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Abstract

We describe a theoretical and computational investigation of the optical properties of

π-conjugated macrocycles. Since the low-energy excitations of these systems are Frenkel

excitons that couple to high-frequency dispersionless phonons, we employ the quantized

Frenkel-Holstein model and solve it via the DMRG method. First we consider optical emis-

sion from perfectly circular systems. Owing to optical selection rules, such systems radiate

via two mechanisms: (i) within the Condon approximation, by thermally induced emission

from the optically allowed j = ±1 states and (ii) beyond the Condon approximation, by

emission from the j = 0 state via coupling with a totally non-symmetric phonon (namely, the

Herzberg-Teller effect). Using perturbation theory, we derive an expression for the Herzberg-

Teller correction and show via DMRG calculations that this expression soon fails as ~ω/J

and the size of the macrocycle increases. Next, we consider the role of broken symmetry

caused by torsional disorder. In this case the quantum number j no longer labels eigenstates

of angular momentum, but instead labels localized local exciton groundstates (LEGSs) or

quasi-extended states (QEESs). As for linear polymers, LEGSs define chromophores, with

the higher energy QEESs being extended over numerous LEGSs. Within the Condon ap-

proximation (i.e., neglecting the Herzberg-Teller correction) we show that increased disorder

increases the emissive optical intensity, because all the LEGSs are optically active. We next

consider the combined role of broken symmetry and curvature, by explicitly evaluating the

Herzberg-Teller correction in disordered systems via the DMRG method. The Herzberg-

Teller correction is most evident in the emission intensity ratio, I00/I01. In the Condon

approximation I00/I01 is a constant function of curvature, whereas in practice it vanishes

for closed rings and only approaches a constant in the limit of vanishing curvature. We

calculate the optical spectra of a model system, cyclo-poly(para-phenylene ethynylene), for

different amounts of torsional disorder within and beyond the Condon approximation. We

show how broken symmetry and the Herzberg-Teller effect explain the spectral features. The

Herzberg-Teller correction to the 0− 1 emission vibronic peak is always significant. Finally,

we note the qualitative similarities between the optical properties of conformationally dis-

ordered linear polymers and macrocycles in the limit of sufficiently large disorder, because

in both cases they are determined by the optical properties of curved chromophores.
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I. INTRODUCTION

Conjugated polymers have attracted increased interest over the past decades after the

discovery of their semiconducting and electroluminescent1–4 properties. Macrocycles form

a specific class of conjugated polymers having a circular π-electron system that can have

a diameter of up to several nanometers5–8. The most striking difference from linear conju-

gated polymers is the cyclic π-electron system, giving rise to different optical and electronic

phenomena9–20. These optical properties are widely exploited in nature, for instance in the

macrocyclic system of porphyrin and its derivatives used in chlorophyll and related light-

harvesting compounds21,22. Certain macrocycles, poly(para-phenylene) in particular, also

form topologically the shortest carbon nanotubes and are therefore interesting compounds

in which to study the basic features of nanotubes23. It is particularly their optical properties,

however, which make this class of conjugated macrocycles interesting for possible techno-

logical applications. These applications include novel organic electronics, such as molecular

switches. While linear conjugated polymers are widely investigated, macrocyles, due to their

only recent synthetic availability, remain open for theoretical studies.

There are important similarities and differences between the electronic properties of linear

polymers and macrocycles. The similarities are first, that the low-energy excited states

of both systems are Frenkel excitons; second, the Frenkel exciton couples to local non-

dispersive high energy phonons (associated with the C-C bond stretch) and to low energy

torsional modes; and third, torsional degrees of freedom cause conformational disorder. As a

consequence, the excited states of both systems are conveniently described by the disordered

Frenkel-Holstein model24,25.

The excited states of both systems are also subject to localization. There are two possible

mechanisms of localization. First, excitons that couple to a set of harmonic oscillators be-

comes ‘self-trapped’, i.e., there is a local displacement of the oscillator that is proportional to

the local exciton density. If the oscillators are treated classically, the non-linear feedback in-

duced by the exciton-oscillator coupling self-localizes the exciton and ‘spontaneously’ breaks

the translational symmetry. This is a self-localized (or auto-localized) ‘Landau polaron’.26,27

Recent work on the fully quantized Frenkel-Holstein model28,29, however, indicates that self-

localization is only expected in the adiabatic limit. High frequency C-C bond oscillations

do not cause Landau polarons and lower frequency torsional modes are unlikely to do so29.
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We therefore do not consider this mechanism of localization in this paper. A second mecha-

nism for exciton localization in disordered systems is Anderson localization30,31, causing the

formation of ‘Anderson polarons’. In this paper we treat Anderson localization as the cause

of broken symmetry. We note, however, that self-localization via self-trapping is widely

assumed in the literature to determine the emissive properties of macrocycles, for example

in cyclo-poly(para-phenylenes)15,16 and in giant macrocycles with a limited number of con-

formational degrees of freedom17,18. Conversely, disorder-induced localization was assumed

in cyclo-poly(thiophenes)20.

The obvious difference between linear polymers and macrocycles is their shape, in prin-

ciple leading to quite different optical properties. Although there are significant differences

in optical properties between ideal, ordered linear polymers and uniform macrocycles (in

particular with regard to emission where non-Condon effects are important13,14), a key aim

of this paper is to show that these differences become less significant when comparing con-

formationally disordered systems. This is because the photophysical properties of disordered

systems are determined by the optical properties of curved chromophores32–34, which (as we

show) do not necessarily span the entire system.

Thus, the goals of this paper are first, to describe how temperature and Herzberg-Teller

effects determine the optical transitions in perfectly circular macrocycles; second, to de-

scribe how conformational disorder – leading to a broken circular symmetry – affects the

absorption and emission spectra; third, to describe the role of curvature (which manifests

itself spectroscopically partially via the Herzberg-Teller effect) on the emission spectra of

disordered systems; and finally, to show how these effects explain experimental observations.

To address these issues we use the fully quantized disordered Frenkel-Holstein model,

where the Frenkel exciton and local normal modes are all quantum variables. Although we

are predominately interested in the Born-Oppenheimer regime (as this is generally applicable

to conjugated macrocycles), we solve the model using the density matrix renormalization

group (DMRG) method, which is accurate for all parameter regimes. Where appropriate,

we compare DMRG results to predictions of the Born-Oppenheimer-Condon approximation.

Since, as already stated, the optical properties of a disordered macrocycle are determined

by the optical properties of curved chromophores, the work reported here is related to the

recent investigation of the effect of chain bending on the optical properties of conjugated

polymers by Hestand and Spano32. Hestand and Spano report a strong dependence of the
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FIG. 1: Schematic representation of a CPPE macrocycle.

optical properties on the curvature of the chain in the anti-adiabatic limit, especially at low

temperatures. As shown in Section V, we qualitatively reproduce their results.

The system principally investigated in this paper are cyclo-poly(para-phenyelene ethyny-

lene) (CPPE) macrocycles, illustrated in Fig. 1; although in Section III model homomoiety

systems are also studied. In Section II we introduce the Frenkel-Holstein model, briefly re-

view DMRG, and review previously derived results on the theory of optical transitions within

the Born-Oppenheimer-Condon approximation. Optical transitions in perfectly uniform cir-

cular systems are discussed in Section III, with a particular focus on the Herzberg-Teller

corrections to the Condon approximation. The role of broken symmetry within and beyond

the Condon approximation are described in Sections IV and V, respectively. In Section

VI we describe the computed optical spectra of conformationally disordered CPPE macro-

cycles and interpret them in terms of the results of the previous sections. We summarize

and conclude in Section VII. Appendix A contains a detailed derivation of the Herzberg-

Teller correction for conjugated macrocycles, while Appendix B and Appendix C explain

the connection between the curvature of a chromophore and the Herzberg-Teller effect.

II. MODEL AND METHODOLOGY

A. The Frenkel-Holstein Model

The Frenkel-Holstein model is a coarse-grained model describing the delocalization of a

Frenkel exciton and its coupling to a single local normal mode on each moiety. For the

ethynylene moiety the normal mode is the symmetric vibration of the C-C bond, while

for the phenylene moiety the normal mode is the symmetric stretch associated with the
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aromatic to quinoid distortion. (The eigenvectors of these normal modes are given in the

Supplementary Information of ref29.) The Frenkel-Holstein model has been widely used to

describe the photophysical properties of J-aggregates35,36 and conjugated polymers37–42. For

generality, each ‘site’ in the Frenkel-Holstein model represents a moiety (e.g., a phenylene

ring or ethynylene bond).

Suppose that the operator â†n creates a Frenkel exciton on the nth moiety that couples

to the local normal coordinate, Qn, on the same moiety. If excitations of a normal mode are

created by the operator b̂†n, then the Frenkel-Holstein model reads,

HFH =
N∑

n=1

ϵnâ
†
nân +

N∑
n=1

Jn

(
â†n+1ân + â†nân+1

)
− 1√

2

N∑
n=1

An~ωn(b̂
†
n + b̂n)â

†
nân +

N∑
n=1

~ωnb̂
†
nb̂n, (1)

where N is the number of moieties in the macrocycle. The excitation energy of the Frenkel

exciton onto the nth moiety is ϵn and Jn is the exciton transfer integral between neighboring

moieties. For realistic polymer systems both of these parameters are subject to random

fluctuations. ωn is the angular frequency of the normal mode and An is the dimensionless

exciton-phonon coupling constant.

In this work we fix the on-site energy for each moiety and introduce disorder via modu-

lating the transfer integral, Jn, as

Jn = JDD + JSE cos2 ϕn, (2)

where JDD quantifies the dipole-dipole (through space) and JSE the superexchange (through

bond) transfer (for explicit formulations see Appendix A of ref43). The superexchange term

is dependent on the torsional angle between neighboring moieties, ϕn, which is chosen to be

a Gaussian random variable with standard deviation, σϕ. For freely rotating monomers24

σϕ =

(
kBT

K

) 1
2

, (3)

whereK is the (harmonic) force constant of the torsional motion of the phenylene ring around

the ethynylene bond. The Frenkel-Holstein model parameters for poly(para-phenylene

ethynylene) macrocycles are listed in Table I.

For the Frenkel-Holstein model the transition dipole moment operator is defined as

µ̂ =
N∑

n=1

µ
n

(
â†n + ân

)
, (4)
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where µ
n
, the transition dipole moment of the nth moiety, is

µ
n
= µ0

(
cos

(
2πn

N

)
, sin

(
2πn

N

)
, 0

)
(5)

for a ring lying in the x− y plane and µ0 is the moiety transition dipole moment.

B. The DMRG Method

The fully quantized Frenkel-Holstein Hamiltonian spans a Hilbert space too large for

direct diagonalization. In order to make the computation feasible we employ the Density

Matrix Renormalization Group (DMRG) approach, which is a very accurate and varia-

tional truncation method which converges for a finite and reasonably small basis for one-

dimensional systems, as the ones considered here44–46. In this section we briefly summarize

how DMRG is used to calculate transition dipole moments; see Section IV A of ref43 for de-

tails of the application of the DMRG method to the quantum Frenkel-Holstein Hamiltonian.

In the following discussion we denote the eigenstates of the quantum Frenkel-Holstein

model, Eq. (1), as |EX, α⟩, where α ≥ 1. The lowest eigenstate (i.e., the groundstate) of

the quantum Frenkel-Holstein model corresponds to |EX, α = 1⟩, i.e., to the lowest excited

exciton in its ground vibrational manifold. Excited states of the quantum Frenkel-Holstein

model correspond to |EX, α⟩ with α > 1. If there are large electronic gaps (i.e., if J ≫ ~ω and

N is suitably small) – namely the adiabatic regime – then 2 ≤ α ≤ N +1 corresponds to the

set of one-phonon vibrational states associated with the lowest excited vibronic manifold.

Conversely, if there are small electronic gaps – namely the anti-adiabatic regime – any

|EX, α ≥ 2⟩ might correspond to a vibrational ground state of a higher vibronic manifold

(see also Section VIB).

The transition dipole moment of a macrocycle of N monomers is

µ =
N∑

n=1

µ
n
⟨EX, α|â†n|GS⟩, (6)

where in general |GS⟩ belongs to groundstate manifold (and is thus not described by the

Frenkel-Holstein model) and µ
n
is given by Eq. (5). We calculate the absorption transition

density from the true electronic and vibrational groundstate, |GS, υ = 0⟩, to an arbitrary

eigenstate of Eq. (1) via the evaluation of ⟨EX, α|â†n|GS, υ = 0⟩, where α = 1 corresponds

to the 0− 0 transition.
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We calculate the emission transition density from the excited state vibrational ground

state, |EX, α = 1⟩, to the electronic groundstate vibrational manifolds via the evaluation of

⟨EX, α = 1|â†n|GS, υm⟩, where υm means υ vibrational excitations on monomer m. The 0−1

emission transition dipole moment is then calculated assuming a localized phonon basis in

the groundstate (as described in Section III B of ref43).

C. The Born-Oppenheimer Regime

In the Born-Oppenheimer regime, where the normal modes are treated as classical vari-

ables, the Born-Oppenheimer Hamiltonian equivalent of Eq. (1) is

HBO
FH =

N∑
n=1

ϵnâ
†
nân +

N∑
n=1

Jn

(
â†n+1ân + â†nân+1

)
−

N∑
n=1

An~ωnQnâ
†
nân +

1

2

N∑
n=1

~ωnQ
2
n,

(7)

where Qn = ⟨b̂†n + b̂n⟩/
√
2 is the dimensionless displacement of the nth oscillator. Since

~ω/J ∼ 0.1 in conjugated polymers, the Born-Oppenheimer regime is expected to be ap-

plicable, provided that the excited state energy gaps are not too small, which in practice

means sufficiently small macrocycles or large disorder.

The solutions of the Frenkel-Holstein Hamiltonian in the Born-Oppenheimer regime have

been derived and discussed fully elsewhere33,43 and so we just give a brief summary here.

The eigenfunctions of the Frenkel Hamiltonian (i.e., the first two terms on the right-hand-

side of Eq. (7)) are the excitonic wavefunctions, Ψj, with vertical transition energies, Evert
j .

To obtain the transition energy for the 0-0 transition of the jth state, Ej,00, we require the

relaxation energy associated with the nuclear relaxation of the molecule, which is given by

Erelax
j =

N∑
n=1

~ωnSn(1) |Ψj(n)|4 , (8)

where Sn(1) is the Huang-Rhys parameter for a single moiety, given as Sn(1) = A2
n/2. If

~ωn is site-independent we can simplify this expression to

Erelax
j = ~ωSj(N), (9)

where

Sj(N) =
N∑

n=1

Sn(1) |Ψj(n)|4 (10)
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is an effective Huang-Rhys parameter. For homomoiety systems,

Sj(N) = S(1)/IPRj, (11)

where IPRj, the inverse participation ratio, defined by

IPRj =
1∑N

n=1 |Ψj(n)|4
, (12)

is a measure of the spread of the exciton center-of-mass wavefunction.

The transition energy is then

Ej,00 = Evert
j − Erelax

j . (13)

From this we obtain the absorption and emission spectra containing the vibronic progression

as

A(E) ∝
∑
j

∑
υ

EA
j,0υ |µj,0υ|2 δ

(
E − EA

j,0υ

)
, (14)

with

EA
j,0υ = Ej,00 + υ~ω, (15)

in the case of absorption and

I(E) ∝
∑
j

∑
υ

pj,υ
(
EE

j,0υ

)3 |µj,0υ|2 δ
(
E − EE

j,0υ

)
, (16)

with

EE
j,0υ = Ej,00 − υ~ω, (17)

for emission, where pj,υ is the Boltzmann distribution for the state (j, υ). δ is a line shape

function, which is chosen to be a Lorentzian in this work.

In the Born-Oppenheimer-Condon approximation, i.e., assuming both a factorization of

the electronic and nuclear wavefunctions and that the electronic transition dipole moment

is independent of the normal coordinates, the transition dipole moments, µj,0υ, are given

as33,43,

|µj,0υ|2 =
∣∣∣µ

j
(N)

∣∣∣2 Fj,0υ, (18)

with

Fj,0υ = Sj(N)υ
exp(−Sj(N))

υ!
(19)
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being the effective Frank-Condon factor. The electronic transition dipole moment is

µ
j
(N) =

N∑
n=1

µ
n
Ψj(n), (20)

where µ
n
is given by Eq. (5).

We conclude this section by noting that in the Condon approximation,

Ij,00
Ij,01

=
Aj,00

Aj,01

=
Fj,00

Fj,01

=
1

Sj(N)
=

IPRj

S̄(1)
, (21)

where, neglecting the small differences in the transition energies between 0 − 0 and 0 − 1

transitions Ij,0υ ∝ Aj,0υ ∝ |µj,0υ|2, and S̄(1) is the weighted Huang-Rhys parameter for a

monomer. The significance of Eq. (21) is that it shows within the Condon approximation that

the absorption and emission intensity ratios are the same and are independent of geometrical

factors. This prediction clearly fails for perfectly circular macrocycles, because Aj,00 and Ij,00

vanish for the lowest exciton state (i.e., j = 0), whereas Ij,01 and Aj,01 do not. As described

in Section III B and Section V, to correctly describe optical transitions in macrocycles it is

necessary to include the Herzberg-Teller effect.47

III. ORDERED, CIRCULAR MACROCYCLES: THE HERZBERG-TELLER EF-

FECT AND THE ROLE OF TEMPERATURE

Rotational angular momentum is conserved on a uniform circular ring and hence the

angular momentum quantum number, j, labels the states, where −N/2 < j ≤ N/2. We

denote the ground electronic state as |GS; j⟩, where here the angular momentum is carried

by the phonons. Similarly, we denote the excited electronic states as |EX; j′⟩, where now

the angular momentum may be carried by both the exciton and phonons. The transition

dipole moment between the ground electronic state and an excited electronic state is

µ = ⟨EX; j′|µ̂|GS; j⟩. (22)

From symmetry, µ ̸= 0 provided that |j − j′| = 1.

To simplify the discussion, in this section we consider homomoiety macrocycles. Thus,

assuming for the moment only excitonic contributions to |EX; j⟩, we may write

|EX; j⟩ =
∑
n

Ψj(n)|n⟩, (23)
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where

Ψj(n) =
1√
N

exp(i2πnj/N) (24)

is the Frenkel exciton center-of-mass wavefunction with energy

Ej = ϵ+ 2J cos

(
2πj

N

)
(25)

and

|n⟩ = â†n|0⟩ (26)

is the ket representing a Frenkel exciton on moiety n.

Evaluating Eq. (20) for the linear combinations Ψ± = (Ψj=+1 ±Ψj=−1) /
√
2 gives µ =

µ0

√
N/2 in orthogonal directions (and hence the total oscillator strength is ∝ N).

This simple analysis shows that – ignoring phonons – absorption occurs into the Ψj=±1

electronic states. In addition, assuming Kasha’s rule and relaxation to the Ψj=0 electronic

state, emission is dipole forbidden. This section describes how this simple analysis breaks

down first, by considering thermally induced emission from the Ψj=±1 states (in Section

IIIA) and second, by considering the Herzberg-Teller effect (in Section III B).

A. The Role of Temperature

For large macrocycles, i.e., large N , the energy gap between the j = 0 and j = 1 levels

is 4π2J/N2. Thus, defining the reduced temperature as Tred = 4π2J/kBN
2, we show in Fig.

2 the relative thermal population of the j = 1 level versus T/Tred. Evidently, pj=1 reaches

a maximum at T ∼ Tred before decreasing at larger T/Tred as higher energy levels become

more populated. Indeed, since the spectrum is bounded, for T ≫ Tred, pj=1 → 1/N .

Since, in the Condon approximation, only the j = 1 level emits, the emission intensity is

N × pj=1 and this is also shown in Fig. 2. Evidently, as either T increases or Tred decreases

(i.e., N increases) the intensity becomes independent of T or N .

B. The Herzberg-Teller Effect

The prediction that the totally-symmetric (j = 0) electronic state is dipole forbidden

arises from the assumption that the electronic transition dipole moment is independent of the

normal coordinates. This is the Condon approximation. The Herzberg-Teller48 correction
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FIG. 2: Relative thermal population (black, left) and emission intensity (red, right) of the

j = 1 level of an ordered macrocycle against T/Tred, where the reduced temperature is Tred =

4π2J/kBN
2.

to the Condon approximation is to perform a first order Taylor expansion of the electronic

transition dipole moment in the normal coordinates. As a consequence, the 0-1 transition

associated with the j = 0 electronic state becomes weakly allowed due to intensity borrowing

from the j = ±1 states. As shown in Appendix A, treating the Herzberg-Teller correction

perturbatively, we find that the I01 emission intensity from the vibrational ground level of

the j = 0 electronic state to the first vibrational excited level of the electronic ground state

is given by

IHT
01 ∝ N4µ2

0A
2

(
~ω
J

)2

. (27)

This result is expected to be valid provided that the perturbation theory is valid49, i.e.,(
~ω
J

)
A

N3/2
≪ 1. (28)

We test the validity of Eq. (27) by solving the fully quantized Frenkel-Holstein model for

homomoeity macrocycles employing the DMRG routine. We note that this is an essentially

exact calculation, which goes beyond the Born-Oppenheimer approximation. The results
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FIG. 3: Evolution of the fitting parameters of Eq. (29): a (left) and b (right) with ~ω and ring size,

obtained from DMRG solutions of the quantized Frenkel-Holstein model, Eq. (1). The insets show

the ~ω → 0 regime with extrapolation. a is quadratic in ~ω and b → 2 for the adiabatic regime.

The curves in the graph are a guide to the eye, the graphs in the inset are quadratic and logistic

fits, respectively.

were fitted for varying N and ~ω as

IHT
01 = aJ b, (29)

with the fitting parameters a and b, which are plotted in Fig. 3. As can be seen, in the

adiabatic limit (~ω/J → 0) the parameters a and b tend to 0 and -2, respectively. To a good

approximation, a is quadratic in the adiabatic regime and therefore a ∝ (~ω)2. Hence,

I01 ∝
(
~ω
J

)2

; ~ω/J ≪ 1, (30)

which confirms our result, Eq. (27). We also see that in the adiabatic regime the prediction

of Eq. (27) fails more quickly as ~ω is increased for larger N

Comments

• Although not the main topic of this paper, the results presented in Fig. 3 indicate that

in the anti-adiabatic regime (i.e., ~ω/J > 1 or large N) the Herzberg-Teller correction

to the 0− 1 emission intensity IHT
01 ∝ N and independent of ~ω/J .
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• As shown in the next three Sections, broken symmetry renders the lowest excited

state dipole active within the Condon approximation and hence I01 is enhanced by

the Condon term. However, as shown in Section V, even with broken symmetry the

Herzberg-Teller correction remains a significant contribution to the 0 − 1 emission

intensity.

• The Herzberg-Teller correction for absorption in a uniform CPPE ring is discussed in

Section VIB.

IV. THE ROLE OF BROKEN SYMMETRY

In the last section, the role of temperature in a perfectly ordered macrocycle was to

simply thermally populate the j = 1 level, leading to thermally enhanced emission (as

shown in Fig. 2). More generally, however, for macrocycles with freely rotating monomers

thermal energy will cause torsional disorder given by Eq. (3), leading to a breakdown of the

symmetry-determined selection rules.

In this section we investigate the role of static torsional disorder on the optical properties

of macrocycles. We take the disorder, σϕ, as a model parameter in the exciton transfer

integral, Eq. (2), of the Frenkel-Holstein model and we use CPPE macrocycles as our model

system. The model parameters for CPPE are listed in Table I. As we are concerned with the

role of broken symmetry, we solve the Frenkel-Holstein model in the Condon approximation,

as described in Section II C. (The combined roles of broken symmetry and Herzberg-Teller

corrections are described in the next section.)

Before describing the optical properties, we first review the role of disorder in localiz-

ing states in one-dimensional systems. As is well-established, the role of disorder in one-

dimensional systems is highly non-perturbative: any amount of disorder exponentially lo-

calizes states30,31,50. Rather remarkably, in one-dimensional systems there are a class of

states in the low energy tail of the density of states that are superlocalized, named local

exciton ground states (LEGSs)25,51. Local exciton ground states are essentially nodeless

and non-overlapping wavefunctions that together spatially span the entire ring. They define

chromophores in linear and cyclic polymers55. In a linear polymer (neglecting curvature

effects), the oscillator strength is proportional to the chromophore length. As shown in

Appendix B, in macrocycles, however, the oscillator strength is proportional to the square
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FIG. 4: Excitonic density showing six LEGSs (solid lines) and one QEES (dashed line) on a

CPPE ring consisting of 200 monomers and torsional disorder, σϕ = 0.3 radians. LEGSs are quasi

non-overlapping and spacefilling, and define chromophores, whereas QEESs span multiple LEGSs.

of the chord length, L, joining the ends of the chromophore, as illustrated in Fig. 7. Higher

lying states are also localized, but will be nodeful and generally spatially overlap a number

of low-lying LEGSs. These states are named quasiextended exciton states (QEESs). On a

macrocycle the ultra-fast interconversion of QEESs to LEGSs is manifest as ultra-fast fluo-

rescence depolarization42,53. Figure 4 illustrates the excitonic density in LEGSs and a QEES

on a 200 monomer CPPE macrocycle. For this choice of σϕ there are six LEGSs spanning

the circumference of the ring.

The spatial spread of a LEGS is quantified by the inverse participation ratio, IPR, defined

by Eq. (12). Figure 5 shows the average value of IPR for LEGSs as a function of disorder

for two cyclo(para-phenylene ethynylene) (CPPE) macrocycles of different size. [15]CPPE

consists of 15 monomers (i.e., 15 phenylene and 15 ethynylene units) and [30]CPPE is twice

that. For σϕ & 0.2 radians, the size of the macrocycle no longer determines the size of the

LEGSs.

We now turn to consider the optical properties. Figure 6 shows the evolution of the
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FIG. 5: The spatial average spread of LEGSs (in monomer units), defined by ⟨IPR⟩, with increasing

disorder for [15]CPPE and [30]CPPE. (Note that for heteromoiety macrocycles IPR ̸= N for

ordered rings.)

squared transition electronic dipole moment of the lowest two excited states of [15]CPPE and

[30]CPPE as a function of disorder. The decrease of the transition dipole moment in the j =

1 state with increasing disorder is simultaneously accompanied by acquisition of oscillator

strength in the j = 0 state. As can be clearly seen for the larger macrocycle, the j = 0 state

does not monotonically acquire oscillator strength. This can be understood by recalling

that for a nodeless exciton wavefunction the oscillator strength is (approximately) linearly

proportional to the square of the length of the chord joining the ends of the chromophore

(as shown in Fig. 7). Thus, for small disorder the intensity increases with disorder, σϕ,

because the chromophore is decreasing in size and the chord length is increasing (i.e., θ, as

defined in Fig. 7, satisfies π ≤ θ < 2π). However, once θ < π, for larger disorder the chord

length decreases with increasing disorder, and hence the intensity begins to decrease. For

[30]CPPA this occurs when σϕ w 0.35 radians. Figure 6 also shows that for large disorder

the intensities of the j = 0 and j = 1 states are essentially the same and independent of N ,

because they are both LEGSs that only partially span the circumference.
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FIG. 6: The squared electronic transition dipole moment of the j = 0 and j = 1 states for

[15]CPPE and [30]CPPE as a function of disorder. Clearly visible is the acquisition of oscillator

strength in the j = 0 state until the average conjugation length becomes less than half of the ring

circumference. (Except for the case σϕ = 0, j is not an angular momentum quantum number.)

V. THE ROLES OF BROKEN SYMMETRY AND CURVATURE

In this section we draw together two of the themes of Sections III and IV, namely the role

of broken circular symmetry in rendering the lowest excited state dipole allowed within the

Condon approximation and the role of the Herzberg-Teller effect in increasing the emissive

intensity of the 0− 1 transition relative to the 0− 0 transition from this state.

To quantify the discussion we illustrate in Fig. 7 a LEGS localized on a section of a

macrocycle of radius R and circumference N = 2πR. We identify the angle corresponding

to the spread of the LEGS as the ratio of the conjugation length (in units of the monomer

length) normalized to the circumference of the ring, i.e.,

θ = 2π
⟨CL⟩
N

. (31)

⟨CL⟩ /N → 0 corresponds to an increasing linearization, whereas ⟨CL⟩ /N = 1 corresponds

to a fully circumventing LEGS.
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FIG. 7: Schematic representation of LEGS with a conjugation length, CL, (red segment) on a

macrocycle of radius R. The LEGS spans a chord (dashed line) of length L, which determines I00.

As discussed in Section IIC, in the Condon approximation the I00/I01 emission intensity

ratio is
⟨I00⟩
⟨I01⟩

=
⟨IPR⟩
S(1)

, (32)

where IPR is defined in Eq. (12). We note that this result applies for the emission from

any state and is independent of the geometry of the system. It evidently fails for a uniform

macrocycle because, as described in Section III B, for the lowest excited state I00 vanishes

whereas I01 does not. We assume Kasha’s law and thus the averages in Eq. (32) are taken

over the ensemble of (equally populated) LEGSs.

We now define X as the intensity ratio scaled by the mean inverse participation ratio,

i.e.,

X =
⟨I00⟩

⟨I01⟩ ⟨IPR⟩
. (33)

Deviations of X from a constant value indicate deviations from the Condon expression,

Eq. (32). Fig. 8 shows the computed value of X versus ⟨CL⟩ /N for different ensembles of

disorder for [15]CPPE macrocycles. The results were obtained via the DMRG solutions of

the fully quantized Frenkel-Holstein model, and thus include corrections beyond the Condon

approximation. The results for a fixed ~ω/J0, when scaled appropriately, collapse onto

universal curves. However, X decreases more quickly as a function of θ for larger values
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FIG. 8: The ensemble-averaged scaled intensity ratio, X = ⟨I00⟩ / ⟨I01⟩ ⟨IPR⟩, versus increasing

curvature of the emitting LEGS (see Fig. 7) for various values of ~ω/J0. These results are obtained

for [15]CPPE macrocycles via DMRG computations of the quantized Frenkel-Holstein model. The

behavior of X is qualitatively predicted by Eq. (C4) and Eq. (C5) and is a consequence of the

Herzberg-Teller correction to the Condon approximation (see Appendix C).

of ~ω/J0. Setting J0 = JDD + JSE cos2(0) = JDD + JSE allows us to combine J and ~ω

into one factor and ease the discussion, as it quantifies the adiabaticity of the system. For

~ω/J0 < 1 the system is in the adiabatic regime, whereas ~ω/J0 > 1 is the anti-adiabatic

regime. Moreover the results presented in Fig. 8 do not depend on any other parameters.

As shown in Appendix C, when the LEGSs almost span the ring, i.e., for (2π − θ) ≪ 1,

⟨I00⟩
⟨I01⟩ ⟨IPR⟩

=
1(

S(1) + 2 (S(1)B)1/2 θ
(2π−θ)

+B
(

θ
(2π−θ)

)2
) , (34)

where B is proportional to the Herzberg-Teller correction, IHT
01 . The right-hand-side of

Eq. (34) evidently vanishes when θ = 2π. However, we also see that it vanishes more

quickly as a function of θ for a larger value of the Herzberg-Teller correction term, B. As

shown in Section III B, this correction is an increasing function of ~ω/J0, and thus Eq. (34)

qualitatively reproduces Fig. 8.
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FIG. 9: The ensemble averaged I01 normalized by the Herzberg-Teller correction, IHT
01 , as a function

of disorder. These results are obtained for [15]CPPE macrocycles via DMRG computations of the

quantized Frenkel-Holstein model. The ensemble average is over LEGSs.

As is also evident from Eq. (C4) and Fig. 8, the scaled intensity ratio, X, is a weak

function of θ for small θ, and becomes constant in the adiabatic limit (~ω/J0 → 0). This

implies that curvature effects are negligible for large macrocycles with strong disorder and

thus (as for linear polymer chains33) Eq. (32) may be used to determine chromophore sizes.

Our results, shown in Fig. 8 and Eq. (34), are in qualitative agreement with the predictions

of Hestand and Spano (shown in Fig. 3 and Eq. (24) of ref32), who investigated the effect

of curvature on the optical properties of polymers. We do not find quantitative agreement,

because our results apply in the adiabatic regime, whereas theirs apply in the anti-adiabatic

regime.

The role of broken symmetry and curvature is also illustrated by Fig. 9. This shows the

ensemble averaged I01 for [15]CPPE normalized by the Herzberg-Teller correction, IHT
01 , as

a function of disorder. As indicated by Eq. (C2), for uniform rings I01/I
HT
01 = 1, because I00

– and hence IC01 – vanish. However, as the disorder is increased and the circular symmetry is

broken I00 gains intensity, and thus I01 gains further intensity via the Condon term, Eq. (32).
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Parameter Value

Phenylene on-site energy, EP 6.05 eV

Ethynylene on-site energy, EE 10.4 eV

Superexchange exciton transfer integral, JSE 1.68 eV

Dipole-dipole exciton transfer integral, JDD 0.6 eV

Phonon energy, ~ω 0.2 eV

Phenylene exciton-phonon coupling constant, AP 1.7

Ethynylene exciton-phonon coupling constant, AE 2.4

Phenylene Huang-Rhys parameter, SP (1) 1.45

Ethynylene Huang-Rhys parameter, SE(1) 2.88

Mean dihedral angle (ground and excited states), ϕ0 0◦

Elastic torsional force constant1, K 0.38 eV rad−2

TABLE I: Parameters used in the Frenkel-Holstein model (Eq. (1)) for the calculation of the CPPE

spectra. For details of the parametrization, see ref33. 1The force constant was found using ab-initio

calculations at the (HF//6-311G) level.

For high disorder the system saturates, approaching a limiting value of about ∼ 1.8IHT
01 . This

trend resembles the acquisition of I00 intensity for the j = 0 state shown in Fig. 6. Rather

significantly, at least for [15]CPPE macrocycles, we see that the Herzberg-Teller term is the

dominant contribution to the 0− 1 emission intensity.

VI. MODELING EXPERIMENTAL SPECTRA

We now turn to describe our predictions for the absorption and emission spectra of con-

formationally disordered [15]CPPE macrocycles, interpreting them using the insights of the

last three sections. The parameterization of the Frenkel-Holstein model for CPPE macrocy-

cles follows the same procedure as described in the appendix of ref33 and the parameters are

shown in Table I. We examine both the roles of broken symmetry and the Herzberg-Teller

effect. Thus, we first describe our predictions assuming the Condon approximation (in Sec-

tion VIA), before describing the full Frenkel-Holstein model results (in Section VIB), which

includes the Herzberg-Teller effect.
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A. Assuming the Condon Approximation

The results of this section assume the Condon approximation, as described in Section IIC.

We also adopt Kasha’s rule and assume that emission only occurs from LEGSs. We do not

consider the role of temperature, because typically for the size of the systems described here,

QEESs lie too high in energy above LEGSs to be thermally populated at room temperature.

Figure 10 shows the calculated absorption spectrum for [15]CPPE for different amounts

of disorder. Room temperature corresponds to σϕ ≈ 0.25 rad. We observe a vanishing of the

spectral features in the high-energy tail for increasing disorder with the vibronic peaks being

smeared out. Simultaneously, a shoulder at the low-energy edge becomes more intense. At

room temperature the shoulder is at about 3.35 eV (370 nm) and the intense peak is at

3.5 eV (354 nm). Experimental spectra54 show the same features: the absorption spectrum

of [14]CPPE has its maximum at about 350 nm (3.54 eV) and a shoulder at 390 nm (3.18

eV). The position of the maximum does not vary with increasing ring size from [10]CPPE to

[14]CPPE, so it can be assumed that for [15]CPPA the position will not change significantly.

As for the shoulder, the wavelength is a weak function of the ring size and we thus expect

the shoulder for [15]CPPE to be at about 395 nm (3.14 eV). We reproduce both the intense

peak and the shoulder, with wavelengths of about 360 nm (3.45 eV) and 385nm (3.22 eV)

for the maximum and shoulder, respectively, showing a shift of about 10 nm to shorter

wavelengths. The origins of the low-energy shoulder and peak are discussed below.

Figure 11 shows the calculated emission spectra for [15]CPPE at the same values of

disorder. In the Condon approximation, the emission spectrum for a perfectly ordered

system (σϕ = 0.0) vanishes. We once again see a vanishing of spectral features, as well as an

increase in intensity with increasing disorder. The experimental spectra54 for shorter rings

show two main features: a maximum at about 445 nm (2.79 eV) and a secondary peak at

410 nm (3.02 eV) for [14]CPPE. The wavelengths of the peaks decrease with increasing ring

size, so for [15]CPPE these peaks are expected to be even further blue-shifted. We find in

our calculated spectra a single peak with a shoulder due to the vibronic progression. The

peak is at about 380 nm (3.26 eV), which is 0.24 eV too high in energy for the secondary

peak and 0.47 eV too high for the emission maximum. A small shoulder is located 0.2 eV

below our main peak. This energy shift compared to the experimental spectrum can have

many reasons, one of which being the neglect of bathochromic solvent effects. Furthermore,
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FIG. 10: Absorption spectra for [15]CPPE for different values of disorder, averaged over an en-

semble of 1000 rings, calculated within the Condon approximation. (For the ordered ring the

absorption spectrum is the vibronic progression of the j = ±1 states.)

the discrepancy in the intensities (the low-energy peak in the experiment is about 0.8 times

the intensity of the high-energy peak) shows that the Condon approximation fails to predict

the emission accurately, because of its neglect of the Herzberg-Teller effect.

The peaks seen in the absorption spectrum for the ordered macrocycle (σϕ = 0.0 rad)

correspond to the j = 1 vibronic progression, with j = 0 being a dark state. Once excited,

the exciton relaxes into the j = 0 state and as the transition back to the ground state is

dipole forbidden, it relaxes non-radiatively, resulting in a vanishing emission spectrum. For

disordered systems (σϕ > 0.0 rad) the j = 0 state becomes dipole allowed, and will thus

contribute to the absorption spectrum and give rise to a non-zero emission spectrum.

Figure 6 shows the transition dipole moment of the j = 0 and j = 1 states for both

[15]CPPE and [30]CPPE against disorder, indicating that the j = 0 state gains oscillator

strength before saturating while the j = 1 state loses oscillator strength. We can thus

explain the absorption spectra as follows: the initially dark state j = 0 becomes dipole

allowed with disorder and gains oscillator strength and thus appears at the low-energy edge
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FIG. 11: Emission spectra for [15]CPPE at different disorder, averaged over an ensemble of 1000

rings, calculated within the Condon approximation. (For the ordered ring there is no radiative

transition in the Condon approximation.)

of the absorption spectrum. Since the energy gap between the j = 0 and j = ±1 states

is only 0.09 eV for an ordered ring, these peaks merge as the disorder increases, eventually

forming the low-energy 0-0 shoulder for large disorder. Similarly, as the disorder increases

and the chromophore sizes decrease, the 0-1 transition gains intensity (as shown by Eq.

(21)), and thus the higher energy peak at large disorder is the 0-1 transition to j = 0,±1

states. Likewise, an emission spectrum will only be observed for disordered chains as the

j = 0 state becomes dipole allowed and will continue to gain intensity before saturating.

The blue shift of the absorption spectra with increasing disorder is caused by the exciton

band narrowing, while the increase in the inhomogenous line width is a consequence of

exchange narrowing. Both of these effects are described in detail in Section V.B.3. of ref33.
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FIG. 12: Absorption spectra of [15]CPPE for different amounts of disorder calculated with the fully

quantized Frenkel-Holstein model using a DMRG routine. (For the ordered ring the lowest energy

peak is the Condon-allowed transition to the j = ±1, υ = 0 states, while the higher energy peak

is the Condon-forbidden (i.e., the Herzberg-Teller effect) transition to the j = 0, υ = 1 manifold.

Higher energy vibronic transitions are not computed.)

B. Beyond the Condon Approximation: The Fully Quantized Model

The same system was investigated using the fully quantized model solved using the DMRG

method, as described in Section II B. In contrast to the results above, owing to the computa-

tional costs of the calculations the DMRG results are averaged over 40 different realizations

of the disorder. Figures 12 and 13 show the calculated absorption and emission spectra,

respectively. In general, 35 states were calculated for [15]CPPE. For an ordered ring the

first state corresponds to the j = 0, υ = 0 transition; the second and third states to the

j = ±1, υ = 0 transitions; and the states 4 — 33 correspond to the j = 0, υ = 1 transitions.

(The j = ±1, υ = 1 transitions correspond to states 34 — 93, which are not practical to

calculate.) We note that our DMRG code only computes the 0-0 and 0-1 transitions in

emission.
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FIG. 13: Emission spectra of [15]CPPE for different amounts of disorder calculated using the fully

quantized Frenkel-Holstein model using a DMRG routine. (For the ordered ring the peak at ∼ 2.9

eV is the Herzberg-Teller effect, corresponding to emission from the j = 0, υ = 0 excited state to

the υ = 1 manifold of the ground state.)

The same general trends are reproduced for the absorption spectra as in the Condon

approximation: with increasing disorder we see a broadening of the peaks. In contrast

to the Condon approximation, however, for the ordered ring we now compute a peak at

∼ 3.3 eV (376 nm), which is ∼ 0.1 eV above the lowest absorption peak (that arises from

transitions to the j = ±1, υ = 0 states), and thus ∼ 0.2 eV above the dark j = 0, υ = 0

state. This higher energy peak can be assigned to transitions to the j = 0, υ = 1 manifold,

which borrow their intensity from the j = ±1, υ = 0 state owing to the Herzberg-Teller

effect. This effect is pronounced for low disorder, but quickly smears out from σϕ > 0.2 rad.

We do not observe appreciable intensity from the j = ±1, υ = 1 transitions for the ordered

ring, because as stated above, it is not practical to compute enough states. We think that

the lack of a vibronic progression (because 35 states were computed), as well as averaging

over only 40 realizations of the disorder, explains the differences between Fig. 10 and Fig.

12 for high disorder.
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The emission spectra for high disorder show the same features as the Condon approxi-

mation results, however for the low-disorder limit we see the expected deviation due to the

Herzberg-Teller effect. Most notably, the spectrum for an ordered system does not vanish,

but shows the 0-1 emission transition arising from the Herzberg-Teller effect. For increasing

disorder this effect vanishes, but for small disorder we see a reversal in the I00/I01 intensity

ratio with I01 being more intense (reflecting the results shown in Fig. 8). The Herzberg-

Teller correction has a significant effect on the emission spectra up to disorder comparable to

room temperature, before being smeared by the usual vibronic progression. We also find a

more accurate reproduction of the intensity ratio of the two peaks in the emission spectrum.

The low-energy peak is still significantly less intense, but it is a significant improvement on

the Condon approximation.

VII. SUMMARY AND CONCLUDING REMARKS

This paper describes the optical properties of π-conjugated macrocycles. Since the low-

energy excitations of these systems are Frenkel excitons that couple to high-frequency disper-

sionless phonons, we employed the quantized Frenkel-Holstein model solved via the DMRG

method to determine these optical properties.

First we considered optical emission from perfectly circular systems. Owing to optical

selection rules, such systems radiate via two mechanisms: (i) within the Condon approxima-

tion, by thermally induced emission from the optically allowed j = ±1 states and (ii) beyond

the Condon approximation, by emission from the j = 0 state via coupling with a totally

non-symmetric phonon (namely, the Herzberg-Teller effect). Using perturbation theory, we

derived an expression for the Herzberg-Teller correction and showed via DMRG calculations

that this expression soon fails as ~ω/J and the size of the macrocycle are increased.

Next, we considered the role of broken symmetry caused by static torsional disorder.

In this case the quantum number j no longer labels eigenstates of definite angular mo-

mentum, but instead labels localized local exciton groundstates (LEGSs) or quasi-extended

states (QEESs). As noted for linear polymers, LEGSs define chromophores, with the higher

energy QEESs being extended over numerous LEGSs. Within the Condon approximation

(i.e., neglecting Herzberg-Teller corrections) we showed that increased disorder increases

the emissive optical intensity, because all the LEGSs are optically active. Indeed, for large
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macrocycles with sufficiently large disorder the symmetry between optical absorption and

emission is largely restored. There is still some asymmetry between absorption and emission,

however, because although QEESs participate in the absorption intensity, Kasha’s law im-

plies ultra-fast relaxation from QEESs to LEGSs, whereby only LEGSs are emissive states.

This relaxation from QEESs to LEGSs is the cause of ultra-fast ‘dynamical’ localization and

anisotropic depolarization.

We next considered the combined role of broken symmetry and curvature, namely we

explicitly evaluated the Herzberg-Teller correction via the DMRG method. The Herzberg-

Teller correction is most evident in the emission intensity ratio, I00/I01. In the Condon

approximation I00/I01 is a constant function of curvature, whereas in practice it vanishes for

closed rings and only approaches a constant in the limit of vanishing curvature.32

We calculated the optical spectra of cyclo-poly(para-phenylene ethynylene) for different

amounts of torsional disorder within and beyond the Condon approximation. We showed

how broken symmetry and the Herzberg-Teller effect explain the spectral features. We noted

that the Herzberg-Teller correction to the 0− 1 emission vibronic peak is always significant.

Finally, we noted the qualitative similarities between the optical properties of conforma-

tionally disordered linear polymers and macrocycles in the limit of sufficiently large disorder,

because in both cases they are determined by the optical properties of curved chromophores.

We conclude by returning to the issues of broken symmetry and localization. Some

explanations of ultra-fast fluorescence depolarization in macrocycles in the literature assume

that an initially excited delocalized state becomes localized via self-trapping by vibrational

modes before emitting. As discussed in the Introduction, we do not think that the self-

trapping is the dominant cause of exciton localization. Instead, we think that torsional

disorder Anderson localizes the exciton center-of-mass wavefunction, with higher-energy

states (QEESs) being more delocalized than lower-energy states (LEGSs). Thus, as in

linear polymers, the energetic relaxation of QEESs to LEGSs explains ultra-fast fluorescence

depolarization55.
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APPENDIX A: DERIVATION OF AN EXPRESSION FOR THE HERZBERG-

TELLER EFFECT IN MACROCYCLES

The transition dipole moment between the electronic ground state, |GS, υ⟩, and an excited

state, |EX, υ′⟩, in the vibrational levels υ and υ′ associated with a normal coordinate, Q(k)

is

µυυ′ ≡
⟨
GS, υ

∣∣µ̂∣∣EX, υ′⟩ . (A1)

The Born-Oppenheimer approximation assumes that the full electronic-nuclear wavefunc-

tions may be factorized as,

|GS, υ⟩ ≡ ΨGS

(
r,Q(k)

)
ϕGS
υ

(
Q(k)

)
(A2)

and

|EX, υ′⟩ ≡ ΨEX

(
r,Q(k)

)
ϕEX
υ′

(
Q(k)

)
, (A3)

where the electronic wavefunction, Ψ
(
r,Q(k)

)
, is parameterized by Q(k), while ϕυ

(
Q(k)

)
is

the associated vibrational wavefunction. Here k is the wavenumber of the normal coordinate.

Thus, using Eq. (A2) and Eq. (A3), Eq. (A1) becomes

µυυ′ =

∫
µe(Q

(k))ϕGS
υ

(
Q(k)

)
ϕEX
υ′

(
Q(k)

)
dQ(k), (A4)

where

µe(Q
(k)) =

∫
ΨGS

(
r,Q(k)

)
µ̂ΨEX

(
r,Q(k)

)
dr (A5)

is the electronic transition dipole moment.

Performing a Taylor expansion on µe(Q
(k)) we have

µe

(
Q(k)

)
= µe

(
Q

(k)
0

)
+

∂µe

∂Q(k)

∣∣∣∣
Q

(k)
0

(
Q(k) −Q

(k)
0

)
+ . . . , (A6)

which leads to

µυυ′ = µe

(
Q

(k)
0

)∫
ϕGS
υ

(
Q(k)

)
ϕEX
υ′

(
Q(k)

)
dQ(k)

+
∂µe

∂Q(k)

∣∣∣∣
Q

(k)
0

∫
ϕGS
υ

(
Q(k)

) (
Q(k) −Q

(k)
0

)
ϕEX
υ′

(
Q(k)

)
dQ(k)

+ . . . .

(A7)
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Retaining only the first term on the right-hand-side of Eq. (A7) is the Condon approxi-

mation. If µe

(
Q

(k)
0

)
vanishes for symmetry reasons, as described in Section III, the second

term – the Herzberg-Teller correction – is the leading-order term. The Herzberg-Teller term

does not vanish for non-totally symmetric vibrations (i.e., excited levels of k ̸= 0 modes).

We can further analyse the Herzberg-Teller term using perturbation theory. First, we

consider
∂µe

∂Q(k)

∣∣∣∣
Q

(k)
0

=
∂

∂Q(k)

(∫
ΨGS

(
r, Q(k)

)
µ̂ΨEX

(
r, Q(k)

)
dr

)∣∣∣∣
Q

(k)
0

. (A8)

Due to the large energy gap between the ground and first excited state, we will ignore any

mixing of these states. However, the first excited electronic state (j = 0), which is to-

tally symmetric, will acquire non-totally symmetric character by mixing with higher excited

states. In particular, mixing with the j = ±1 states will render it dipole active. This mixing

occurs via the exciton-phonon coupling term, which in the Frenkel-Holstein model is given

by

V̂ = −A~ω
N∑

n=1

Qnâ
†
nân. (A9)

For cyclic systems, the local displacement, Qn, is expressed as a Fourier expansion of the

normal coordinates,

Qn =
∑
k

Q(k) e
−ikn

√
N

. (A10)

Considering only mixing between the j = 0 and the j = ±1 states, we can express the

perturbed wavefunction as,

Ψj=0(Q
(k)) = Ψj=0 +

∑
j=±1

⟨
Ψj=0

∣∣∣V̂ ∣∣∣Ψj

⟩
∆E0j

Ψj + · · · . (A11)

Evaluating the matrix element in Eq. (A11) using Eq. (24) gives⟨
Ψj=0

∣∣∣V̂ ∣∣∣Ψj=±1

⟩
= −A~ω√

N
Q(k), (A12)

where only the k = ±2π/N terms in Eq. (A10) contribute. Thus, the perturbed j = 0

wavefunction is

Ψj=0(Q
(k=±2π/N)) ≈ Ψj=0 −

∑
j=±1

A~ω√
N∆E0j

Q(k=±2π/N)Ψj. (A13)

Finally, using Eq. (20), the electronic transition dipole moment with the groundstate is

µe(Q
(k)) = − A~ω√

N∆E0j

Q(k) × µ0

√
N

2
(A14)
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for each spatial component.

The electronic contribution to the Herzberg-Teller term is thus

∂µe

∂Q(k)
= −µ0A~ω

2∆E0j

. (A15)

As discussed in Section III,

∆E0j = 2J

(
1− cos

(
2π

N

))
≈ J

(
2π

N

)2

; N ≫ 1, (A16)

and as I01 ∝ |µ01|2, we find that

I01 ∝ µ2
0A

2

(
~ω
J

)2

×N4 × µ2
vib. (A17)

The vibrational contribution, µvib, is given by the matrix element

µvib =

∫
ϕGS
υ

(
Q(k)

) (
Q(k) −Q

(k)
0

)
ϕEX
υ′

(
Q(k)

)
dQ(k). (A18)

Since
⟨
Ψj=0

∣∣Q(k ̸=0)
∣∣Ψj=0

⟩
= 0, the j = 0 excited state potential energy surface of a non-

totally symmetric normal coordinate is not displaced relative to the ground state potential

energy surface56. Thus, the evaluation of Eq. (A18) gives

µvib = (υ/2)1/2δυ,υ′+1, (A19)

(recalling that Q is the dimensionless normal coordinate). Finally, taking υ′ = 0 for the

j = 0 excited electronic state and υ = 1 for the electronic groundstate, we have the 0 − 1

emission intensity from the j = 0 state,

I01 ∝ N4µ2
0A

2

(
~ω
J

)2

. (A20)
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Comments

• Equation (A20) is only valid to first order in perturbation theory and therefore we

require ∣∣∣∣A~ω√
N

Q(k)

∣∣∣∣ ≪ ∆E0j, (A21)

or (
~ω
J

)
A

N3/2
≪ 1. (A22)

Departures from this prediction are shown in Fig. 3.

• Equation (A20) is valid to all orders of the Taylor expansion of µe(Q
(k)), because the

same result is obtained by using Eq. (A14) directly in Eq. (A5).

• Equation (A20) also applies to the 0-1 absorption into the j = 0 state, as discussed in

Section VIB.

APPENDIX B: THE ELECTRONIC TRANSITION DIPOLE MOMENT OF A

CURVED CHROMOPHORE IN THE CONDON APPROXIMATION

In the Condon approximation the electronic transition dipole moment is

µ =
∑
n=1

µ
n
Ψ(n), (B1)

where µ
n
is the transition dipole moment on monomer n and Ψ(n) is the exciton center-of-

mass wavefunction.

µ
n
= µ0r̂n, (B2)

where r̂n is the unit vector denoting the orientation of the nth monomer and µ0 is the

transition dipole moment of a single monomer. To a good approximation, for a LEGS we

may assume a plane-wave center-of-mass wavefunction, i.e., Ψ(n) = 1/
√
CL, where CL is

the conjugation length (or chromophore size) in units of the monomer length. Then,

µ
j
(N) =

µ0√
CL

∑
n∈CL

r̂n, (B3)

where the sum is over all monomers spanned by the LEGS (i.e., the chromophore). Equation

(B3) indicates that in the Condon approximation the electronic transition dipole moment is
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the coherent sum of the monomeric transition dipole moments, where

L =
∑
n∈CL

r̂n (B4)

is the chord (in units of the monomer length) spanning the chromophore, as shown in Fig.

7. Thus, the square of the transition dipole moment is

|µ|2 = µ2
0

(
L2

CL

)
. (B5)

For θ ≤ π (as defined in Fig. 7), L = 2R sin(θ/2) (with R, the radius, is in units of the

monomer length) and thus using CL = Rθ,

|µ|2 = 4µ2
0

(
R sin2(θ/2)

θ

)
. (B6)

For θ ≪ 1 Eq. (B6) becomes,

|µ|2 = µ2
0CL(1− θ2/12 + · · · ), (B7)

showing that curvature reduces the oscillator strength for an almost straight chromophore.

Likewise, for θ > π,

|µ|2 = 4µ2
0

(
R sin2(π − θ/2)

θ

)
(B8)

and for (2π − θ) ≪ 1

|µ|2 = µ2
0

(2πR− CL)2

CL
, (B9)

showing that the oscillator strength vanishes if the chromophore spans the ring.

APPENDIX C: CURVED CHROMOPHORES AND THE HERZBERG-TELLER

EFFECT

We write the transition dipole moment from the zeroth vibrational level of the lowest

excited electronic state to the first vibrational level of the electronic ground state as

µ01 = µC
01 + µHT

01 , (C1)

where µC
01 is the Condon contribution (given by the first term on the right-hand side of Eq.

(A7)), while µHT
01 is the Herzberg-Teller correction to the Condon term. Since I01 ∝ µ2

01,

I01 = IC01 + 2(IC01I
HT
01 )1/2 + IHT

01 . (C2)
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As shown previously,33,43 in the Condon approximation the I00/I
C
01 emission intensity

ratio is
I00
IC01

=
IPR

S(1)
, (C3)

where the inverse participation ratio, IPR, is defined in Eq. (12) and S(1) is the Huang-

Rhys parameter for a single monomer. Since I00 arises from the coherent sum of monomer

transition dipole moments (i.e., I00 ≡ IC00; see Appendix A and Appendix B), which tends

to vanish as the chromophore becomes more curved, Eq. (C2) and Eq. (C3) indicate that

curvature and Herzberg-Teller corrections determine I01.

Now, if the LEGS wavefunction is uniformly distributed over part of the macrocycle

spanned by θ, then its associated optical intensity, being proportional to the square of

transition dipole moment, is given by the expressions in Appendix B. Moreover, IPR is

proportional to the conjugation length, CL, where CL = Rθ. Thus, using Eq. (C3), Eq.

(B6) or Eq. (B8), and rearranging Eq. (C2) we find,

I00
I01IPR

=
1(

S(1) + 2 (S(1)B)1/2 θ
2 sin(θ/2)

+B
(

θ
2 sin(θ/2)

)2
) (C4)

for 0 ≤ θ ≤ π and

I00
I01IPR

=
1(

S(1) + 2 (S(1)B)1/2 θ
2 sin(π−θ/2)

+B
(

θ
2 sin(π−θ/2)

)2
) (C5)

for π < θ ≤ 2π, whereB ∝ IHT
01 . When the LEGSs almost span the ring, i.e., for (2π−θ) ≪ 1,

Eq. (C5) becomes

I00
I01IPR

=
1(

S(1) + 2 (S(1)B)1/2 θ
(2π−θ)

+B
(

θ
(2π−θ)

)2
) , (C6)

which evidently vanishes when θ = 2π.

Equation (C5), derived in the adiabatic (Born-Oppenheimer) limit, is in qualitative agree-

ment with Eq. (24) of Hestand and Spano32, derived in the anti-adiabatic limit. As shown in

Section III B, in the anti-adiabatic limit the Herzberg-Teller term, B, becomes independent

of ~ω/J , making the agreement with ref32 more quantitative.
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