. The maximum value at the surface
of the tip, however, is only DT  6.5 K. Note that DT

scales to the illuminating intensity. Our result indicates
that the temperature increase induced by laser heating
is minimal for the intensity levels required for stable
trapping.

In the proposed trapping scheme, a sharp metal tip
is brought to the focus of an illuminating beam where
a particle has been trapped by conventional means.
A polarization component along the tip axis enables
trapping of the particle to the near field of the tip. The
trapped particle can be moved within the focal region

FIG. 6. Distribution of the temperature increase DT for an
illuminating intensity of I0  65 mWymm2.

of the illuminating light by translating the tip with a
piezoceramic manipulator. The metal tip needs to be
inert and nonreactive to the trapped particle. Then, the
trapped particle can be released by turning off the laser
illumination. The proposed scheme holds promise for
nanometric manipulation of individual biomolecules in
their aqueous environment.
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Note added.—After submission of this Letter, an ar-
ticle by Martin and Girard on the field enhancement at
pyramidal tungsten tips was published [14].

[1] A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987),
and references therein; S. Chu, Science 253, 861 (1991).

[2] For reviews, see H. Heinzelmann and D. W. Pohl, Appl.
Phys. A 59, 89 (1994); E. Betzig and J. K. Trautman,
Science 257, 189 (1992); X. S. Xie, Acc. Chem. Res. 29,
598 (1996).

[3] D. W. Pohl, in Forces in Scanning Probe Methods, edited
by H.-J. Güntherodt, D. Anselmetti, and E. Meyer, NATO
Advanced Study Institutes, Ser. E, Vol. 286 (Kluwer,
Dordrecht, 1995), p. 235, and references therein.

[4] A. A. Gorbunov and W. Pompe, Phys. Status Solidi A 145,
333 (1994); J. Jersch and K. Dickmann, Appl. Phys. Lett.
68, 868 (1996).

[5] Ch. Hafner, The Generalized Multiple Multipole Tech-

nique for Computational Electromagnetics (Artech,
Boston, 1990); L. Novotny, D. W. Pohl, and B. Hecht,
Opt. Lett. 20, 970 (1995).

[6] Since the tip size is still large compared to the mean-free
path of the electrons in gold [see, C. F. Bohren and D. R.
Huffmann, Absorption and Scattering of Light by Small

Particles (Wiley, New York, 1983), p. 370], we believe
that nonlocal effects are negligible.

[7] Different from a dielectric tip, we find that the intensity
enhancement of a metal tip cannot be approximated by
that of a single polarizable sphere, 4js´2 2 ´1dys´2 1
2´1dj2, ´2 and ´1 being the dielectric constants of tip and
environment, respectively.

[8] W. Denk and D. W. Pohl, J. Vac. Sci. Technol. B 9, 510
(1991).

[9] The scattering force can be neglected because of the small
particle size and because there is no net radiation pressure
associated with the evanescent fields close to the tip.

[10] J. A. Stratton, Electromagnetic Theory (McGraw-Hill,
New York, 1941).

[11] J. P. Barton and D. R. Alexander, J. Appl. Phys. 66, 2800
(1989).

[12] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[13] C. Temperton, J. Comput. Phys. 34, 314 (1980).
[14] O. J. F. Martin and C. Girard, Appl. Phys. Lett. 70, 705

(1997).

648


