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Abstract. We consider the synthesis of optimal controls for continuous

feedback systems by recasting the problem to a hybrid optimal con-

trol problem: to synthesize optimal enabling conditions for switching be-

tween locations in which the control is constant. An algorithmic solution

is obtained by translating the hybrid automaton to a finite automaton

using a bisimulation and formulating a dynamic programming problem

with extra conditions to ensure non-Zenoness of trajectories. We show

that the discrete value function converges to the viscosity solution of the

Hamilton-Jacobi-Bellman equation as a discretization parameter tends

to zero.

1 Introduction

The goal of this paper is the development of a computationally appealing tech-
nique for synthesizing optimal controls for continuous feedback systems ẋ =
f(x, u), by reducing substantially the complexity of the problem. This goal is
achieved by virtue of recasting the problem to a hybrid optimal control problem.
The hybrid problem is obtained by approximating the control set U ⊂ IRm by a
finite set Σ ⊂ U and defining vector fields for the locations of the hybrid system
of the form f(x, σ), σ ∈ Σ; that is, the control is constant in each location. The
hybrid control problem is, then, to synthesize an optimal switching rule between
locations, or equivalently, optimal enabling conditions, such that a target set
Ωf ⊂ Ω is reached while a hybrid cost function is minimized, for each initial
condition in a specified set Ω ⊂ IRn.

Casting the problem into the domain of hybrid control is not appealing per
se, on the contrary! Algorithmic approaches for solving the controller synthesis
problem for specific classes of hybrid systems have appeared [8, 12] but no gen-
eral, efficient algorithm is yet available. Hence, to be able to solve the (nonlinear)
hybrid optimal control problem, we must exploit some additional property. We
have a feasible and quite appealing approach if we can translate the problem
to an equivalent discrete problem, which abstracts completely the continuous
behavior. This translation is possible if we can construct a finite bisimulation
defined on the hybrid state set. The bisimulation can be constructed using the
geometric approach reported in [4], based on the following key assumption: n−1
local (on Ω) first integrals can be expressed analytically for each vector field



f(x, σ), σ ∈ Σ. This assumption is imposed in the transient phase of a feedback
system’s response, when the vector field is non-vanishing and local first inte-
grals always exist, though analytical expressions for them may not be readily
computable.

If the assumption is met, then we can transform the hybrid system to a finite
automaton. The control problem posed on the finite automaton is to synthesize
a discrete supervisor, providing a switching rule between automaton locations,
that minimizes a discrete cost function approximating the original cost function,
for each initial discrete state. We provide a dynamic programming solution to
this problem, with extra constraints to ensure non-Zenoness of the closed-loop
trajectories. By imposing non-Zeno conditions on the synthesis we obtain piece-
wise constant controls. The discrete value function depends on the discretizations
of U and of Ω using the bisimulation. We quantify these discretizations by pa-
rameters δ and δQ, respectively. The main theoretical contribution is to show
that as δ, δQ → 0, the discrete value function converges to the unique viscosity
solution of the Hamilton-Jacobi-Bellman (HJB) Equation.

There is a similarity between our approach to optimal control and regular
synthesis, introduced in [2], in the sense that both restrict the class of controls
to a set that has some desired property and both use a finite partition to define
switching behavior. Our work provides a constructive approach to obtain the
cell decomposition by using a finite bisimulation, which further allows us to
formulate the synthesis problem on its quotient system - a finite automaton.
The idea of using a time abstract model formed by partitioning the continuous
state space has been pursued in a number of papers recently. Lemmon, Antsaklis,
Stiver and coworkers [10] use a partition of the state space to convert a hybrid
model to a discrete event system (DES). This enables them to apply controller
synthesis for DES’s to synthesize a supervisor. While our approach is related to
this methodology, it differs in that we have explicit conditions for obtaining the
partition. In [9] hybrid systems consisting of a linear time-invariant system and
a discrete controller that has access to a quantized version of the linear system’s
output is considered. This approach suffers from spurious solutions that must be
trimmed from the automaton behavior. Hybrid optimal control problems have
been studied in papers by Witsenhausen [11] and Branicky, Borkar, Mitter [3].
These studies concentrate on problems of well-posedness, necessary conditions,
and existence of optimal solutions but do not provide algorithmic solutions.

2 Optimal control problem
Notation. 1(·) is the indicator function. cl(A) denotes the closure of set A.
‖ · ‖ denotes the Euclidean norm. Let C1(IRn) and X (IRn) denote the sets of
continuously differentiable real-valued functions and smooth vector fields on IRn,
respectively. φt(x0, µ) denotes the trajectory of ẋ = f(x, µ) starting from x0 and
using control µ(·).

Let U be a compact subset of IRm, Ω an open, bounded, connected subset
of IRn, and Ωf a compact subset of Ω. Define Um to be the set of measurable
functions mapping [0, T ] to U . We define the minimum hitting time T : IRn ×
Um → IR+ by



T (x, µ) :=

{

∞ if {t | φt(x, µ) ∈ Ωf } = ∅
min{t | φt(x, µ) ∈ Ωf} otherwise.

(1)

A control µ ∈ Um specified on [0, T ] is admissible for x ∈ Ω if φt(x, µ) ∈ Ω for
all t ∈ [0, T ]. The set of admissible controls for x is denoted Ux. Let

R := { x ∈ IRn | ∃µ ∈ Ux. T (x, µ) <∞ }.

We consider the following optimal control problem. Given y ∈ Ω,

minimize J(y, µ) =

∫ T (y,µ)

0

L(x(t), µ(t))dt + h(x(T (y, µ))) (2)

subject to ẋ = f(x, µ), a.e. t ∈ [0, T (y, µ)] (3)

x(0) = y (4)

among all admissible controls µ ∈ Uy. J : IRn × Um → IR is the cost-to-go
function, h : IRn → IR is the terminal cost, and L : IRn × IRm → IR is the
instantaneous cost. At T (y, µ) the terminal cost h(x(T (y, µ))) is incurred and
the dynamics are stopped. The control objective is to reach Ωf from y ∈ Ω with
minimum cost.
Assumption 2.1.

(1) f : IRn×IRm → IRn satisfies ‖f(x′, u′)−f(x, u)‖ ≤ Lf

[

‖x′−x‖+‖u′−u‖
]

for some Lf > 0. Let Mf be the upper bound of ‖f(x, u)‖ on Ω × U .
(2) L : IRn×IRm → IR satisfies |L(x′, u′)−L(x, u)| ≤ LL

[

‖x′−x‖+‖u′−u‖
]

and 1 ≤ |L(x, u)| ≤ML, x ∈ Ω, u ∈ U , for some LL,ML > 0.
(3) h : IRn → IR satisfies |h(x′) − h(x)| ≤ Lh‖x′ − x‖ for some Lh > 0, and

h(x) ≥ 0 for all x ∈ Ω. Let Mh be the upper bound of |h(x)| on Ω.

The value function or optimal cost-to-go function V : IRn → IR is given by
V (y) = inf

µ∈Uy

J(y, µ)

for y ∈ Ω \Ωf , and by V (y) = h(y) for y ∈ Ωf . A control µ is called ε-optimal
for x if J(x, µ) ≤ V (x) + ε. It is well-known [7] that V satisfies the Hamilton-
Jacobi-Bellman (HJB) equation

− inf
u∈U

{

L(x, u) +
∂V

∂x
f(x, u)

}

= 0 (5)

at each point of R at which it is differentiable. The HJB equation is an infinites-
imal version of the equivalent Dynamic Programming Principle (DPP) which
says that

V (x) = infµ∈Ux

{

∫ t

0 L(φs(x, µ), µ(s))ds + V (φt(x, µ))

}

, x ∈ Ω \Ωf

V (x) = h(x) x ∈ Ωf .

The subject of assiduous effort has been that the HJB equation may not have a
C1 solution. This gap in the theory was closed by the inception of the concept
of viscosity solution [6], which can be shown to provide the unique solution of
(5) without any differentiability assumption. In particular, a bounded uniformly
continuous function V is called a viscosity solution of HJB provided, for each
ψ ∈ C1(IRn), the following hold:



(i) if V − ψ attains a local maximum at x0 ∈ IRn, then

− inf
u∈U

{

L(x0, u) +
∂ψ

∂x
(x0)f(x0, u)

}

≤ 0,

(ii) if V − ψ attains a local minimum at x1 ∈ IRn, then

− inf
u∈U

{

L(x1, u) +
∂ψ

∂x
(x1)f(x1, u)

}

≥ 0.

Assumption 2.2. For every ε > 0 and x ∈ R, there exists Nε > 0 and
an admissible piecewise constant ε-optimal control µ having at most Nε

discontinuities and such that φt(x, µ) is transverse to ∂Ωf .

The transversality assumption implies that the viscosity solution is contin-
uous at the boundary of the target set, a result needed in proving uniform
continuity of V . The finite switching assumption holds under mild assumptions
such as Lipschitz continuity of the vector field and cost functions, and is based
on approximating measurable functions by piecewise constant functions.

3 Hybrid system

The approach we propose for solving the continuous optimal control problem first
requires a mapping to a hybrid system and, second, employs a bisimulation of
the hybrid system to formulate a dynamic programming problem on the quotient
system. In this section we define the hybrid optimal control problem. First, we
discretize U by defining a finite set Σδ ⊂ U which has a mesh size

δ := sup
u∈U

min
σ∈Σδ

‖u− σ‖.

We define the hybrid automaton H := (Σ × IRn, Σ,D,Eh, G,R) with the
following components.

State set Σ × IRn consists of the finite set Σ = Σδ ∪ {σf} of control locations
and n continuous variables x ∈ IRn. σf is a terminal location when the
continuous dynamics are stopped (in the same sense that the dynamics are
“stopped” in the continuous optimal control problem).

Events Σ = Σδ ∪ {σf} is a finite set of control event labels.
Vector fields D : Σ → X (IRn) is a function assigning an autonomous vector

field to each location. We use the notation D(σ) = fσ.
Control switches Eh ⊂ Σ × Σ is a set of control switches. e = (σ, σ′) is a

directed edge between a source location σ and a target location σ′. If Eh(σ)
denotes the set of edges that can be enabled at σ ∈ Σ, then Eh(σ) :=
{(σ, σ′) | σ′ ∈ Σ \ σ} for σ ∈ Σδ and Eh(σf ) = ∅. Thus, from a source
location not equal to σf , there is an edge to every other location (but not
itself), while location σf has no outgoing edges.

Enabling conditions G : Eh → {ge}e∈Eh
is a function assigning to each edge

an enabling (or guard) condition g ⊂ IRn. We use the notation G(e) = ge.



Reset conditions R : Eh → {re}e∈Eh
is a function assigning to each edge a

reset condition, re : IRn → 2IRn

, where we use the notation R(e) = re.

Semantics. A state is a pair (σ, x), σ ∈ Σ and x ∈ IRn. In location σ ∈ Σδ the
continuous state evolves according to the vector field f(x, σ). In location σf , the
vector field is ẋ = f(x, µf ) where µf is the (not necessarily constant) control of
the terminal location. Trajectories of H evolve in steps of two types. A σ-step is

a binary relation
σ
→⊂ (Σ× IRn)× (Σ× IRn), and we write (σ, x)

σ′

→ (σ′, x′) iff (1)

e = (σ, σ′) ∈ Eh, (2) x ∈ ge, and (3) x′ = re(x). The transition (σ, x)
σ′

→ (σ′, x′)
is taken at the first time in location σ when the control event label is σ′ and
x ∈ ge for e = (σ, σ′). A t-step is a binary relation

t
→⊂ (Σ × IRn) × (Σ × IRn),

and we write (σ, x)
t
→ (σ′, x′) iff (1) σ = σ′, (2) at t = 0, x′ = x, and (3) for

t ≥ 0, x′ = φt(x, σ), where φ̇t(x) = f(φt(x, σ), σ). A hybrid control is a finite
or infinite sequence of labels ω = ω1ω2 . . ., with ωi ∈ Σ ∪ IR+. ωi ∈ IR+ is the
duration of the t-step at step i. The set of hybrid controls is denoted S. A hybrid
trajectory π over ω ∈ S is a finite or infinite sequence π : (σ0, x0)

ω1→ (σ1, x1)
ω2→

(σ2, x2)
ω3→ . . . where (σi, xi) ∈ Σ × IRn. Trajectory π is accepted by H iff ∀i,

(σi, xi)
ωi+1
→ (σi+1, xi+1) is either a t-step or σ-step of H . Let π be the trajectory

(not necessarily accepted by H) starting at (σ, x) ∈ Σ × Ω and defined over
ω ∈ S. We say ω is admissible for (σ, x) on interval [0, T ] if (1) π remains in
Σ ×Ω for t ∈ [0, T ], and (2) corresponding to ω is a piecewise constant control
µω(t) (with a finite number of discontinuities in finite time). Let S(σ,x) be the
set of admissible controls for (σ, x).

3.1 Hybrid optimal synthesis

We want to synthesize enabling conditions so that for each y ∈ R, the cost-to-
go from y well-approximates the viscosity solution at y of HJB. This requires
posing a hybrid optimal synthesis problem. We define a hybrid cost-to-go function
JH : Σ × IRn × S → IR as follows. For ω ∈ S(σ,x),

JH((σ, x), ω) = J(x, µω).

The hybrid value function VH : Σ × IRn → IR is

VH ((σ, x)) = inf
ω∈S(σ,x)

JH((σ, x), ω).

Hybrid optimal synthesis problem:

Given H and 0 < ε1 < ε2, synthesize ge, e ∈ Eh, subject to:

1. ge = Ωf if e = (σ, σf ), σ ∈ Σδ.
2. For each e ∈ Eh, ge ⊆ Ω.
3. For all ω ∈ S and (σ, x) ∈ Σ×Ω such that VH((σ, x)) <∞, π(σ,x) is accepted

by H if ω is admissible and ε1-optimal for (σ, x).
4. For all ω ∈ S and (σ, x) ∈ Σ ×Ω, π(σ,x) is not accepted by H if either ω is

not admissible for (σ, x), ω is not ε2-optimal for (σ, x), or VH ((σ, x)) = ∞.



4 Construction of bisimulation

We propose to solve the hybrid optimal control problem using the bisimulation
of H . In this section we define bisimulation and the quotient system that is
obtained from it.

Let λ represent a t-step corresponding to some t ∈ IR+. A bisimulation of H
is an equivalence relation '⊂ (Σδ × IRn) × (Σδ × IRn) such that for all states

p1, p2 ∈ Σδ × IRn, if p1 ' p2 and σ ∈ Σδ ∪ {λ}, then if p1
σ
→ p′1, there exists

p′2 such that p2
σ
→ p′2 and p′1 ' p′2. If ' is finite, the quotient system is a finite

automaton.

Since the dynamics are restricted to the set Ω, the set of interesting equiva-
lence classes of ', denoted Q, are those that intersect Σδ×cl(Ω). For each q ∈ Q

we define a distinguished point (σ, ξ) ∈ q. We associate q with its distinguished
point by the notation q = [(σ, ξ)]. It is now possible to define the enabling and
reset conditions of H in terms of Q. In particular, the enabling conditions of H
are synthesized as subsets of Q while the reset conditions are defined as follows.
For e = (σ, σ′)

re(x) = { y | ∃ξ.[(σ, x)] = [(σ, ξ)] ∧ [(σ′, ξ)] = [(σ′, y)] }. (6)

That is, re(x) is the projection to IRn of the set of equivalence classes [(σ′, y)] such
that the projection to IRn of [(σ′, y)] and [(σ, x)] have nonempty intersection.
This definition in effect gives an over-approximation of the identity map in terms
of the equivalence classes of ' and will introduce non-determinacy in the finite
automaton. Notice also that (6) encodes information about the bisimulation
in H . This sequence of steps is not typical; it is characteristic of our synthesis
procedure. We define a mesh size on Q by δQ = maxq∈Q sup(σ,x),(σ,y)∈q{‖x−y‖}.
Finally, for each q = [(σ, ξ)] ∈ Q we associate the duration τq , the maximum
time to traverse q using constant control σ. That is, τq = sup(σ,x),(σ,y)∈q{ t | y =
φt(x, σ) }.
Geometric construction. We give a brief review of the method developed in
[4] for obtaining bisimulations. We require the following (related) assumptions
on the vector fields on cl(Ω).

Assumption 4.1.

(1) n − 1 first integrals can be defined analytically on Ω for each f(x, σ),
σ ∈ Σδ.

(2) There exists mf > 0 such that ‖f(x, u)‖ ≥ mf for all x ∈ cl(Ω), u ∈ U .

A bisimulation of Σδ × IRn is constructed using a set of simple, co-dimension
one tangential foliations with associated submersions γσ

i (x) = yσ
i , i = 1, . . . , n−1

and a simple co-dimension one transversal foliation with submersion γσ
n = yσ

n ,
such that (yσ

1 , . . . , y
σ
n) form a set of euclidean coordinates for each σ ∈ Σδ. We

discretize the foliations by selecting a finite set of leaves. Fix k ∈ ZZ+ and let
∆ = 1

2k . Define

Ck = {0,±∆,±2∆, . . . ,±1}. (7)



Each yσ
i = c for c ∈ Ck, i = 1, . . . , n defines a hyperplane denoted W̃ σ

i,c, and a

submanifold W σ
i,c = (γσ)−1(W̃ σ

i,c). The collection of submanifolds for σ ∈ Σδ is

Wσ
k = { W σ

i,c | c ∈ Ck, i ∈ {1, . . . , n} }. (8)

Ω \ Wσ
k is the union of 2n(k+1) disjoint open sets Vσ

k = {V σ
j }. We define the

equivalence relation ' on Σδ × IRn as follows: (σ, x) ' (σ′, x′) iff (1) σ = σ′ and
(2) x ∈ W iff x′ ∈ W , and x ∈ V iff x′ ∈ V , for all W ∈ Wσ

k and V ∈ Vσ
k .

5 Discrete problem

In this section we transform the hybrid optimal control problem to a dynamic
programming problem on a non-deterministic finite automaton, for which an
algorithmic solution may be found. Consider the class of non-deterministic au-
tomata with cost structure represented by the tuple A = (Q,Σδ, E, obs,Qf , L̂, ĥ).
Q is the state set, as above, and Σδ is the set of control labels as before.
obs : E → Σδ is a map that assigns a control label to each edge and is given by
obs(e) = σ′, where e = (q, q′), q = [(σ, ξ)] and q′ = [(σ′, ξ′)]. Qf is the target set
given by the over-approximation of Ωf , Qf = {q ∈ Q | ∃x ∈ Ωf . (σ, x) ∈ q }.

E ⊆ Q × Q is the transition relation encoding t-steps and σ-steps of H .
A will be used to synthesize ge of H , so E includes all possible edges between
locations. The synthesis procedure on A will involve trimming undesirable edges.
Thus, (q, q′) ∈ E, where q, q′ ∈ Q, q = [(σ, ξ)] and q′ = [(σ′, ξ′)] if either (a)
σ = σ′, there exists x ∈ Ω such that (σ, x) ∈ Q, and there exists τ > 0 such that
∀t ∈ [0, τ ], (σ, φt(x, σ)) ∈ q and (σ, φτ+ε(x, σ)) ∈ q′ for arbitrarily small ε > 0, or
(b) σ = σ′, there exists x ∈ Ω such that (σ, x) ∈ Q, and there exists τ > 0 such
that ∀t ∈ [0, τ), (σ, φt(x, σ)) ∈ q and (σ, φτ (x, σ)) ∈ q′, or (c) σ 6= σ′ and there
exists x ∈ Ω such that (σ, x) ∈ Q and (σ′, x) ∈ q′. Cases (a) and (b) say that
from a point in q, q′ is the first state (different from q) reached after following
the flow of f(x, σ) for some time. Case (c) says that an edge exists between q

and q′ if their projections to IRn have non-empty intersection.

Let e = (q, q′) with q = [(σ, ξ)] and q′ = [(σ′, ξ′)]. L̂ : E → IR is the discrete
instantaneous cost given by

L̂(e) :=

{

τqL(ξ, σ) if σ = σ′

0 if σ 6= σ′.
(9)

This definition reflects that no cost is incurred for control switches. ĥ : Q → IR
is the discrete terminal cost given by

ĥ(q) := h(ξ).

The domain of ĥ can be extended to Ω, with a slight abuse of notation, by
ĥ(x) := ĥ(q) where q = argminq′{‖x− ξ′‖ | q′ = [(σ′, ξ′)]}.



5.1 Semantics

A transition or step of A from q = [(σ, ξ)] ∈ Q to q′ = [(σ′, ξ′)] ∈ Q with

observation σ′ ∈ Σδ is denoted q
σ′

→ q′. If σ 6= σ′ the transition is referred to as
a control switch; otherwise, it is referred to as a time step. If E(q) is the set of
edges that can be enabled from q ∈ Q, then for σ ∈ Σδ,

Eσ(q) = {e ∈ E(q) | obs(e) = σ}.

If |Eσ(q)| > 1, then we say that e ∈ Eσ(q) is unobservable in the sense that
when control event σ is issued, it is unknown which edge among Eσ(q) is taken.
If σ = σ′, then |Eσ(q)| = 1, by the uniqueness of solutions of ODE’s and by the
definition of bisimulation.

A control policy c : Q → Σδ is a map assigning a control event to each
state; c(q) = σ is the control event issued when the state is at q. A trajectory

π of A over c is a sequence π = q0
σ1→ q1

σ2→ q2
σ3→ . . ., qi ∈ Q. A trajectory

is non-Zeno if between any two non-zero duration time steps there are a finite
number of control switches and zero duration time steps. Let Πc(q) be the set of
trajectories starting at q and applying control policy c, and let Π̃c(q) be the set
of trajectories starting at q, applying control policy c, and eventually reaching
Qf . If for every q ∈ Q, π ∈ Πc(q) is non-Zeno then we say c is an admissible
control policy. The set of all admissible control policies for A is denoted C.

A control policy c is said to have a loop if A has a trajectory q0
c(q0)
→ q1

c(q1)
→

. . .
c(qm−1)
→ qm = q0, qi ∈ Q. A control policy has a Zeno loop if it has a loop

made up of control switches and/or zero duration time steps only. One can show
that a control policy is admissible iff it has no Zeno loops.

5.2 Dynamic programming

In this section we formulate the dynamic programming problem on A. This
involves defining a cost-to-go function and a value function that minimizes it
over control policies suitable for non-deterministic automata.

Suppose π = q0
σ1→ q1 → . . . → qN−1

σN→ qN ∈ Π , where qi = [(σi, ξi)]
and π takes the sequence of edges e1e2 . . . eN . We define a discrete cost-to-go
Ĵ : Q× C → IR by

Ĵ(q, c) =

{

maxπ∈Π̃c(q)

{

∑Nπ

j=1 L̂(ej) + ĥ(qNπ
)
}

if Πc(q) = Π̃c(q)

∞ otherwise

where Nπ = min{j ≥ 0 | qj ∈ Qf}. We take the maximum over Π̃c(q) because of
the non-determinacy of A: it is uncertain which among the (multiple) trajectories
allowed by c will be taken so we must assume the worst-case situation. The
discrete value function V̂ : Q→ IR is

V̂ (q) = min
c∈C

Ĵ(q, c)



for q ∈ Q \ Qf and V̂ (q) = ĥ(q) for q ∈ Qf . We show in Proposition 1 that V̂
satisfies a DPP that takes into account the non-determinacy of A and ensures
that optimal control policies are admissible. This DPP describes the accumula-
tion of cost over one step to be the worst case cost among edges that have the
same label. Let Aq be the set of control assignments c(q) ∈ Σδ at q such that c
is admissible.

Proposition 1. V̂ satisfies

V̂ (q) = min
c(q)∈Aq

{

max
e=(q,q′)∈Ec(q)(q)

{

L̂(e) + V̂ (q′)
}

}

, q ∈ Q \Qf (10)

V̂ (q) = ĥ(q), q ∈ Qf . (11)

5.3 Synthesis of ge

The synthesis of enabling conditions or controller synthesis is typically a post-
processing step of a backward reachability analysis (see, for example, [12]). This
situation prevails here as well: equations (10)-(11) describe a backward analysis
to construct an optimal policy c ∈ C. Once c is known the enabling conditions
of H are extracted as follows.

Consider each e = (σ, σ′) ∈ E of H with σ 6= σ′. There are two cases. If
σ′ 6= σf then ge =

{

x | (σ, x) ∈ q, q ∈ Q ∧ c(q) = σ′
}

. That is, if the control
policy designates switching from q ∈ Q with label σ to q′ ∈ Q with label σ′,
then the corresponding enabling condition in H includes the projection to IRn

of q. The second case when σ′ = σf is for edges going to the terminal location
of H . Then ge =

{

x | (σ, x) ∈ q, q ∈ Qf

}

.

6 Main Result

We will prove that V̂ converges to V , the viscosity solution of the HJB equation,
as δQ, δ → 0. The proof will be carried out in three steps. In the first step we
consider restricting the set of controls to piecewise constant functions, whose
constant intervals are a function of the state. In the second step we introduce
the discrete approximations of L and h. In the last step we introduce the discrete
states Q and consider the non-determinacy of A.

In the sequel we make use of a filtration of control sets Σk ≡ Σδk
correspond-

ing to a sequence δk → 0 as k → ∞, in such a manner that Σk ⊂ Σk+1. Consider-
ing (8), we define a filtration of families of submanifolds such that Wσ

k ⊂ Wσ
k+1,

for each σ ∈ Σk.
Step 1: piecewise constant controls.

In the first step we define a class of piecewise constant functions that depend
on the state and show that the value function which minimizes the cost-to-go over
this class converges to the viscosity solution of HJB as δk → 0. The techniques
of this step are based on those in Bardi and Capuzzo-Dolcetta [1] and are related
to those in [5].



We consider the optimal control problem (2)-(4) when the set of admissible
controls is U1

k , piecewise constant functions consisting of finite sequences of con-
trol labels σ ∈ Σk and each σ is applied for a time τ(σ, x). Let (σ, x) ∈ q for some
q ∈ Q and define τ(σ, x) to be the minimum of the time it takes the trajectory
starting at x and using control σ ∈ Σk to reach (ta) ∂Ωf , and (tb) some x′ such
that (σ, x′) 6∈ q. If a trajectory is at xi at the start of the (i+1)th step, then the
control σi+1 is applied for time τi+1 := τ(σi+1, xi) and xi+1 = φτi+1(xi, σi+1).

Let
R1

k := { x ∈ IRn | ∃µ ∈ U1
k . T (x, µ) <∞ }.

We define the cost-to-go function J1
k : Ω × U1

k → IR as follows. For x ∈ Ω and
µ = σ1σ2 . . . ∈ U1

k , if T (x, µ) <∞ then

J1
k (x, µ) =

N
∑

j=1

∫ τ(σj ,xj−1)

0

L(φs(xj−1, σj), σj)ds+ h(xN )

where N = min{j ≥ 0 | xj ∈ ∂Ωf}. J1
k (x, µ) = ∞, otherwise. We define the

value function V 1
k : IRn → IR as follows. For x ∈ Ω \Ωf ,

V 1
k (x) = inf

µ∈U1
k

J1
k (x, µ) (12)

and for x ∈ Ωf , V 1
k (x) = h(x).

{V 1
k } forms a family of equibounded, locally equicontinuous functions. It can

then be shown that, along some subsequence kn, V 1
kn

converges to a continuous
function V∗. Moreover, the following holds:

Proposition 2. V∗ is the unique viscosity solution of HJB.

Step 2: approximate cost functions.

In this step we keep the semantics on piecewise constant controls of Step 1
but replace cost functions L and h by approximations L2 and ĥ. We define the
cost-to-go function J2

k : Ω×U1
k → IR as follows. First, we define an approximate

instantaneous cost L2 : Ω ×Σk → IR given by

L2(x, σ) := L̂(q) (13)

where (σ, x) ∈ q. For x ∈ Ω and µ = σ1σ2 . . . ∈ U1
k , if T (x, µ) <∞ then

J2
k (x, µ) =

N
∑

j=1

L2(xj−1, σj) + ĥ(xN )

where N = min{j ≥ 0 | xj ∈ ∂Ωf}. We define a value function V 2
k : IRn → IR as

follows. For x ∈ Ω \Ωf ,
V 2

k (x) = inf
µ∈U1

k

J2
k (x, µ) (14)

and for x ∈ Ωf , V 2
k (x) = ĥ(x). For x ∈ Ω such that V 2

k (x) <∞, V 2
k satisfies the

DPP V 2
k (x) = minσ∈Σk

{

L2(x, σ) + V 2
k (φτ(σ,x)(x, σ))

}

.



Remark 6.1.
For each x ∈ ∪kR1

k and ε > 0 there exists m ∈ ZZ+ and µ ∈ U1
m such that µ

is an ε-optimal control for x w.r.t. V 1 satisfying Assumptions 2.2. This follows
from Assumptions 2.2, V 1

k (x) ≥ V (x), and the fact that we can well-approximate
an ε-optimal control for V by a control in U1

m, for large enough m.

Proposition 3. Let k0 ∈ ZZ+, x ∈ R1
k0

, and µ ∈ U1
k0

be an ε-optimal control
for x. Then |J1

k (x, µ) − J2
k (x, µ)| → 0 as k → ∞.

Proof. First, we require two facts which are stated without proof, for brevity.
Fact 1. If δk <

mf

Lf
, then for all q ∈ Q,

τq ≤
δk

mf − Lfδk
. (15)

For the next fact, we require a definition. let Ck be as in (7) and γσ
n the

transversal foliation of ẋ = f(x, σ). For σ ∈ Σk, define the region in IRn

Mσ
c := { x ∈ (γσ

n)−1(c) | c ∈ Ck }.

Fact 2. Let x, x′ ∈ Mσ
c for some c ∈ Ck and σ ∈ Σk. Let τ, τ ′ be times such

that φτ (x, σ), φτ ′(x′, σ) ∈Mσ
c+∆. Then |τ − τ ′| ≤ cγτδk for some cγ > 0.

Now we have

∣

∣J1
k (x, µ) − J2

k (x, µ)
∣

∣ ≤

∣

∣

∣

∣

N
∑

j=1

[

∫ τ(σj ,xj−1)

0

L(φs(xj−1, σj), σj)ds
]

+ h(xN )

−
N

∑

j=1

[

τqj−1L(ξj−1, σj)
]

− ĥ(xN )

∣

∣

∣

∣

where (xj−1, σj) ∈ qj−1 and qj−1 = [(ξj−1, σj)]. There exists ξN such that

ĥ(xN ) = h(ξN ) and ‖xN − ξN‖ ≤ δk. Also, using the Mean Value Theorem,
there exists t̃ with x̃ = φt̃(xj−1, σj) and ‖x̃− ξj−1‖ ≤ δk such that

∣

∣J1
k (x, µ) − J2

k (x, µ)
∣

∣ ≤
N

∑

j=1

∣

∣τ(σj , xj−1)L(x̃, σj) − τqj−1L(ξj−1, σj)
∣

∣ +
∣

∣h(xN ) − ĥ(xN )
∣

∣

≤
N

∑

j=1

τqj−1LLδk +

N
∑

j=1

[τqj−1 − τ(σj , xj−1)]L(x̃, σj) + Lhδk.

Using Fact 1 the first term on the r.h.s. decreases linearly as δk. Call the second
term on the r.h.s. “B”. Splitting B into sums over control switches and time
steps, we have

B ≤ML

N
∑

j=2

[τqj−1 − τ(σj , xj−1)]1(σj = σj−1) +ML

N
∑

j=1

[τqj−1 − τ(σj , xj−1)]1(σj 6= σj−1)

≤ML

N
∑

j=2

cj−1τqj−1δk +ML

N
∑

j=1

τqj−11(σj 6= σj−1)



for some cj−1 ∈ IR. In the second line we used Fact 2 and the fact that τqj−1 ≥
τ(σj , xj−1). Using Fact 1 the first term on the r.h.s. decreases linearly as δk.
The second term on the r.h.s. goes to zero since µ has a fixed number of control
switches for all k ≥ k0. ut

Step 3: discrete states and non-determinacy.

We define V̂k(x) := minσ∈Σk
{ V̂k(q) | (σ, x) ∈ q }. Also let R̂k = {x ∈

Ω | V̂k(x) <∞} and R̂ = ∪kR̂k.
Remark 6.2.

(a) By Remark 6.1 and V 1
k (x) ≤ V 2

k (x), for each x ∈ ∪kR1
k and ε > 0 there

exists mε ∈ ZZ+ and µ ∈ U1
mε

such that µ is an ε-optimal control for x w.r.t.
V 2

k satisfying Assumptions 2.2.

(b) R̂ ⊂ ∪kR
1
k , but the converse is not true, in general.

(c) If µ is an ε-optimal control for x w.r.t. V 2
k , then we can assume φt(x, µ) does

not self-intersect, for if it did we can find µ̃, also ε-optimal, which eliminates
loops in φt(x, µ).

(d) ‖x − y‖ → 0 as k → ∞ for all y ∈ re(x) and all edges e of Hk, the hybrid
automaton defined using Σk and Ck given in (7).

Proposition 4. For all x ∈ R̂, |V̂k(x) − V 2
k (x)| → 0 as k → ∞.

Proof. Fix ε > 0 and x ∈ R̂. By Remark 6.2(a) there exists mε > 0 and an
ε-optimal control µ ∈ U1

mε
for x. Let us denote µ as an open loop control µ =

((σ1, τ1), . . . , (σN , τN )), where τi is the time σi is applied. If c is a policy derived
using δk and Ck , for k ≥ mε, then 0 ≤ V̂k(q) − V 2

k (x) ≤ Ĵk(q, c) − J2(x, µ) + ε,

where q = [(σ1, x)]. If we can show there exists k ≥ mε such that for k > k,
there exists a policy c such that Ĵk(q, c) − J2

k (x, µ) < ε and using the fact that

|V̂k(q) − V̂k(x)| → 0 as k → ∞, then the result follows.
Consider the set Ψk of (discontinuous) trajectories φt(x, µ̃) where µ̃ ∈ U1

k

is denoted ((σ1, τ̃1, . . . , (σN , τ̃N )) . Also x−j = φτ̃j
(xj−1, σj) and xj ∈ re(x

−
j ),

where e = (σj , σj+1) is an edge of Hk, defined in Remark 6.2(d). We can find
k1 ≥ mε such that, by Remark 6.2(d) and the transversality of φt(x, µ) with the
submanifolds where it switches controls and with Ωf , there exists µ̃ ∈ U1

k such
that φt(x, µ̃) ∈ Ψk switches controls on the same (transversal) submanifolds and

reachesΩf . LetW 2
k (φ) =

∑N
j=1 L

2(xj−1, σj)+ĥ(xN ).We observe that for φ, φ′ ∈

Ψk and µ ∈ U1
k1

, |W 2
k (φ)−W 2

k (φ′)| → 0 as k → ∞, using Lipschitz continuity of

L and h, Remark 6.2(d), and the fact that µ is fixed for all k > k1. Notice that
J2(x, µ) = W 2

k (φ2) for some φ2 ∈ Ψk. We can define the control policy c such that
automaton A accepts the time abstract trajectory starting at q corresponding
to each trajectory of Ψk and with all other control assignments of c as time
steps. c is admissible because otherwise some φ′ ∈ Ψk would have a Zeno loop.
Since φ′ approaches φt(x, µ) as k → ∞, this would imply φt(x, µ) has a loop,
contradicting Remark 6.2(c). Now we observe that Ĵ(q, c) = maxφ∈Ψk

W 2
k (φ) :=

W 2
k (φ). Thus, Ĵk(q, c) − J2

k (x, µ) ≤ |W 2
k (φ) −W 2

k (φ2)| → 0 as k → ∞. ut

Theorem 1. For all x ∈ R̂, V̂k(x) → V (x) as k → ∞.



7 Conclusion

In this paper we have developed a methodology for the synthesis of optimal
controls based on hybrid systems and bisimulations. The idea is to translate
an optimal control problem to a switching problem on a hybrid system whose
locations describe the dynamics when the control is constant. When the vector
fields for each location of the hybrid automaton have local first integrals which
can be expressed analytically we are able to define a finite bisimulation using the
approach of [4]. From the finite bisimulation we obtain a (time abstract) finite
automaton upon which a dynamic programming problem can be formulated that
can be solved efficiently.

We are presently working on three topics that will enhance considerably the
significance of our work:

– The dynamic programming problem is equivalent to a shortest path problem
on a non-deterministic graph. We are in the process of carrying through the
implementation issues to obtain an algorithmic solution.

– Throughout the paper we have assumed that, once the bisimulation is ex-
pressed using first integrals, the corresponding finite automaton can be con-
structed directly. In fact, this task is not so straightforward. We are working
on the automatic generation of finite automata that give time abstract be-
havior of vector fields.

– If it is not possible to obtain a finite bisimulation, one may still be able
to construct a finite automaton that approximates the continuous and dis-
crete behavior of the hybrid system. But this automaton will have non-
deterministic behavior that results in spurious solutions, not corresponding
to the true dynamics of the hybrid system. We are working on a procedure
to eliminate these spurious solutions.
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