THEORY OF ORBIT DETERMINATION

Determining orbits of natural and artificial celestial bodies is an essential step in the exploration and understanding of the Solar System. However, recent progress in the quality and quantity of data from astronomical observations and spacecraft-tracking has generated orbit determination problems which cannot be handled by classical algorithms. This book presents new algorithms capable of handling the millions of bodies which could be observed by next-generation surveys, and which can fully exploit tracking data with state-of-the-art levels of accuracy.

After a general mathematical background and summary of classical algorithms, the new algorithms are introduced using the latest mathematical tools and results, to which the authors have personally contributed. Case studies based on actual astronomical surveys and space missions are provided, with applications of these new methods. Intended for graduate students and researchers in applied mathematics, physics, astronomy, and aerospace engineering, this book is also of interest to non-professional astronomers.

ANDREA MILANI is Full Professor of Mathematical Physics in the Department of Mathematics, University of Pisa. His areas of research include the *N*-body problem, the stability of the Solar System, asteroid dynamics and families, satellite geodesy, planetary exploration, orbit determination, and asteroid impact risk.

GIOVANNI F. GRONCHI is a Researcher of Mathematical Physics in the Department of Mathematics, University of Pisa. His research is on Solar System body dynamics, perturbation theory, orbit determination, singularities, and periodic orbits of the *N*-body problem.

COVER ILLUSTRATION: The orbits of eight potentially hazardous asteroids (PHA); they have a minimum intersection distance with the orbit of the Earth of less than 0.05 astronomical units. Together with many more smaller objects, they form a swarm surrounding the orbit of our planet (represented, not to scale, in green, orbit in yellow), are observable with either telescopes or radar, and provide a good example of an orbit determination problem. The objects in this figure are the brightest PHA, with diameters larger than 2 km; thus an impact with the Earth would result in a global catastrophe. There has been interesting recent progress in the theory of orbit determination, to which the authors of this book have contributed. New algorithms have been developed to exclude the possibility that any of these objects have the possibility of impacting the Earth, at least in the next 100 years. The same result also applies to somewhat smaller PHA, but the impact of either a much smaller known asteroid or an asteroid still to be discovered is still possible; thus the orbit determination work must go on. The orbit diagram is superimposed on an actual image of the sky (courtesy of G. Rhemann, Astrostudio, Vienna) which includes a Solar System body: a comet discovered in 2008 by A. Boattini, showing its coma.

THEORY OF ORBIT DETERMINATION

ANDREA MILANI AND

GIOVANNI F. GRONCHI

Department of Mathematics, University of Pisa

© in this web service Cambridge University Press

CAMBRIDGE

Cambridge University Press 978-0-521-87389-5 - Theory of Orbit Determination Andrea Milani and Giovanni F. Gronchi Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521873895

© A. Milani and G. Gronchi 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Milani, Andrea. Theory of orbit determination / Andrea Milani, Giovanni Gronchi. p. cm. ISBN 978-0-521-87389-5 (hardback) 1. Orbit determination. 2. Celestial mechanics. I. Gronchi, Giovanni (Giovanni Federico) II. Title. QB355.M55 2009 521'.3 - dc22 2009034270

ISBN 978-0-521-87389-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Part	I Problem Statement and Requirements	1		
1	THE	THE PROBLEM OF ORBIT DETERMINATION			
	1.1	Orbits and observations	3		
	1.2	The minimum principle	5		
	1.3	Two interpretations	6		
	1.4	Classification of the problem	7		
	1.5	How to read this book	13		
2	DYNAMICAL SYSTEMS				
	2.1	The equation of motion	15		
	2.2	Solutions of the equation	16		
	2.3	The variational equation	18		
	2.4	Lyapounov exponents	20		
	2.5	Model problem dynamics	21		
3	ERROR MODELS				
	3.1	Continuous random variables	23		
	3.2	Gaussian random variables	27		
	3.3	Expected values and transformations	30		
4	THE <i>N</i> –BODY PROBLEM				
	4.1	Equation of motion and integrals	33		
	4.2	Coordinate changes	36		
	4.3	Barycentric and heliocentric coordinates	40		
		Jacobian coordinates	43		
	4.5	Small parameter perturbation	47		
	4.6	Solar System dynamical models	54		

vi		Contents	
	Par	t II Basic Theory	57
5	\mathbf{LE}	AST SQUARES	59
	5.1	Linear least squares	59
	5.2	Nonlinear least squares	62
	5.3	Weighting of the residuals	66
	5.4	Confidence ellipsoids	68
	5.5	Propagation of covariance	72
	5.6	Model problem	74
	5.7	Probabilistic interpretation	77
	5.8	Gaussian error models and outlier rejection	80
6	RA	NK DEFICIENCY	87
	6.1	Complete rank deficiency	87
	6.2	Exact symmetries	91
	6.3	Approximate rank deficiency and symmetries	93
	6.4	Scaling and approximate rank deficiency	96
	6.5	Planetary systems: extrasolar planets	98
	6.6	Planetary systems: the Solar System	104
	Par	t III Population Orbit Determination	111
7	\mathbf{TH}	E IDENTIFICATION PROBLEM	113
	7.1	Classification of the problem	113
	7.2	Linear orbit identification	116
	7.3	Semilinear orbit identification	120
	7.4	Nonlinear orbit identification	124
	7.5	Recovery and precovery	130
	7.6	Attribution	133
8	LIN	137	
	8.1	Admissible region	137
	8.2	Sampling of the admissible region	144
	8.3	Attributable orbital elements	148
	8.4	Predictions from an attributable	152
	8.5	Linkage by sampling the admissible region	156
	8.6	Linkage by the two-body integrals	158
	8.7	The space debris problem	163
9	\mathbf{ME}	THODS BY LAPLACE AND GAUSS	171
	9.1	Attributables and curvature	171
	9.2	The method of Laplace	174
	9.3	The method of Gauss	175

		Contents	vii
	9.4	Topocentric Gauss–Laplace methods	177
	9.5	Number of solutions	183
	9.6	Charlier theory	185
	9.7	Generalization of the Charlier theory	188
10	WE.	AKLY DETERMINED ORBITS	197
	10.1	The line of variations	197
		Applications of the constrained solutions	202
		Selection of a metric	208
		Surface of variations	214
	10.5	The definition of discovery	215
11	SUF	219	
	11.1	Operational constraints of Solar System surveys	219
	11.2	Identification and orbit determination procedure	221
	11.3	Controlling the computational complexity	223
	11.4	Identification management	226
		Tests for accuracy	232
	11.6	Recovery of low confidence detections	235
12	IMF	PACT MONITORING	237
	12.1	Target planes	239
	12.2	Minimum orbital intersection distance	242
	12.3	Virtual asteroids	248
	12.4	Target plane trails	251
	12.5	Reliability and completion of impact monitoring	256
	12.6	The current monitoring systems	258
	Part	IV Collaborative Orbit Determination	259
13	THI	E GRAVITY OF A PLANET	261
	13.1	The gravity field	261
	13.2	Spherical harmonics	266
	13.3	The Hilbert space of the harmonic functions	276
	13.4	The gravity field along the orbit	280
	13.5	Frequency analysis, ground track, and resonance	284
14	NOI	N-GRAVITATIONAL PERTURBATIONS	287
	14.1	Direct radiation pressure	288
	14.2	Thermal emission	294
	14.3	Indirect radiation pressure	299
	14.4	Drag	302
	14.5	Active spacecraft effects	303

viii		Contents	
	14.6	Case study: asteroid orbiter	306
15	MU	311	
	15.1	Local–global decomposition	311
	15.2	Case study: satellite laser ranging	314
	15.3	Perturbation model	315
	15.4	Local geodesy	317
	15.5	Symmetries and rank deficiencies	319
16	SAT	323	
	16.1	On-board instrumentation	324
	16.2	Accelerometer missions	331
	16.3	Gradiometer missions	333
	16.4	Resonant decomposition	338
	16.5	Polar gaps	339
	16.6	Satellite-to-satellite tracking	345
17	ORBITERS AROUND OTHER PLANETS		349
	17.1	Science goals for an orbiter around Mercury	349
	17.2	Interplanetary tracking	351
	17.3	The gravimetry experiment	356
	17.4	The rotation experiment	360
	17.5	The relativity experiment	364
	17.6	Global data processing	367
References		371	
Index			379

PREFACE

This book is a tool for our own teaching and an opportunity to rethink and reorganize the results of our own research. However, I think such a book can be useful to others, for two main reasons. First, spaceflight is no longer the privilege of the few superpowers, but is becoming available to many nations and agencies. Orbit determination is an essential knowhow, both in the planning phase of mission analysis and in the operations of space missions. Thus its mathematical tools need to become widely available.

Second, the knowledge and skill used in orbit determination, for both natural and artificial celestial bodies, was available only among a restricted group of specialists. The prevailing attitude was a proprietary one: the knowledge and the software were protected by formal copyright and/or by secrecy, although protecting in this way the pure mathematical theory is, in the long run, impossible. This attitude might have been justified under the conditions of the world of 30–40 years ago, in the critical phases of the competition to achieve *space firsts*. Now it is time to teach and disseminate this knowledge, allowing the formation of a wider group of specialists.

I know that many of the *rules of thumb* and practical advice contained in this book will be rated as well known, even obvious, by the few experts, but this is not the point. Even well-known results may need to be presented in a rational, rigorous, and didactically effective new way, together with the outcome of recent innovative research. On the other hand, this book does not have the intent of providing a comprehensive review of all that has been done in this field, because the size would become impractical. This book is about making widely available the outcome of the research done by my group over many years, and includes methods for which there are rigorous mathematical arguments and which have been fully tested by us first hand, and found to be effective. In the last $\simeq 15$ years there has been enormous progress in this field, and several other research groups have given important contributions: we are in no way claiming that their methods would not work, we are just giving a list of methods which we know to work.

х

PREFACE

The above arguments may not be enough for the approval of all the people in this field, but I do think that to state the mathematical foundations and rules of orbit determination, thus removing a vague flavor of craftmanship, can also benefit the already existing specialists. The orbit determination expert, in the very competitive environment in which space missions and large astronomical projects are selected today, is too often under pressure to endorse claims of wonderful results to be achieved with very limited means. By ignoring the rules of good practice it is possible to claim illusory precision and/or completeness for the solution, including the orbits and other parameters which can be operationally, technologically, and scientifically relevant. Maybe being able to cite a textbook stating clearly what is appropriate and what is illusory can help in relieving this improper pressure.

This book is based on the experience accumulated in $\simeq 30$ years of research with my coworkers of the former *Space Mechanics Group* (now *Celestial Mechanics Group*) at the Department of Mathematics, University of Pisa. Thus it contains, besides the formal mathematical theory and the teaching examples, a number of "case studies" based upon actual research projects. They are about space missions and about natural objects: one of the goals is to stress the common mathematics used in satellite geodesy and in dynamical astronomy, and at the same time to present clearly the main differences.

The preparation of this book has been made possible by the collaboration of my younger colleague, Dr. Giovanni F. Gronchi. Besides classical material and original results by myself and Gronchi, this book contains the output of research done by the members of our group and by either regular or occasional external coworkers. Thus I would like to include a long, but still possibly incomplete, list of coworkers whose contributions have to be acknowledged: L. Anselmo, O. Arratia, S. Baccili, A. Boattini, C. Bonanno, M. Carpino, G. Catastini, L. Cattaneo, S.R. Chesley, S. Cicalò, L. Denneau, L. Dimare, P. Farinella, D. Farnocchia, Z. Knežević, L. Iess, R. Jedicke, A. La Spina, M. de' Michieli Vitturi, A.M. Nobili, A. Rossi, M.E. Sansaturio, G. Tommei, G.B. Valsecchi, D. Villani, D. Vokrouhlický.

This book is dedicated to two good friends and valuable coworkers: Paolo Farinella and Steve Chesley. They could have been among the authors of this book, but they both left in the year 2000, when the book project was immature. Steve went back to his home country, from where he can still advise me on these subjects. Paolo went where he can give me neither his essential scientific insight nor the warmth of his friendship. Thus I would like to thank both of them for what I learned with them and from them.

Andrea Milani Comparetti, Pisa, December 2008