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A discussion of the functional setting customarily adopted in General Relativity (GR) is proposed.�is is based on the introduction
of the notion of nonlocal point transformations (NLPTs). While allowing the extension of the traditional concept of GR-reference
frame, NLPTs are important because they permit the explicit determination of themap between intrinsically di�erent and generally
curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper themathematical foundations ofNLPT-
theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed,
which concern (1) a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2) the determination
of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identi
cation of
NLPT-acceleration e�ects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in
di�erent curved space-times; (3) the construction of the nonlocal transformation law connecting di�erent diagonal metric tensors
solution to the Einstein 
eld equations; and (4) the diagonalization of nondiagonal metric tensors.

1. Introduction

�e investigation carried out in this paper concerns basic the-
oretical issues and physical problems of critical importance in
the classical 
eld theory of gravity, that is, General Relativity
(GR), as well as for both classical and quantum relativistic
theories. �us, while leaving the axiomatic framework of
the Standard Formulation to General Relativity (SF-GR)
unchanged which is based on the Einstein 
eld equations,
a new approach to SF-GR is proposed. �is is obtained
by introducing a family of nonlocal point transformations
(NLPTs) which act between suitable sets of space-times
and are referred to here as NLPT-theory. �is concerns the
extension of the customary functional setting which lies at
the basis of SF-GR, which is realized by the notion of local

point transformations (LPTs) � and their inverse �−1:
�: �� �→ ��� = ��� (�) ,

�−1: ��� �→ �� = �� (��) , (1)

which connect arbitrary GR-reference frames. In SF-GR the
group {�} (LPT-group) of these transformations is associated
with in principle arbitrary possible parametrizations, that is,
4-dimensional curvilinear coordinate systems, of the physical
space-time, the latter being identi
ed with a 4-dimensional

connected and time-oriented real metric space�4 ≡ (Q4, 
),
with Q4 ≡ R

4. �is determines for each parametrization a
unique representation of the space-time metric tensor 
�](�)
[1–7].

Hence, by de
nition, the group {�} leaves invariant(Q4, 
), which must therefore be identi
ed with a di�erential
manifold. It is obvious that such a functional setting is
intrinsic to SF-GR; that is, it is actually required for the
validity of SF-GR itself. �e same transformations de
ned
by (1) are assumed also to warrant the global validity of the
so-called Einstein General Covariance Principle (GCP) [8];
namely, they must be endowed with a suitable functional
setting, referred to here as LPT-functional setting (see related
discussion in Section 2), which permits in turn also the
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corresponding realization of GCP. Such a principle is there-
fore referred to as LPT-GCP. In particular, this means that
LPT must be smoothly di�erentiable so as to uniquely and
globally prescribe also the 4-tensor transformation laws of the
displacement 4-vectors; namely,

��� = J�
]
���],

���� = (J−1)�
]

��]. (2)

Here, J�
]
and (J−1)�

]
denote the direct and inverse Jacobian

matrices which take the so-called gradient form; that is,

J
�
]
(��) ≡ ��� (��)���] , (3)

(J−1)�
]

(�) ≡ ���� (�)��] , (4)

which uniquely globally prescribe also the corresponding 4-
tensor transformation laws of all tensor �elds which charac-
terize SF-GR.

However, in this work we intend to show that—based on
compelling physical considerations—an alternative approach
to GR based on NLPT-theory actually exists, which involves
a departure from the standard route adopted in SF-GR. �is
is founded on the introduction of an extended functional
setting, referred to here as NLPT-functional setting, which

maps in each other intrinsically di�erent space-times (Q4, 
)
and (Q�4, 
�), that is, space-times which cannot be otherwise
connected by means of the group {�}.
Background and Physical Motivations. An ongoing subject
of theoretical investigations in GR concerns its possible
nonlocal modi
cations. Recent literature investigations of
this type are several. Examples can be found, for instance, in
[9–14], where nonlocal generalizations of the Einstein theory
of gravitation have been proposed. Such a kind of nonlocal
GR model leads typically to suitably modi
ed forms of the
Einstein equation [1] in which nonlocal 
eld interactions
are accounted for, by analogy with corresponding nonlocal
features of the electromagnetic 
eld occurring in classical
electrodynamics.

It is well-know that the LPT-functional setting char-
acteristic of the original Einstein formulation of GR is
uniquely founded on the classical theory of tensor calculus
on manifolds. �e historical foundations of the latter, in
turn, date back to the so-called absolute di�erential calculus
developed at the end of the 19th century by Gregorio Ricci-
Curbastro and later popularized by his former student and
collaborator Tullio Levi-Civita [2, 4]. However, a basic issue
that arises inGR andmore generally in classical and quantum
mechanics as well as in the theory of classical and quantum

elds is whether these theories themselves might exhibit
possible contradictions with the validity of the LPT-GCP and
consequently a more general functional setting should be
actually adopted for the treatment of these disciplines.

To better elucidate the scope and potential physical rele-
vance of the topics indicated above, it is worth highlighting

some of the main related physical issues which are relevant
for the present investigation andwhose solution, as explained
below, appears of critical importance inGR.�ese include the
following:

(1) Problem #1: Teleparallel Approach to GR. An example
of violation of LPT-GCP occurs in the framework
of the Einstein teleparallel approach to GR (see [15])
and possibly also in some of its recently proposed
generalizations [16–18]. Indeed, such a theory is
intended to map intrinsically di�erent space-times.
In the case of teleparallelism one of such space-
times is identi
ed, by construction, with the �at
time-oriented Minkowski space-time. As discussed
below (see Section 3), this is achieved by a suitable
matrix transformation between the corresponding
metric tensors, denoted as teleparallel transformation
problem (TT-problem), which lies at the basis of such
an approach (see (17) or equivalently (18)). A number
of related issues arise which concern in particular the
following:

(i) Problem #P11. It is the realization and possible
nonuniqueness feature of the mapping to be
established between the two space-times occur-
ring in the teleparallel transformation itself.�is
refers in particular to what might/should be
the actual representation of the corresponding
coordinate transformations, the prescription of
possible nonlocal dependence, with particular
reference to 4-velocity dependence, and the
relationship between local and nonlocal coordi-
nate transformations.

(ii) Problem #P12. It is the fact that obviously such
problems, and the TT-problem itself, cannot be
solved in the framework of the validity of the
LPT-GCP.

(iii) Problem #P13. It is the physical implications
of the theory, with particular reference to the
explicit construction of special NLPT.

(iv) Problem #P14. It is the possible existence/
nonexistence of corresponding tensor transfor-
mation laws with respect to arbitrary NLPT and
is referred to here as NLPT 4-tensor laws, for
observable tensor 
elds and in particular for
the metric tensors which are associated with a
curved space-time (Q4, 
) and the correspond-

ing Minkowski space-time (Q�4, 
�) ≡ (M4,).
(2) Problem #2: Diagonalization of Metric Tensors and

Complex Transformation Approaches to GR. A second
notable example concerns the adoption in GR of
complex-variable transformations, such as the so-
called Newman-Janis algorithm [19–21]. �is is used
in the literature for the purpose of investigating a
variety of standard or nonstandard GR black-hole
solutions [22, 23], as well as alternative theories
of gravitation, such as the one based on noncom-
mutative geometry [24]. Its basic feature is that of
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permitting one to transform, by means of a complex
coordinate transformation, a diagonal metric tensor
corresponding to a spherically symmetric and sta-
tionary con
guration (like the Schwarzschild one)
into a nondiagonal one corresponding to a rotating
black-hole (like theKerr solution).On the other hand,
a number of issues arise concerning the Newman-
Janis algorithm. �ese include the following:

(i) Problem #P21. First, it is complex, so that the
transformed coordinates are complex too. �is
inhibits their objective physical interpretation in
terms of physical observables.

(ii) Problem #P22. It is the fact that, as for the
teleparallel transformation, the diagonalization
problem at the basis of the same transformation
cannot be solved in the framework of the valid-
ity of the LPT-GCP. Indeed, the Newman-Janis
algorithm seemsworthmentioning especially in
view of the fact that it obviously represents a
patent violation of the LPT-GCP.

(iii) Problem #P23. �e physical meaning of the
transformation: one cannot ignore that fact that
there is no clear understanding regarding its
physical interpretation and ultimately as to why
the algorithm should actually work at all.

(iv) Problem #P24. Finally, despite the obvious fact
that the teleparallel transformation provides in
principle also a solution to the diagonalization
problem, there is no clear connection emerg-
ing between the same transformation and the
Newman-Janis algorithm.

(3) Problem#3: Acceleration Eects in Relativistic Classical
Electrodynamics. A third issue worth pointing out
for its potential relevance in the present discussion
concerns the role of acceleration on GR-reference
frames as discussed, for example, in [25, 26]. �ese
papers deal with the necessity of taking into account,
in the context of both GR and Maxwell’s equa-
tions, possible acceleration-induced nonlocal e�ects.
However, the precise mathematical formulation and
physical mechanisms by which nonlocality should
manifest itself must still be fully understood. In fact,
a number of basic issues remain unanswered. �ese
concern in particular the following ones:

(i) Problem #P31. First, the precise prescription
of the mathematical setting of the theory and
in particular the implementation and possible
functional realization of the nonlocal accelera-
tion e�ects in the context of GR remain unclear.

(ii) Problem #P32. Indeed, nonlocal acceleration
e�ects are introduced by postulating directly “ad
hoc” integral representations (or “transforma-
tion laws”) for appropriate tensor 
elds.

(iii) Problem #P33. �e validity of these transforma-
tion laws, namely, the reason why ultimately
they should apply, and consequently their phys-
ical interpretation remain both unclear.

(4) Problem #4: Nonlocal Eects in Classical Electrody-
namics. A further intriguing example which is by
itself su�cient to demonstrate the role of nonlocality
in physics can be found in the framework of a
special-relativistic treatment of classical electrody-
namics. �is concerns the so-called electromagnetic
radiation-reaction (EM-RR) problem, that is, the
dynamics of an extended charge in the presence of its
self-generated EM 
eld. As shown in [27, 28] such a
problem can be rigorously treated in the framework
of a 
rst-principle approach based on the Hamilton
variational principle. In such a context the source
of nonlocality appears at once as being due to the

nite size of charged particles. Indeed, its physical
origin is related to the retarded EM interaction of
the extended particle with itself [29–33]. However,
further fundamental physical issues emerge which
should be answered:

(i) Problem #P41. First, the precise prescription
of the transformation laws with respect to the
group on NLPT should be achieved for the EM
4-potential �� and of the corresponding EM
Faraday tensor ��].

(ii) Problem #P42. Second, it remains to be ascer-
tained whether the transformations indicated
above are realized by means of 4-tensor NLPT-
transformation laws, that is, in particular for��], transformation laws formally identical to
those determined by the 4-position in
nites-
imal displacement ��� or the dyadic tensor�����].

�e key question which needs to be ascertained in the
context of GR is whether these problems do actually require,
as anticipated above, the introduction of a more general class
of GR-reference frames. In fact, despite previous solution
attempts [25, 26], a basic issue which still remains unsolved
nowadays concerns the construction of the explicit general
form and physically admissible realizations which the trans-
formations occurring among arbitrary GR-frames should
take.�e problemmatter refers therefore to possible nonlocal
generalization of the customary local tensor calculus and
coordinate transformations to be adopted in GR. �is is
actually the task which we intend to undertake in the present
investigation.

Under such premises it must be noted that the present
work departs, while being at the same time also in some sense
complementary, from the nonlocal GR theories indicated
above. In fact it belongs to the class of studies aimed at
introducing in the context of GR a new type of nonlocal
phenomenon based on the coordinate transformations estab-
lished between GR-reference frames and at the same time
extending the functional setting customarily adopted in such
a context.

Goals and Structure of the Paper. �e work-plan of the
investigation is to address the problem of the nonlocal
generalization of GR achieved by a suitable extension of its
functional setting. �is task concerns basic theoretical issues
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and unsolved physical problems whose solution presented
in this investigation for the 
rst time appears of critical
importance inGeneral Relativity (GR). In detail these include
the following:

(1) Goal #1. It is the identi
cation of possible generaliza-
tions of the LPT-setting customarily adopted in GR,
based on physical example-cases. A notable problem
of this type is realized by Einstein’s approach to
the so-called Einstein teleparallelism. �e issue arises
whether such a theory can be recovered from SF-GR
by means of a suitable mathematical, that is, purely
conceptual, viewpoint.�is involves the introduction
of appropriate nonlocal point transformations (or
NLPTs). It must be stressed that the possible prescrip-
tion of NLPT is by no means “a priori” obvious since
they remain—it must be stressed—largely arbitrary
and intrinsically nonunique. For this purpose Prob-
lems #P11–#P14 are addressed in Sections 2–5.

�eir solution is crucial for their identi
cation. �is
goal can be reached based on the adoption of a
suitable subset of NLPTs, referred to here as special
NLPT-group {��} acting on appropriate extended GR-
frames which are de
ned with respect to prescribed
space-times. For de
niteness, in view of warranting
the validity of suitable NLPT 4-tensor laws for the
metric tensor which is associated with the teleparallel
transformation (see (41) below), in the present treat-
ment these transformations are assumed to preserve
the line element (see Section 4 below); in other words
they are required to map space-times (Q4, 
) and(Q�4, 
�) ≡ (M�4, ) having the same line elements ��
and ���.

(2) Goal #2. In this context Problems #P21–#P24 are
addressed. For such a purpose the determination is
done of the group of general nonlocal point trans-
formations (general NLPTs) connecting subsets of

two generic curved space-times (Q4, 
) and (Q�4, 
�).
�is is referred to here as general NLPT-group {��}
(Section 6). �e task posed here involves also their
physical interpretation (Section 7). As an illustration
of the theory, the explicit construction of possible
physically relevant transformations of the group {��}
are addressed, with special reference to the problem
of the NLPT between diagonal metric tensors (Sec-
tion 8) and the diagonalization of metric tensors in
GR (Section 9).

(3) Goal #3. It is the investigation of physical implications
of the general NLPT-functional setting in reference
to the identi
cation of possible acceleration eects
both in GR and in classical electrodynamics. �e
goal of Sections 10 and 11 is to look for a possible
solution to Problems #P31–#P33 and Problems #P41-
#P42 indicated above as well as to point out relevant
possible realizations of general NLPT. �is involves
in particular the investigation of the role of accel-
eration on GR-reference frames and the search of
NLPT 4-tensor laws occurring, respectively, for the

acceleration 4-tensor and the EM 4-vector potential,
with respect to the group of NLPT {��} established
between suitable subsets of two arbitrary curved

space-times (Q4, 
) and (Q�4, 
�).
2. The LPT-Functional Setting

We 
rst recall the functional setting which—as anticipated
above—is usually adopted both in relativistic theories and
in Einstein’s 1915 theory of gravitation [1], that is, SF-GR
itself. In both cases the goal is, in principle, to predict all
physically relevant realizations of the observables. In the case

of GR these concern the physical space-time itself �4 ≡(Q4, 
). As is well-known, in SF-GR this is identi
ed with a

4-dimensional Lorentzian metric space on Q4 ≡ R
4 which

is endowed with a prescribed metric tensor 
�](�) when
the same set Q4 is represented in terms of a given set of
curvilinear coordinates {��} ≡ �. Nevertheless, validity of
GR and in particular of the Einstein equation itself requires
couching them in a suitable mathematical framework.

As recently pointed out in [6] in the context of a
variational treatment of SF-GR, this involves, besides the
ful
llment of a suitable property of gauge invariance, also
the adoption of Classical Tensor Analysis on Manifolds. In
other words both GR and the same Einstein equation should
embody by construction the validity of LPT-GCP, namely,
formulated consistent with the so-called LPT-functional set-
ting. More precisely, this means explicitly that the following
mathematical requirements (A–C) should apply:

(A) All physically observable tensor 
elds de
ned on

space-time (Q4, 
) must be realized by means of 4-
tensor 
elds with respect to a suitable ensemble of
coordinate transformations connecting in principle
arbitrary, but suitably related, 4-dimensional curvi-
linear coordinate systems, referred to as GR-reference
frames, �� and ���.

(B) �e PDEs, together with their corresponding varia-
tional principles, which characterize all classical and
quantum physical laws should satisfy the criterion of
manifest covariance, whereby it should be possible to
cast them in all their realizations in manifest 4-tensor
form.

(C) �e set of coordinate transformations indicated above
is identi
ed with the group of transformations that in
Eulerian form are prescribed by means of the invert-
ible maps (1) which identify the group {�}. For this
purpose, suitable restrictions must be placed on the
admissible GR-reference frames, that is, coordinate
systems, prescribed bymeans of (1) which are realized
by the following requirements:

(i) LPT-Requirement #1. For the validity of GCP,
the two space-timesmust coincide and be trans-
formed into one another by means of LPT; that

is, (Q4, 
(�)) ≡ (Q�4, 
�(��)), so as to de
ne

a single ��-dierentiable Lorentzian manifold
with � ≥ 3, that is, have either signature(+, −, −, −) or analogous permutations.
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(ii) LPT-Requirement #2. �ese transformations
must be assumed as purely local, so that in (1) ���
and ��must depend only locally, respectively, on� ≡ {��} and �� ≡ {���}. In other words, the local
values �� and ��� are required to be mutually
mapped in each other by means of the same
equations, with ��� (resp., ��) being a function
of �� (and similarly ���) only.

(iii) LPT-Requirement #3. �e coordinates �� and��� must realize physical observables and hence
be prescribed in terms of real variables, while
the functions relating them (� and �−1)must be
suitably smooth in the sense that they are of class�(�), with � ≥ 3.�ismeans that (Q4, 
(�))must

realize a ��-dierentiable Lorentzian manifold
with � ≥ 3.

(iv) LPT-Requirement #4. Equations (1) gener-
ate the corresponding 4-vector transformation
equations for the contravariant components of
the displacement 4-vectors ��� and ���� (see
(2)). Analogous transformation laws follow, of
course, for the covariant components of the
displacements; namely, ��

]
= 
�](�)���. In

view of (1), by construction J
�
]
and (J−1)�

]

are considered, respectively, local functions of�� ≡ {���} and � ≡ {��} only and must
necessarily coincide with the gradient forms

(3)-(4). Nevertheless, since J
�
]
and (J−1)�

]
are

mutually related being inverse matrices of each
other and the point transformations are purely
local, it follows that in view of (3) and (4) they
can also both formally be regarded as functions,
respectively, of the variables �� and �.

(v) LPT-Requirement #5. In terms of the Jacobian
matrix J

�
]
and its inverse (J−1)�

]
the funda-

mental LPT 4-tensor transformation laws for
the group {�} are set for arbitrary tensors.
Consider, for example, the Riemann curvature
tensor ����](�). In terms of an arbitrary LPT it

obeys the 4-tensor transformation law

����] (�) = J	� (J−1)�
J��J�] ��
	�� (��) . (5)

�e same transformation law also requires that
4-scalars must be le� unchanged under the
action of the group {�}. �us, by construction
the 4-scalar proper-time element ��, that is,
the Riemann-distance de
ned in terms of the
equation ��2 = 
�](�)�����] ≡ 
�](�)�����],
must satisfy the transformation law

��2 = 
�] (�) �����] = 
��] (��) �������], (6)

which can be equivalently expressed as

��2 = 
�] (�) �����] = 
��] (��) �������]. (7)

Furthermore, the covariant and contravariant
components of the metric tensor, that is, 
�](�)
and
�](�) and, respectively,
��](��) and
��](��),
must satisfy, respectively, the LPT 4-tensor
transformation laws


��] (��) = J
� (��)J	] (��) 

	 (�) , (8)


��] (��) = (J−1 (�))�
 (J−1 (�))]	 

	 (�) , (9)

so that the validity of the scalar transformation
laws (6) and (7) is warranted.

(vi) LPT-Requirement #6. Introducing the corre-
sponding Lagrangian form of the same equa-
tions, obtained by parametrizing both �� and��� in terms of suitably smooth time-like world-
lines {��(�), � ∈ �} and {���(�), � ∈ �}, (1) take
the equivalent form

�: �� (�) �→ ��� (�) = ��� (� (�)) ,
�−1: ��� (�) �→ �� (�) = �� (�� (�)) , (10)

whereby the displacement 4-vectors ��� ≡���(�) and ���� ≡ ����(�) can be viewed as
occurring during the proper-time ��. �en it
follows that (10) imply also suitable transforma-
tion laws for the 4-velocities ��(�) = ���(�)/��
and ���(�) = ����(�)/��, which by de
nition

span the tangent space �D4. �e latter are
provided by the equations

�� (�) = J�
]
(��) ��] (�) ,

��� (�) = (J−1)�
]

(�) �] (�) , (11)

implying the simultaneous validity of the mass-
shell constraints

�� (�) �� (�) = 1, (12)

��� (�) ��� (�) = 1. (13)

Notice that here also the Jacobian J
�
]

and

its inverse (J−1)�
]
must be considered as �-

dependent (but just only through �� = ��(�) and� = �(�), resp.), that is, of the form
J
�
]
(��) = J�

]
(�� (�)) ,

(J−1)�
]

(�) = (J−1)�
]

(� (�)) . (14)

(vii) LPT-Requirement #7. Finally, in terms of (10)
and (11) one notices that LPT can be formally
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represented in terms of Lagrangian phase-space
transformations of the type

{�� (�) , �� (�)} �→
{��� (�) , ��� (�)} = {��� (� (�)) , (J−1)�

]

(�) �] (�)} ,
{��� (�) , ��� (�)} �→
{�� (�) , �� (�)} = {�� (�� (�)) ,J�

]
(��) ��] (�)}

(15)

(LPT-phase-space map), with the vectors{��(�), ��(�)} and {���(�), ���(�)} to be viewed as
representing the phase-space states, endowed
by 4-positions ��(�) and ���(�), respectively, and
corresponding 4-velocities ��(�) and ���(�).
Hence, by construction transformation (15)
warrants the scalar and tensor transformation
laws (6) and (8) and preserves the structure of
the space-time (Q4, 
).

�is concludes the prescription of the LPT-functional set-
ting required for the validity of GCP. �e set of assumptions
represented by LPT-Requirements #1–#7 will be referred to
here as LPT-theory.

It must be stressed that its adoption is of paramount
importance in the context of GR and in particular for the
subsequent considerations regarding the physical interpre-
tations of Einstein teleparallelism. �is happens at least for
the following three main motivations. �e 
rst one is that, in
validity of the LPT-requirements #1–#6, and in particular the
gradient form requirement (3)-(4) for the Jacobian matrix,
(11) are equivalent to the Eulerian equations (1) (and of course
also to the corresponding Lagrangian equations (10)). Hence,
both equations actually allow one to identify uniquely the
group {�} (Proposition #1).

�e second one concerns the very notion of particular
solution to be adopted in the context of GR for the Einstein
equation. In fact, if 
�](�) denotes a parametrized-solution
to the same equation obtained with respect to a GR-frame��, the notion of particular solution for the same equation
is actually peculiar. Indeed, it must necessarily coincide
with the whole equivalence class of parametrized-solutions,
represented symbolically as {
�](�)}, which are mapped in
each other by means of an arbitrary LPT of the group {�}.
Such a property, which is actually a consequence of GCP (and
consequently of Classical Tensor Analysis on Manifolds), is
usually being referred to in GR as the so-called principle of
frame’s (or observer’s) independence (Proposition #2).

�e third motivation concerns the very notion of curved

space-time (Q4, 
(�)), compared to that of the Minkowski

�at space-time (Q4, ), which when expressed in orthogonal

Cartesian coordinates ��� ≡ (�0�, (r� ≡ ��, ��, ��)) has the
metric tensor �] = diag{1, −1, −1, −1}. A generic space-time
of this type is characterized, by de
nition, by a nonvanishing
Riemann curvature 4-tensor ����](�). As a consequence of

the 4-tensor transformation laws (8)-(9) it follows that
two generic space-times (Q4, 
(�)) and (Q�4, 
�(��)) can be
mapped in each other by means of LPTs and hence actually

coincide, only provided the respective metric tensors, and
hence also the corresponding Riemann curvature 4-tensors,
are transformed into each other via the same equations (8)-
(9). Hence, it is obvious that a generic curved space-time
cannot bemapped into the saidMinkowski space-time purely
by means of LPT (Proposition #3).

3. Einstein’s Teleparallel
Transformation Problem

Most of the historical developments achieved so far in GR
since its original appearance in 1915 have been obtained in
the framework of the GCP-setting of GR [8]. Nonetheless for
a long time the issue has been debated whether Relativistic
Classical Mechanics and Relativistic Classical theory of 
elds
might exhibit in each case (possibly di�erent) nonlocal
phenomena. In the literature there are several examples of
studies aimed at extending in the context of GR the classical
notions of local dynamics and local 
eld interactions. A
related question is, however, whether there actually exist
additional nonlocal phenomena which might escape the
validity of GCP and require the setup of a proper theoretical
framework for their study.

As we intend to show, an instance of this type arises in
the context of the so-called teleparallel approach to GR, also
known as Einstein teleparallelism [15] (see also [16–18]). To
state the issue in the appropriate physical context let us brie�y
highlight the basic ideas behind such an approach. �is is
based on the conjecture on Einstein part that at each point�� of the space-time manifold (Q4, 
(�)) the corresponding
tangent space �D4 can be “parallelized.”�is means, in other

words, that at all 4-positions �� ∈ (Q4, 
(�)) it should be
possible to cast each tangent 4-vector ��(�) in the form

�� (�) =  �
]
��] (�) ,

��� (�) = ( −1)�
]

�] (�) , (16)

with  �
 being an invertible matrix with inverse ( −1)
�.
More precisely, according to Einstein’s approach the metric

tensor of a generic curved space-time (Q4, 
(�)) should
satisfy an equation in the form


�] (�) = ( −1)
� ( −1)	] 
	 (17)

or equivalently

 �
 (�) ]

	 (�) 
�] (�) = 
	, (18)

with 
	 being here the metric tensor associated with the �at

Minkowski space-time (Q�4 ≡ M4, ) having the Lorentzian
signature (+, −, −, −). �e goal is therefore to determine the
map


	 ←→ 
�] (�) , (19)

known as the teleparallel transformation (TT), while (17)
(or equivalently (18)) will be referred to as the TT-problem.
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For de
niteness, it must be stressed here what appears to
be Einstein’s key assumption underlying these equations: it
is understood in fact that in (17) and (18) 
	 manifestly
identi
es the metric tensor of the Minkowski space-time(M4, ) when expressed in terms of orthogonal Cartesian
coordinates. On the other hand it is also understood that (17)
and (18) should include the identity transformation among
their possible solutions. �is means that for consistency
�](�) can always be identi
ed with the metric tensor of

the curved space-time (Q4, 
(�)) when expressed as a local
function of the same Cartesian coordinates. In the present
paper such a viewpoint will be consistently adopted in the
subsequent considerations to be developed below.

�e following additional remarks must also be made
regarding the TT-problem. �e 
rst one concerns the inter-
pretation of (18) in the so-called tetrad formalism. It implies,
in fact, that for " = 0, 3 the 
elds �0 (�), �1 (�), �2 (�), and �3 (�) can simply be interpreted as a tetrad basis, that is, a
set of four independent real 4-vector 
elds that are mutually
orthogonal, that is, such that for # ̸= %

&�
 (�) &]	 (�) 
�] (�) = 0. (20)

Also, all basis 4-vectors are unitary, in the sense that, for all# = 0, 3, | �
(�) ]

(
)(�)
�](�)| = 1, one of them ( �0 (�))
being time-like and the others being space-like; namely,

 �0 (�) ]

0 (�) 
�] (�) = 1,
 �
 (�) ]

(
) (�) 
�] (�) = −1 (21)

together span the 4D tangent space at each point �� in the

space-time (Q4, 
).
�e second remark is about the choice of the curved

space-time (Q4, 
(�)) in the TT-problem. It must be stressed,

in fact, that the space-time (Q4, 
(�)) should remain in
principle arbitrary. �erefore, it should always be possible

to identify (Q4, 
(�)) with the curved space-time having
signature di�erent from that of the Minkowski space-time.
�erefore, the solution to the TT-problem should be possible
also in the case in which (Q4, 
(�)) and (M4, ) have di�erent
signatures.

�e third remark is about the ultimate goal of Einstein
teleparallelism. �is emerges perspicuously from (17) (or
equivalently its inverse represented by (18)). �e determina-
tion of the matrix �
(�) solution to such an equation will be
referred to here as TT-problem. In fact, (17) (i.e., if a solution
exists to such an equation) should permit one to relate curved
and �at space-time metric tensors, respectively, identi
ed
with 
�](�) and 
	.

From these premises, therefore, the fundamental problem
of establishing a map between the generic curved space-

time (Q4, 
) indicated above and the Minkowski space-time(M4, ) emerges, which should have a global validity; namely,

it should hold in the whole (Q4, 
) or at least in a 
nite
subset of the same space-time. However, such a kind of
transformation cannot be realized by means of LPT of type
(1) in which  �
(�) is identi
ed with the corresponding
Jacobian (see (3) below).�is happens because the teleparallel

transformation cannot be realized by means of the group of
LPTs {�} (see also the related Proposition #3 indicated above).
�e issue arises whether in the context of GR the teleparallel
transformation (17) (and equivalently its inverse, i.e., (18))
might actually still apply in the case of a more general type of
nonlocal point transformations, with the matrix �
(�) to be
identi
ed with a corresponding suitably prescribed Jacobian
matrix.

�e existence of such a class of generalized GR-reference
frames and coordinate systems is actually suggested by the
Einstein equivalence principle (EEP) itself. �is is expressed
by two separate propositions, which in the form presently
known must both be ascribed to Albert Einstein’s 1907
original formulation [34] (see also [35]). �e part of EEP
which is mostly relevant for the current discussion is the one
usually referred to as the so-calledweak equivalence principle
(WEP). �is is related, in fact, to the fundamental notion
of equivalence between gravitational and inertial mass as
well as to Albert Einstein’s observation that the gravitational
“force” as experienced locally while standing on a massive
body is actually the same as the pseudoforce experienced by
an observer in a noninertial (accelerated) frame of reference.
Apparently there is no unique formulation of WEP to be
found in the literature. However, the form of WEP which is
of key importance in the following consists in the two dis-
tinct claims by Einstein stating (a) the equivalence between
accelerating frames and the occurrence of gravitational 
elds
(see also [8]) and (b) the fact that “local eects of motion
in a curved space (gravitation)” should be considered as
“indistinguishable from those of an accelerated observer in �at
space” [34, 35]. Incidentally, it must be stressed that statement
(b) is the basis of Einstein’s 1928 paper on teleparallelism.

From a historical perspective, the original introduction
of WEP (and EEP) on the part of Albert Einstein was later
instrumental for the development of GR. An interesting
question concerns the conditions of validity of GCP and the
choice of the class of LPTs to which WEP applies. In fact,
based on the discussion above, the issue is whether it is
possible to extend in such a framework the class of LPTs. In
particular, here we intend to look for a more general group of
point transformations, to be identi
ed with NLPT. �ese are
distinguished from the class {�} introduced above and form
a group of transformations denoted here as special NLPT-
group {��}. �is new type of transformation connects two
accelerating frames, namely, curvilinear coordinate systems
mutually related bymeans of suitable acceleration-dependent
and necessarily nonlocal coordinate transformations. �e
latter should permit one to connect globally two suitable
subsets of Lorentzian spaces which realize accessible domains
(in the sense indicated below) and are endowedwith di�erent
metric tensors having intrinsically di�erent Riemann tensors.
�erefore, these transformations should have the property of
being globally de
ned and, together with the corresponding
inverse transformations, be, respectively, endowed with Jaco-

bians �
(�) and ( −1(�))�] .
We intend to show that provided suitable “ad hoc”

restrictions are set on the class of manifolds among which
NLPTs are going to be established, a nontrivial generalization
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of GR by means of the general NLPT-group {��} can be
achieved. �ese will be shown to be realized in terms of a
suitably prescribed di�eomorphism between 4-dimensional

Lorentzian space-times (Q4, 
) and (Q�4, 
�) of the general
form

��: ��� �→ �� = �� {��, [��, ��]} , (22)

with inverse transformation

�−1� : �� �→ ��� = ��� {�, [�, �]} . (23)

Here the squared brackets [��, ��] and [�, �] denote possible
suitable nonlocal dependence in terms of the 4-positions ���
and �� and corresponding 4-velocities �� ≡ ���/�� and ��� ≡����/��, respectively. As a consequence, (22)-(23) identify a
new kind of point transformation, which unlike LPTs (see
(1)) is established between intrinsically di�erent manifolds(Q4, 
) and (Q�4, 
�), that is, which cannot bemapped in each
other purely by means of LPTs.

4. Solution to the TT-Problem:
The NLPT-Functional Setting

Let us now pose the problem of constructing explicitly the
new type of point transformation, that is, theNLPT,which are
involved in the representation problem of teleparallel gravity
and identifying, in the process, the corresponding NLPT-
functional setting.

For this purpose we introduce 
rst the conjecture that,
consistent with EEP, it should be possible to generate such
a transformation introducing a suitable 4-velocity transfor-
mation �� → ��� which connects appropriate sets of GR-
reference frames belonging to the two space-times indicated
above. Indeed, the possibility of constructing “ad hoc” 4-
velocity transformations which are not reducible to LPTs of
type (1) is physically conceivable. To show how this task can
be achieved in practice, we notice that the transformation
laws for the 4-velocity which are realized, by assumption, by
(16) necessarily imply the validity of corresponding transfor-
mation equations for the displacement 4-vectors ���(�) and����(�).�ese read manifestly

��� (�) =  �
]
���] (�) ,

���� (�) = ( −1)�
]

��] (�) , (24)

where for generality  �
]
and ( −1)�

]
are considered of the

forms  �
]
=  �

]
(��, �) and ( −1)�

]
= ( −1)�

]
(�, ��). By

analogy with (14), when evaluated along the corresponding
world-lines, it follows that they take the general functional
form

 �
]
=  �

]
(�� (�) , � (�)) , (25)

( −1)�
]

= ( −1)�
]

(� (�) , �� (�)) , (26)

with  �
]
and ( −1)�

]
being now smooth functions of �

through the variables �(�) ≡ {��(�)} and ��(�) ≡ {���(�)}. More

precisely, by analogy to the LPT-requirements recalled above,
the following prescriptions can be invoked to determine the
NLPT-functional setting:

(i) NLPT-Requirement #1. �e coordinates �� and��� realize by assumption physical observables and
hence are prescribed in terms of real variables,

while (Q4, 
(�)) and (M4, ) must both realize ��-
di�erentiable Lorentzian manifolds, with � ≥ 3.

(ii) NLPT-Requirement #2. �e matrices �
]
and ( −1)�

]

are assumed to be locally smoothly dependent only
on 4-position, while admitting at the same time also
possible nonlocal dependence. More precisely, in the
case of the Jacobian �

]
(��, �) the second variable � ≡{��} which enters the same function can contain in

general both local and nonlocal implicit dependence,
the former one in terms of ���. Similar considerations
apply to the inverse matrix ( −1)�

]
(�, ��), which,

besides local explicit and implicit dependence in
terms of ��,may generally include additional nonlocal
dependence through the variable �� ≡ {���}.

(iii) NLPT-Requirement #3. �e Jacobian matrix  �
]

and its inverse ( −1)�
]
are assumed to be generally

nongradient. In other words, at least in a subset of the

two space-times (M4, ) ≡ (Q�4, 
�) and (Q4, 
)
 �

]
(��, �) ̸= ��� (��, �)���] ,

( −1)�
]

(�, ��) ̸= ���� (�, ��)��] ,
(27)

while elsewhere they can still recover the gradient
forms (3) and (4); namely,

 �
]
(��, �) = ��� (��, �)���] ,

( −1)�
]

(�, ��) = ���� (�, ��)��] .
(28)

In both cases the partial derivatives are performed
with respect to the local dependence only.

(iv) NLPT-Requirement #4. Introducing the (proper-
time) line elements �� and ��� in the two space-times(Q4, 
) and (M4, ) ≡ (Q�4, 
�) de
ned, respectively,
according to (7) so that

��2 = 
�] (�) �����],
���2 = 
��] (��) �������] ≡ �]�������], (29)

the Riemann-distance conservation law

�� = ��� (30)

is set. �is implies that the equation


�] (�) �����] = �]�������] (31)

must hold.
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(v) NLPT-Requirement #5. Finally, we will assume that
the 4-positions ��(�) and ���(�) spanning the corre-

sponding space-times (Q4, 
) and (M4, ) are repre-
sented in terms of the same Cartesian coordinates;
that is,

�� ≡ {-5, (r ≡ �, �, �)} , (32)

��� ≡ {-5�, (r� ≡ ��, ��, ��)} . (33)

Let us now brie�y analyze the implications of these
requirements. First, (24) (or equivalently (16)) can be inte-
grated at once performing the integration along suitably
smooth time- (or space-) like world-lines ��(�) and ���(�):
��: �� (�) = �� (��) + ∫

�
�� �

]
(��, �) ��] (�) ,

�−1� : ��� (�) = ��� (��) + ∫
�
�� ( −1)�

]

(�, ��) �] (�) , (34)

where the initial condition is set:

�� (��) = ��� (��) . (35)

Transformations (34) will be referred to as special NLPT
in Lagrangian form, the family of such transformations
identifying the special NLPT-group {��}, that is, a suitable
subset of the group of general NLPT-group {��}. �e subsets

of two space-times (Q4, 
) and (Q�4, 
�) ≡ (M4, ) which are
mapped in each other by a special NLPT, both assumed to
have nonvanishing measure, will be referred to as accessible
subdomains.

Notice that the Jacobians  �
]
(��, �) and ( −1)�

]
(�, ��)

remain still in principle arbitrary. In particular, in case
they take the gradient forms (28) the Lagrangian LPT
de
ned by (10) is manifestly recovered. Furthermore, (16)
or equivalently (34) can be also represented in terms of the
equations for the in
nitesimal 4-displacements, given by (24).
In particular, assuming the matrix  �

]
to be continuously

connected to the identity 9�
]
implies that the Jacobian matrix �

]
and its inverse ( −1)�

]
can always be represented in the

form

 �
]
(��, �) = 9�

]
+A�

]
(��, �) , (36)

( −1)�
]

(�, ��) = 9�
]
+B�

]
(�, ��) , (37)

with A
�
]
and B

�
]
being suitable transformation matrices,

which are mutually related by matrix inversion. Hence, in
terms of (36)-(37), the special NLPT in Lagrangian form
(34) yields then the corresponding Lagrangian and Eulerian
forms:

�� (�) = ��� (�) + ∫
�
��A�

]
(��, �) ��] (�)

��� (�) = �� (�) + ∫
�
��B�

]
(�, ��) �] (�) , (38)

�� = ��� + ∫��]
��](�)

���]A�
]
(��, �)

��� = �� + ∫�]
�](�)
��]B�

]
(�, ��) .

(39)

We stress that, in di�erence with the treatment of LPT, in the
proper-time integral on the rhs of (34) and (38) the tangent-
space curve ��](�) (resp., �](�)) must be considered as an
independent variable. �is is a peculiar feature of (34) which
cannot be avoided. �e reason lies in the fact that there is no
way by which ��](�) (and �](�)) can be uniquely prescribed
bymeans of the same equations. Indeed, (34) (or equivalently
(38) and (39)) together with (16) truly establish a phase-space
transformation of the following form:

{�� (�) , �� (�)} �→
{��� (�) , ��� (�)} = {��� {� (�) , [�, �]} , (M−1)�

]

�] (�)}
{��� (�) , ��� (�)} �→
{�� (�) , �� (�)} = {�� {�� (�) , [��, ��]} ,M�

]
��] (�)} .

(40)

�is will be referred to as NLPT-phase space map. �e
latter applies to a new type of reference frame, denoted as
extended GR-frames, which are represented by the vectors{��(�), ��(�)} and {���(�), ���(�)}, respectively. �ese can be
viewed as phase-space states (of the corresponding extended
GR-frames) having, respectively, 4-positions ��(�) and ���(�)
and 4-velocities ��(�) and ���(�). Finally, let us mention that
transformation (40), in contrast with (15), obviously does

not preserve the structure of the space-times (Q4, 
) and(M, ). Nevertheless the scalar transformation law (6) is still
by construction warranted, while at the same time the metric
tensor satis
es by construction the TT-problem, that is, (17).

Let us now show how the matrices ��
]
and :�

]
can be

explicitly determined in terms of the teleparallel transfor-
mation (17). �e relevant results, which actually prescribe
the general form of related NLPT, are summarized by the
following proposition.

�eorem 1 (realization of the special NLPT-group {��} for the
TT-problem). Let one assumes that (Q4, 
) and (Q�4, 
�) ≡(M�4, ) identify, respectively, a generic curved space-time
and the Minkowski space-time both parametrized in terms of
orthogonal Cartesian coordinates (32) and (33).


en, given validity of the NLPT-Requirements #1–#5, the
following propositions hold:

(P1) In the accessible subdomain of (Q4, 
) the teleparallel
transformation (17) (or equivalently its inverse, i.e.,

(18)), relating (Q4, 
) with the Minkowski space-time(Q�4, 
�) ≡ (M�4, ), is realized by a nonlocal point
transformation of type (34) or equivalently (38) and

(39), with a Jacobian ]

� and its inverse ( −1)
� being
of forms (25) and (26), respectively. 
is is required to
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satisfy the NLPT 4-tensor laws prescribed by thematrix
equation


�] (�) = ( −1)
� (�, ��) ( −1)	] (�, ��) 
	, (41)

and similarly its inverse (see (18)) where 
�](�) iden-
ti�es a prescribed symmetric metric tensor associated

with the space-time (Q4, 
), by assumption expressed

in the Cartesian coordinates (32). Hence, ( −1)
�(�, ��)
necessarily coincides with the Jacobian matrix of the
TT-problem (see (17)).(P2)
e set of special NLPTs has the structure of a group.

Proof. Let us prove proposition (P1). For this purpose it is
su�cient to construct explicitly a possible, that is, nonunique,
realization of the NLPT and the corresponding set {��},
satisfying (41). In fact, let us consider the equation for the
in
nitesimal 4-displacement ���� (see (24)), which in validity
of (37) becomes

���� = [9�
]
+B�

]
(�, ��)] ��] (42)

and similarly

��� = [9�
]
+A�

]
(��, �)] ���], (43)

where the matrices B
�
]
(�, ��) and A

�
]
(��, �) are suitably

related. Substituting ���� on the rhs of the last equation
and invoking the independence of the components of the
in
nitesimal displacement ���, this means for consistency
that the covariant components of the metric tensor, that
is, 
�](�) and, respectively, 
��](��) ≡ �], must satisfy the

NLPT 4-tensor law (41). Such a tensor equation delivers,
therefore, a set of 10 algebraic equations.�eir solution can be
determined in a straightforward way for the 16 components
of the matrix B�

]
(�, ��). For example, one of these equations

reads


00 (�) = [1 +B00 (�, ��)]2 − [B10 (�, ��)]2
− [B20 (�, ��)]2 − [B30 (�, ��)]2 . (44)

�e remaining equations following from (41) are not reported
here for brevity.

One can nevertheless show that the solution to this set
is nonunique. In fact, due to the freedom in the choice of
the matrix elements of B�

]
(�, ��), the latter can in principle

be chosen arbitrarily by suitably prescribing appropriate
components of the same matrix. A particular solution is
obtained, for example, by requiring validity of the constraint
equations

B
0
1 (�, ��) =B03 (�, ��) =B10 (�, ��) =B13 (�, ��)

= 0,
B
2
0 (�, ��) =B21 (�, ��) =B23 (�, ��) =B30 (�, ��)

=B31 (r, ��) = 0.
(45)

�e surviving components ofB�
]
are then determined by the

same algebraic equations of the set (41). From these consid-
erations it follows that necessarily it must be B�

]
= B
�
]
(�).

In particular, here we notice that all diagonal components

B
�
�(�) for ; = 0, 3 can be viewed as determined, up to an

arbitrary sign, by the diagonal components of the metric
tensor 
��(�). Instead, the remaining nondiagonal matrix
elements are then prescribed in terms of the nondiagonal
components of the metric tensor, which follow analogously
from the corresponding 6 equations of the set.�en, both the
4-displacement transformations (42) and their inverse ones
(43) exist and can be nonuniquely prescribed. An example of
possible realization is given by

���0 = [1 +B00] ��0 +B02��2,
���1 = [1 +B11] ��1 +B10��0 +B12��2,
���2 = [1 +B22] ��2,
���3 = [1 +B33] ��3 +B32��2,

(46)

with determinant

<<<<<<<<<<<<<<<<<<<<<<<

1 +B00 0 B
0
2 0

B
1
0 1 +B11 B

1
2 0

0 0 [1 +B22] 0
0 0 B

3
2 [1 +B33]

<<<<<<<<<<<<<<<<<<<<<<<
= ∏
�=0,3
(1 +B��) ,

(47)

to be assumed as nonvanishing, and with inverse transforma-
tion

��0 = 11 +B00 [���0 +
B
0
21/ (1 +B22)���2] ,

��1 = 11 +B11 [���1 −
B
1
01 +B00 ���0

− 11 +B22
B
1
0B
0
21 +B00 ���2] ,

��2 = 11 +B22 ���2,
��3 = 11 +B33 [���3 −

B
3
21 +B22 ���2] .

(48)

In particular, from (48) one can easily evaluate in terms of:�
]
(�) the precise expression taken by the matrix ��

]
. Hence

one 
nds that necessarily A�
]
= A
�
]
(�), with � ≡ {��} being

now considered as prescribed by means of the NLPT (38).
Finally, the corresponding 
nite NLPT generated by (55) and
(48) can always be equivalently represented in terms of (34).
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Next, dropping the assumption of validity of (45), let us
prove proposition (P2). For this purpose let us consider the
two special NLPTs

J
�
(�)] ≡ 9�] +A�(�)] (��, �(�)) (49)

whichmap the space-times (Q4(�), 
) (for ; = 1, 2) onto (M4, )
and where by construction the Jacobians A�(�)] for ; = 1, 2
admit the inverse matrices (J−1)�(�)� ≡ 9�] + B

�
(�)](�, ��).

Requiring that both the corresponding admissible subsets of(M4, ) and their intersection have a nonvanishing measure
the product of two special NLPTs is de
ned on such a set. Its
Jacobian is

J
�
]
= (9�
 +A�(1)
 (��, �(1))) (9
] +B
(2)] (�(2), ��))
= (9�

]
+C�

]
(�(1), ��, �(2))) , (50)

with C
�
]
(�(1), ��, �(2)) ≡ A

�
(1)](��, �(1)) + B

�
(2)](�(2), ��) +

A
�
(1)
(��, �(1))B
(2)](�(2), ��). It follows that in such a circum-

stance the product of the two special NLPTs belongs neces-
sarily to the same set {��}, which is therefore a group.

�eorem 1 provides the formal solution to Einstein’s TT-
problem in the framework of the theory of NLPT. �is is
achieved by means of the introduction of a nonlocal phase-
space transformation of type (15), which is realized by means
of a special NLPT (34) and the corresponding 4-velocity
transformation law (16). In this reference the following
comments must be mentioned:

(i) First, the NLPT-functional setting has been pre-
scribed in terms of the special NLPT-group {��},
determined here by (34) together with the NLPT-
Requirements #1–#5.

(ii) Due to the nonuniqueness of the matrix B
�
]
(�)

solution to the TT-problem (see (41)) and of the
related matrix A

�
]
, the realization of the NLPT-

transformation (55) [and hence (48)] yielding the
solution to the TT-problem is manifestly nonunique

too. For a prescribed curved space-time (Q4, 
)which
is parametrized in terms of the Cartesian coordinates,
the ensemble of NLPT which provide particular solu-
tions to the TT-problem will be denoted as {��}TT.

(iii) Both for (46) and for (48) the corresponding Jaco-
bians determined by means of (36) and (37) take by
construction and consistently with (27) a manifest
nongradient form. �is follows immediately from
Proposition #1 thanks to the validity of (41) and the

requirement that (Q4, 
) is a curved space-time.

(iv) In terms of the Jacobian matrix  �
]
(��, �) (and its

inverse ( −1)�
]
(�, ��)) (41) means that 
�](�) should

actually satisfy the original Einstein equations (17)
and (18). �e latter can be interpreted as NLPT 4-
tensor laws for the metric tensor 
�](�).

(v) Similarly and by analogy with (6) holding in the case
of LPT, the validity of the scalar transformation law

(7) is warranted also in the case of NLPT, thanks to
the transformation law (41).

(vi) �e transformation law (41) for the metric tensor
can be interpreted as tensor transformation law with
respect to the special NLPT-group {��}. �is will be
referred to as NLPL 4-tensor transformation law. In
terms of the same Jacobian matrix  �

]
(��, �) and its

inverse ( −1)�
]
(�, ��), analogous NLPT 4-tensor laws

can be set in principle for tensors of arbitrary order.
Nevertheless, it must be noted that—speci
cally
because of the validity of the same transformation law
(41)—such a type of tensor transformation law cannot
be ful
lled by the Riemann curvature tensor ����](�),
the reason being that itmanifestly vanishes identically
in the case of the Minkowski space-time.

A further issue concerns the identi
cation of the physical
domain of existence and the actual possible realization of
NLPT which are implied by �eorem 1. In this regard it is
obvious that NLPT, just like LPT, can actually be de
ned

only in the accessible subdomains of (Q4, 
), namely, the con-
nected subsets which in the curved space-time can be covered
by time- (or space-) like world-lines ��(�)which are endowed
with a 
nite 4-velocity. Nevertheless, the components of the
same 4-velocity can still be in principle arbitrarily large, so
that the corresponding world-line can be arbitrarily close to
light trajectories (and therefore to the light cones).

Another aspect of the existence problem for NLPT is
related to the solubility conditions of the algebraic equations
arising in�eorem 1, which follow from the requirement that
all components of the matrix B

�
]
(�, ��) should be real. For

example, in the case of (44) the corresponding condition is
determined by the inequality


00 (�) + [B10 (�, ��)]2 + [B20 (�, ��)]2 + [B30 (�, ��)]2
≥ 0. (51)

It must be stressed that the validity of inequalities of this type
for the remaining equations in general cannot be warranted

in the whole admissible subset of the space-times (Q4, 
),
that is, in particular in the subset in which ��2 > 0. On
the other hand, “a priori” the symmetric metric tensor 
�](�)
must be regarded in principle as completely arbitrary. Hence
it is obvious that such inequalities following from�eorem 1
cannot place any “unreasonable” physical constraint on the
same tensor 
�](�).

In fact, consider the case inwhich themetric tensor
�](�)
has the signature (+, −, −, −) and is also diagonal; namely,
�](�) = diag{
00(�), 
11(�), 
22(�), 
33(�)}. �en, necessarily
the metric tensor must be such that everywhere in the same
admissible subset 
00(�) > 0, while 
11(�), 
22(�), 
33(�) <0. As a consequence the functional class {��}TT contains
transformations which may not exist everywhere in the same
set. In fact, some of the inequalities of the group (51) which
involve the spatial components, that is, 
��(�) (with ; =1, 2, 3), must be considered as local, that is, are subject to the
condition of local validity of the same inequalities. Although
NLPTs of this kind are physically admissible, the question
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arises whether particular solutions actually exist which are
not required to ful
ll the same inequalities (51). �ese
solutions, if they actually exist, have therefore necessarily
a global character; that is, they are de
ned everywhere in

the same admissible subset of (Q4, 
). In view of these
considerations, since the only acceptable physical restriction
on 
�](�) concerns its signature, it can be shown that global

validity is warranted everywhere in (Q4, 
) provided the
following two sets of constraints are required to hold:

[B10 (�, ��)]2 + [B20 (�, ��)]2 + [B30 (�, ��)]2 = 0, (52)

and in validity of the signature indicated above

[B01 (�, ��)]2 − [B21 (�, ��)]2 − [B31 (�, ��)]2
≥ − inf {
11 (�)} ,

[B02 (�, ��)]2 − [B12 (�, ��)]2 − [B32 (�, ��)]2
≥ − inf {
22 (�)} ,

[B03 (�, ��)]2 − [B13 (�, ��)]2 − [B23 (�, ��)]2
≥ − inf {
33 (�)} .

(53)

�e 
rst equations actually require these 3 independent
equations

B
1
0 (�, ��) =B20 (�, ��) =B30 (�, ��) = 0 (54)

to apply separately. Particular solutions to the components of
B
�
]
satisfying the 3 constraint equations (54) and either the 3

inequalities (53) or corresponding equations obtained replac-
ing the inequality symbol with = will be denoted, respec-
tively, as partially unconditional or unconditional solutions.
In both cases it is immediately shown that these solutions
are nonunique, even if in all cases the transformation matrix
is again a local function of �; that is, B�

]
= B

�
]
(�). In

particular, here we notice that all the diagonal components:��(�) for 0 = 1, 3 can be viewed as determined, up to an
arbitrary sign, by the diagonal components of the metric
tensor 
�](�). Instead, the remaining nondiagonal matrix
elements are then prescribed in terms of the nondiagonal
components of the metric tensor, which follow analogously
from the set of equations mentioned in�eorem 1. In validity
of the constraints given above, that is, both for partially
unconditional or for unconditional particular solutions, the
4-displacement transformations (42) become

���0 = [1 +B00] ��0 +B01��1 +B02��2 +B03��3,
���1 = [1 +B11] ��1 +B12��2 +B13��3,
���2 = [1 +B22] ��2 + ��1B21 +B23��3,
���3 = [1 +B33] ��3 +B31��1 +B32��2.

(55)

Similarly, one can show that also the corresponding inverse
NLPTs exist.

5. Application of Special NLPT:
Diagonal Metric Tensors

As pointed out above the theory of special NLPT must

in principle hold also when the space-times (Q4, 
) and(Q�4, 
�) ≡ (M�4, ) have di�erent signatures. In particular,

if (Q4, 
) coincides with a �at space-time, then it might
still have in principle an arbitrary signature. To clarify this
important point we present in this section a sample applica-
tion. For de
niteness, let us consider here a curved space-
time (Q4, 
) which is diagonal when expressed in terms of
Cartesian coordinate.�e following two possible realizations
are considered:

(A) diag(
�]) ≡ diag(D0(�), −D1(�), −D2(�), −D3(�)),
(B) diag(
�]) ≡ diag(−D0(�), D1(�), −D2(�), −D3(�)).
In both cases here the functions D�(�) are assumed to be

prescribed real functions which are strictly positive for all � ≡�� ∈ (Q4, 
). Since by construction the Riemannian distance�� is le� invariant by arbitraryNLPT, it follows that in the two
cases either the di�erential identity

��2 = D0 (��0)2 − D1 (��1)2 − D2 (��2)2 − D3 (��3)2
= (���0)2 − (���1)2 − (���2)2 − (���3)2 (56)

or

��2 = D0 (��0)2 − D1 (��1)2 − D2 (��2)2 − D3 (��3)2
= − (���0)2 + (���1)2 − (���2)2 − (���3)2 , (57)

respectively, must hold. Let us point out the solutions to the
TT-problem, that is, (17) or equivalently (18), in the two cases.

5.1. Solution to Case A. In validity of (56), if one adopts a
special NLPT of the form

��� = (1 + �(�)(�) (��, �)) ���(�), (58)

in terms of (18) this delivers for diagonal matrix elements��(�)(��, �) for all " = 0, 3 the equations
1 = D� (�) (1 + �(�)(�) (��, �))2 , (59)

with the formal solutions

��(�) (��, �) = √ 1D(�) (�) − 1. (60)

Notice that here only the positive algebraic roots have
been retained in order to recover from (60) the identity
transformationwhen letting D�(�) = 1. From (38) one obtains
therefore the special NLPT

�� (�) = �� (��) + ∫
�
�����(�) (�)�� √ 1D(�) (�) , (61)

where in the integrand � is to be considered as an implicit

function of �� and, as indicated above, ���(�)(�)/�� remains
still arbitrary. �us, explicit solution to (61) can be obtained

by suitably prescribing ���(�)(�)/��.
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5.2. Solution to Case B. Let us now consider the solution to
the TT-problem when (57) applies. For de
niteness, let us
look for a special NLPT of the type

��0 =  (0)(1) (��, �) ���(1),
��1 =  (1)(0) (��, �) ���(0),
��2 =  (2)(2) (��, �) ���(2),
��3 =  (3)(3) (��, �) ���(3).

(62)

In terms of (18) this delivers for diagonal matrix elements (�)(�) the equations
1 = D1 (�) (1)(0) (��, �)2 ,
1 = D0 (�) (0)(1) (��, �)2 ,
1 = D2 (�) (2)(2) (��, �)2 ,
1 = D3 (�) (3)(3) (��, �)2 ,

(63)

with the formal solutions

 (1)(0) (��, �) = √ 1D(1) (�) ,
 (0)(1) (��, �)2 = √ 1D(0) (�) ,
 (2)(2) (��, �)2 = √ 1D(2) (�) ,
 (3)(3) (��, �)2 = √ 1D(3) (�) .

(64)

Hence, the corresponding NLPTs in integral form are found
to be in this case

�0 (�) = �0 (��) + ∫
�
�����(1)�� √ 1D(0) (�) ,

�1 (�) = �1 (��) + ∫
�
�����(0)�� √ 1D(1) (�) ,

�2 (�) = �2 (��) + ∫
�
�����(2)�� √ 1D(2) (�) ,

�2 (�) = �2 (��) + ∫
�
�����(3)�� √ 1D(2) (�) ,

(65)

where, again, in the integrands � is to be considered as

an implicit function of �� while ���(�)/�� has to be suitably
prescribed.

Cases A and B correspond, respectively, to curved space-
times having the same or di�erent signatures with respect
to the Minkowski �at space-time. �erefore, based on the
discussion displayed above, it is immediately concluded that
NLPT which maps mutually the two space-times indicated
above must necessarily exist in all cases considered here.

Physical insight on the class of special NLPTs {��}
emerges from the following two statements, represented,
respectively, by the following:

(i) Proposition (P2) of �eorem 1.

(ii) �e explicit realization obtained by the 4-velocity
transformation laws (16) which follows in turn from
(24).

Let us brie�y analyze the 
rst one, that is, in particular
the fact that the set {��} is endowed with the structure of a
group. For this purpose, consider two arbitrary connected

and time-oriented curved space-times (Q4(�), 
(�)) for ; =1, 2 and assume that the corresponding admissible subsets

of (M4, ), on which the same space-times are mapped by
means of special NLPT, have a nonempty intersection with
nonvanishingmeasure.�e corresponding Jacobianmatrices
are by assumption of type (36) so that their product must
necessarily belong to {��} (Proposition (P2)). �e conclusion
is of outmost importance from the physical standpoint.
Indeed, it implies that by means of two special NLPTs it
is possible to mutually map in each other two, in principle
arbitrary, curved space-times. �erefore, the same theory can
be applied in principle to the treatment of arbitrary curved
space-times in terms of products of suitable special NLPT.

�e validity of the second statement indicated above is
also perspicuous. In fact, the prescription of the “geometry” of

the transformed space-time (Q4, 
), namely, its metric tensor
�](�) and the corresponding Riemann curvature tensor����](�), is obtained by means of a suitable nonlocal point

transformation mapping the two space-times (Q4, 
) and(Q�4, 
�) ≡ (M4, ). �is involves, in turn, the prescription
of suitable nonuniform (i.e., position dependent) 4-velocity
transformations between the same space-times. In particular,
in the case of the solution indicated above for the trans-
formation matrix B�

]
(�), the transformed 4-velocity has the

following qualitative properties. First, its time-component,
besides depending on the corresponding time-component
of the Minkowski space-time, in general may carry also

nite contributions which are linearly dependent on all
spatial components of the Minkowskian 4-velocity. Second,
the spatial components of the same 4-velocity depend lin-
early only on the corresponding spatial components of the
Minkowskian 4-velocity and hence remain una�ected by its
time-component, that is, its energy content in theMinkowski
space-time.

6. Theory of General NLPT

In this section the problem is posed of the search of possible
generalizations of the nonlocal point transformations (22)
and (23). In the following these will be referred to as general
NLPT and general NLPT-theory, respectively. More precisely,
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besides NLPT-Requirements #1–#5, the new transformations
should embody the following additional optional features:

(i) NLPT-Requirement #6. �ey should realize a map-
ping between two in principle arbitrary connected
and time-oriented 4-dimensional curved space-times(Q4, 
) and (Q�4, 
�).

(ii) NLPT-Requirement #7. �e space-times (Q4, 
) and(Q�4, 
�) should be possibly referring to arbitrary
curvilinear coordinate systems which may di�er in
the two space-times. In addition, as for special NLPT
wewill require again that also generalNLPTs establish

between (Q4, 
) and (Q�4, 
�) suitably prescribed real
di�eomorphisms of forms (22) and (23), the square
brackets denoting appropriate nonlocal dependence.
In particular, here �� ≡ {���}, � ≡ {��}, �� ≡ {���}, and� ≡ {��}, while ����/�� ≡ �����/�� and ��/�� ≡���/�� identify as usual the covariant derivatives

de
ned in the two space-times (Q�4, 
�) and (Q4, 
),
respectively.

For de
niteness, we will also assume that (22) and
(23) are also consistent with the NLPT-Requirements #1–#4.
It is then immediately noticed that an obvious particular
realization of these transformations can be obtained simply
by considering explicitly �-dependent smooth real direct and
inverse transformations of the type

��: �� �→ ��� = ��� (�, �) ,
�−1� : ��� �→ �� = �� (��, �) , (66)

de
ned for all � ∈ �. Again, for ��� and �� ≡ ���/��
transformations of types (24) and (16) are implied. However,

the Jacobians are of the types J�
]
(��, �) and (J−1)�

]
(�, �) and

read, respectively,

J
�
]
(��, �) ≡ ��� (��, �)���] + ��� (��, �)�� 
�
]��
, (67)

(J−1)�
]

(�, �) ≡ ���� (�, �)��] + ���� (�, �)�� 

]�
, (68)

thus losing their gradient form (see (39) and (50) above).
Nevertheless, it is obvious that transformations of the type
indicated above generally imply the violation of the Riemann-
distance constraint (30) (see NLPT-Requirement #4).

On the other hand, once the implications of the same
equation are properly taken into account the representation
problem posed here can be readily solved. Consider in fact
again (30). Due to the arbitrariness of � ≡ {��} and of � and��� it follows that the same equation requires simultaneously
that ��� =  �(�)]���],

���� = ( −1(�))�
]

��], (69)


�] (�) = ( −1(�))
� ( −1(�))	] 
�
	 (��) ,

��] (��) =  
(�)� 	(�)]

	 (�)

(70)

must hold, with �(�)] denoting a suitable and still undeter-

mined real Jacobian matrix and ( −1(�))�] being its inverse.

�erefore, (69) imply that

 �(�)] (�) =  �(�)] (�� (�) , � (�)) ,
( −1(�))�

]

(�) = ( −1(�))�
]

(� (�) , �� (�)) ; (71)

that is, the Jacobian matrices can only be functions of��(�) or, respectively, �(�). More precisely, on the rhs of the

rst (second) equation �(�) (��(�)) must be considered as a
function of ��(�) (resp., of �(�)) determined by means of an
equation analogous to that holding for special NLPT. Hence
(66) must recover the form

��: �� (�) = ��� (��) + ∫
�
�� �(�)] (�) ��] (�) ,

�−1� : ��� (�) = �� (��) + ∫
�
�� ( −1(�))�

]

(�) �] (�) , (72)

with �(�)] being a suitable Jacobianmatrix and ( −1(�))�] being
its inverse. Such transformations will be referred to as general
NLPT. �e corresponding phase-space map analogous to
(40), namely,

{�� (�) , �� (�)} �→
{��� (�) , ��� (�)}
= {��� {� (�) , [�, �]} , ( −1(�))�

]

(�) �] (�)} ,
{��� (�) , ��� (�)} �→
{�� (�) , �� (�)}
= {�� {�� (�) , [��, ��]} , �(�)] (�) ��] (�)} ,

(73)

will be denoted as general NLPT-phase space map. �en the
following result holds.

�eorem2 (realization of the generalNLPT-group {��}). 
e
group {��} of general NLPTs of type (71) can always be realized
by means of Jacobians �(�)] and ( −1(�))�] of the form

 �(�)] = �

�
� (��)���] + ��(�)] (��, �) ,

( −1(�))�
]

= �K�� (�)��] + :�(�)] (�, ��) ,
(74)

with ��(�)](��, �) and :�(�)](�, ��) being suitable transformation

matrices. As a consequence, an arbitrary general NLPT can be
represented as

��: �� (�) = 
�� (�� (�)) + ∫� ����(�)] (�) ��] (�) ,
�−1� : ��� (�) = K�� (� (�)) + ∫� ��:−1�(�)] (�) �] (�) .

(75)
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Proof. In fact, given validity of (74) it follows, for example,
that�� (�) = ��� (��)

+ ∫
�
�� [�
�� (��)���] + ��(�)] (��, �)] ��] (�) , (76)

where manifestly ∫� ��(�
��(��)/���])��](�) = 
��(��(�)) −
��(��(��)). Now we notice that it is always possible to set the

initial condition so that ���(��) = 
��(��(��)).�is implies the
validity of the 
rst of (75). �e proof of the second one is
analogous.

Notice that, in di�erence with the special NLPT de
ned
by (34), transformations (75) (or equivalently (72)) now
establish a di�eomorphism between two dierent, connected,

and time-oriented space-times (Q4, 
) and (Q�4, 
�). For
de
niteness let us consider the possible optional choices:

(A1) (Q4, 
) is an arbitrary curved space-time.

(A2) (Q�4, 
�) is an arbitrary curved space-time.

(B1) the space-times (Q4, 
) and (Q�4, 
�) are referred to as
arbitrary GR-frames.

(B2) the same space-times (Q4, 
) and (Q�4, 
�) are
referred to as dierent GR-frames.

Let us consider possible particular realizations of the
general NLPT given above.

�e 
rst one is obtained dropping assumption (B2), that
is, requiring that the GR-frames of the two space-times(Q4, 
) and (Q�4, 
�) coincide. In fact, if the coordinate

systems for (Q4, 
) and (Q�4, 
�) are the same ones while
still remaining arbitrary, then one obtains that the constraint
equations


�� (��) = ���,
K�� (�) = �� (77)

must hold identically. In such a case, denoting the transfor-
mations matrices as ��(�)] = ��],

:�(�)] = :�] , (78)

transformations (75) recover the same form given by (38) and
(39) above. �ese can be conveniently written as

��: �� (�) = ��� (�) + Δ��� (�) ,
�−1� : ��� (�) = �� (�) + Δ�� (�) , (79)

with Δ���(�) and Δ��(�) identifying the nonlocal displace-
ments

Δ��� (�) = ∫
�
����

]
(�) ��] (�) ,

Δ�� (�) = ∫
�
��:�

]
(�) �] (�) . (80)

�erefore (75) in validity of (77) identify again a special
NLPT belonging to the group {��} (see also�eorem 1). From
this conclusion the relationship between general and special
NLPT is immediately inferred. In fact, it is obvious that for
an arbitrary general NLPT the relationship existing between
the Jacobians  �(�)] and  �

]
, as well as the corresponding

transformation matrices ��(�)](��, �) and ��](��, �), is simply

provided by the matrix equation

 �(�)] =  �
A
] , (81)

with A

]
≡ �

�(��)/��] being the Jacobian of a suitable LPT.

Another interesting realization occurs when the space-

time (Q�4, 
�) is identi
ed with the Minkowski space-time(Q�4, 
�) ≡ (M�4, �(��)) represented in terms of general
curvilinear coordinates �� ≡ {���}. In such a case its metric
tensor is of the form

��] (��) = A
� (��) A	] (��) 
	, (82)

with 
	 being the correspondingMinkowskimetric tensor in
orthogonal Cartesian coordinates. �e corresponding NLPT
4-tensor laws (70) become now


�] (�) = ( −1(�))
� ( −1(�))	] �
	 (��) ,
��] (��) =  
(�)� 	(�)]

	 (�) ,

(83)

which are analogous to (41) (see �eorem 1). However,
remarkably, the corresponding coordinate transformations
become now—in di�erence with the special NLPT intro-
duced above—of the general NLPT type (75).

It is interesting to stress that the same conclusions, that
is, in particular equations (72), can actually be recovered
following an alternative route.�is is obtained by introducing
suitable prescriptions on transformations (22) and (23).
Consider in fact the following possible realization of the said
maps:

�� = 
�� (��) + ∫� ��
�� (�� (�) , �� (�) , �
��� (�)�� ) ,

��� = K�� (�) + ∫� ��K�� (� (�) , � (�) , �� (�)�� ) ,
(84)

where the functions 
��(��) and 
��(��(�), ��(�), ����(�)/��)
and K��(�) and K�� (�(�), �(�), ��(�)/��) are suitably de
ned
real and smooth 4-vector functions. Notice that by construc-
tion equations (84) are understood as being evaluated along
the corresponding world-lines ��(�) and ���(�), and therefore
they realize a Lagrangian representation of the NLPT. In
particular, let us assume that the acceleration 4-tensor enters
most linearly; namely,


�� (�� (�) , �� (�) , ���� (�)�� ) ≡ U������� (�)�� , (85)

K�� (� (�) , � (�) , �� (�)�� ) ≡ ��� ��
� (�)�� . (86)
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Here,U�� and��� are real functions of the formsU��(��, [��, ��])
and ��� (�, [�, �]), respectively. Next, one notices that,
thanks to the validity of the kinematic constraints (13),

the acceleration 4-tensor �����(�)/�� and acceleration
4-tensor���(�)/�� must necessarily satisfy constraint
equations of the type

����� = ��]V��
]
�� ≡ V��

]
���],

��� = �]V�
]
�� ≡ V�

]
��], (87)

withV��
]
andV�

]
denoting suitable antisymmetric tensors, yet

to be determined. As a consequence, the functional form of
�� and K��� becomes of the type


�� = ��(�)] ���]�� ,
K��� = :�(�)] ��]�� ,

(88)

where the real matrices ��
]
and :�

]
are de
ned as

��(�)] = U��V��] ,
:�(�)] = ���V�] . (89)

We remark that, despite the matrices V��
]

and V�
]
being

antisymmetric in the upper and lower indices, ��(�)] and:�(�)] remain in principle arbitrary, that is, without de
nite

symmetry (or antisymmetry) index properties. In addition,
both matrices ��(�)] and :�(�)] may still retain both local and

nonlocal functional dependence. �erefore, (84) manifestly
recover form (75), that is, once (74) are invoked in (72).

Concerning the realization of the general NLPT intro-
duced here the following comments are in order.

(1) First, it must be stressed that the two involved metric
tensors 
�] and 
��] remain arbitrary. For example, one

can always require that both metric tensors are particular
solutions to the Einstein equation. In this case (70) can
be interpreted as equations for the still unknown Jacobian
matrix, to be determined accordingly. �is includes as a par-
ticular case the one in which, for example, the transformed
metric tensor 
�
	(��) coincides with the Minkowski metric

tensor. If 
�](�) and 
��](��) are realizations holding for the

two di�erent space-times (Q4, 
) and (Q�4, 
�) when they are
referring, respectively, to the coordinate systems �� and ���,
the tensor transformation laws (70) must hold. If the vector
functions 
��(��) and K��(�) are considered prescribed, then
the 
rst of these equations becomes


�] (�) = [�

� (��)���� + �
(�)� (��, �)]
⋅ [[
�
	� (��)���] + �	(�)] (��, �)]]


�

	 (��) ,

(90)

which, for special NLPT (see, e.g., (79)), reduces simply to


�] (�)
= [9
� + �
(�)� (��, �)] [9	] + �	(�)] (��, �)] 
�
	 (��) . (91)

Equation (90) or alternatively (91) yields actually a set of
implicit, that is, integral, equations for the components of
the same matrix. �e explicit construction of the solution

for �	(�)] actually requires representing it in Eulerian form.

�is involves as before (see related discussion in the previous
section) representing the proper-time � in terms of the
instantaneous 4-position �� ≡ {���}, so that � = �(��).

(2) Second, an alternative interpretation is the one in
which one of the twometric tensors, say,
�
	(��), is prescribed
together with the Jacobian  
� (��) so that (70) provides an

explicit representation for the transformed metric tensor
�](�). In this case an interesting remaining issue concerns
its possible identi
cation as an admissible particular solution
to the Einstein equation corresponding to prescribed physical
sources.

(3) Finally, the problemof the construction of theNLPT—
or, better, given validity of the representation (72), the
corresponding special NLPT to which in principle it should
always be possible to refer—amounts therefore to looking for

the still unknown matrix �	(�)](��, �).
7. Physical Implications of NLPT-Theory

In this section we analyze certain physical/mathematical
implications of the general NLPT determined by (75) (see
�eorem 1) and the related NLPT phase-space transforma-
tions equation (40).

�e 
rst one concerns the physical interpretation of the
NLPT-phase-space map (40), which concerns the existence
of a classical dynamical system (CDS) which is generated
by it. �e existence of such a CDS is actually immediate.
�e conclusion follows in a straightforward way, being in
fact analogous to the one realized in the context of Special
Relativity by means of an �-dependent Lorentz boost (see
Appendix A). For this purpose, let us notice that the NLPT-
phase transformation (40) does indeed generate a CDS.
In fact, consider the states {��(�), ��(�)} and {���(�), ���(�)}
involved in the same transformation (40).

�e two maps (73) are immediately determined (they are
again not independent), both being prescribed for all ��, � ∈ �.
More precisely, (a) the 
rst one is obtained by considering the
state {���(�), ���(�)} as a prescribed function of � in a suitable
interval �, so that, at all � in the same interval, {��(�), ��(�)}
is uniquely determined by the same NLPT; (b) the second
one is realized by the inverse transformation; namely, it
is obtained instead by considering the state {��(�), ��(�)}
as a prescribed function of �, while {���(�), ���(�)} is then
determined by the corresponding NLPT. �e two cases (a)
and (b) identify, respectively, the active and passive viewpoints
for the same transformation. More precisely, for an arbitrary
NLPT phase-space transformation (40), the active viewpoint
is realized by 
rst assuming that the transformed phase-state
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(i.e., the transformed extended GR-frame) {���(�), ���(�)}
is prescribed. �is means that {���(�), ���(�)} remains in
principle an arbitrary, but suitably predetermined, function
of �. �us, for example, ���(�) can always be assumed to be
constant for all � in a prescribed interval �. �is permits
one to uniquely ideally “measure” the time-evolution of the

state {��(�), ��(�)} of the current space-time (Q4, 
). In the
passive viewpoint, instead, the current state (i.e., the current
extended GR-frame) {��(�), ��(�)} is regarded as prescribed.
�is point of view permits one to “measure” the behavior of
the transformed state {���(�), ���(�)} for the same prescribed
NLPT phase-space transformation (40).

Further interesting physical implications of the NLPT-
theory should be mentioned.

�e 
rst one is about the physical domain of existence
of NLPTs. In this regard we stress that, just as in the case of
LPT, NLPTs must be de
ned in the accessible subdomains of(Q4, 
) and (Q�4, 
�), namely, the connected subsets which
in each space-time can be covered by time-like world-lines
or their limit functions to be suitably de
ned. In fact, for
example, in the case of light cones, NLPTs can be de
ned
for time-like world-lines ��(�) which are endowed with a 4-
velocity having arbitrarily large spatial components and/or
time-components and therefore arbitrarily close to the same
light trajectories. In addition, we stress that the structure of
the two space-times themselves remains “a priori” arbitrary.
�us, for example, each of them may be characterized by
di�erent ensembles of event-horizons, while NLPTs remain
de
ned in the subsets internal or external to the same
event-horizons such that the mapped subsets have the same
signature.

�e second aspect concerns the role of NLPT-tensor
transformation laws (69)-(70). �ese can be intended as pro-
totypes of tensor transformations laws applicable to virtually
arbitrary higher-rank tensors. �us, as an illustration, let us
consider the case of a 4-scalar 
eld Φ(�), that is, a function
which remains invariant under the action of an arbitrary
transformation of the group {��}, for example, identi
ed with
the special NLPT

�� ≡ �� (��� (�) , �) = ��� (�) + Δ��� (�) , (92)

with Δ���(�) being de
ned by (80). �en, denoting as Φ�(��)
(resp., Φ(�)) the realization of the same scalar 
eld in the
GR-reference frame ��� (resp., ��), it follows that the Eulerian
equation

Φ� (��) = Φ (�) (93)

must hold identically. On the other hand, on the rhs of the
same equation � ≡ {��} is to be considered a function of�� ≡ {���}when represented via the specialNLPTgiven above.
It follows that Φ(�(�)) ≡ Φ(���(�) + Δ���(�)) when cast in
Lagrangian form; that is, it is parametrized in terms of the
world-line ��(�) or ���(�), respectively, and the corresponding
proper-time �. As a result, (93) yields also the relationship
expressed in Lagrangian form, that is, in terms of the world-
lines �(�) and ��(�). Since by construction �(�) is a nonlocal

function of ��(�) and the initial and transformed 
eldsΦ(�(�))
must still coincide identically, that is,

Φ� (�� (�)) = Φ (� (�)) ≡ Φ (��� (�) + Δ��� (�)) , (94)

it follows that Φ�(��(�)) becomes necessarily a nonlocal
function of ���(�). To determine the corresponding Eulerian

elds in terms of (93) it is su�cient to represent the proper-
time � in terms of the instantaneous 4-position �� ≡ {���},
so that � = �(��). �e way how this can be done, once the
world-line ���(�) is considered prescribed, is discussed in
Appendix B. Once the representation � = �(��) is introduced,
it follows that the rhs of (94) determines actually a function
of �� ≡ {���} only; namely,

Φ(��� + Δ��� (�)) ≡ Φ̂ (��) , (95)

so that (93) implies

Φ� (��) ≡ Φ̂ (��) (96)

too. In other words, the scalar 
elds Φ(�) and hence Φ�(��)
become formally a composite and nonlocal function of�� ≡ {���}. However, the existence of further NLPT-tensor
transformation laws must be mentioned.

7.1. NLPTProperties of the Acceleration 4-Tensor. �e
rst one
concerns the transformation properties of the acceleration
4-tensor de
ned in two Riemannian manifolds {Q4, 
} and{Q�4, 
�} connected by means of a general NLPT. �eorem 1
and in particular equation (C.8) can be used to determine the
relationships holding between them. In fact, let us identify the
acceleration 4-tensor with the covariant derivatives of �] and��] de
ned in Q4 andQ�4 as

b� ≡ �����,
b�� ≡ �������,

(97)

where �/�� and ��/�� are identi
ed with the ordinary
di�erential operators (C.6).�is means that in the two space-
times they must be identi
ed, respectively, as����] = ����] + �
�	Γ]
	, (98)

������] = �����] + ��
��	Γ�]
	, (99)

where Γ]
	 and Γ�]
	 denote the corresponding standard con-

nections de
ned in the same space-times. Let us consider for
de
niteness (98), the other one being uniquely dependent on
it (as will be obvious from the subsequent considerations).
Invoking the NLPT 4-tensor laws for the 4-velocity (16) then
(98) implies that����� =  �(�)] �����] − ��(�)]��
��	Γ�]
	

+ ��] ��� ��(�)],
(100)
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where  �(�)] is a suitable Jacobian matrix and ( −1(�))�] is its

inverse which are de
ned according to (72). �en, based on
Lemmas B.1, B.2, and C.1 reported, respectively, in Appen-
dices A and B, it is immediately proven that, thanks to the
validity of �eorem 1, the acceleration 4-tensor (�/��)�]
and acceleration 4-tensor(��/��)��] are linearly related. In
particular the following result holds.

�eorem 3 (NLPT law for the acceleration 4-tensor). If ��
]

is the Jacobian of an arbitrary NLPT, de�ned according to (71),
and (�/��)�] and (��/��)��] are the acceleration 4-tensors
de�ned according to (98) and (99), then with respect to an
arbitrary NLPT of the group {��} it follows that they are related
by means of the NLPT 4-tensor laws:

����� =  �(�)] (��, �) �
�

����], (101)

������� = ( −1(�))�] (�, ��) ����]. (102)


e result is analogous to that holding for arbitrary LPTs
belonging to the group {��}.
Proof. First it is obvious that (101) and (102) mutually imply
each other so that it is su�cient to prove that one of the
two actually holds. Consider then the proof of (101). First, let
us invoke the transformation law for the 4-velocity (16) and
invoke (98) to give

����� = ��� [ �(�)] (��, �) ��]]
= ��� [ �(�)] (��, �) ��]]
+ ��ℎ��� 
(�)ℎ (��, �) 	(�)� (��, �) Γ]
	,

(103)

where the chain rule delivers

��� [ �(�)] (��, �) ��]]
=  �(�)] (��, �) �����] + ��] ��� [ �(�)] (��, �)] .

(104)

It is immediately shown that LemmaC.1 given in Appendix C
and (C.8) then imply the identity

� �(�)] (��, �) + Γ�
	 
(�)] (��, �) 	(�)� (��, �) ����
=  �(�)� (��, �) Γ��]	���	. (105)

Hence the thesis is proved. Incidentally, thanks to
Lemma B.1 in Appendix B, it is obvious that the same
conclusion holds in the case of arbitrary LPTs belonging to
group {�}.

�e following comments are in order regarding �eo-
rem 3:

(1) Equations (101) and (102) determine the tensor trans-
formation laws for the acceleration 4-tensor occur-
ring in the two space-times {Q4, 
} and {Q�4, 
�}.

(2) Again the Jacobianmatrices �(�)] and ( −1(�))�] can be
represented in terms of the transformation matrices��(�)](��, �) and :�(�)](�, ��). �e latter ones identify

therefore in the Jacobian matrices the acceleration-
dependent contributions arising speci
cally due to
nonlocal dependence.

7.2. NLPT Laws of the EM Faraday Tensor. A further notable
transformation law to be pointed out here concerns the
EM Faraday tensor, again de
ned with respect to the same

Riemannian manifolds {Q4, 
} and {Q�4, 
�} indicated above.
As shown below this follows in a direct way from the
analogous NLPT laws for the acceleration 4-tensor. Consider,
in fact, for this purpose the dynamics of a charged point-
particle of rest-mass d� and electric charge e immersed
in an external EM 
eld. As is well-known, in the curved
space-times (Q4, 
) and (Q�4, 
�) this is determined by the
relativistic equation ofmotion which in the same space-times
takes, respectively, the forms

d������ = e�(ext)�]
(�) �], (106)

d�������� = e��(ext)�]
(��) ��]. (107)

Here �� and ��� and, respectively, �(ext)�
]
(�) and ��(ext)�

]
(��)

denote in the same space-times the 4-velocities and the
Faraday tensors generated by an externally produced EM

eld. Assuming that a general NLPT maps in each other(Q4, 
) and (Q�4, 
�), since

����� =  �(�)] (��, �) �
�

����] (108)

it must be identically that

e�(ext)�
 (�) �

=  �(�)	 (��, �) e��(ext)	]

( −1)](�)
 (�, ��) �
. (109)

�erefore, due to the arbitrariness of the 4-vector ��
, the
quantity �(ext)�
 (�) necessarily satis
es the NLPT 4-tensor law

�(ext)�
 (�)
=  �(�)	 (��, �) ��(ext)	]

(��) ( −1)](�)
 (�, ��) . (110)

Hence by construction it follows that

( −1)�(�)� �(ext)�
  
(�)�
= ( −1)�(�)� �(�)	��(ext)	]

( −1)](�)
 
(�)�,
(111)
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which yields the corresponding inverse transformation law
too:

��(ext)�� (��)
= ( −1)�(�)� (�, ��) �(ext)�
 (�) 
(�)� (��, �) . (112)

Equations (110) and (112) provide the transformation equa-

tions connecting the Faraday tensors�(ext)�
 (�) and��(ext)�
 (��)
which are de
ned, respectively, in the two space-times (Q4, 
)
and (Q�4, 
�). In particular we stress that on the rhs of the 
rst
equation � ≡ {��} must be regarded as a nonlocal function
of �� ≡ {���} whose form is determined by the same NLPT.

�is means that �(ext)�
]
(�) (and conversely ��(ext)	
 (��) when

represented via the inverse transformation (112)) must be
regarded in turn as a nonlocal function of �� too.

�ere remains an important question to answer, that is,

whether the transformed Faraday tensor ��(ext)	
 can be iden-
ti
ed or not with an exact solution to the Maxwell equations

de
ned in the space-time (Q4, 
) , �(ext)�
]
(�) being an exact

solution to the same equations in (Q�4, 
�). �e answer to

this question requires proving that �(ext)�
]
(�) and ��(ext)�

]
(��)

are, respectively, solutions to the Maxwell equations in the
two space-times, that is, that these equations are endowed
with a tensor transformation law with respect to the group
of general NLPTs {��}. �e proof of this statement will be
reported elsewhere.

Finally, one notices that the validity of NLPT-transforma-
tion laws for the EM Faraday tensor, represented by (110) and
(112), is not completely unexpected. Indeed they appear in
qualitative consistency with the famous Einstein equivalence
principle (EEP, [8]) and, more precisely, with Einstein’s
key related conjecture which actually lies at the basis of
GR, namely, that “local eects of motion in a curved space
(produced by gravitation)” should be considered as “indistin-
guishable from those of an accelerated observer in �at space”
[34, 35].

8. Application of General NLPT-Theory #1:
NLPT between Diagonal Metric Tensors

�e 
rst application to be considered concerns the construc-
tion of NLPT mapping two connected and time-oriented

space-times (Q4, 
) and (Q�4, 
�) both having diagonal form
with respect to suitable sets of coordinates. More precisely we
will require the following:

(i) When (Q4, 
) and (Q�4, 
�) are referring to the same
coordinate systems, both are realized by diagonal
metric tensors
�] (�) ≡ diag (D0 (�) , −D1 (�) , −D2 (�) , −D3 (�))


��] (��)
≡ diag (D�0 (��) , −D�1 (��) , −D�2 (��) , −D�3 (��)) ,

(113)

respectively. �e accessible subsets are as follows: (a)

for (Q�4, 
�) it is that in which, for all " = 0, 3, D��(��) >

0; (b) for (Q4, 
) it is either the set in which, for all" = 0, 3, D�(�) > 0 or the other one inwhich D0(�) < 0,D1(�) < 0, D2(�) > 0, and D3(�) > 0.
(ii) (Q4, 
) and (Q�4, 
�) are intrinsically dierent; that is,

the corresponding Riemann curvature tensors ��](�)
and ���](��) cannot be globally mapped in each other

by means of any LPT. �is means that a mapping
between the accessible subsets of the said space-times
can only possibly be established bymeans of a suitable
NLPT.

(iii) Two occurrences are considered: (a) the same signa-

ture case in which both (Q�4, 
�) and (Q4, 
) have
the same Lorentzian signature (+, −, −, −); (b) the

opposite-signature case in which (Q�4, 
�) and (Q4, 
)
have signatures (+, −, −, −) and (−, +, +, +), respec-
tively.

In the case of diagonal metric tensors the tensor transfor-
mation equation (70) takes obviously the general form:

D� (�) = ( −1(�))
� (�, ��) ( −1(�))
(�) (�, ��) D�
 (��) ,
D�� (��) =  
(�)� (��, �) 
(�)(�) (��, �) D
 (�) , (114)

where manifestly  
(�)�(��, �) ≡  
� (��, �) and ( −1(�))
�(�,��) = ( −1)
�(�, ��) correspondingly to the case of a special

NLPT. For such a type of space-time in the following we
intend to display a number of explicit particular solutions

to (114) for the Jacobian  
� and its inverse ( −1)
� and to

construct also the corresponding NLPT-phase-space maps.

8.1. 
e Same Signature Diagonal NLPT. In the case in

which (Q4, 
) and (Q�4, 
�) have the same signatures, it is
immediately shown that a particular solution to (114) in the

accessible subsets of (Q4, 
) and (Q�4, 
�) is provided by a
diagonal Jacobian matrix, that is, of the form

 
� (��, �) =  �� (��, �) 9
� ≡ [9�� + ��� (��, �)] 9
� . (115)

Indeed from (114) one 
nds

 �(�) (��, �) = 1( −1)�(�) = √
D�� (��)D(�) (�) , (116)

where D��(��)/D(�)(�) > 0 in the accessible subsets. In terms of

(72) one then determines the corresponding special NLPT;
namely,

�� (�) = ��� (��) + ∫
�
��√ D�� (��)D(�) (�)��� (�) ,

��� (�) = �� (��) + ∫
�
��√ D(�) (��)D�� (��) �� (�) ,

(117)
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as well as the corresponding 4-velocity transformation.
Let us now consider a possible physical realization for

the space-times (Q4, 
) and (Q�4, 
�) and the corresponding
metric tensors 
�](�) and 
��](��), respectively. Examples are

provided by the Schwarzschild or alternatively the Reissner-
Nordström space-times, both being characterized by a single
event-horizon. In terms of the spherical coordinates (�, g, h)
an analogous (Schwarzschild-analogue) representation holds
of the form 
�](�) ≡ diag((D0(�), −D1(�), −D2(�), −D3(�)))with

D0 (�) = K (�) ,
D1 (�) = 1K (�) ,
D2 (�) = �2,
D3 (�) = �2sin2g,

(118)

where in the two cases K(�) is identi
ed, respectively, with
K (�) = (1 − �� ) ,
K (�) = (1 − �� + �

2
��2 ) .

(119)

Here, � = 2U /-2 is the Schwarzschild radius and �� =√n2U/4op0-4 is a characteristic length scale, with n being

the electric charge and 1/4op0 being the Coulomb coupling
constant. Introducing the curvilinear coordinates

(�0, �1 ≡ �, �2 ≡ �g, �3 ≡ h� sin g) , (120)

here referred to as pseudospherical coordinates, one obtains�2�Ω2 = (��2)2 + (��3)2. It follows that, in (119), D2(�) andD3(�) are replaced with

D2 (�) = 1,D3 (�) = 1. (121)

In both cases, the transformed space-time (Q�4, 
�) is
assumed to be again Schwarzschild-analogue, namely, of type
(118). Expressed in the pseudospherical coordinates this is
prescribed to be

D�0 (��) = K� (��) ,
D�1 (��) = 1K� (��) ,
D�2 (��) = 1,
D�3 (��) = 1.

(122)

HereK�(��) is assumed to be an analytic function having r > 1
positive simple root ��1 < ��2 < ⋅ ⋅ ⋅ < ��� in the positive real axis

[0, +∞] such that K�(��) > 0 for �� > ���. In particular, we will
require that the Schwarzschild radius occurs in the interval

��1 < � < ���. (123)

�e admissible subdomains of (Q4, 
) and (Q�4, 
�), where
NLPT can possibly be established between the two space-
times, are therefore de
ned, respectively, by the inequalities� > � and �� > ���. In these subsets the transformation matrix�]

�(��, �) becomes

�00 (��, �) = √K� (��)K (�) − 1, (124)

�11 (��, �) = √ K (�)K� (��) − 1, (125)

�22 (��, �) = √11 − 1 = 0, (126)

�33 (��, �) = √11 − 1 = 0, (127)

where in the 
rst terms on the rhs of the previous equations
the positive values of the square roots have been taken.
�erefore, the NLPT corresponding to (124)–(127) is the

identity transformation as far as the coordinates �2 and �3
are concerned. �e nontrivial contributions giving rise to
nonlocal terms in (72) are produced therefore only by the

time and radial components of the 4-velocity, that is, ��0 and��1 only. �e following physical interpretation is proposed:

(i) �e special NLPT corresponding to (124)–(127) is
only de
ned in the accessible subset of the space-time,
namely, when �� > ��� and � > �, respectively, occur.

(ii) �e e�ect of the special NLPT produced by (124)–
(127) is that of mapping the accessible subsets
of Schwarzschild or Reissner-Nordström space-
time in the corresponding accessible subset of
a Schwarzschild-analogue space-time. �e basic
feature of the transformed space-time is that of
exhibiting r > 1 event-horizon instead of a single one
as in the initial space-time.

(iii) �e physical origin for the generation of such an
e�ect is the special NLPT introduced here, which
in turn arises when nonlocal e�ects are included
in (72) which are carried out only by the time and
radial components of the 4-velocity. In particular,
assuming that the NLPT is of the form determined
according to requirements (85) it follows that (124)–
(127) correspond to the case inwhich only a tangential
acceleration 4-tensor b�� = �����/�� can occur,
namely, in which its only nonvanishing components
correspond to " = 2, 3.

A 
nal remark must be made concerning the limit
lim��→��(+)∗ in (125) and, respectively, lim�→�(+)∗ in (124), where��∗ and �∗ are the largest roots of the equations K�(��) = 0
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and K(�) = 0. In terms of the pseudospherical coordinates
the previous limits do not exist and therefore the limit
NLPT is not de
ned on the event-horizons. Nevertheless,
these divergences can be cured by preliminarily recurring
to a suitable coordinate system, which in the case of the
Schwarzschild metric can be identi
ed with the Kruskal-
Szekeres coordinates [4].

8.2. Opposite-Signature NLPT. Let us now consider the case

in which (Q4, 
) and (Q�4, 
�) have opposite signatures,
namely, respectively, (−, +, +, +) and (+, −, −, −), while the
metric tensors are still diagonal when expressed with respect
to the same coordinate systems, that is, are in diagonal form.

It follows that in the accessible subset of (Q�4, 
�) it occurs,
respectively, that

D0 (�) < 0,
D1 (�) < 0. (128)

In this case it is immediately shown that in the accessible

subsets of (Q4, 
) and (Q�4, 
�) a particular realization is
provided by a Jacobian matrix of the form

 01 (��, �) = 1( −1)10 = √−
D�1 (��)D0 (�) ,

 10 (��, �) = 1( −1)01 = √−
D�0 (��)D1 (�) ,

 22 (��, �) = 1( −1)33 = √
D�2 (��)D2 (�) ,

 33 (��, �) = 1( −1)33 = √
D�3 (��)D3 (�) ,

(129)

where −D1(�)/D�0(��) > 0 in the accessible subsets. �e corre-
sponding special NLPT follows immediately from (72). Once
again a possible application is provided by Schwarzschild-
analogue space-times. More precisely let us consider the case
in which the following occurs:

(A) �e space-time (Q�4, 
�) is assumed to be again
Schwarzschild-analogue of type (118), so that in pseudospher-
ical coordinates it is given again by (122). In particular in the

accessible subset of (Q�4, 
�) we will require
D�0 (��) = K� (��) > 0,
D�1 (��) = 1K� (��) > 0.

(130)

(B) �e space-time (Q4, 
) is the Schwarzschild one, the
accessible subset being such that

D0 (�) = 1 − �� < 0,
D1 (�) = 11 − �/� < 0.

(131)

As a consequence, the Jacobian becomes

 01 (��, �) = 1( −1)10 = √−
1(1 − �/�) K� (��) ,

 10 (��, �) = 1( −1)01 = √−(1 −
�� )K� (��),

 22 (��, �) = 1( −1)33 = 1,
 33 (��, �) = 1( −1)33 = 1.

(132)

�erefore, in this case the resulting special NLPT
maps the interior domain of the Schwarzschild space-time,
namely, its black-hole domain, onto the exterior domain of a
Schwarzschild-analogue space-time. As a 
nal comment, it
must be stressed that the starting equations adopted in this
section, namely, (115), can be in principle easily reformulated
when arbitrary di�erent coordinate systems are adopted

for representing the two space-times (Q4, 
) and (Q�4, 
�).
Although details are here omitted for brevity, it is worth
mentioning that this extension can easily be accomplished
adopting the general NLPT-theory developed here.

9. Application of General NLPT-Theory #2:
Diagonalization of Metric Tensors

As a second example, the problem of diagonalization of a
nondiagonal metric tensor is posed in the framework of
NLPT-theory. More precisely, this concerns the construction
of NLPT mapping two connected and time-oriented space-

times (Q4, 
) and (Q�4, 
�). Here we will require that when(Q4, 
) and (Q�4, 
�) are referring to the same coordinate
systems they are realized by the metric tensors


�] (�) ≡ diag (D0 (�) , −D1 (�) , −D2 (�) , −D3 (�)) , (133)


��] (��) =
<<<<<<<<<<<<<<<<<<<<<<<

D�0 (��) D�03 (��)−D�1 (��) −D�2 (��)D�03 (��) −D�3 (��)

<<<<<<<<<<<<<<<<<<<<<<<
, (134)

respectively.�e accessible subsets are assumed to be both for(Q�4, 
�) and for (Q4, 
) as follows: for all " = 0, 3, D��(��) > 0
and D�(�) > 0.
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As before, the realization of the NLPT which maps
the two metric tensors is not unique. A possible choice is
provided by a special NLPT of the form

��0 = (1 + �0(�)0) ���0 + �0(�)3���3,
��� = (1 + ��(�)(�)) ���(�), (135)

for ; = 1, 2, 3, namely, such that

�0 (�) = ��0 (�) + ∫
�
�� [�0(�)0 (�� (�) , � (�)) ��0 (�)

+ �0(�)3 (�� (�) , � (�)) ��3 (�)] ,
�� (�) = ��� (�) + ∫s

�
����(�)(�) (�� (�) , � (�)) ��(�) (�) ,

(136)

where again the indices in brackets are not subject to the
summation rule. �e transformation bringing ��� in �� will
be referred to as diagonalizing NLPT. �e transformation

equations for thematrix elements�0(�)0,�0(�)3, and��(�)(�), for; = 1, 2, 3, are therefore
D�� (��) = (1 + �(�)(�)(�) (��, �))2 D� (�) , (137)

D�3 (��) = (1 + �3(�)3 (��, �))2 D3 (�)
− (�0(�)3 (��, �))2 D0 (�) , (138)

D�03 (��) = �0(�)3 (��, �) �0(�)0 (��, �) D0 (�) , (139)

for u = 0, 1, 2.�e 
rst set of (137) has a formal solution of the
type

��(�)(�) (��, �) = √ D�� (��)D(�) (�) − 1. (140)

�e third equation (139) gives then

�0(�)3 (��, �) = D�03 (��)D0 (�) [[[
√ D�0 (��)D0 (�) − 1]]]

−1

. (141)

Finally, (138) delivers

�3(�)3 (��, �) = √ D�3 (��) + (�03 (��, �))
2 D0 (�)D3 (�) − 1. (142)

�e signs of the square roots in the previous equations have
been chosen in such a way to recover the correct result for
identity transformations.

A number of remarks must be made.
(1) Also the present application can be in principle

reformulated adopting arbitrary di�erent coordinate systems

for the representation of the space-times (Q4, 
) and (Q�4, 
�).

�is ultimately involves adopting the general NLPT-theory
developed here.

(2) Transformation (136) is de
ned provided the inequal-
ity

√D�0 (��)D0 (�) − 1 ̸= 0 (143)

holds. In this case in fact all the matrix elements ��
]
deter-

mined above are real and smooth functions.
(3) A solution satisfying inequality (143) can always be

found by suitably prescribing D0(�) once D�0(��) is considered

xed.

(4) An alternate possibility, in case condition (143) is
not satis
ed, is to look for another possible realization of
transformation (136). �e general solution can be cast in the
form

��0 = (1 + �0(�)0) ���0 + �0(�)3���3,
��� = (1 + ��(�)(�)) ���(�),
��3 = (1 + �3(�)3) ���3 + �3(�)0���0,

(144)

for ; = 1, 2, namely, such that

�0 (�) = ��0 (�) + ∫
�
�� [�0(�)0 (�� (�) , � (�)) ��0 (�)

+ �0(�)3 (�� (�) , � (�)) ��3 (�)] ,
�� (�) = ��� (�) + ∫

�
����(�)(�) (�� (�) , � (�)) ��(�) (�) ,

�3 (�) = ��3 (�) + ∫
�
�� [�3(�)3 (�� (�) , � (�)) ��3 (�)

+ �3(�)0 (�� (�) , � (�)) ��0 (�)] .

(145)

�e resulting equations can be immediately solved.
(5) �e diagonalization of the Kerr metric tensor

expressed in spherical coordinates, as well as the Kerr-
Newman and analogous Kerr-like solutions, can be carried
out in terms of a transformation of either type (136) or type
(145).

(6) Regarding the physical interpretation of the di�eren-
tial equations (135) we notice that the 
rst equation implies
that the time-component of the 4-velocity in the initial frame
is modi
ed by the combined e�ects of time-components and
3-components of the 4-velocity in the transformed frame.
In the case of the Kerr metric, in particular, the latter
corresponds to an azimuthal component of the 4-velocity.
�erefore, the corresponding nonlocal coordinate transfor-
mation (136) produces a modi
cation of the coordinate
time �0(�) taking into account also the contribution of the
azimuthal velocity.

(7) Also for the diagonalizing NLPT a teleparallel realiza-
tion can be given. �is follows by identifying now the space-

time (Q4, 
) with the Minkowski space-time. �e solution
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for the Jacobian of such a transformation is obtained from
(140)–(142) by setting D�(�) = 1 identically.�is means that it
is always possible to transform a nondiagonal metric tensor
into theMinkowski one bymeans of the inverse diagonalizing
NLPT.

(8) Finally, an interesting comparison is possible with the
so-called Newman-Janis algorithm [19–21]. As is well-known
(see also related discussion in Section 4) this algorithm can
be used to diagonalize nondiagonal metric tensors and is fre-
quently used in the literature for the purpose of investigating
a variety of standard or nonstandard GR black-hole solutions
[22, 23]. Its basic feature involves adopting a complex coor-
dinate transformation, a feature which e�ectively inhibits its
physical interpretation and puts in doubt its very validity.
In contrast, within the present NLPT-approach, the physical
consistency of the transformation approach is preserved.
Hence, the present conclusions seem particularly rewarding.
Indeed, based on the NLPT-approach indicated above, the
di�culties and physical limitations of the complex Newman-
Janis algorithm are e�ectively avoided by adopting theNLPT-
theory. �is is of paramount importance for theoretical
and astrophysical applications, such as the physics around
rotating black-holes and gravitational waves.

10. Application of General NLPT-Theory #3:
Acceleration Effects in Schwarzschild,
Reissner-Nordström, and
Schwarzschild-Analogue Space-Times

�e next application to be considered concerns the construc-
tion of NLPT mapping two connected and time-oriented

space-times (Q4, 
) and (Q�4, 
�) both having diagonal form
with respect to suitable sets of coordinates. More precisely we
will require the following:

(i) When (Q4, 
) and (Q�4, 
�) are referring to the same
coordinate systems both are realized by diagonal
metric tensors. �e accessible subsets are as follows:
(a) for (Q�4, 
�) this is that in which, for all " = 0, 3,D��(��) > 0; (b) for (Q4, 
) it is either the set in which,

for all " = 0, 3, D�(�) > 0 or the other one in whichD0(�) < 0, D1(�) < 0, D2(�) > 0, and D3(�) > 0.
(ii) (Q4, 
) and (Q�4, 
�) are intrinsically dierent, that

is, that the corresponding Riemann curvature tensors��](�) and ���](��) cannot be globally mapped in each

other bymeans of any LPT.�ismeans that amapping
between the accessible subsets of the said space-times
can only possibly be established bymeans of a suitable
NLPT.

(iii) We will consider for de
niteness only the case in

which both (Q�4, 
�) and (Q4, 
) have the same
Lorentzian signature (+, −, −, −).

Provided themetric tensors are diagonal the tensor trans-
formation equation for the metric tensor takes the general
form given again by (114), where manifestly  
(�)�(��, �) ≡ 
� (��, �) and ( −1(�))
�(�, ��) = ( −1)
�(�, ��) correspondingly

to the case of a special NLPT. For such a type of space-
time in the following we intend to display a number of
explicit particular solutions to (114) for the Jacobian 
� and
its inverse ( −1)
� and to construct also the corresponding

NLPT-phase-space maps.
In the case in which (Q4, 
) and (Q�4, 
�) have the same

signatures a particular solution in the accessible subsets of(Q4, 
) and (Q�4, 
�) is provided by a diagonal Jacobian
matrix of form (115). �is in turn corresponds to a diagonal
NLPT of the form

��� =  �(�) (��, �) ���(�) (; = 0, 1, 2, 3) . (146)

Indeed, from (114) one 
nds

 �(�)(�) (��, �) = 1
( −1(�))�(�)

= √ D�� (�)D(�) (��) , (147)

where D�(�)/D�(�)(��) > 0 in the accessible subsets. In terms of

(101) and (102) one obtains the acceleration transformation
laws

����� =  �(�)(�) (��, �) �
�

�����,
������� = 1

( −1(�))�(�)
�����.

(148)

Let us now consider a possible physical realization for

the space-times (Q4, 
) and (Q�4, 
�) and the corresponding
metric tensors 
�](�) and 
��](��), respectively. Here we con-
sider examples analogous to those pointed out in Section 5. In

pseudospherical coordinates (�, �2, �3) (see (120)) the follow-
ing generic representation is assumed to hold for all of them
of the form 
�](�) ≡ diag((D0(�), −D1(�), −D2(�), −D3(�))),

D0 (�) = b (�) ,D1 (�) = x (�) ,D2 (�) = 
 (�) ,D3 (�) = 
 (�) .
(149)

In particular the Schwarzschild, Reissner-Nordström, and
Schwarzchild-analogue cases are obtained letting

b (�) = K (�) ,
x (�) = 1K (�) ,

 (�) = 1,

(150)
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where, respectively,

K (�) = (1 − �� ) Case A,
K (�) = (1 − �� + �

2
��2 ) Case B,

K (�) = ∏
�=1,�
(1 − ��� ) Case C.

(151)

Here, �, ��, and �� (for ; = 1, r) are suitably prescribed
characteristic scale lengths; in particular

� = 2U -2 , (152)

�� = √ n2U4op0-4 (153)

are, respectively, the Schwarzschild and Reissner-Nordström
radii, with n being the electric charge and 1/4op0 being the
Coulomb coupling constant. In all Cases A, B, and C we will
require that the function K(�) de
ned according to (151) is
strictly positive; that is, � > � and � > ��, with �� denoting
the largest root of the equation K(�) = (1 − �/� + �2�/�2) = 0
or ∏�=1,�(1 − ��/�) = 0. In all cases, the transformed space-

time (Q�4, 
�) when expressed in the same pseudospherical
coordinates is identi
ed either with the Minkowski space-
time or with the Schwarzchild-analogue space-time, so that,
respectively, either for all " = 0, 3

D�� (��) = 1, (154)

or where (149), (150), and Case C of (151) applies. In the
subsets where K(�) > 0 and for Case C K�(��) > 0 the
transformation matrix ]

�(��, �) becomes

 00 (��, �) = √ b� (��)b (�) ,

 11 (��, �) = √ x� (��)x (�) ,
 22 (��, �) =  33 (��, �) = 1,

(155)

where in the 
rst terms on the rhs of the previous equations
the positive values of the square roots have been taken.

Let us brie�y analyze the physical implications of (155):

(i) �e 
rst one is that (155) generate a diagonal special
NLPT inwhichnonlocal e�ects are carried only by the
time and radial components of the 4-displacement,
that is, of 4-velocity and correspondingly of the
acceleration 4-tensor.

(ii) �e corresponding NLPT which map, respectively,
either the Schwarzschild (A) or the Reissner-
Nordström (B) space-times onto the Minkowski

(C) or Schwarzchild-analogue (D) space-times are
provided in all cases by (146). In particular, the
acceleration transformation (148) implies that a
point-particle endowed with acceleration 4-tensor(��/��)��� with respect to the space-time C or D, in
the space-time A or Bmapped via (146), is necessarily
endowed with acceleration (�/��)�� given by the
same equations (i.e., (148)).

11. Application of NLPT-Theory #4:
Acceleration Effects in Kerr-Newman and
Kerr Space-Times

As a 
nal example, let us consider the case of Kerr-Newman
and Kerr space-times, identi
ed here for de
niteness with
the primed space-time (Q�4, 
�(��)). In both cases, when cast
in spherical coordinates (��, z�, h�) the corresponding metric
tensor is of the generic nondiagonal form


��] (��) =
<<<<<<<<<<<<<<<<<<<<<<<

D�0 (��) D�03 (��)−D�1 (��) −D�2 (��)D�03 (��) −D�3 (��)

<<<<<<<<<<<<<<<<<<<<<<<
. (156)

For de
niteness, let us 
rst introduce the standard notations

# = A -,
~2 = �2 + #2cos2z,
Δ = �2 − �� + #2 + �2�,

(157)

where# identi
es a constant scale length and � and �� are the
Schwarzschild and Reissner-Nordström radii (see (152) and
(153)). �en, the Kerr-Newman metric is de
ned:

D�0 (��) = Δ + #2sin2z~2 ,
D�1 (��) = ~2Δ ,
D�2 (��) = ~2,
D�3 (��) = Δ~2#2sin4z� + (��2 + #2)2 sin

2z�~2 ,
D�03 (��) = D�30 (��) = # (��2 + #2) sin2z�~2 .

(158)

Instead the Kerr metric is prescribed requiring

D�0 (��) = 1 − ���~2 ,
D�1 (��) = ~2Δ ,
D�2 (��) = ~2,
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D�3 (��) = (��2 + #2 + ���#2~2 − ��
�

~2 sin2z�) sin2z�,
D�03 (��) = D�30 (��) = −���#~2 sin2z�.

(159)

Let us now pose the problem of mapping either the Kerr-
Newman or the Kerr space-times onto the Minkowski space-
time (M4, ). For convenience let us represent also the
latter space-time in spherical coordinates. �is gives for the
Minkowski metric the customary diagonal representation

�] (�) ≡ diag (D0 (�) = 1, −D1 (�) = −1, −D2 (�)
= −�2, −D3 (�) = −�2sin2z) . (160)

A possible nonunique realization of the NLPT between the
two space-times (Q�4, 
�) and (M4.) indicated above, in
some sense analogous to the one developed here in Section 10,
is proposed here. �is is provided by the nondiagonal special
NLPT of the form

��0 =  00���0 + 01���1 + 03���3,
��1 =  11���1 + 10���0,
��2 =  22���2,
��3 =  31���1 + 33���3,

(161)

subject to the validity of the constraints

D0 (�) 00 01 − D1 (�) 11 10 = 0,
D0 (�) 01 03 − D3 (�) 33 30 = 0. (162)

One can readily show that (161) indeed realize NLPT
which mutually maps in each other the two space-times(Q�4, 
�) and (M4.). For this purpose, in validity of (160), let
us require that the Jacobian matrix  �

]
satis
es the further

tensor equations

( 00)2 − ( 10)2 = D�0 (��) ,
( 03)2 − ( 11)2 − �2sin2z ( 31)2 = −D�1 (��) ,

�2 ( 22)2 = D�2 (��) ,
( 01)2 − �2sin2z ( 33)2 = −D�3 (��) .

(163)

From (163) and (162) elementary algebra gives the general
solution

 01 =  11 00 10 ,
 03 = �2sin2z 00 33 11 10  30 ,
 00 = √D�0 (��) + ( 10)2,

 11 = √ D�1 (��) − �2 ( 31)
2

D�0 (��) √D�0 (��) + ( 10)2,
 33 = √D�0 (��) + ( 10)2,

(164)

where the matrix elements  10 and  31 still remain in

principle arbitrary. Notice that the ratios D1(�) 11/D0(�) 00
and D3(�) 00/D1(�) 11 read then

 11 00 = √
D�1 (��) − �2 ( 31)2D�0 (��) ,

�2sin2z 00 11 = �2sin2z√ D�1 (��) − �2 ( 31)2D�0 (��) .
(165)

Hence it follows that

 01 = √ D�1 (��) − �2 ( 31)
2

D�0 (��)  10 ,

 03 = �2sin2z√ D�1 (��) − �2 ( 31)
2

D�0 (��)
 33 10 31 .

(166)

Notice, however, that the existence of solution (164) demands
manifestly

D�1 (��) − �2 ( 31)2 > 0 (167)

to be interpreted as solubility condition.Anumber of remarks
can be made.

(1) Notice that when letting in particular 01 =  31 , (161)
reduce to the nondiagonal special NLPT considered above in
Section 9.

(2) Equations (161) imply that the time-component of the
acceleration 4-tensor in the Minkowski space-time is gen-
erated by time-components and radial and tangential com-
ponents in the Kerr-Newman and Kerr space-times, respec-
tively, namely, (��/��)��0, (��/��)��1, and (��/��)��3.

(3) Similarly, the tangential component (�/��)�3
depends also on the radial component (��/��)��1 arising in
the Kerr-Newman or Kerr space-times, besides (��/��)��3.

(4) Let us now consider the inverse transformations
following from (161). By analogywithApplication #2 (see Sec-
tion 5) also in this case both the time and radial components
arising in the Kerr-Newman or Kerr space-times, namely,

respectively, (��/��)��0 and (��/��)��1, generally depend
on the analogous components of the acceleration 4-tensor

arising in the Minkowski space-time, namely, (�/��)�0 and(�/��)�1, as well as the tangential component (�/��)�3.
�us, for example, one obtains that
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������0 = [ 
3
3 11 (�/��) �0 + ( 03 31 − 33 01) (�/��) �1 − 11 03 (�/��) �3]( 00 11 − 01 10) 33 − 03 31 10 , (168)

and similarly the radial component reads

������1 = 1 11 [ ����1 − 10 �
�

����0] . (169)

(5) In the previous equations the matrix elements  10
and  31 remain still in principle arbitrary, with the second
one required to ful
ll the inequality (167) indicated above.
A further solubility condition is provided, however, by the

equation for 03 in (164). In fact, this is only de
ned provided
also

 10 ̸= 0. (170)

(6) Since due to (162) the matrix elements  01 and  03
become linear functions of 10 and 31 , respectively, it follows
that both the time and radial acceleration (168) and (169)
strongly depend on the choices of the same parameters.

Notice that, in particular, the coupling of (��/��)��1 with
nonradial components occurs always due to the solubility
condition (170).

12. Concluding Remarks

In view of these considerations, we are now in position to
draw the main conclusions.

�e investigation carried out in this paper concerns a
new approach to GR, here denoted as NLPT-theory, which
involves the extension of the customary functional setting
usually adopted in SF-GR, namely, LPT-theory. �is goal is
achieved by means of the introduction of a suitable family of
nonlocal point transformations.

�e adoption of NLPT-theory involves a departure from
the standard route customarily followed in the literature for
SF-GR. Indeed, the validity of SF-GR relies in particular on
the principle of general covariance with respect to the group
of local point transformations. �e latter by construction
map a given space-time in itself only. Instead, in contrast
to such a limitation, NLPT-theory allows one—by means of
appropriate NLPT—to map in each other two intrinsically
di�erent and virtually arbitrary curved or �at space-times(Q4, 
) and (Q�4, 
�). �ese are characterized by intrinsically
di�erent Riemann curvature tensors, so that in particular one
of the two space-times can, for example, be identi
edwith the
�at Minkowski space-time (M4, �).

As shown in this paper the adoption of NLPT-theory
permits reaching an answer to physical issues which are of
critical importance in GR. �ese include the following:

(1) �e 
rst point is the solution to the teleparallel
transformation problem (TT-problem) arising in the
context of Einstein’s teleparallel approach to GR.�is

concerns the determination of the transformation
matrix connecting the metric tensors of curved and
�at space-times when expressed in terms of the
same orthogonal Cartesians coordinates (see related
discussion in �eorem 1). As shown in Section 4 this
involves the construction of a suitable special NLPT
(nonlocal point transformation). In particular it is
found that by means of suitable assumptions (see
NLPT-Requirements #1–#5) the TT-problem can be
solved in terms of a suitable class of nonlocal point
transformations, referred to as specialNLPT (see�e-
orem 1), connecting the 4-positions in the two space-
times. Such a transformation is necessarily a real one
and involves both local and nonlocal dependence in
terms of both 4-position and 4-velocity. �e trans-
formation laws for the corresponding in
nitesimal
4-displacements have a tensor character, referred to
here as NLPT 4-tensor laws. �e latter transforma-
tions imply the validity of analogous NLPT 4-tensor
laws for the corresponding 4-velocities.

(2) Second one is the construction, based on two optional
additional requirements (NLPT-Requirements #6 and
#7), of the general form of NLPT, denoted here as
general NLPT (see �eorem 2) and its application
to the determination of the mappings between dif-
ferent curved space-times (see Sections 8 and 9),
with particular reference to space-times which are
represented in di�erent coordinate systems and also
possibly exhibit nondiagonal metric tensors. Such
types of transformations are applied 
rst to the diag-
onalization problem of metric tensors associated with
curved space-times. Its basic feature is permitting
one to transform mutually, by means of real nonlocal
point transformations, nondiagonal metric tensors—
such as those associatedwith rotating black-holes, like
the Kerr solution—with a diagonal metric tensor cor-
responding to a spherically symmetric and stationary
con
guration. �is approach avoids the adoption of
complex-variable transformations, like the so-called
Newman-Janis algorithm [19–21].

(3) �ird point is the investigation of the NLPT-
transformation laws for the acceleration 4-tensor and
the EM Faraday tensor. As shown here both the
acceleration 4-tensor and the Faraday tensor, when
de
ned with respect to di�erent curved space-times
which aremapped in each other bymeans of a general
NLPT, are shown to satisfy analogous 4-tensorNLPT-
transformation laws (see �eorem 3 in Section 7 and
the discussion reported in Sections 7.1 and 7.2).

(4) Selected applications involving the determination of
the NLPT connecting a variety of curved space-times
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and the related acceleration transformation laws have
been pointed out. �ese include the following exam-
ples of NLPT:

(i) Realization of special NLPT for the TT-problem
in the case of diagonal metric tensors (Sec-
tion 5).

(ii) Realization of general NLPT in the case of
diagonal metric tensors (Section 8).

(iii) Diagonalization of metric tensors (Section 9).

(iv) Acceleration e�ects in the Schwarzschild,
Reissner-Nordström, and the Minkowski
or Schwarzschild-analogue space-times (see
Section 10).

(v) Acceleration e�ects in the Kerr-Newman or
Kerr space-times and the Minkowski space-
time (see Section 11).

As shown here NLPT-theory rests purely on 
rst princi-
ples. In this regard in the present paper the following remarks
have turned out to be crucial. �e 
rst one is realized by
Proposition #1, namely, the fact that two di�erent space-
times, such as those occurring in Einstein’s TT-problem,

namely, (Q4, 
) and (Q�4, 
�) ≡ (M�4, ), cannot be directly
mapped in each other just by means of LPT. �e second
one is that general 4-velocity transformations of the form
given by (16) manifestly can always be introduced in which
the Jacobian of the transformation is not of the gradient
form indicated by (3) and (4). �e third fundamental remark
concerns the existence of NLPT. �is is actually suggested
by the Einstein equivalence principle itself, a principle which
also lies at the heart of his approach to the TT-problem.
Such a feature appears of critical importance. In fact, as
shown here, it directly leads to the identi
cation of the precise
form of the NLPT which provides an explicit solution to the
same TT-problem. Finally, two characteristic aspects of the
new NLPTs proposed here must be stressed. �e 
rst one
is their nonlocality, which appears in their both Lagrangian
and Eulerian forms. �is arises because of their nonlocal
dependence with respect to 4-velocity. �e second, and in
turn related, one is due to the form of their Jacobians. In fact,
in di�erence with the treatment of LPT, for NLPT the same
ones are not identi
ed with gradient operators. Nevertheless,
since the Jacobians still are by assumption locally velocity-
independent, NLPT 4-tensor laws can actually be recovered
once again. �ese follow from the corresponding transfor-
mation equations which hold for the in
nitesimal 4-position
displacements and the corresponding 4-velocities.

�ese conclusions strongly support the crucial impor-
tance of nonlocality e�ects in GR arising as a consequence
of nonlocal point transformations. As pointed out in this
paper a convenient framework is provided by NLPT-theory.
�e investigation carried out in this paper concerns basic
theoretical issues and physical problems of critical impor-
tance in General Relativity. However, it appears promising
for its potential implications and susceptible of a plethora
of potential applications ranging from classical relativistic
mechanics and electrodynamics [27–32], General Relativity,
and cosmology to quantum theory of extended particle

dynamics [32, 36–39], relativistic kinetic theory [30], and
relativistic quantum mechanics [33] and quantum gravity.

Appendix

A. An Example from Special Relativity

In this appendix a possible realization is considered of the
classical dynamical system (CDS) discussed at the beginning
of Section 7. �is is achieved by performing a suitable
GR-frame transformation—determined by means of an �-
dependent Lorentz boost—in the context of the Special Rel-
ativity (SR) setting, that is, in the time-oriented Minkowski
space-time. We will distinguish—in such a process—the so-
called active and passive viewpoints of the transformation,
that is, in which either a point-particle evolves in time
(“moves”) or the reference frame itself changes, respectively.
In order to de
ne properly the two viewpoints let us introduce
the 4-displacement and corresponding 4-velocity transfor-
mation of the type

��� = J�
]
���],

���� = (J−1)�
]

��], (A.1)

�� = J�
]
��],

��� = (J−1)�
]

�]. (A.2)

Equations (A.2) can be viewed as a Gedanken experiment
(GDE) advancing in time separately the states {��(�), ��(�)}
and {���(�), ���(�)}. To elucidate this point consider the
following two CDSs:

{�� (��) , �� (��)} ←→ {�� (�) , �� (�)} , (A.3)

{��� (��) , ��� (��)} ←→ {��� (�) , ��� (�)} , (A.4)

which are assumed to be prescribed for all ��, � ∈ �.
Assuming validity of (A.1) and (A.2) it follows that the
two states {��(�), ��(�)} and {���(�), ���(�)} are manifestly not
independent. Indeed, the same CDSs are not independent, as
it follows at once by direct inspection of (A.2) and (A.1). In
particular, the 
rst one (A.3) and, respectively, the second one
(A.4) are obtained by considering the state {���(�), ���(�)} (or
correspondingly {��(�), ��(�)}) as prescribed.�e two choices
will be referred to as the active and passive viewpoints inwhich
the GDE can be considered, more precisely: (A) in the active
viewpoint the state {��(�), ��(�)} acting on the curved (“trans-
formed”) space-time evolves in time with {���(�), ���(�)},
the “background” state de
ned in the Minkowski space-
time being considered a prescribed smooth �-function and
generating the phase-space �ow. (B) In the passive viewpoint
the state {��(�), ��(�)} is considered a prescribed smooth
function of �, so that the background state {���(�), ���(�)}must
evolve in time accordingly.

For de
niteness, let us consider for the Jacobian matrix
J
�
]
, with (J−1)�

]
being its inverse, a realization which
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corresponds to a boost transformation, that is, a space-time
rotation for whichJ

�
]
≡ J�

]
(�), where

J
�
]
(�) =

<<<<<<<<<<<<<<<<<<<<<

� (�) −% (�) � (�) 0 0−% (�) � (�) � (�) 0 00 0 1 00 0 0 1

<<<<<<<<<<<<<<<<<<<<<
, (A.5)

while �(�) and %(�) are the Lorentz and relativistic factors�(�) = 1/√1 − %2(�) and %(�) ≡ |k(�)|/- and k(�) denotes
the spatial components of a local and nonuniform reference
velocity. In particular, let us require that k(�) is parametrized
in terms of the arc length �, to be established on a suitable
time-likeword-line �� (see below). It follows that by construc-
tion �� and ��� belong to di�erent tangent spaces de
ned
with respect to the same Minkowskian space-time, since by
construction the identity


	 ��
�� ��
	

�� = ]� ��
�]

�� ��
��

�� (A.6)

manifestly holds. �e corresponding coordinate transforma-

tion �
(�) → ��
(�) and its inverse, both de
ned in ( 4, )
and generated by integrating the 4-velocity transformations

(A.2) along arbitrary time-like world-lines of ( 4, ), are
manifestly of the type indicated above (see (34)) and therefore
identify a particular possible realization of NLPT. It follows
that (34) can be interpreted as being performed as a result
of the said Gedanken experiment. More precisely, (A) in the
active viewpoint a point-particle endowed with a 4-position��] (or �]) acquires a displacement which carries it to the
transformed 4-position �� (or ���, resp.), by means of a
suitable dynamical �ow of some kind producing also such a
change in the particle 4-position. (B) In the passive viewpoint
the point-particle 4-position remains invariant, while the
reference frame changes in such a way that the 4-position ��]
(resp., �]) is transformed into �� (���).

�is simple example further supports the discussion
reported above regarding the asserted physical inadequacy of
the traditional concept of reference frame (the so-called GR-
frame) adopted in particular in the context of GR, that is, of
a coordinate system based on the 4-position � ≡ {��} only,
which is founded—in turn—on the adoption of purely local
coordinate transformations. �e rationale behind the issue
considered here lies on the Einstein equivalence principle
(EEP, [8]) itself. �is is actually realized by two separate
propositions, which in the form presently known must both
be ascribed to Albert Einstein’s 1907 original formulation [34]
(see also [35]). In Einstein’s original approach this actually is
realized by the following two distinct claims stating (a) the
equivalence between accelerating frames and the occurrence
of gravitational 
elds (see also [8]) and (b) the fact that “local
e�ects of motion in a curved space (gravitation)” should be
considered as “indistinguishable from those of an accelerated
observer in �at space” [34, 35].

B. Mathematical Preliminaries: Differential
Properties of �(�)]

In this section the relevant properties of the Jacobian  �(�)]
which characterizes general NLPT (see (72)) which is asso-
ciated with a generic transformation of the group {��} are
summarized.

For the sake of reference, let us consider 
rst the case
in which transformations (72) reduce to the customary form
of local point transformations. �is case occurs manifestly
if the matrices ��(�)] and :�(�)] vanish identically so that the

transformations reduce to�(�)-di�eomorphism (with � ≥ 3):
�� (�) = 
�� (�� (�)) ,
��� (�) = K��� (� (�)) , (B.1)

while the corresponding Jacobian ��
]
becomes a local�(�−1)-

function of the form ��
]
=  ��

]
(��). Hence, the di�erential

of ��
]
takes the form prescribed by the (Leibnitz) chain rule

of di�erentiation. �e following proposition holds.

Lemma B.1 (di�erential identity for LPT). Given validity of

(B.1) the Jacobian  �(�)] =  �] (��) is identi�ed with �(�−1)-
function:

 �
]
(��) = �
�� (��)���] (B.2)

so that the dierential of the Jacobian �
]
(��) reads

� �
]
(��) = ���
 � �] (��)���
 , (B.3)

where on the rhs � �
]
(��, �(��))/���
 denotes the partial

derivative with respect to ��
.
Next, let us consider the case of an arbitrary NLPT, for

which the Jacobian  �(�)] is instead of the form  �(�)](��, �)
(see (71)), where � ≡ �(��) ≡ {��(��)} and the implicit (and
nonlocal) dependence in terms of �� ≡ {���} occurring via � ≡{��} is considered as prescribed via the NLPT. As an example,
in the case of a special NLPT (see Section 4) it follows that

 �(�)] (��, �) ≡  �(�)] (��, �� + Δ�� (�)) , (B.4)

where Δ���(�) ≡ Δ��� takes the form
Δ��� ≡ ∫���

����
���]��(�)] (��, �� + Δ��) . (B.5)

As a consequence, invoking again (72), one obtains, respec-
tively,

��	���
 = ����
 [��	 + Δ��	 (�)]
= 9	
 + �	
 (��, �� + Δ��) ≡  	(�)
 (��, �) ,

(B.6)
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� �(�)] (��, � (��))��	
<<<<<<<<<<<��

= ���	��
 � 
�
(�)] ((��) , � (��))���	

<<<<<<<<<<<(��)
= ( −1)	
 � 

�
(�)] ((��) , � (��))���	

<<<<<<<<<<<(��) ,
(B.7)

where we have denoted symbolically �(��) ≡ �� + Δ��. As
a consequence, the following proposition, analogous to that
warranted by Lemma B.1 in the case of LPTs, holds.

Lemma B.2 (di�erential identity for NLPT). Given validity
of 
eorem 1 the dierential of the Jacobian  �(�)](��, �) = �(�)](��, �(��)) reads

� �(�)] (��, � (��)) = ���
 � 
�
(�)] (��, � (��))���
 , (B.8)

where on the rhs � �(�)](��, �(��))/���
 denotes the “total”

partial derivative with respect to ��
, namely, de�ned such that
the dierential � �(�)](��, �(��)) is written explicitly as

� �(�)] (��, �) = ���
 [[
� �(�)] (��, � (��))���


<<<<<<<<<<<�(��)
+ � �(�)] ((��) , � (��))���


<<<<<<<<<<<��]] ,
(B.9)

where the partial derivatives on the rhs of the previous equation
are performed, respectively, at constant �(��) for the �rst one
and at constant �� for the other one.
Proof. In fact, thanks to (B.7), the partial derivative of the
Jacobian �(�)](��, �) with respect to ��
 becomes

����
 �(�)] (��, �) = � 
�
(�)] (��, �)���


<<<<<<<<<<<�
+ ��	���
 � 

�
(�)] (��, �)��	

<<<<<<<<<<<�� ,
(B.10)

while its di�erential is just

� �(�)] (��, �) = ���
 � 
�
(�)] (��, �)���


<<<<<<<<<<<�
+ ��	 � �] (��, �)��	

<<<<<<<<<<<�� = ��
�
 [[
� �(�)] (��, �)���


<<<<<<<<<<<�
+  	(�)
 (��, �) � 

�
(�)] (��, �)��	

<<<<<<<<<<<��]] .
(B.11)

Hence due to (B.7) it follows that

� �(�)] (��, �) = ���
 � 
�
(�)] (��, �)���


<<<<<<<<<<<�
+ ��	 � �(�)] (��, �)��	

<<<<<<<<<<<��
= ���
 [[

� �(�)] (��, � (��))���

<<<<<<<<<<<�(��)

+  	(�)
 (��, �) ( −1(�))	
 � 
�
(�)] (��, � (��))���	

<<<<<<<<<<<��]] ,

(B.12)

which manifestly implies (B.9). �e rhs of the same equation
coincides thenwith the rhs of (B.8) so that the thesis is proved.

C. NLPT Properties of the Christoffel Symbols

Let us now inspect further mathematical implications, in
part based on the lemmas presented in Appendix B, which
concern the construction of the NLPT here reported. In
this appendix we intend to determine in particular the
transformations properties of the Christo�el symbols with
respect to the general NLPT-group {��}. For de
niteness,

let us denote as Γ]
	 and Γ�]
	 the (initial and transformed)

Christo�el symbols when referring to the two GR-reference
frames �� (“initial frame”) and ��� (“transformed frame”),
respectively.�e issue is the determination of the relationship
between Γ]
	 and Γ�]
	 when the coordinate transformation

relating the coordinates �� and ��� is suitably prescribed.
As we intend to show here, the solution to such a problem

is closely related to the requirement, already included in the
prescription of the group of NLPTs {��}, that the (initial

and transformed) metric tensors 
��(�) and 
���(��) de
ned,
respectively, for the two Riemannian manifolds {Q4, 
} and{Q�4, 
�} are extremal; namely, they satisfy identically the
extremal conditions

∇�
�� (�) = 0, (C.1)

∇��
��� (��) = 0. (C.2)

Here ∇� and ∇�� denote as usual the covariant derivatives,

de
ned as

∇�
�� (�) = �
�� (�)��� + Γ���
�� (�) + Γ���
�� (�) , (C.3)

∇��
��� (��) = �
��� (��)���� + Γ����
��� (��) + Γ����
��� (��) , (C.4)

where Γ��� and Γ���� denote the initial and transformed Christof-

fel symbols de
ned on {Q4, 
} and {Q�4, 
�}, respectively. We
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notice that (C.1) and (C.2) are manifestly equivalent to the
ODEs ���
�� (� (�)) = 0,

����
��� (�� (�)) = 0,
(C.5)

once �/�� and ��/�� are identi
ed with the covariant
derivatives of 
��(�(�)) and 
���(��(�)). �ese are de
ned,

respectively, in Q4 and Q�4 in terms of the di�erential

operators acting on the covariants components 
��(�(�)) and
���(��(�)) as ���
�� (�) = ��∇�
�� (�) ,
����
��� (��) = ���∇��
��� (��) ,

(C.6)

with �� and ��� = ( −1)���� denoting the 4-velocities

in the corresponding tangent spaces. �en the following
proposition holds.

Lemma C.1 (NLPT laws for the Christo�el symbols). Within
the group {��} the following two propositions hold:(P1)
e extremal conditions (C.1) and (C.2) holding for

the metric tensors 
��(�) and 
���(��) are equivalent
to require that the initial and transformed Christoel

symbols Γ�
]� and Γ��]� de�ned, respectively, on {Q4, 
} and{Q�4, 
�} satisfy the constraint dierential equation

��� ���� �(�)] (��, �)
+ Γ�
	 
(�)] (��, �) 	(�) (��, �) ���
=  �(�)� (��, �) Γ��]���.

(C.7)

(P2)
e previous equation in turn is equivalent to the
equation

Γ��
]�

= ( −1(�))�� (�, ��) � 
�
(�)] (��, �)����

+ ( −1(�))�� (�, ��) Γ�
	 
(�)] (��, �) 	(�)� (��, �) ,
(C.8)

which determines the transformation laws for the transformed

Christoel symbol Γ��
]�.

Proof. We 
rst prove Proposition (P2). Notice for this pur-
pose that (C.7), due to the arbitrariness of the di�erential
displacement ���, implies also that���� �(�)] (��, �) + Γ�
	 
] (��, �) 	(�) (��, �)

=  �(�)� (��, �) Γ��] ,
(C.9)

which, a�er multiplying it term by term by ( −1(�))��(�, ��),
exchanging the indexes � ↔ �, and recalling that  �(�)(�,��)( −1(�))��(�, ��) = 9� , reduces to (C.8).

Next we address the proof of Proposition (P1), that is,
that (C.1) is equivalent to (C.8). To start with, let us consider
the de
nition of the covariant derivative recalled above (see
(C.3)). �en, (C.1) delivers necessarily

∇�
�� (�) = �
�� (�)��� + Γ���
�� (�) + Γ���
�� (�)
= ���� [ �(�)
 (��, �) �(�)	 (��, �) 
�
	 (��)]
+ Γ��� �(�)
 (��, �) �(�)	 (��, �) 
�
	 (��)
+ Γ��� �(�)
 (��, �) �(�)	 (��, �) 
�
	 (��) = 0.

(C.10)

Invoking now the identity

����
�
	 (��) = ( −1(�))� (�, ��) ����
�
	 (��) , (C.11)

thanks to the chain rule, it follows that the 
rst term on the
rhs of (C.10) becomes���� [ �(�)
 (��, �) �(�)	 (��, �) 
�
	 (��)]

= 
�
	 (��) ���� [ �(�)
 (��, �) �(�)	 (��, �)]
+  �(�)
 (��, �) �(�)	 (��, �) ( −1(�))�
⋅ (�, ��) ����
�
	 (��) .

(C.12)

�erefore, noting that thanks to (C.2) it must be

����
�
	 (��) = ∇�
�
	 (��) − Γ�
� 
��	 (��)
+ Γ�	� 
�
� (��) ,

(C.13)

it follows that (C.10) requires necessarily the validity of the
following constraint equation, obtained also upon exchang-
ing summations indexes; namely


�
	 (��) �(�)
 (��, �) ���� �(�)	 (��, �) + 
�
	 (��)
⋅  �(�)	 (��, �) ���� �(�)
 (��, �) −  �(�)� (��, �)
⋅  �(�)	 (��, �) ( −1(�))� (�, ��) Γ��

�
	 (��)
− �(�)� (��, �) �(�)� (��, �) ( −1(�))� (�, ��)
⋅ Γ��	
�
	 (��) + Γ��� �(�)
 (��, �) �(�)	 (��, �)
⋅ 
�
	 (��) + Γ��� �(�)
 (��, �) �(�)	 (��, �)
⋅ 
�
	 (��) = 0.

(C.14)
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Considering now 
�
	(��) as independent of the Jacobian
matrix of the transformation and then thanks to the symme-
try of the indexes # and % the previous equation delivers

 �(�)	 (��, �) [ ���� �(�)
 (��, �)
−  �� (��, �) ( −1)� (�, ��) Γ��
] + Γ��� �
 (��, �)
⋅  �	 (��, �) = 0.

(C.15)

Namely, multiplying term by term by ( −1)�(�, ��)
9	 [ ���� �
 (��, �)
−  �(�)� (��, �) ( −1(�))� (�, ��) Γ��
] + Γ��� (
)�

⋅ (��, �) �(�)	 (��, �) ( −1(�))� (�, ��) = 0,

(C.16)

which yields

9	 [ ���� �(�)
 (��, �)
−  �(�)� (��, �) ( −1(�))�� (�, ��) Γ���

+ Γ��� �(�)
 (��, �)] = 0.

(C.17)

�erefore, one has that

���� �(�)
 (��, �) −  �(�)� (��, �) ( −1(�))�� (�, ��) Γ���

+ Γ��� �(�)
 (��, �) = 0,

(C.18)

implying also

( −1(�))�� (�, ��) ����� �(�)
 (��, �)
−  �(�)� (��, �) ( −1(�))�� (�, ��) Γ���

+ Γ��� �(�)
 (��, �) = 0.

(C.19)

Hence it follows that

 �(�)� (��, �) ( −1(�))�� (�, ��) ����� �(�)
 (��, �)
−  �(�)� (��, �) �(�)� (��, �) ( −1(�))�� (�, ��) Γ���

+ �(�)� (��, �) Γ��� �(�)
 (��, �) = 0,

(C.20)

so that

9�� ����� �(�)
 (��, �) −  �(�)� (��, �) 9��Γ���

+ �(�)� (��, �) Γ��� �(�)
 (��, �) = 0.

(C.21)

Finally, replacing the index � with � one gets
����� �(�)
 (��, �) −  �(�)� (��, �) Γ���

+ �(�)� (��, �) �(�)
 (��, �) Γ��� = 0.

(C.22)

Straightforward algebra shows that this equation coin-
cides with (C.9) and hence (C.7) too. Finally, one can show
that in a similar way (C.8) implies (C.1) too. In view of
the equivalence between (C.8), (C.7), and (C.8) the thesis is
reached.

�e implication of Lemma C.1 is therefore that the
requirements that both the initial and transformed metric
tensors are extremal, that is, in the sense that the correspond-
ing covariant derivatives vanish identically in both cases
(see (C.5)), is necessarily equivalent to impose between the

initial and transformed Christo�el symbols—that is, Γ�
]� andΓ��

]� which are de�ned, respectively, on {Q4, 
} and {Q�4, 
�}—
the transformation law (C.8). �e conclusion, as shown in
Section 7.1, is important to establish the tensor transformation
laws which hold for the acceleration 4-tensor for arbitrary
NLPT belonging to the group {��}.

As a 
nal comment, we remark that if the space-time{Q�4, 
�} is identi
ed with the �at Lorentzian Minkowski

space-time {M4, } then the following proposition holds.

Corollary to Lemma C.1 (case of Minkowski space-time).
Within the group {��} if the space-time {Q�4, 
�} coincides with
the �at Lorentzian Minkowski space-time {M4, } expressed in
orthogonal Cartesian coordinates, then (C.8) reduces to

0 = � �(�)] (��, �)���� + Γ�
	 
(�)] (��, �) 	(�)� (��, �) , (C.23)

which provides a representation for the Christoel symbol Γ�
	.
Proof. Assume in fact that the space-time {Q�4, 
�} coincides
with the �atMinkowski space-time {M, }.�en by construc-

tion in (C.8) the transformed Christo�el symbols Γ��
	 in such

a space-time necessarily vanish identically. �en the same
equation reduces to (C.23).

Competing Interests

�e authors declare that they have no competing interests.

Acknowledgments

Work developed within the research projects of the Czech
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