
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

1971 

Theory of nucleation of water properties of some clathrate like Theory of nucleation of water properties of some clathrate like 

cluster structures cluster structures 

Mehdi Daee 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Physics Commons 

Department: Physics Department: Physics 

Recommended Citation Recommended Citation 
Daee, Mehdi, "Theory of nucleation of water properties of some clathrate like cluster structures" (1971). 
Doctoral Dissertations. 1835. 
https://scholarsmine.mst.edu/doctoral_dissertations/1835 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1835?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


THEORY OF NUCLEATION OF WATER 

PROPERTIES OF SOME CLATHRATE LIKE CLUSTER STRUCTURES 

by 

MEHDI DAEE, 1940-

A 

DISSERTATION 

Presented to the Faculty of the Graduate School of the 

UNIVERSITY OF MISSOURI-ROLLA 

In Partial Fulfillment of the Requirement for the Degree 

DOCTOR OF PHILOSOPHY 

in 

PHYSICS 

1971 



ii 

PUBLICATION THESIS OPTION 

This thesis has been prepared in the style utilized by 

the Journal of Colloid and Interface Science. Pages 1-40 will 

be presented for publication in that journal. An appendix has 

been added for purposes normal to thesis writing. 



111 

ACKNOWLEDGEMENT 

The author greatefully acknowledges the wealth of 

ideas he received from many hours of discussion with Drs. 

L.H.Lund,James L.Kassner and N.H.Fletcher. Acknowledgement 

are also due to Drs. P.L.M.Plummer and B.N.Hale. I also 

like to thank Mrs. Berkbigler for lelping with the computer 

programs. 

The author is indebted to the National Science Foun

dation for financial support of this research program. 



lV 

ABSTRACT 

The tranquility of classical homogeneous nucleation 

theory has been disturbed by the introduction of statis

tical mechanical correction factors to a basically ther

modynamic theory. These factors,which appear to be essen

tial,destroy much of the agreement with experiment in the 

case of water vapor. A molecular model for the pre-nucle

ation water clusters is proposed with a view toward re

solving some of these difficulties. As a first step,the 

Properties of a few specific cluster configurations have 

been examined. Clathrate-like structures containing 16 

to 57 water molecules are discussed. The hydrogen bonds 

were treated as simple harmonic oscillators for the pur

pose of calculating normal mode frequencies. The Helmholtz 

free energy of formation of the cluster is calculated from 

the appropriate partition functions. For these clathrate

like structures the free energy of formation was not found 

to be a smoothly increasing function of the number of mol

ecules but showed minima corresponding to close cages. 
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INTRODUCTION 

It is not uncommon for aerosols to be formed by the 

nucleation of particles from a supersaturated vapor. Nuclea

tion may either be homogeneous or heterogeneous. In the 

former, a relatively high supersaturation is required to 

enhance heterophase fluctuations (1) whim are responsible 

for the formation of large molecular clusters. Some 

of these clusters will become free growing once they 

pass a certain size called the critical size. In the case 

of heterogeneous nucleation, clustering takes place on 

the surface of macroscopic particles, collections of which 

already exist as an aerosol. In this case the presence of 

the foreign particle greatly reduces the height of the 

nucleation barrier so that the formation of free growing 

clusters can proceed at a lower supersaturation. A 

detailed understanding of homogeneous nucleation is a 

necessary prerequisite for studying heterogeneous nucleation. 

In this paper we discuss only homogeneous nucleation. 

The classical theory of homogeneous nucleation, developed 

by Volmer and Flood (2), Farkas (3), Becker and Doring (4), 

Zeldovich (5) and Frenkel (6) is based on the semiphenomeno

logical liquid drop model which assumes that bulk concepts 

(such as bulk latent heat, liquid density and surface tension) 

can be extended down to clusters composed of a relatively 

small number of molecules. This theory also assumes that 



2 

the supersaturated vapor is composed of a mixture of different 

size spherical clusters. The distribution of clusters to a 

good approximation, is assumed to be a mixture of ideal 

gases with interactions occurring only between the molecules 

of a given cluster. Following reference (7) we assume that 

the Helmholtz free energy of a cluster of size g, A(g), can 

be written as the sum of contributions due to bulk free 

energy and surface free energy 

A(g) = g~B+aA(g) 

where ~B is the molecular chemical potential of the bulk 

material if it is at the pressure outside of the droplet, 

a is the macroscopic interfacial free energy per unit area 

[ 1] 

and A(g) is the surface area of the cluster of size g. For 

the isothermal reversible work of formation of a cluster 

of size g in the midst of the vapor monomer, ~A(g), we use 

the following expressions: 

~A(g) = A(g) - g~v' 

where g~ is the free energy of g vapor molecules. Since 
v 

[ 2 a] 

[Zb] 

the supersaturated vapor is not in equilibrium with its bulk, 

[3] 



where P is the pressure of the vapor, P
00 

is the ~ilibrium 

vapor pressure over a plane surface at temperature T, k is 

Boltzmann's constant, and ~B is the volume per molecule in 

the bulk liquid phase. 

Since the compressibility of the liquid is small, 

~B(P-P 00 ) can be ignored. 6A(g) can be expressed in terms 

of the supersaturation ratio, S = P/P
00

, 

6A(g) = -gkT ln S + aA(g). [4] 

The above equation is the "classical" expression for the 

change in the Helmholtz free energy (9) and neglects the 

uB(P-P
00

) term and terms representing the free energy of 

translation and rotation mentioned below. Fig. 1 shows 

6A(g) as a function of g evaluated at a given temperature, 

3 

T, and supersaturation, S>l. The concentration of g-mers (7) 

1n equilibrium with the monomers, C
0

(g), is given by 

C 
0 

(g) = C ( 1) exp [- 6A (g) I kT] . [5] 

Here the subscript "o" denotes the equilibrium condition. 

Fig. 2 shows the behavior of C
0

(g) as a function of g. 

The maximum in 6A(g) (found at the point where d[6A(g)]/dg=O) 

defines the critical cluster size, g*, and the corresponding 

equilibrium concentration of critical clusters, C
0

(g*). It 

is convenient to note that 6A(g) increases monotonically 
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up to g* and thereafter decreases monotonically. Correspond

ingly, C
0

(g) decreases monotonically with increasing g up 

to g*. For small systems of asymmetric molecules possessing 

large interaction potentials, such as water, one would 

expect structural effects to show up in such functions; 

however, the semiphenomenological liquid drop model cannot 

be expected to account for more than just the broad general 

features of such systems. 

There are necessary correction factors which must be 

added to the above e xp res s ion for A ( g) , E q . [ 1 ] . It has 

been shown by Kiang (27) that a general form for A(g) is as 

follows: 

A(g) 
0 = gE+aA(l)g +TkT ln g+const. 

This general form is consistent with the work of Lathe and 

Pound (11), Reiss, Katz and Cohen (28), and Kiang (27). A(l) 

is the "surface area" of a monomer; and 6 is a parameter 

which allows different geometric shapes for the cluster; for 

spherical clusters 6 = 2/3. On the coexistence curve E=~B. 

The third term is a correction originally suggested by 

Frenkel (6) and later more fully developed by Lathe and 

Pound (11). This term is essentially the free energy of 

translation and rotation which the cluster is able to 

assume as a rigid body constituent of an ideal gas. Lathe 

and Pound express the free energy of translation and rotation 



per cluster, AT-R(g), as follows: 

where 

and 

where m is the mass of the constituent molecule (water in 

our case), u is the molecular volume, and I, is the moment 

of inertia of the g cluster. Lather and Pound add another 

correction +kT ln Z ~skT which is their estimate of the 
rep 

reduction in entropy which accompanies the deactivation of 

six degrees of freedom from the embryo's bulk free energy 

term. For the Lathe-Pound theory T = -4. The constant 

term in A(g) includes factors from Zt and Zr and, of course, 

in the general case may represent other unknowns. 

The translation-rotation correction factors predict 

values for nucleation rates which are increased by a factor 

17 
of up to 10 . There have been attempts (12, 25, 28, 31) 

to remedy this situation, and although there have been 

c: 
..J 

claims to have reduced this factor, none of these "corrected" 

approaches has been widely successful in predicting experi-

mental results. Experiments by Allen and Kassner (8) have 

indicated that the classical nucleation rate for water 

vapor is already too large by a factor of ~10 4 . This 

indicates an overall disagreement of 10 21 between theory 

and experiment. Wegener (26) also finds that in the homo-



DISCUSSION OF THE MODEL 

The general statistical mechanical theory of conden

sation is not new (14). These theories have generally 

assumed that the clusters are composed of molecules inter

acting weakly through pairwise forces. These forces are 

assumed to be only a function of the distance between the 

molecules. Certain molecular configurations, known as 

irreducible clusters, are predicted and lead to cluster 

integrals which have only been evaluated for a few specific 

cases. Accordingly, asymmetric molecules such as water, 

which interact with one another relatively strongly, have 

been considered too difficult to tackle theoretically. 

We shall assume that the clustering of water molecules 

occurs through the mechanism of hydrogen bonding. Since 

7 

the hydrogen bond energy is about 10 times kT for room 

temperatures, spontaneous changes in the cluster structure 

between collisions with other gas molecules will be unlikely. 

We also assume that the relatively tightly bound clusters 

proposed for our model are capable of supporting normal mode 

oscillations. 

The tetrahedral coordination of hydrogen bonds in water 

limits the number of possible configurations which a given 

number of molecules can assume (15). Between successive 

collisions of the cluster and external molecules, the cluster 

can be considered to be a complex macromolecule, undergoing 

innumberable normal mode oscillations. It is assumed that, 



following each collision, the cluster will quickly assume 

the most favorable configuration commensurate with the 

overall energy state in which the cluster finds itself. 

It is also assumed that only those configurations corres

ponding to a given g, for which the frequency of occurrence 

is reasonably large, need be considered. Since it is 

impossible to ascertain a priori those cluster structures 

which provide the lowest energy, models are constructed 

which closely maintain the preferred tetrahedral angles and 

bond lengths, maximize the number of bonds, and exhibit the 

maximum symmetry. Pauling's clathrate cage structure 

presents a particularly favorable type of model both from 

8 

the standpoint of energetics (16) and symmetry. An extension 

of the clathrate model allows considerably more symmetry 

than the ice-like lattice. While the small clusters do 

not possess the properties of the bulk liquid, the clathrate 

structure considered here is favored as a local structure 

for liquid water. 

An examination of clathrate-like cluster models reveals 

that this type of structure begins to incur considerable 

strain energy when the number of molecules appreciably 

exceeds 80. As the number of molecules increases beyond 

80, increasing amounts of strain energy bring about more 

disorder. In the limit the model should approach the 

structure of the bulk liquid phase. Although some strain 

energy exists for some of the larger clusters considered 1n 

thiswork, the effect is small so it has been neglected. The 



clusters studied in this paper are solid-like except that 

a unit cell (in the sense the term is used in solid state 

physics) cannot be defined. The clathrate-like structure 

possesses the wrong kind of symmetry to allow the structure 

to grow indefinitely using the same sized cell. However, 

since every molecule has a definite equilibrium position, 

disorder of the type which exists in normal liquids does 

not exist until clusters become very large. The clusters 

considered in this work are all completely structured. 

9 



THE EXPRESSION FOR 6A(g) AND 

THE CONCENTRATION OF g CLUSTERS. 

To write an explicit partition function for a g-sized 

10 

cluster is a difficult task. However, it can be accomplished 

on the basis of several assumptions which are mentioned 

below. Assuming N(g) non-interacting clusters of size g 

in a volume Vat a temperature T, we can write the following 

partition function, 

Q 
= [Z(g)]N(g) 

N(g)! [6] 

Here Q is the canonical partition function of N(g) clusters 

each of size g and with the same structure, so that the 

single particle partition function Z(g) is the same for all 

of the clusters. The Helmhotz free energy of this system, 

A, is given by the expression 

A = - kT ln Q. 

From the last two equations the expression for the free 

energy per cluster, A(g), is given by 

A(g) = A/N(g) 
1 = NTgT (-kT ln Q) = -kT(ln ~t~j+l), 

where Stirling's approximation 1s used. For a monomer gas 

A (1) 
z ( 1) = -kT (ln N1IT +1). 

[ 7] 



It is customerily assumed that the single cluster 

partition function, Z(g), can be factored as follows, 
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z (g) [ 8] 

where Zt(g), Zr(g) and Zv(g) are the translational, 

rotational and vibrational partition functions respectively. 

The last factor on the right-hand side of Eq. [8] is a single 

state partition function representing the contribution due 

to the total binding energy, EB, of the system. EB, which 

differs from the dissocation energy by the zero point 

vibrational energy will later be expressed in terms of the 

hydrogen-bond energy. Here the quantized vibrational states 

of the system, represented by the partition function Z (g), v 

include the zero point vibrational energy. In the same 

manner since EB is equal to zero for monomer, the partition 

function Z(l) is 

[ 9] 

The mean number of clusters of g molecules in equilib-

r1um with monomer gas can be derived from the following 

f 
. (19) 

particular form of the law o mass act1on 

N(g) = [N(l)/Z(l)]gZ(g) [ 10] 

or 
N~g) = N~l) exp{- f-kT ln (ZCg)/V)+gkT ln (Z(l)/V) 

-(g-l)kT ln[N(l)/V]]/kT}. 
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In analogy with the expression for C
0

(g), given by Eq. [5], 

we define our ~A(g) as follows 

~A(g) = -kT(ln~ - g ln~ + (g-l)lnN~l)). 

This ~A(g) we call the "free energy of formation". Express

ing N(l) in terms of the supersaturation, S, we have 

~A(g) 
Z( ) Z(l) poo 

= - kT ( ln~ - g ln-v- + (g -1) lnTI + ( g- 1) 1 n S) . 

[11] 



EVALUATION OF THE PARTITION FUNCTIONS 

For a cluster of g water molecules, there are 9g 

degrees of freedom because each molecule consists of 

three atoms and each atom has three degrees of freedom 

in a three dimensional space. Of these, six degrees of 

freedom are associated with rigid-body translation and 

rotation of the cluster as a whole and the remaining (9g-6) 

are the internal degrees of freedom. In evaluating Eq. [8) 

the translational, rotational, and vibrational partition 

functions will be considered separately. 

The rigid-body translation of the whole cluster in a 

volume V is identical to that of a particle of mass mg 

moving in the same volume. The translational partition 

function is therefore given by 

13 

[12] 

where m is the mass of a water molecule, k is Boltzmann's 

constant and h is Planck's constant. Assuming a rigid 

cluster, the rotational partition function of the cluster 

is given by 

[ 13] 

Here I
1

, r
2

, and r
3 

are the principle moments of inertia of 

the cluster with respect to its center of mass. r is the 



symmetry number corresponding to the number of physically 

indistinguishable rotational orientations of the cluster. 

The moments of inertia are calculated by regarding the 

monomers as point masses in the cluster. 

To find the normal mode vibrations, it is assumed 
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that the cluster can support'vibrations about some equilib

rium configuration. First, a generalized set of coordinates, 

representing the displacement of every atom from its 

equilibrium position, is assigned to the cluster. Next, 

assuming that the many-body potential energy can be expressed 

in terms of this generalized set of coordinates, the 

potential is expanded in a Taylor series about the equilib

rium configuration of the system. Since the expansion is 

around the equilibrium configuration of the cluster, where 

there is no net force present between the atoms, the 

first derivative of the potential energy with respect to 

every member of the generalized set of coordinates is 

zero. Now assuming a harmonic force field, the third and 

higher order terms in the expansion are set equal to zero. 

The quadratic potential energy obtained by this method can, 

in principle, be written in terms of a special set of 

coordinates, known as the normal coordinates. The normal 

modes of vibration can be found by diagonalizing the 

potential energy matrix. Since such a program is difficult 

for vapor clusters of large size, we adopt the following 

method of approximation to get the (9g-6) normal mode 

frequencies of the system. 



The vibrational partition function Zv(g) of a single 

cluster is factored into the intramolecular, the libration 

and the intermolecular vibrations, 

15 

[14] 

This relation assumes that the coupling between the 

motion, corresponding to these three different regions of 

the total spectrum of the cluster, is negligible. In terms 

of the frequency v.(in cm- 1), the vibrational partition 
J 

function Zv(g) is written as 

z (g) 
v =It-6 ..,-----;>'~ exp(-chv./ZkT) 

J 

1 - exp(-chv./kT) 
J j=l 

where c is the velocity of light. The (9g-6) frequencies 

correspond to the 3g intramolecular, 3g librational and 

(3g-6) intermolecular vibrations, as were separated out 

1n Eq. [14]. 

This factorization of Z (g) is justified in part 
v 

[ 15] 

because of the wide separation in the frequencies associated 

with the three types of motions. In particular, we note 

that the 3g intramolecular frequencies are much higher 

in magnitude than the rest of the modes. In other words, 

the contribution of these modes to the total vibrational 

spectrum of the cluster is in a distinct region and does not 
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overlap the rest of the frequencies. In terms of the 

potential energy of interaction, the obvious assumption has 

been made that the coupling between intramolecular displace

ments and the rest of the vibrations in the cluster is 

negligible. Also it is assumed ~ priori that the librational 

spectrum does not overlap either the intra- or intermolecular 

vibrations. For water, this assumption is justified because 

only the hydrogens are involved in the hindered rotation of 

a molecule, so that the ratio of the moments of inertia to 

the total mass for this molecule is comparatively smaller 

than the same ratio for other molecular species. In order 

to deal with these large clusters, spectral data has been 

used to assign the frequencies for Z. t (g) and z1 .b (g) 1n ra 1 r 

while the frequencies for Z. t (g) were calculated directly. 
1n er 

In deciding on the assignment of frequencies for the 

intramolecular motions we consider that a free water mole-

cule (vapor) has three modes of vibration. These vibrations 

consist of two stretching modes and one bending mode, for 

which the centers of the absorption bands occur at approxi-

-1 -1 -1 
mately 3,756 em , 3,657 em and 1,595 em respectively (17). 

In the spectrum of bulk water the above three frequencies 
-1 

have the respective values of 3,490, 3,340, and 1,645 em . 

In order to assign these 3g intramolecular vibrations, the 

following quantities are defined. Let N be the total number 

of protons involved in hydrogen bonding and M be the total 

number of free protons, which are not engaged in hydrogen 
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bonding in the cluster. Then, 

where N4 , N3 , N2 and N1 are the number of molecules in the 

cluster which are engaged in 4, 3, 2, and 1 bonds respective-

ly. 
-1 

Frequencies at 3,490, 3,340 and 1,645 em , as observed 

in the spectrum of water, are assigned to the cluster for 

motion of the protons engaged in hydrogen bonding. Then 

-1 
frequencies at 3,756, 3,657, and 1,595 em , which are the 

three fundamental modes of a free water molecule, are 

assigned to protons which do not participate in hydrogen 

bonding. 

In assigning the 3g librational modes, it is noticed 

that the infra-red spectra of both liquid water and ice 

have a broad band with a geometric center around 840 cm-l 

in ice and 630 cm-l in liquid water. Three broad bands 

with centers at 700, 550 and 450 cm-l have been observed 

in the librational spectrum of water (21). These frequencies 

are roughly in proportion to the inverse square root of the 

three principal moments of inertia of the water molecule 

(1.02, 1.92, and 2.95 x 10- 40 gm-cm2). Because of this 

constant ratio, it is possible to assume a constant torsional 

force constant for assigning librational frequencies to the 

cluster. Let K be the twisting force constant of a bond due 
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to torsion. Also let the average of the libration band for 

water at 600 cm-l correspond to a molecule participating 

in four bonds with an average moment of inertia at 

-40 2 1.8 x 10 gm-cm A semi-quantitative argument can be 

constructed to get the approximate librational frequencies 

for molecules participating in fewer than 4 bonds. 

For a 4-bonded molecule, consider libration about an 

axis parallel to one of the bonds. The toal effective 

force constant of all the bonds is approximately 3K sin (109°) 

= 2. 8K. Let a be defined by the relation v = a(K/I)l/2 

where K is in tmi ts of K and I is -40 2 For 1n 10 gm-cm a 

molecule participating in 4 bonds, K is 2.8 in units of K 

and vis 600 cm- 1 ; a is found to be equal to 480 using 1.8 

for the average moment of inertia I. Thus, we have 

v ::: 480 (K/1.8) 1 / 2 . ll 6] 

This relation is used to find the frequency of the center 

of the librational band for molecules participating in 

1, 2, 3, and 4 bonds. 

Special consideration is given to a singly bonded mole

cule. Here, instead of 3 librational modes about three 

mutually perpendicular axes, there are one free rotational 

mode about the bond and two librational modes. These modes 

will be mixed because of the different possible geometries 

and will also be broadened by coupling between molecules. 
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However, since the two librations are about a set of axes 

perpendicular to the direction of the bond, K is equal to 

K, which is equal to 1 in units of K. From Eq. (16] we get 

two degenerate libration modes at 480 (1/1.8) 112 = 360. The 

lowest band in the bulk water spectrum (centered at 60 cm- 1) 

is assigned to the free rotation of the singly bonded mole-

cule (22). 

For a 2-bonded molecule. one can show by simple geometry 

that a threefold degenerate mode at 480 (1.6/1.8) 112 = 450 ern~ 

can be assigned to the center of the libration band. Incident-

ly' this frequency is equal to the Raman active band at 

450 -1 in bulk water. In the assign 
em same manner one can 

threefold degenerate frequency at 540 -1 to the center 
a em 

of the band of a three bonded molecule. Again this lS 

very close to the center of the Raman active band of water 

at 550 cm- 1 . 

For the intermolecular frequencies, with no further 

assumptions, the water molecule can be treated as a pojnt 

mass, and the remaining 3g-6 frequencies found. These 

vibrations of the cluster are analogous to the hindered 

translational vibrations which in ice have a frequency range 

-1 
from zero to 300 em . It should be pointed out that 

thermodynamic functions are most sensitive to low frequencies 

such as are found in the normal mode spectrum. For this 

reason a method is developed to set up a so-called secular 

determinant to calculate these modes. 



For the assumption of small vibrations (29) the 

potential energy for a system of g masses with coordinates 

Q1 , ... Q3g is given by 

U(Q ---Q ) 
1 3g 

= .!_K 
2 r 

2 or .. 
~J 

In obtaining this relation it 1s assumed, in addition to 

small displacements of the masses from equilibrium, that 

the potential energy U depends only on the change in the 

separation of any pair of molecules (bond stretching, 

or .. ) and the change in the angle between any three mole
~J 

cules (angle bending o8 .. k). We further assume that a 
J& 

single force constant K , can be associated with all bond 
r 
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stretches and a second force constant, K 8
, with all in-the-

plane bends. It is further assumed that all equilibrium 

bond lenths, l, are equal to 2.8A 0
• 

In terms of the direction cosines of the bonds, the 

expression for or .. is found by expressing the stretching 
&J 

of the bonci in terms of the generalized cartesian 

ciisplacements. 

or .. 
&J 

(x.-x.)a .. + (y.-y.)b .. + (z.-z.)c .. 
" J &J " J &J " J &J 

Here a~ b~ c are direction cosines of the bond and x, y, z 

are the cartesian displacements corresponding to the Q's. 



For oe .. k one can show that 
J?-

o e .. k 
J?-

21 

1 
+ T[(x.-x.)c .. - (z~.-z.)a .. - (x.-xk)c.k + (z.-z,)a.k]n 

!.- 1- J 1J " J 1-J 1- 1- 1- K 1- 2 

1 
+ T[(y.-y.)a .. - (x.-x.)b .. - (y.-yk)a.k + (x.-xk)b. )n 

{; 1- J 1-J 1- J 1-J 1- 1- 1- 1-k 3' 

where n 1 , n 2 , and n 3 , are the direction cosine of the normal 

to the plane of any three molecules i, j and k. This is 

the expression for the potential energy matrix, and the 

kinetic energy T is a diagonal matrix with no cross product 

terms. The normal modes of vibration are the 3g roots of 

the secular determinant given by the determinental equation 

2 IU - w Tl = 0 

where U is the quadratic potential energy maT.rlx, T lS the 

kinetic energy and w is a frequency. Of all the 3g frequen-

cies six of them are zero corresponding to rigid-body 

translation and rotation of the cluster about its center of 

mass. Table I lists the 54 normal mode frequencies for the 

pentagonal clathrate of 20 water molecules (Fig. 3) using 

a stretching force constant of 1.9 x 10 4 dyne/em and a 

bending force constant of 0.475 x 10 3 dyne/em (20). Since 

this cluster has icosahedral symmetry, only one frequency 

is nondegenerate and the highest degree of degeneracy is 
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five. The distribution of frequencies shows that, due to 

the finite size of the cluster, the low frequencies of less 

than 40 cm-l and high frequencies of greater than 230 cm-l 

are absent. 

We have now discussed all the terms appearing in 

Eq. [11], except the evaluation of the monomeric partition 

function Z (1). This can be calculated by using Eqs. [9], 

[12], and [13] and the fact that the zero point vibrational 

energy, including anharmonic terms, of a single water 

molecule is 13.25 Kcal/mole. The other parameters appearing 

in Eq. [11], such as temperature, equilibrium vapor pressure 

and supersaturation ratio, are chosen to correspond roughly 

to the experimental parameters used by Allen and Kassner (8): 

T = 268°K, p = 3.2mmHg and S = 5.5. 
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THE BINDING POTENTIAL ENERGY EB 

In this paper the binding energy of a cluster is 

defined in terms of the number of hydrogen bonds and the 

energy associated with each bonding situation. We further

more assume that the total binding energy can be expressed 

in terms of two adjustable parameters. Let EB 4 , EB 3 , EB 2 

and EBl stand for the energy per hydrogen-bond for molecules 

engaged in 4, 3, 2, and 1 hydrogen bonds respectively. The 

total binding energy is written as 

where N4 , N3 , N2 and N1 are the number of molecules 

participating 1n 4, 3, 2, and 1 bonds respectively. We 

introduce a cooperative element by supposing that each 

n-bonded molecule has bonds of the strength (23) given by 

EBn = -(l+(n-l)E)E. [17] 

Here E and E are two adjustable parameters and n stands 

for 4, 3, 2, and 1. Substituting the above equation into 

the previous one, an approximate expression for the total 

binding energy of a cluster is obtained (in lieu of better 

information). 

[18] 



The two parameters E and E are adjusted in such a way that 

the standard deviation of E is a minimum. 

An estimate of the value of E and E is in order. 
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Applying Eq. [17] to the case of a singly bonded molecule 

with n = 1 we get an estimate of E, which is the binding 

energy of a water dimer. This value ranges from -4 to -6.5 

Kcal/mole in the literature (24). To get and estimate of 

E we apply Eq. [17] to a 4-bonded system, namely ice. Since 

the dipole moment of a 4-bonded molecule in ice is about 

40 per cent greater than that of a vapor molecule and about 

60 per cent of the hydrogen-bond energy comes from nearest 

neighbor dipole-dipole interactions, it can be concluded 

that 

EB 4 = -(E+(.6)(.4)E) = -1.24E 

putting this equal to EB 4 of Eq. [17], we get an estimate 

of E at 0.08. 

At the present time sufficiently detailed information 

on the cooperative effect in hydrogen bonding is notably 

lacking and we have had to make recourse to the classical 

theory of nucleation to evaluate the parameter E. This is 

not so much a defect in the theory as a lack of basic 

information needed for the numerical computations. Recourse 

to the classical theory does not impair the qualitative 

conclustions derived from the results. 



The exact value of E and E are found through the 

following procedure. Let E assume values in the range of 

0.05 to 0.1. Starting with 0.05, Eqs. [18] and [11] are 

evaluated for all the cluster sizes in terms of E. By 

equating these calculations to the corresponding value 

obtained from the classical expression 6A(g), we get a 
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range of values for E. These values are used to find the 

average value of E and its standard deviation. The procedure 

is repeated by changing the value of E by 0.001 to get 

another estimate for the average value of E and its standard 

deviation. In the above range, we found that E = 0.062 

g1ves the smallest standard deviation for E. The average 

value of E corresponding to this standard deviation was 

evaluated at -6.1 Kcal/mole. 
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NEGLECTED TERMS 

In addition to the approximations made, a few important 

terms have been neglected which will be mentioned briefly 

here. One is the anharmonic effects corresponding to the 

thiru and higher order terms 1n the expansion of the 

potential energy. This effect, known only in the case 

of a single water molecule, changes the zero point vibrational 

energy from 12.85 to 13.25 Kcal/mole. While this term can 

be very significant for a large cluster, there is no esti

mate available of its magnitude. Neglecting this term 

should not change the qualitative features exhibited in this 

work. Within the harmonic approximations, the coupling 

between the intramolecular vibrations has also been neglect

ed. This effect can become very significant because coupling 

between frequencies of the same type is strong. The same 

effect obviously exists for the librations where instead 

of a few sharp bands one broad band actually exists. There 

1s also coupling between intermolecular and the rest of the 

modes which we have neglected on the ground that the effect 

1s likely to be small. 

In addition there are static field effects due to the 

mutual polarization of the water molecule by its neighbors. 

This effect causes the dipole moment of a molecule in the 

cluster to be considerably higher than the value for the 

free molecule. The strength of the hydrogen bond and the 

stretching force constant of a bond are affected considerably 
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by static field effects. We have adjusted the stretching 

force constant due to this effect to within the ratio of 

dipole moments in vapor phase to that in ice, i.e. by the 

ratio 1.3. 
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RESULTS AND CONCLUSIONS 

We have studied clusters ranging in size from 16 to 57 

water molecules i.e., clusters of 20, 35, 47, and 57 mole

cules consisting of one, two, three and four complete 

interconnected clathrate cages respectively, and some 

clusters intermediate between these closed cage structures. 

These intermediate clusters were chosen on the basis of 

their relatively large number of hydrogen bonds per 

molecule. Fig. 3 shows pictures of the 20 and 57 cluster 

models. The larger spheres represent the oxygen atoms and 

the smaller ones the hydrogens. This picture shows one 

of many possible orientations of the hydrogens in the 

cluster. We notice that the angle between the bonds is 

approximately tetrahedral, that a hydrogen atom is 

associated with every bond, and that every oxygen atom 

is associated with two hydrogen atoms so that the water 

molecule is preserved in the cluster. Since pre-nucleation 

clusters are not directly observable by any known technique, 

the assessment of the validity or consistance of the proposed 

model must depend on its ability to predict the features of 

measurements which can be made in the laboratory, the 

nucleation rate being the one of chief interest here. 

Fig. 4 is a plot of the isothermal reversible work of 

formation ~A(g) for 15 clusters ranging in size from 16 to 

57 molecules. The clusters of 20, 35, 47 and 57 have a 

free energy of formation considerably less than the value 
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predicted by the classical theory based on the liquid drop 

model. The equilibrium concentration of the different size 

clusters is calculated from Eqs. [5] and [11]. Fig. 5 

shows a plot of C (g) versus g. Contrary to the liquid 
0 

drop model, it can be seen that there are many more 20-mers 

than there are 21-mers or that the concentration of the 

57 size cluster is larger than the concentration of the 

clusters with 56 or 58 molecules. The obvious conclusion 

is that the closed clathrate structures are considerably 

more stable. This stability results from the higher 

binding energy resulting from maximizing the number of 

bonds. There is also a contribution to the stability of 

these clusters arising from a shift in the normal mode 

distribution of frequencies toward higher values. 

Fig. 6 shows the distribution of intramolecular 

frequencies and compares these to those observed in the 

case of ice. Note that some of the important spectral 

features of ice are clearly appearing in clusters like 

the 20 molecule cluster where all the molecules possess 

only 3 bonds as opposed to the 4 bonds in ice. Burton (30) 

has made similar calculatioffi for argon clusters at low 

temperatures. 

Note that there 1s a population increase associated 

with each minimum in Fig. 4, see Fig. 5. The maxima and 

minima in the free energy of formation of a cluster of 

size g provides not one but several barriers to the free 
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flow of clusters through the cluster distribution when one 

attempts to calculate nucleation rates. Moreover, the same 

physical features of these clusters which provide this 

behavior must be reflected in the evaporation coefficient 

for a given cluster. This will complicate the kinetic 

problem and as such will be considered in a later paper. 

The possibility of the existence of enhanced popu

lations, such as those exhibited in Fig. 5, offers an 

alternative explanation of the results of Allen and 

Kassner (8). As the supersaturation is increased the 

portions of the curve ~A(g) fall faster the larger the 

value of g. This would mean that the clusters "trapped" 

in the uppermost stable state can be dumped successively 

into the nucleation scheme as the supersaturation is 

increased. Once each "well" of "extra" clusters is 

depleted the nucleation rate would revert to a lower 

rate, drawing clusters through the steady-state distri

bution in much the same way as depicted by the classical 

theory. Therefore, the "so called" heterogeneous component 

observed by Allen and Kassner (8) might possibly be 

explained satisfactorily on the basis of the present work. 

In summary, we have assumed a clathrate-like structure 

for pre-nucleation water clusters and for several of these 

clusters the free energy of formation has been estimated 

from a molecular point of view. The results indicate 

that a molecular model approach to homogeneous nucleation 1s 



feasible. The advantages of such an approach are that 1) 

it avoids the "translation-rotation paradox" by following 

a consistent statistical mechanical formulation for the 

cluster concentration and 2) it does not require the 

use of bulk properties such as surface tension and surface 

area for small clusters. It should be emphasized, 
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however, that the results presented here are based on 

several assumptions including the assumption of small 

intermolecular vibrations and the separation and the method 

of assignment of the intramolecular and librational 

frequencies. In view of the limited information about 

the hydrogen bond in various environments, these approaches 

seem reasonable as well as practical. The values used 

for the hydrogen bond energies have been determined by 

fitting our 6A(g) to the classical free energy of formation, 

subject to smallest possible standard deviation in 

parameter E. Thus we cannot propose new numbers for the 

nucleation rate since this parameterization necessitates 

agreement with the classical theory. However, the bond 

energies determined in this way are quite reasonable and 

are close to the average value per bond in ice. In future 

work we plan to estimate the binding energies by other 

methods so that an independent prediction of the nucleation 

rate can be made. Perhaps the most significant feature of 

the model 1s that the 6A(g) curve is not the smooth curve 

predicted by classical theory but shows structure resulting 

from the internal configuration of the clusters. 
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Degree 
of 

Degeneracy 

5 

5 

3 

4 

4 

5 

3 

TABLE I 

NORMAL MODE VIBRATION FREQUENCIES OF A 20 

MOLECULE DODECAHEDRON CLATHRATE STRUCTURE 

Frequency Degree 
of 

-1 Degeneracy Frequency em 

223.4 1 116.6 

222.9 3 60.8 

206.8 4 60.3 

206.3 3 56.7 

180.6 4 50.8 

161.5 5 47.1 

134.6 5 40.7 
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Fig. 6: The normal mode frequency distributions for 
clusters containing 57, 53, 47, 43, 35 and 
20 water molecules with the optical spectrum 
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Fig. 2. Behavior of ln C
0

(g) as predicted by classical 

theory of nucleation. 
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Fig. 3. Clusters Consisting of 20 and 57 Water Molecules. 
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CONTROVERSIES OVER THE WORK OF FORMATION OF A CLUSTER 

In this section different models for evaluating the 

free energy of formation of a cluster are presented. In 

order not to confuse the issue no account of agreement 

between theory and experiment is given. The reason being 

that although there is a total factor of 10 21 disagreement 

between theory and experiment, a simple adjustment of the 

surface tension by about 20 per cent (32) will bring close 

agree~ent between theory and experiment. Such an adjust-

ment 1s not artificial because the theory of surface ten-

sian as developed by Kirkwood and Tolman (33) shows, on 

the basis of qausi-thermodynawic arguments, that the 

surface tension of a small spherical drop decreases with 

the radius. 

At the present time there is a considerable contro

versy over the rather subtle points involved in the eval-

uation of the work of formation of a cluster. The con-

troversy, which is over modifictions in the classical 

" liquid drop " model of nucleation theory, has been pre

sented by a number of investigators in this field. Lathe 

and Pound suggest that the free energy of a droplet 1n 

the capillarity approximation can be computed by sumwing 
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up the following contributions: a) the volume free energy 

of the droplet which is required to condense the super

saturated vapor; b) the surface free energy for creating 

the droplet surface (this term is estimated as the pro

duct of the surface area of the equivalent drop times 

the surface tension of the bulk liquid); c) the rigid body 

translation and rotation of the droplet relative to its 

center of mass; d) correction to free energy of the drop

let due to the fact that certain motions which were avail-

able to it as part of the bulk liquid are no longer acce

ssible to it as a free stationary droplet in the vapor. 

This presentation introduces a new factor of 1017 in the 

computed rate of nucleation of water vapor. 

Correction d) of the above is known as the replace

ment factor and before Reiss, Katz, and Cohen presented 

their version of the subject, the argument was centered 

on whether or not molecular binding energy is involved in 

getting an estimate of this correction (11). Present 

investigation seems to indicate that the replacement fac

tor is purely thermal in nature and corresponds to the 

deactivation of six degrees of freedom for the motion 

of the cluster in the bulk liquid assuming that the rel

ative positions of the molecules in the cluster remain 

unchanged (34,35). 
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Because of the con~rover~ over the replacement factor, 

we present Abraham's (36) derivation of the origin of 

this term. For the sake of simplicity, calculations are 

made for a linear system of atoms. The stationary (in

ternal) free energy of a finite linear chain of N atoms 

is expressed as 

F . (N) = F + F . b 
1 pot. v1 . 

[1] 

Fpot. and Fvib. refer to the potential and vibrational 

free energy of the chain respectively. With U being the 
0 

static energy required to separate two atoms to infinite 

distance apart, the static or potential part of the free 

energy for a linear chain of N atoms can be written as 

F = -U (N - 1 ) . [ 2] 
pot. o 

The classical expression for F .b 1s the sum of the (N-1) 
V1 . 

one-dimensional harmonic oscillator free energies cor-

responding to the (N-1) eigenfrequencies of the system. 

[ 3] 

l 

where the v!s are the eigenfrequencies of a linear chain 
1 

of N atoms connected together by (N-1) springs of the same 

force constant K. It can be shown that 

1 k 
vi = (2n)- (4K/m) 2 Sin(ljli/2) [ 4] 

where 

1/J. = (i-l)n/N 
1 

1 = 1,2, ....... N. 
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Upon substitution of Eq. [4] into Eq. [3] and after some 

algebraic manipulations, one arrives at the following 

expression for F .b : 
V1 • 

1 

F .b = -kT(N ln(kT/hv) - ln(kTN~/hv)) 
V1 • 

where 

v = (ZTI)-l (K/m)~. 

[5] 

Substitution of Eq. [2] and Eq. [5] into Eq. [1] results 

in the following expression for F. (N): 
1 

1 

F. (N) = -{U + kT ln(kT/hv)}N + U + kT ln(kTN~/hv). [6] 
1 0 0 

One notices that the last term is not an extensive func-

tion of N. 

Now in ordinary thermodynamics, the Euler equation 

for a chain of N atoms is written as 

F. (N) = 11N + F d 
1 en [7] 

where Fend is a constant associated with the free energy 

of the two free ends of the chain and 11 is the chemical 

potential. Comperison of Eq. [6] with Eq. [7] shows t·hat 

the last term in Eq. [ 6] does not correspond to any term 

in Eq. [7]. The Eular equation, which expresses the ther-

modynamic potentials as a linear first order function of 

extensive parameters of the system, 1s only an exact ex-

pression when N is very large, such that 3N-6 ~ 3N (N-1 

~ N) for a three- (one-) dimensional system. Since Eq. 

[6] is derived for a finite system, it differs from Eq. 



47 

[7]. For this reason the last term in Eq. [6) differen

tiates the thermodynamic behavoir of a small system of 

finite number of atoms from a large system of ordinary 

thermodynamics. This term will be reffered to as the 

replacement factor F and is given by 
rep. 

1 

F = kT ln(kTN~/hv). 
rep. 

[ 8 ] 

The following results concerning the nature of F 
rep. 

can be arrive at:. a) As can be seen from Eq. [5], the 

origin of the replacement term is in F .b . This agrees 
Vl . 

with the argument of Lathe and Pound that the replacement 

factor is thermal in nature. For this reason and inas-

much as the molecular entropys of many liquids is of the 

order Sk, Lathe and Pound estimated (34) the replacement 

free energy F = sTat SkT. b) To explain this second 
rep. 

point, the replacement energy is defined as the differ-

ence between the free energy of a finite stationary system 

of N atoms and the free energy of a mathematical cluster 

of N atoms which is part of the bulk liquid, except for 

possession of surface or ends. The N atoms in the bulk 

liquid go through oscillations which give rise to flue-

tuations in the position of the center of mass. In con-

tradistinction the center of mass is fixed for the free 

cluster, so that the center of mass motion of the mathe

matical cluster should be deactivated in making the tran-

sition from the mathematical to the free physical cluster. 

Since the translational free eneregy due to motion of the 
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center of mass of a chain of N particles is proportional 

~ 

to ln(N 2
), he arrives at the conclusion that the replace-

ment factor corresponds to the deactivation of the trans-

lational motion of the center of mass of the mathematical 

cluster in the bulk liquid. Obviously the dependence 

would be like ln(N
3/ 2) for a system of N particles in 

three dimensions. In any case, a numerical estimate of 

Eq. [8] for N = 100 is about 3kT which is very close to 

the estimate made by Lathe and Pound. At this point one 

should make note of the fact that Lathe and Pound were 

the first to correctly estimate the replacement factor. 

More recently Lathe and Pound estimate the replace-

ment energy by deactivating six translational and torsional 

vibrations of the cluster for which the relative positions 

of the molecules in the cluster remain unchanged. One 

notes that the success of the above derivation of the 

replacement factor is not due to an artificial separation 

of certain terms. The reason being that the intermole-

cular potential energy between two particles, has a min

imum corresponding to the equilibrium position of the 

particles. Expansion of the potential energy about this 

minimum results in the appearance of the static and the 

thermal potential energies. 

Kikuchi (31) rejected the above representation of 

the replacement factor for the simple reason that the 
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static and thermal effects should be treated as a unit. 

For example, in the case of an intermolecular potential, 

~(r), given by 

~(r) = U + l/2K(r-r ) 2 , 
0 0 

the partition function can be written as 

Q = (2nmkT/h 2 )~ ~sxp{-~(r)/kT) dr = (kT/hv) sxp(-U 0/kT). 

-oo 

According to Kikuchi the free energy F = -kT lnQ should 

be treated as one term, that is 

F = -kT ln(Exp(-U
0

/kT) (kT/hv)), 

not as a sum of static and thermal term given by 

F = U - kT ln(kT/hv). 
0 

Since the replacement factor was defined for deactivating 

the motion of the center of mass of the cluster in the 

bulk liquid phase assuming that the relative distances 

between the particles of the cluster remain unchanged, 

this objection seems to be groundless. Such a motion is 

thermal only and does not carry with it a static part 

because the relative positions of the molecules in the 

cluster were defined to remain constant. 

While inclusion of the Lathe and Pound factor changes 

17 
the calculated rate of nucleation by a factor of 10 , 

Reiss, Katz and Cohen calculate a much smaller factor of 

about 10 4 . We follow reference (13) in deriving the ex-

pression derived by Reiss and Katz for the free energy 
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of formation of a cluster. In their presentation Reiss 

and Katz argue that a snapshot of the supersaturated vapor 

of N molecules in a volume V and at a temperature T at 

any instant shows that the N molecules are partitioned 

among clusters of different sizes. This assembly of var-

ious size clusters can be treated as a mixture of ideal 

gases. The total partition function, Q, can be written 

as 
TT n. 

Q = I I Cqi 
1 
;nil ) , 

1 

where n. is the number of clusters of s1ze i and q. is 
1 

1 

the partition function of an i-molecule cluster given by 

q. = Y~. J ... jcxp{-Su.(r ...... r.)}dr ..... dr. 
1 "lh 1 1 1 1 1 1 

1
' v v 

where B = 1/kT and integration over the momenta has re-

sulted in the y
1 factor. u. is the potential energy and 

1 

integration over the volume V is only meaningful over 

the region where the i molecules are in the force field 

of each other. In order to make progress, Reiss and Katz 

introduce a specific model. This model, which Reiss him

self rejected in a later paper, defines a spherical val-

ume with its center always on the center of mass of the 

cluster such that the relative distance between the cen-

ter of mass and the spherical boundary of the cluster 

is always fixed. Reiss later (37) notes that such a mod-

el is unrealistic because it does not possess the correct 
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collective properties. 

The properties of a droplet can not be assigned to 

such a cluster because in contrast to this model, the cen

ter of mass of a droplet changes with respect to its bound

ary. Continuing with the derivation of Reiss and Katz, 

the partition function q. is written 1n terms of the cen-
1 

ter of mass by a linear transformation to center of mass 

coordinates. Since i 3 is the Jacobian of transformation, 

q. becomes 
1 - . 2 3/2 yi-li3/2 [ [ 

qi -{(2n1mkT/h) V}{ i! j/dr 2 .. dr~€xp(-8f(r 2 .. ri))}, 

v. (0) 

where 
1 

2 3/2 
y = (2nmkT/h ) . [ 9] 

Since the last factor (containing integration over the 

the volume) in Eq. [9] is the configuration partition 

function relative to the center of mass and the center 

of mass is temporarily pinned down at the origin in order 

to evaluate the relative configurational partition func-

tion, the volume of integration is expressed as vi(O). 

One can write 

q. = Yil /co) 
1 1. 

v 
dR == 

1 

'L-vzco) 
11 

110) 

where R is the coordinate of the center of mass and Z(O) 

is the configuration partition function with the center 

of mass fixed at the origin. If A· denotes the partition 
1 



function of an i-molecule droplet one can 

A i = Y ~ l I dR { i 1· . } xp ( ~ B f ( r 2 ••• r i) ) 

v. v. (R) 
1 1 

52 

write 

Comparison with Eq. [9) shows that in Eq. [11] the center 

of mass coordinate R is confined to the volume v. of the 
1 

droplet because Reiss is referring to a stationary drop 

with fluctuating center of mass. Also in Eq. Ill] the 

limit of integration of the relative configuration par-

titian function is changed from v. (O) to v. (R) because 
1 1 

in a droplet the relative distance between the center 

of mass and the boundary of the drop is defined to depend 

on the position of its center of mass. 

The last equation can be written as 

A. = !i jz (R) dR 
1 1! 

v. 
1 

and q. can be rewritten by substitution from the last 
1 

equation into Eq. [10). 

q. = A-V {Z(O)//Z(R) dR} = A.VP(O), 
1 1 1 

v. 
1 

where P(O) is the probability of finding the center of 

[12] 

mass at the origin. Since A· is the partition function 
1 

of a fixed droplet, it is related to the free energy of 

a drop A~d) by 
1 

. 2/3 
+ en . [13) 

The last two terms are proportional to the bulk and sur-
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face free energies of the droplet respectively. Because 

in the classical liquid drop model the free ~nergy of a 

cluster is assumed to be that of a droplet given by Eq. 

[13], the extra factor of VP(O) in Eq. [12] is a new cor-

rection to the classical model. Reiss and Katz, using 

a Gussian distribution for representing P(R), estimated 

that this correction increases the classical rate of nu-

cleation by a factor of 10 4 . This factor is much smaller 

than the 1017 factor predicted by Lothe and Pound. 

The essence of the above discussion can be summerized 

noting that the cluster partition function q. , was written 
1 

as 

qi = qtr.qint. 

where qt and q. t are the translational and internal 
r. 1n . 

partition functions respectively. The internal partition 

function includes rotational motions. Futhermore, qt r. 

is given by 

q = i3/2yv. [l4J 
tr. 

For the stationary liquid drop (stationary in the sense 

that its boundaries are fixed but its center of mass moves 

(d) 
around) the translational partition function qtr. can be 

written as 

(d)_ .3/2 /P(O) qt - 1 y . r. 
[ 15] 

The equilibrium number of i-molecule cluster can be ex

pressed in terms of qi and the chemical potential of the 

vapor ~l by the following relation (13): 

n. = q. EXp(iv 1/kT) = qt q. t EXp(iv 1/kT), 
1 1 r. 1n . 

1161 
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where partition function of the drop, q~d), (same as A-) 
1 1 

is given by 

Ai = qid) = qi~: qint. = sxp(-i~lS-Bai2/3). [ 17] 

One can substitute for q. t from Eq. [17] into Eq. [16] 
1n . 

to get 

ni = (qtr.fqi~:) sxp{-Bi(~L- ~1) - Bai2/3} [ 18] 

The factor in the exponent is the work of formation, W(i), 

so that 

- (d) 
n i - q t r . I q t r . s xp { - W ( i ) S }. [ 19) 

The extra factor of qt /qt(d) can be interpreted to be 
r. r. 

due to the translation of the cluster throughout the vol-

ume V except for those regions which correspond to the 

motion of the center of mass of the drop. The devision 

by q(d) subtracts out these regions because they have 
tr. 

already been accounted for in the work of formation W(i). 

To reconcile the two approaches of Lothe and Pound 

on the one hand and Reiss and Katz on the other, one no-

tices that the final result of Reiss and Katz, as express-

ed by Eq. [ 19] , corresponds to the following final re la-

tion derived by Lothe and Pound: 

[ 20] 

Here the assumption is made that the stationary drop dif

fers from an equivalent spherical region of the bulk liq

uid only by the possession of surface. On the basis of 
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this assumption qt(d) is meant to be the same in both Eqs. 
r. 

[19] and [20]. The only difference between these two 

equations would be the appearance of the rotational par

tition functions in Eq. [20] which Reiss and Katz did not 

factor out in arriving at Eq. [19]. 

This point of view seems to be correct because: a) 

According to Kikuchi (31) the configurational partition 

function of a homogeneous system of molecules is the prod

uct of the molecular volume times the relative (fixed 

point) partition function. Any futher factorization of 

a partition function does not seem to be consistant with 

the non-rigid cluster model of Reiss and Katz; b) The 

spectra of the polyatomic molecules show small contri-

butions from rotational motion for large molecules. Such 

experimental data favors neglecting rotational effects 

for a cluster of 100 molecules; c) Abraham (19) suggests 

two extreme models to estimate the rotational partition 

function. The first model being the restricted cell model 

with zero communal entropy (quasi-crystalline liquid drop) 

and the second being the unrestricted cell model in which 

the molecules of the cluster wonder over the entire vol-

ume of the cluster. For this reason the possible range 

of values for the rotational partition function of the 

cluster corresponding to the above two models vary from 

10 9 in the first case to unity for the second model. 
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As was mentioned, Reiss in a recent paper (37) has 

rejected the Reiss and Katz model on the ground that the 

collective properties of such a cluster does not corre

spond to a stationary drop. He proposes a new model based 

on the natural requirement of the phenomena, namely that 

such a model should have collective properties of fixed 

boundaries but fluctuating center of mass. The properties 

of "liquid drop" is associated with this model which Reiss 

referrs to as drop-like model. 

In order to satisfy the requirement of a stationary 

boundary as in a droplet, Reiss confines the i-molecule 

cluster inside a Gibbs dividing surface. Now the mole

cules of the cluster can move around inside this sharp 

surface and as a result the center of mass of this drop

let like cluster fluctuates like a liquid drop. For a 

system of 100 molecules the mass density varies as a func

tion of the raduis of the drop in going through a transi

tion region where it adjusts from the liquid like density 

at the center of the cluster to the vapor like density 

at the outside. For this reason it is necessary to choose 

a mathematical Gibbs dividing surface (surface of tension) 

in order to define the boundaries of the cluster. On the 

other hand the physical cluster raduis can not be very 

large for this is unfavorable energatically. It also 
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can not be too small because this is not favorable from 

an entropy point of view. For this reason Reiss assumes 

a unique raduis for the ni cluster of size i. According

ly, any deviation from this size 1s not favorable and 

the probability of its existance 1s practically zero. 

Next, Reiss assumes a unique dependence between the ra-

dius rand the number of molecules, given by r(i), and 

determined by the outside temperature and pressure. Based 

on the above representation and because of the lack of 

information on the density as a function of radius the 

only way to proceed is to define a mathematical surface 

of tension such that it coincides with the physical, i.e. 

the most probable, radius of the cluster. For the crit-

ical size cluster which is in equilibrium with the out-

side vapor, this mathematical surface should be chosen 

such that the vapor pressure p. of the cluster is equal 
1 

to the outside pressure. Such a surface should be defined 

at a radius where the density of the drop-like cluster 

has reached that of the outside vapor. For the pre-nu

cleation clusters which are not in equilibrium with the 

outside vapor, Reiss argues that since a cluster is re-

latively isolated at all stages of its development, it 

can be treated as the critical cluster for the purpose 

of defining a surface of tension for it. More precisely 

since the outside pressure can only influence the rate 
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of cluster formation, one can define the same radius r(i) 

whether the cluster is or is not in equilibrium with the 

surrounding vapor. 

The drop-like cluster defined above is released so 

that it translates over the whole volume of the system 

to generate all possible configurations, which leads to 

the evaluation of the configuration integral. The work 

of formation, w(i), evaluated by the above method or by 

a computation of the reversible work effects is found 

to be 

w(i) = W(i) - kT ln(p./p), 
1 

[21] 

where W(i) is the classical work of formation of a "liq-

uid drop". Assuming p. = p, then w(i) = W(i) and there 
1 

is no replacement energy. 

The above result can be derived by the following 

simple reasoning. The drop-like cluster proposed by Reiss 

can be compressed isothermally to an equivalent size liq-

uid drop containi-ng the same number of molecules. During 

this compression the surface of tension moves to a smaller 

size and the dense vapor which is smeared around the out-

side boundary of the cluster changes into liquid. In 

the case of the critical s1ze cluster where p. = p, the 
1 

free energy of formation does not change during this phase 

transition. As a result we have changed the drop-like 
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cluster into a liquid drop with no extra work and for 

this reason the replacement factor is unity. The applica

tion of this argument to a pre- nucleating cluster at 

pressure p. is obvious. In this case the work done for 
1 

this compression is -kT ln(p./p) which is the replacement 
1 

term predicted by Reiss. 

The above discussion takes us back to the starting 

point of defining a cluster. From the thermodynamic point 

of view such a definition is arbitrary. In the case of 

the physical clusters in nucleation theory, all the phys-

ically reasonable definitions should lead to rather simi-

lar values for the equilibrium concentration of different 

size clusters. In general, the stronger the internal 

forces in between the molecules of a cluster, the greater 

tendency for different definitions of a cluster to con-

verge to the same predictions. Such is the case for clus-

tering of water molecules. The strong forces between 

water molecules, should lead to a unique prediction for 

the equilibrium concentrations. This in turn should re-

sult in a unique prediction of the rate of nucleation. 
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