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We propose a theory to explain optical trapping by optical vortices (OVs), which are emerging as

important tools to trap mesoscopic particles. The common perception is that the trapping is solely due to

the gradient force and that it may be characterized by three real force constants. However, we show that

the OV trap can exhibit complex force constants, implying that the trapping must be stabilized by ambient

damping. At different damping levels, particles exhibit remarkably different dynamics, such as stable

trapping and periodic and aperiodic orbital motions.
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Optical tweezers are a powerful tool for trapping meso-
scopic objects [1]. Applications of optical tweezers range
from the trapping and cooling of atoms to capturing large
molecules such as DNA and microscopic particles and
biological objects [2–4]. As new methods to create beam
profiles are being introduced, more exotic beams are used
to trap particles and many of them, known as optical
vortices (OVs), have angular momentum (AM) [5–14].
We show that although the conventional stiffness constant
approach works for a Gaussian beam [15,16], the theory of
trapping by an OV is more complex. In the conventional
approach, optical traps are usually characterized by three
stiffness constants along the three principal axes. Although
this approach is quite accurate in describing ordinary opti-
cal tweezers, we shall see that for an OV, the principal axes
are not even ‘‘real’’. The theoretical procedure to obtain the
principal axes is to diagonalize the force constant matrix,
Kij ¼ @flight;i=@xj, at equilibrium, where flight;i and xi are,

respectively, the ith Cartesian component of the optical
force and the particle displacement away from the equilib-
rium position. The eigenvalues of the force constant matrix
give the eigen force constants (EFCs, or trap stiffness),
while the eigenmodes determine the principal axes. We use
force constant matrix formalism to study OV trapping [17–
23] and find that the difference between the conventional
approach and our treatment is a qualitative one, to the
extent that the EFCs can be complex numbers and we
have to abandon concepts such as the parabolic potential
for the transverse directions. By analyzing the stability and
by simulating the dynamics of a particle trapped by OVs, it
is found that the trapping stability of OVs generally de-
pends on the ambient damping. In particular, in the pres-
ence of AM, the optical trapping may exhibit a fascinating
variety of phenomena ranging from ‘‘opto-hydrodynamic’’
trapping (where the trapping is stabilized by the ambient
damping) to supercritical Andronov-Hopf bifurcation
(where a periodic orbit is created as ambient damping
decreases) [24].

To illustrate the basic idea, let us start from the linear
stability analysis. Consider a trapped particle, near an
equilibrium trapping (zero-force) position. The optical

and damping forces are F
* ¼ md2�x

*
=dt2 � K

$
�x

* �
�d�x

*
=dt, where m is the mass of the particle, �x

*
is the

particle’s displacement from the equilibrium, K
$
�x

*
is the

optical force, and � is the ambient damping constant. Here
we neglect the thermal fluctuation, as it is small compared
to the optical force for an intense laser. The eigenvalues,Ki,

of the force matrix, K
$
, are precisely the EFCs and the

eigenvectors of K
$

are the eigenmodes. For a trapping
beam propagating along ẑ, the force constant matrix has
the general form

K
$ ¼

a d 0
g b 0
e f c

2
64

3
75; (1)

where all elements are real numbers. The elements
@flight;x=@z and @flight;y=@z are zeros by symmetry, because

there is no induced force along the transverse plane as the
particle is displaced along ẑ. The elements e and f are also
zero by symmetry in Laguerre Gaussian (LG) and
Gaussian beams, but as they do not enter into in the
following discussion of the eigenvalues, we will not spec-
ify their values. The diagonal elements, a, b, and c, char-
acterize three restoring forces, which are usually taken as
the three stiffness constants in the conventional approach
[25]. The off-diagonal elements, d and g, characterize the
rotational torques: as the particle is displaced along x (y), it
experiences a torque that manifests as a force along the y
(x) direction. As an OV carries orbital AM, the beam
energy propagates spirally along the beam axis, resulting
in a rotating energy flux in the transverse plane. This
rotating energy flux exerts a torque on the particle, imply-
ing nonzero matrix components d and g. On the other hand,
d ¼ g ¼ 0 for beams that have no AM.
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By diagonalizing Eq. (1), we obtain three EFCs:

Kaxial ¼ c and Ktrans� ¼ ½aþ b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� bÞ2 þ 4dg
p �=2.

Conservative mechanical systems can be described by the
potential energy,U, and their force constant matrix is a real
symmetric matrix (i.e.,Kij ¼ �@2U=@xi@xj ¼ Kji). It

then follows that all eigenvalues are real. However, the
optical force is nonconservative as the particle can obtain

energy from the beam, and its K
$

is, in general, a real but
nonsymmetric matrix. Consequently, its eigenvalues can
have conjugate pairs of complex numbers. It can be seen
that when

� 4dg > ða� bÞ2; (2)

Ktrans�’s are a conjugate pair of complex numbers. Thus, in
general, an optically trapped particle may not be charac-
terized by three real force constants if the beam has AM.
For beams that have no AM, d ¼ g ¼ 0, all the EFCs are
real numbers. On the other hand, an OV beam, well known
for its AM characteristic, leads to nonzero d and g, and
thus (2) can be fulfilled under certain conditions. The
existence of complex EFCs implies that the common no-
tion of a parabolic potential in an optical trap is no longer
meaningful. Whether or not complex EFCs occur depends
on the competition between the beam asymmetry and the
AM. Equation (2) cannot be fulfilled when ja� bj is large.
Since a and b are the restoring force constants for the x and
y directions, respectively, a large ja� bj implies a large
asymmetry between the two coordinate axes. The under-
lining physics is that, with large asymmetry, the beam can
pin a particle to one of its axes, preventing it from ‘‘fall-
ing’’ into the OV. On the contrary, if there is weak or no
asymmetry (ja� bj ’ 0), the trapped particle is not tied to
the coordinate axis, and will thus be pushed to rotate by the
OV. As a result, its AM and energy will accumulate. If
there is no dissipation (� ¼ 0), the particle will orbit
around the beam center with increasing speed and even-
tually escape from the trap [26]. We therefore conclude
that, in general, the OV trapping cannot be achieved solely
by light. It is the dissipation in the suspending medium that
keeps the particle’s kinetic energy and AM bounded, ren-
dering the particle trapped [26]. Such a state of OV trap-
ping is believed to be what the experiments observed,
instead of pure gradient force trapping. For the case of
circularly polarized beams (LG or Gaussian), cylindrical
symmetry mandates that ja� bj ¼ 0, implying that the
transverse EFCs are always complex. This means that
circularly polarized beams cannot trap a particle without
the dissipation of the medium in which the particle is
dispersed. More mathematical details can be found in our
online materials [27].

We now proceed to show, using heavy numerical simu-
lations, concrete examples in which the EFCs are indeed
complex. We model the incident trapping beam by using
the highly accurate generalized vector Debye integral
[28,29], where the focusing of the incident laser beam by
the high numerical aperture (NA) object lens is treated

using geometrical optics, and then the focused field near
the focal region is obtained using the angular spectrum
representations. The use of geometrical optics in beam
focusing is fully justified as the lens is macroscopic in
size, and all remaining parts of our theory employ classical
electromagnetic optics. With the strongly focused beam
given by the vector Debye integral, Mie theory is then used
to calculate the scattered field, and then Maxwell stress
tensor formalism is used to compute the optical force
[30,31]. We note that the formalisms we use have been
proven to agree well with experiments [15,16,29,32].
Figure 1(a) shows Ktrans� for an LG beam focused by a
high NA water immersion objective. The beam is linearly
polarized with wavelength � ¼ 1064 nm, topological
charge l ¼ 1, NA ¼ 1:2, and filling factor f ¼ 1. The
trapping is in water ("water ¼ 1:332) and the sphere is
made of polystyrene ("sphere ¼ 1:572 and mass density � ¼
1050 kgm�3). The axial EFC is not plotted, as it is always
real and negative, indicating that the particle can be
trapped along the axial direction solely by gradient forces.
It can be clearly seen from Fig. 1(a) that at certain ranges of
particle sizes, ImfKtrans�g � 0, and this numerical result
reflects the assertion that the OV trap cannot be character-
ized by three real force constants in general. At these
particle sizes, Ktransþ ¼ K�

trans�, and the two curves corre-
sponding to RefKtrans�g merge together. We note that only
the absolute value of ImfKtrans�g is plotted in Fig. 1(a).
When the EFCs are all real numbers, the behavior of the
trapped particle is qualitatively similar to that of the ordi-
nary optical trapping by conventional optical tweezers.
This corresponds to the scenario that either the beam’s
AM is weak (small d and g), or the asymmetry of the
beam (ja� bj) is large. We note that the existence of the
region where ImfKtrans�g � 0 implies that in low viscosity
media, only particles of certain sizes can be trapped. For
complex EFCs, the eigenmodes corresponding to the com-
plex EFCs are [27]

�x
*
�ðtÞ ¼ A�e�Imð��ÞtfReðV*Þ sin½Reð��Þtþ���

þ ImðV*Þ cos½Reð��Þtþ���g; (3)
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FIG. 1 (color online). The incident beam is a linearly polarized
LG beam with � ¼ 1064 nm, l ¼ 1, f ¼ 1, and NA ¼ 1:2.
(a) The transverse EFCs. (b) Phase diagram for a particle trapped
at a power of 1 W. The white (red) regions are stable (unstable).
The black line marks �critical.
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where V
*
is the eigenvector corresponding to eigenvalue Ki

of the force constant matrix, K
$
. fA�;��g are determined

from the initial conditions, and

Reð��Þ ¼ �ð�R
2 þ�I

2Þ1=4 sinð�=2Þ=2m;

Imð��Þ ¼ �� ð�R
2 þ�I

2Þ1=4 cosð�=2Þ=2m;
(4)

� ¼
�
tan�1ð�I=�RÞ; if �R > 0;
�� tan�1ð�I=j�RjÞ; if �R < 0;

(5)

where �I ¼ 4mImfKig and �R ¼ �2 þ 4mRefKig. The
modes are stable if and only if both Imð��Þ> 0. If
RefKig> 0, one of the two modes is always unstable
such that, upon small perturbation, the particle will spiral
outward and leave the trap. If RefKig< 0, the mode is

unstable for � < �critical ¼
ffiffiffiffi
m

p jImfKigj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijRefKigj

p
. How-

ever, this equilibrium can be stabilized by increasing � to
beyond �critical. We label this kind of mode as a quasistable
mode, in which the stability of the mode depends on the
ambient damping. The complex modes described by
Eq. (3) correspond to spiral motions, which means that
the particle acquires AM from the beam. The converse is
also true: these spiral modes can exist only when the
particle can acquire AM. We note that the particle can
acquire AM from the beam because the Poynting vector
of an OV propagates spirally along the beam axis, resulting
in a rotating energy flux in the transverse plane. This
rotating energy flux exerts a torque on the particle, imply-
ing the transfer of angular momentum from the beam to the
particle.

We note in Fig. 1 that in our specific example,
RefKtrans�g> 0, for sphere radius R< 0:36 �m [the ra-
dius of the intensity ring �0:33 �m, see Fig. 2(a)], which
means that small dielectric particles are unstable, as re-
ported by experiments [14]. We note that in previous
experiments on the trapping of a strongly absorptive par-
ticle, the particle is unstable along the axial direction.
Accordingly, other forces, such as a repulsive force from
a substrate, are needed to stabilize the particle. However, in
this Letter, we consider transverse optical trapping. Our
conclusion is thus valid irrespective of the nature of the
axial trapping. The small dielectric particles are attracted
by the high intensity ring and, under sufficient damping,
these small particles will orbit along the ring [14]. On the
other hand, RefKig< 0 for R> 0:36 �m. The sphere is
bigger than the intensity ring, so that the gradient force
drives the sphere to the beam center. A phase diagram for
the optically trapped particle is given in Fig. 1(b). At R ¼
0:36 �m, �critical ! 1 as RefKtrans�g ! 0. The equilib-
rium point at ðx; yÞ ¼ ð0; 0Þ is unstable for R< 0:36 �m
at any value of damping. For R> 0:36 �m, the white
(shaded) region where � > �critical (� < �critical) is the
regime where the damping is sufficient (insufficient) to
stabilize the particle. We note that when the EFC is real,
no damping is required for stability since �critical ¼ 0.
According to Stoke’s law, the damping constant of water

and air are, respectively, 1:9� 104R (pN �s=�m2) and
3:3� 102R (pN �s=�m2). The damping of water is much
larger than �critical plotted in Fig. 1(b), and thus unless we
use high laser power, we shall observe stable trapping in
water, in agreement with existing experiments. The damp-
ing of air is of the same order of magnitude of �critical

plotted in Fig. 1(b). Consequently, for an experiment con-
ducted in air, we shall be able to see the transition between
the stable and unstable state, depending on the laser power
employed.
It is now clear that a particle trapped by an OV is stable if

�> �critical and unstable if � < �critical. Nevertheless, the
case of � � �critical is nonhyperbolic (the linear term van-
ishes), and thus the higher order terms are important. In
that case, we numerically integrate the full equation of

motion, md2�x
*
=dt2 ¼ f

*

light � �d�x
*
=dt, using an adap-

tive time step Runge-Kutta-Verner algorithm [30]. Fig-
ure 2(a) shows the field intensity on the focal plane for a
right circularly polarized LG beam, with a dark central spot

FIG. 2 (color online). (a) The focal plane intensity (arbitrary
units) of a right polarized LG beam with � ¼ 1064 nm, l ¼ 1,
f ¼ 1, and NA ¼ 1:2. (b)–(f) The trajectory (blue [dark gray])
of a 1-micron-diameter particle trapped by a 550 mW beam. The
red dotted lines show the approximate radius of the intensity ring
of the trapping beam. The damping constants � for each panel, in
units of pN �s=�m, are given by (b) 550, (c) 110, (d) 55, (e) 5.5,
and (f) 0. The arrows in (b) and (f) indicate the direction of
motion.
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and a high intensity ring of radius �0:33 �m. Fig-
ures 2(b)–2(f) show the trajectories of a 1-�m-diameter
particle illuminated by the LG beam (power ¼ 550 mW),
in the order of decreasing damping. When there is strong
damping, as shown in Fig. 2(b) where � ¼
550 pN�s=�m, the trapped sphere exhibits damped os-
cillation upon small perturbation and settles into a stable
equilibrium position. For weaker damping, the sphere ini-
tially spirals outward and then settles into a periodic cir-
cular orbit [see Fig. 2(c) where � ¼ 110 pN�s=�m].
Such bifurcation of a stable equilibrium into an unstable
equilibrium and a stable periodic orbit is known as a
supercritical Andronov-Hopf bifurcation [24,30]. If we
further reduce the damping, the radius of the circular orbit
increases, as shown in Fig. 2(d) where � ¼ 55 pN�s=�m.
If the damping decreases further, the particle goes into an
exotic orbit around the intensity ring, as shown in Fig. 2(e)
where � ¼ 5:5 pN�s=�m. When there is no damping
[see Fig. 2(f), � ¼ 0 pN�s=�m], the particle initially
fluctuates around the equilibrium with increasing ampli-
tude and eventually escapes from the trap due to the
accumulation of AM. If a small imaginary part is added
to the dielectric constant of the particle, the scattering and
absorption force will be enhanced. As a result the particle
is being pushed to move further away from the focus,
where the angular momentum density is weaker, and this
will result in a slower rate of angular momentum transfer.
In other words, a small amount of absorption may in fact
favor the transverse trapping, though it degrades the axial
trapping. Finally, we note that with absorption, the particle
will also spin along its own axis.

Our analysis reveals that the EFCs for a beam with AM
can be complex numbers. In the case of complex EFCs,
when there is sufficient (insufficient) damping, a particle
can (cannot) be stably trapped. There is an intermediate
range of damping in which the particle will be driven into
exotic periodic or aperiodic orbital motions. Finally, we
note that as the ambient damping force plays an important
role in OV trapping, it should be more accurately termed
‘‘opto-hydrodynamic trapping’’.

We have also applied this stability analysis to other types
of focused beams [27] with different NA, and we have
found that we can observe complex EFCs whenever the
beam has AM.
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