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TECHNICAL MEMORANDUM

THEORY OF OSTWALD RIPENING IN A TWO-COMPONENT SYSTEM -~
CENTER DIRECTOR'S DISCRETIONARY FUND FINAL REPORT

I. INTRODUCTION

1.1 Physical Picture of Ostwald Ripening

Imagine a solution containing two chemical components. The solution is
supersaturated with solute, and nuclei of a second phase have already started
to grow. The supersaturated solution shall be called the parent phase, and
the nuclei shall be termed the second phase. The nuclei shall be assumed
large enough to have well-defined surfaces so that macroscopic theories such
as thermodynamics can be applied. Such nuclei shall be called grains. Of
interest is the grain size distribution function and its development over
time. The grain size distribution evolves so as to reduce the surface area of
contact between the two phases, which also serves to reduce the interfacial
free energy. The dynamics of this process is termed Ostwald ripening ([1].
Here, it shall be assumed that the transfer of material between the two phases
is governed by Fick's laws of diffusion. The two phases may be any pairing of
solid, liquid, or gas, except both cannot be gases, since gases are miscible
in all proportions.

During Ostwald ripening, the solute supersaturation in the parent phase
diminishes with time tending asymptotically to zero. At any given time, the
value of the supersaturation determines a critical grain size. Grains larger
than this tend to grow, while grains smaller tend to dissolve. The parent
phase is the medium through which the grains communicate by way of mass trans-
fer. Associated with each grain are local concentration gradients of solute
and solvent. For example, a grain which is growing by concentrating solute
and rejecting solvent has about it a positive solute gradient and a negative
solvent gradient.

It is a main objective of this report to treat quantitatively the
situation where diffusion of both solvent and solute occur in the parent
phase. Associated with these diffusion fluxes are bulk transfers of material
termed advections. These shall be treated by referring the diffusion to a
coordinate frame in the parent phase which moves with respect to the labora-
tory [2]. Our result will permit the extension of the current theory of
Ostwald ripening [3-5] to the case where both chemical components occur in
both phases. Phase separating systems possessing a miscibility gap are an
important example.

As the total volume occupied by the grains increases, the grains come
closer together, and the associated concentration gradients begin to overlap.
Overlapping concentration gradients mean interacting local rates of growth and
dissolution. The rate of growth of an individual grain is no longer the same
as it would be if it were in isolation; instead, many-body effects come into
play.




It is a second main objective of this report to incorporate these many-
body effects into the theory of Ostwald ripening. The work of Marqusee and
Ross [6] will be followed to accomplish this. An extended, pedagogical de-
velopment of their original ideas shall be given.

Our program consists essentially of four tasks:

(1) Derive the Gibbs-Kelvin equation relating the solubility of a grain
to its size (see Section 1.2).

(2) Taking into account growth and dissolution, develop a continuity
equation for the time evolution of the grain size distribution function (see
Section 1. 3) .

(3) At any given time the total masses of solute and solvent are di-
vided between the parent phase and the second phase. This division must
satisfy a conservation equation, derived in Section 1.4.

(4) In the continuity equation, there occurs a function depending upon
the grain size and the time, which specifies the rate of growth of an indi-~
vidual grain. This growth velocity function, which is derived in Section 1.5,
depends on a carefully defined diffusion coefficient. All of Chapter II is
occupied with the problem of generalizing this function to take into account
the effect of overlapping concentration gradients. This technically involved
subject will be treated within the framework of the classical many-body theory
of statistical mechanics.

In summary, Chapters I and II are devoted to the program above. The
work of combining the results of this program into a single differential
equation is presented in Sections 3.1-3.4 of Chapter III. In Section 3.5,
that equation is integrated, and the functional form of the grain size
distribution function is found. Parameters associated with that distribution
are determined as a function of the volume fraction of the system in Sections
3.6-3.7. In Section 3.8, results are presented graphically and by egquations
in a form ready for comparison with experiment. The system
succinonitrile/water is analyzed as an example. At the end of the report are
five appendices explaining the mathematical techniques used in Chapters I-III
and deriving certain technical details associated with the solution of the
continuity equation for the grain size distribution function.

1.2 Solubility and the Gibbs-Kelvin Equation

A molecule in the interior of a precipitate grain is bound by forces
which are characteristic of the bulk precipitate phase. A molecule in the
surface of the grain, however, has some of its atomic bonding contacts satis-
fied by molecules in the parent phase which are adjacent to it. These con-
tacts provide less stabilizing (negative) energy for the surface molecule than
the contacts it would enjoy if it were in the bulk of the grain. Hence, in an
algebraic sense the chemical potential of a moleucle in the interior of the
grain is less than a molecule in the surface.




Suppose now that the parent phase is an ideal solution composed of
components A and B with concentrations (molecules/cm3) CA and Cqs respective-
ly. The corresponding chemical potentials are Ha and T respectively, which

are given by

(o]

My = My * KTIn Gy (1.2.1)
o

where u; and ug are the chemical potentials defined in the standard states Ca

= 1 and CB = 1. Here k is Boltzmann's constant and T is the absolute tempera-

ture.

Consider a grain which is part of the second phase that has precipitated

L} ]
fram the parent phase. Let there be n, and ng molecules of A and B in this

grain and let its surface area be S' and its volume be V'. The composition of

the second phase is, of course, different than that of the parent phase. The
1}

chemical potentials of A and B molecules in the bulk of the grain are qu

]
and uBo, respectively. The grain forms a surface with the parent phase with

surface energy given by y. The Gibbs free energy of component A in the grain

is

[
- (o]
Gy = mu, +¥S (1.2.3)

and of component B

]
(o]
Gg = mylig

L]
+ 'YS . (1.204)

To obtain chemical potentials for the grain as a whole, we must 4if-
1

L}
ferentiate Egs. (1.2.3) and (1.2.4) with respect to n, and ny

respectively. In so doing, we should hold in mind that S' depends upon the

4

1 1
number of molecules, nA and nB, in the grain. In other words, the larger the

grain, the larger its surface area. The chemical potential of A' in the grain

is




oy B (1.2.5)

[ ] T
where to compute 3S /BnA we have used the chain rule with V' as the inter-

mediate variable.

The derivative dS'/dV' depends on the geometric shape of the grain. At
. 2
this point we specialize our analysis to spheres for which S' = 47R"° and V' =

(41r/3)R3 where R is the radius. The derivative is

RAR 2
dS' _ 8r : =2, (1.2.6)
av 4R dR R

The partial molecular volume of component A in the grain is

A - . (1.2.7)

Substituting Egs. (1.2.6) and (1.2.7) into Eq. (1.2.5), we obtain

—_t
2yVA

- + L] ele
Hp = Hp R (1.2.8)

At equilibrium My = Hpe This determines the dependence on C, on R.
Equating Egs. (1.2.1) and (1.2.8), we obtain

pu— }
2yV
- (.0 _ To A
kTln CA(R) = (UA Ha y + R (1.2.9)

In the limit Reo, CA(R) > CA(w), and according to Eqg. (1.2,9)

kTln C,(«) = -(ui - uA°) . (1.2.10)

Equation (1.2.10) gives the solubility, CA(m), of a flat surface (infinite

radius of curvature) and is the usual equilibrium expression for the concen-

4




tration of a component distributed between two phases. We substitute Eq.

(1.2.10) into Eq. (1.2.9) to obtain
CA(R) = CA(w) exp(ZYVA/kTR) . (1.2.11)

Equation (1.2.11) is called the Gibbs-Kelvin equation and shows how the equi-
librium solubility of a component outside a curved surface depends upon

radius.

Starting from Egs. (1.2.2) and (1.2.4), we may derive by analogy

CL(R) = Cp(=) exp(zﬁB/kTR) . (1.2.12)

1.3 Continuity Equation

Consider a system at time t consisting of a large number of grains. Let
n(R,t)dR be the number of grains per unit volume with radii lying between R
and R + dR. As the grains grow in size, their number must decrease because
the total mass in the system must be conserved. Suppose that the time rate of

change of the radius of any grain is known and is expressed by the equation

dR(t)
dt

= V(R(t),t) (1.3.1)

where the function V(R(t),t) contains all of the information specifying the
growth dynamics. Suppose further that at a fixed time t, we are able to
determine the grain densities n{R(t),t) and n(R(t) + dR,t) at radii R(t) and
R(t) + 4R, respectively. The flux of grains leaving R(t) is n(R(t),t)
V(R(t),t) while the flux leaving R(t) + 4R is n(R(t) + dR,t)V(R(t) + dr,t).
The net rate of buildup of grains between R(t) and R(t) + dR is (3n(R(t),t)/

dt)dR. To conserve numbers, we must have

an(R(t),t)

3t dR = n(R(t),t)V(R(t),t)

- n(R(t) + drR,t)V(R(t) + 4R,t) . (1.3.2)

We expand the last term on the right-hand side of Eq. (1.3.2) in a Taylor's

series about R(t),




n(R(t) + det)V(R(t) + det) = n(R(t) It)V(R(t) rt)

B(n(R(E) L)V(R(E) £)) 1o

+ R . (1.3.3)

Substitution of Egq. (1.3.3) into Eg. (1.3.2) and cancellation of 4R yields

an(R(t),t) A(n(R(t) ,£)V(R(L),t)) _
vy + R =0 . (1.3.4)

Equation (1.3.4) is called the continuity equation for the grain size density
n(R(t),t).

A model for the "velocity," V(R(t),t), will be developed in Section 1.5.

1.4 Conservation of Mass

At any time t, the total mass of any component (say A) is fixed in the
system. In the bulk of the parent phase, the concentration of A (molecules/
cm3) is Cp(t). At t = 0, it was CA(O). Let us say that at t = 0, the parent
phase is supersaturated in A so that CA(O) > CA(t). Because of conservation
of mass, the difference C,(0) - C,(t) is the amount of A deposited in grains
at time t. The volume of a grain of radius R is (41r/3)R3 while the number of
grains per unit volume with this radius is n(R,t)dR. The average molecular

-1 t__t ] ] (]
. . - + s
volume in a grain is V XAVA XBVB, where XA and XB are mole fractions

pu— }

describing the composition of a grain. The total number of molecules in
. p— 3 ]

grains of size R is (4%/3V ) R'n(R,t)dR. Of these, X

A
Conservation of the total number of molecules of A dictates

are molecules of A.

'y

Cp(0) = C (t) + (4—)x; [ar R°n(R, t) (1.4.1)

3v o

where the integral on the right-hand side of Eq. (1.4.1) expresses the number

of molecules of A in grains of all sizes.

Since C,(0) > C,(t), the parent phase is rejecting A while the second
phase is concentrating it. The reverse must be true for component B. Hence

CB(O) < CB(t), and

6




%)XB [ ar R3n(R,t) (1.4.2)

cylt) = C (o) + (
v o

expresses the conservation of B.

1.5 Grain Size Growth Velocity

In the previous section, we noted that growing grains of the second
phase were concentrating A while rejecting B. Hence, in the vicinity of a
growing grain, there is a net flux of A toward the grain and a net flux of B
away from it. Should the grain be dissolving, the situation is just reversed.
In either case, at every point in the parent phase, it is possible to specify
local velocities, vp and vp. These velocities are defined in the sense of
hydrodynamics and express the transport of A and B, respectively, with respect
to the laboratory. We may also define a volume averaged velocity, vf given by

[2])
v =C Vv +CVyw (1.5.1)

Let n, be the number of molecules of A in the parent phase and let Ve be the
total volume of the system. If V% is the volume occupied by an A molecule in

v A VoV, = CpV,
the parent phase, then nv. is the total volume of wherias nAVA/Vt CAVA is
the volume fraction occupied by A molecules. Likewise CBVB is the volume
fraction occupied by B molecules. Hence v¢ is a linear combination of veloci-
ties Vv, and vp weighted by respective volume fractions. We may also inter-

pret v* by writing on the basis of the discussion above,
Vv = (nV)v + (nV.)v. . (1.5.2)
t A A" A BB B

If in Eq. (1.5.2), the product nAVA were replaced by m,, the mass of A, and
nggB replaced by my, the mass of B, whereas Vy, were replaced by the total
mass, m, = m, + my, we would readily recognize v* as the velocity of the
center of mass. As written, however, it is clear that v* in Eq. (1.5.2) is

the velocity of the "center of volume."

Physically, one may indeed see that there must be a velocity associated

with the center of volume. Suppose VA < Gé and consider a growing grain which

is concentrating A and rejecting B. A molecules are rushing in toward the




grain while B molecules are leaving. Since larger molecules (B) are being

replaced by smaller molecules (A), the center of volume is shifting; hence,

v*#O.

It is now useful to define molecular fluxes “A and NB by [2]

HB = CBvB . (1.5.4)

After adding and subtracting CAv* and CBv* from Eqs. (1.5.3) and (1.5.4),

respectively, one obtains

¥ *

NA = CAV + CA(vA - v) (1.5.5)
_ * _ T
NB = CBV + CB(vﬁ v') . (1.5.6)

By diffusion, we mean motion with respect to some center within the
parent phase. We choose this reference point to be the center of volume. The
terms in parentheses on the right-hand sides of Eqse. (1.5.5) and (1.5.6) are

the diffusive velocities of A and B, respectively. We write the corresponding

diffusive fluxes

- Fy = pf

CA(vA v') DA VCA (1.5.7)
- oFy = _nf

C_(v v') DB VC_ . (1.5.8)

Substituting Egs. (1.5.7) and (1.5.8) into Eqs. (1.5.5) and (1.5.6) gives

N, =cCv -D w, (1.5.9)
o F Lk
N o=cv -D v . (1.5.10)

The first terms on the right-hand sides of Eqs. (1.5.9) and (1.5.10) give the
amount of material transported with respect to laboratory due to the motion of
the center of volume. This transport is called "advection." The second terms

on the right-hand sides give the material transported by diffusive motion

8




measured with respect to the center of volume, where D: and D: are the respec-

tive diffusion coefficients referred to that center.

In the remainder of this section, we have two goals. The first is to

prove that referred to the center of volume, A and B have the same diffusion
¥ ¥

coefficient, namely DA = DB

coefficient.” The second is to calculate the rate of diffusion into a growing

= D , where D is termed the "interdiffusion

grain, given boundary conditions specifying the concentrations on the surface
of the grain and in the bulk of the parent phase. To reach these two goals,
we must first demonstrate some theorems associated with diffusion in this

frame of reference [2].

1.5.1 Two Diffusion Theorems

1: + =

Theorem CA VVA CB VVB 0

Proof: Because the total volume of the parent phase v, = Vt(nA’nB) is a
homogeneous function of first degree, we have by Euler's theorem of thermo-

dynamics

=— +— . s le
Vt V'AnA VBnB (Te1.1)

The function Vt(nA,nB) is also a state function (exact differential), so we

have

A v
(7—)an_ + (+—)dn
BnA A anB B

av
t

Now form the total differential of Eq. (T.1.1). We find

Because of Egq. (T.1.2), we conclude from Eg. (T.1.3) that

Since the gradient operator involves just linear combinations of derivatives,

we may write on the basis of Eg. (T.1.4)




VVA+n =0. (T.1.5)

N B ''B

We divide both sides of Ege. (T.1.5) by Vt and use CA = A/Vt and Cy = B/Vt to

obtain
C. V. _+C_W_=0 Q.E.D. (T.1.6) \
A A B B . L] L] . L) L]
Theorem 2: V.DI VC, + V.D' ¥C_ = 0 4
— A'A TR BB  B_ _
Proof: Multiply Eg. (1.5.7) by VA and Eq. (1.5.8) by VB and add the results
vofye -V w. =Vc(v-v) +VC (v - v)
A A A B B A A A BB B
= P - = ¥
= + bt + . s Lo
(CAVAVA CBVBVB) (VACA VBCB)v (Te2.1)
The first term in parentheses in the second line of Eg. (T.2.1) is by Eq.
(1.5¢1) Jjust v*. The second term is
VaCp + VpCp = (Vyn, + VBnB)/Vt = 1 (T.2.2)
because
<
Using these results, we find for Eq. (T.2.1)
o ¥ S nF * *
+ = - = oloe »
VADA VCA VBDB VCB v + v 0 Q.E.D, (Te2.4)

10




1.5.2 The Interdiffusion Coefficient

To show that only one diffusion coefficient is required to
describe interdiffusion, we begin by forming the gradient of both sides of Eqg.
(Te2.2)

= v +—
vi 0 V(VACA VBCB)

1
<
5
+
<
5!

(1.5.11)

where we used the results of Theorem 1.

Now solve Eq. (1.5.11) for Vé VCB and substitute the result into
qu (T-204)o One finds

_ ¥ B
0= (DA DB)VA VCA . (1.5.12)
Equation (1.5.12) can be true in general only if

DA = DB =D (1.5.13)

where we refer to the common value as the interdiffusion coefficient and

denote it by D.

1.5.3 Rate Coefficient and the Effect of Advection

Consider a system of spherical polar coordinates and a grain of
radius R with its center located at the origin. The geometry is illustrated
in Figure 1.1. The fluxes of A and B molecules in the vicinity of this grain
are given by Egs. (1.5.9) and (1.5.10). Expressed in spherical polar coordi-

nates, the first of these is

A

11




Figure 1.1. Geometry for calculating the diffusion into a
spherical grain of radius, R.

In writing Eq. (1.5.14), we have made note of the fact that Figure 1.1 is
spherically symmetric and that v* has only one component, v*, which is in the
radial direction. The term, CAV*, represents radial advection while the
term, —DQCA/ar, expresses radial diffusion. Transport in the two angular
directions is prohibited by the symmetry. We also have used the results of

ok
Section 1.5.2 and set D; = D,

We shall assume that the grain of radius R is isolated from all
other grains and that there are no sinks nor sources for molecules anywhere
except on its surface. Thus, molecules which cross the surface at R must also
cross the surface of the larger sphere of radius r (broken circle in Figure

1.1). The total number of molecules of A crossing the sphere of radius r is

I, and is given by

5 aC

2 2 + A
= 4 N = - — . eDe
IA T A 4dnr CAV 47r D Py (1.5.15)

Because of mass conservation, I, is a constant independent of r« Now in Eq.

(1.5.15) replace V¢ by its definition given by Eq. (1.5.1). The result is

12
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2 - 2 - 2 A
C Vv + 4 - —_—
(4nr ( AVA) A Y (CBVB)VB)CA 47x° D e

o}
]

_ _ 2 HCA

where we have used Egs. (1.5.3), (1.5.4), and (1.5.15). We have noted that

2
= . e 7
IB 4qr NB (1.5.17)

Our agrument that IA is constant also applies to IB' This permits us to

define a constant rate of flow of volume, u, by
u=1V + IV . (1.5.18)

Using Eq. (1.5.18), we may cast Eq. (1.5.16) in the form of an ordinary dif-

ferential equation of first order to be satisfied by CA' namely,

A u
- ( )C = - . (1.5.19)
9T 41rDr2 A 41rDr2

The general solution to Eq. (1.5.19) is
CA(r) = (IA/u) + W exp(-u/47Dr) (1.5.20)

where W is a constant of integration.

By a diffusion-controlled precipitation, we mean one where the
material just outside a grain is always in equilibrium with the material
inside. The equilibrium concentration of A just outside the grain is given by
Eq. (1.2.11). Hence, replacing Calr) on the left-hand side of Eq. (1.5.20) by
CA(R) and setting r = R on the right-hand side, we find

W= exp(u/4nDR)[CA(R) - (IA/u)] . (1.5.21)

Replacing W in Eq. (1.5.20) by Eg. (1.5.21), we obtain

I

T
S - A u - R
C,p(r) = S+ (CA(R) u} exp[ll“DR (1 r]] . (1.5.22)
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Infinitely far from the grain, the concentration of A is undis-

turbed by the formation of the grain and has the value, CAbulk. Letting
r+o on the right-hand side of Eg. (1.5.22) and replacing CA(r) by CAbulk on
the left, we obtain an equation for I,
_ bulk -1
I, = u[Cc,(R) - C, ][exp(u/47DR) -~ 1] . (1.5.23)
Define the dimensionless parameter, b, by
then Eq. (1.5.23) may be written
_ bulk b -1
I, = 4mDR[C,(R) - C, ] bfe” = 1] . (1.5.25)

Since b depends on R, Eq. (1.5.25) is a rather complicated func-
tion of R to use in further analyses. We note, however, that near the end of
the precipiation (a circumstance which shall be of interest to us), the net
rate of growth given by u diminishes to the point where u/47DR << 1. Letting

e ~ 1 + b in Eq. (1.5.25), we find in this limit

I, = 4nDR[C,(R) - C bulky

A . (1.5.26)

A

Since D has the units of cm2 sec'1 and R the units of cm, the product,

47DR, has units associated with a bimolecular rate constant, namely, cm3
sec™'. The two species reacting are A and the grains. The rate constant

being a function of R, we write it as K{(R), where
K(R) = 497DR . (1.5.27)

An expression for the transport of B, which is the analog of Eq.
(1.5.26), can be obtained simply by replacing the subscripts A everywhere in
that equation by B. Note also that when Cp(R) < CAb‘llk in Eq. (1.5.26),
transport of A is in the negative r direction toward the grain. When CA(R) >

CAbulk, it is in the positive r direction away from the grain.
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Because we have made the approximation b << 1, Eqg. (1.5.27) has
the same form as is found in the absence of advection [7]. The consideration
of advection, nevertheless, has forced us to pay careful attention to the
definition of the diffusion coefficients of species A and B. We have found
that only one diffusion coefficient enters the theory and that it is the one
governing interdiffusion. In the case that the parent phase is a liquid, D
and its concentration dependence may be measured directly using the diaphragm

cell technique (8,9].

1.5.4 Diffusion-Controlled Growth Velocity

The rate of decrease of volume in the parent phase is

IAVA + IBVé or u as defined by Eq. (1.5.18). The rate of increase of volume

-—t - -—
+ .
of the second phase grain is IAVA IBVB If VA +V

-— p— } -
v
A and B + VB then as the
precipitation proceeds there is a net change in the overall volume of the
system. This introduces a new mechanism for growth in addition to diffusion
and advection. Consider a second phase grain which is expanding faster than
-t p— — -—
the parent phase is contracting, i.e. (IAVA + IBVﬁ) > (IAVA + IBVB). In this
circumstance, the surface of the grain engulfs molecules of the parent phase
as it advances [10]. This, however, is not a very important effect and shall

be ignored in the remainder of this report.

We have been assuming that the second phase grain maintains its
equilibrium composition during growth. The total rate of arrival of molecules
to the grain is Iy + Ig; hence, for the grain to have its equilibrium composi-

tion, the molecular rates, IA and Ip, must satisfy the equations,

' A (1.5 )
X = —— «5.28
+
A IA IB
I
1]
B
X = —— . (1.5.29)
+
B IA IB

The volume of the second phase grain is (4w/3)R3, and the rate of growth of

this volume is
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4 47 _3
dat 3 R )

- -t

If we multiply and divide the right~hand side of Eq. (1.5.30) through by I, +

IB and use Egs. (1.5.28) and (1.5.29), we obtain

d 4," 3 _ L Lo |
3 R) = =1, + 1) (X,V, + X V) . (1.5.31)

Using Eq. (1.5.28) again, we may eliminate I from the right-hand side of Eq.
(1.5.31) and obtain

( vt 1t

XV, + XV

- A A B B

A ¢ ' . (1.5.32)

X
A

d.4n _3y _
at. 3 R ) =-1

Finally, we compute the indicated differentiation on the left-hand side of Eq.

(1.5.32) and replace I, on the right-hand side by Eg. (1.5.26), and obtain

- ] L }
XV + XV )
ar _ *a'a * %V D bulk
rrile " -z ¢ (<, C,(R)) (1.5.33)
A

-
Introducing the average molecular volume, V ,

—_ —_ [ | '
- + [y}
v XAVA XBVB (1.5.34)

Eq. (1.5.33) becomes

Pk~ e m) = VR0 (1.5.35)

Equation (1.5.35) is the grain size growth velocity, V(R,t), first postulated
in Eq. (1.3.1). The next chapter will be devoted to generalizing Eg. (1.5.35)

to take into account competitive effects due to neighboring grains.
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II. EFFECT OF INTER-GRAIN COMPETITION ON THE GRAIN RADIUS GROWTH VELOCITY

2.1 Macroscopic Equation of Motion and Its Solution

We wish to calculate the rate of disappearance of solute molecules
diffusing freely amongst some randomly placed spherical precipitate grains.
The grains are stationary, and they and the diffusing molecules are immersed
in a continuous medium in which the molecules have diffusion, coefficient,

D. Suppressing the subscripts, A and B, introduced in Chapter I, we let

C(r,t) be the concentration of diffusing molecules at the position, r, and
time, t. At the surface of a precipitate grain of radius R, the solute con-

centration is determined by the Gibbs~Kelvin equation, which takes the form,
C(R) = C(w) exp(2yV'/kTR) . (2.1.1)

Wwhether a particular grain is absorbing solute (growing) or emitting solute
(dissolving) depends upon the difference (C(r,t) - C(R)). If positive, the
grain is growing; if negative, it is dissolving. The specific rate of growth
(dissolution) is K(R), so that the rate is X(R)(C(r,t) - C(R)). Let P(R)dAR be
the probability that a grain has a radius between R and R + dR. For the
medium as a who%e the rate of change of solute molecules due to the action of

the grains is [ ARP(R)K(R)(C(r,t) - C(R)).
o
Using this integral to take into account the loss of material by incor-

poration into grains, Fick's second law for C(r,t) is

> ]

- Dv2C(r,t) = ¢(x) - [ ARP(R)K(R)(C(r,t) - C(R)) (2.1.2)
o]

aC(r,t)
at

where the function ¢(r) has been introduced to represent any continuously
distributed sources of solute molecules. From a mathematical point of view,
the presence of ¢(r) permits Eq. (2.1.2) to be treated by Green's function
techniques. The relevant parts of this and other techniques of mathematical
physics have been developed in Appendices A through D for those readers who
may not be famjliar with them. It is recommended that those appendices be
studied now before going further.
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The physical meaning of ¢(r) depends upon the situation, but one might
think of ¢(xr) as being equal to the quantum yield times the rate of absorbance
of light producing some photochemical product, which is subsequently precipi-

tating. Our results will be wholely independent of the form of ¢(r), however.

In the steady state 3C(r,t)/3t = 0 and Eq. (2.1.2) becomes

o]
2
-DV C(x) = ¢(x) - [ ARP(R)K(R)(C(x) - C(R)) . (2.1.3)
o
We may Fourier transform both sides of Eg. (2.1.3) using Egq. (D.26) of
Appendix D to compute the Eransform of Vzc(r) and Eq. (D.10) with k' = 0 to
compute the transform of ( dRP(R)C(R) which is independent of r. The result

is °
K2od(k) = 4K - [ ARP(RIK(R) (G(K) - (21)3C(RIS(K)) . (2.1.4)
(o]
Define
Ky, = jw dRP(R)K(R) (2.1.5)

(o)

and write Eg. (2.1.4) in the form

(%D + KT)E(k) = 5(X) + [ dRP(R)K(R)C(R)(2m)>6(K) (2.1.6)
o]

where §(k) is the Dirac delta function discussed in Appendices A and D.
According to Appendix C and Eq. (D.35) of Appendix D, the Fourier transform of
the Green's function G(r) for the operator, DVZ, is

~ 2

G(k) = -1/x"D . (2.1.7)
Equation (2.1.7) permits Eg. (2.1.6) to be written

- ~ _1 ~ ~ ~
-C(x) = (1 -G(OK) " [6(K(X) + G(k)
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-]

[ aRP(RIK(RIC(R)(21) 5(K) ] . (2.1.8)
o

- -1
We next expand the factor (1 - G(k)KT) in a geometric series

1

_ = 1+ GOK, + (6K + (GoK) + ... (2.1.9)
1 - GORK,

and substitute into Eq. (2.1.8) to obtain

- . . 2 . 3
~C(k) = [1 + (G(RK,) + (GOKL) + (GOROK,)™ + o]

(G 4(k) + G(X) [ ARP(RIK(RIC(R)(2m)°6(K)] (2.1.10)
o]

We multiply .out the brackets in Eq. (2.1.10) collecting together like powers
of Ky and K(R), since being proportional to the rate of precipitation, they

are of the same order of magnitude. The result is

G(K) $(K) + [g(k)KTé(k)$(k) + G(X) [ @RP(RIK(R)C(R)(2m) 5(K) ]
[o]

(60X GRIK,G(KI$(K) + GINIKG(K) [ dRB(RIK(RIC(R) (21) 5(K) ]
(o]

-C(K)

+

+

[ GIKIK G(K)K G(K) $(K) + GIK)K G(K)K G(k)

-]

3
[ aRP(R)IK(R)C(R)(2m)78(k) | + «.. (2.1.11)
o
We next expand K(R) in a series analagous to a cluster expansion in the

theory of the equation of state of real gases [11],

N
K(R) = I K(4|R) , (2.1.12)
d=1

where N is the number of grains. The term, K(le), represents the contribu-
tion to K(R) of an ensemble of grains, "d" in number, all competing for a

diffusing solute molecule. Likewise, Ky which is the average of Eq. (2.1.12)
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over the distribution of grain sizes may be developed in a cluster expansion,

as
N
where
K, (d) = [ dRP(R)K(4|R) . (2.1.14)

o]

We put Egs. (2.1.12) and (2.1.13) into Eq. (2.1.11). For simplicity of nota-

tion, we suppress everywhere the dependence upon the Fourier transform vari-

able, k, and write

A

C = Go + [G(RL() + K (2) + K (3) + ...) G§ + G
[ aRP(R) (X(1]|R) + K(2|R) + K(3|R) + ...) C(R)(2m)>6)

[o]

+ [G(KT(1) + KT(Z) + KT(3) + eee) G(KT(1) + KT(2) + KT(3) + eee)

G + G(K (1) + K (2) + K (3) + «00) G

[ arP(R) (X(1|R) + K(2|R) + K(3|R) + ...) C(R) (21) 5] (2.1.15)
o

+ IG(RL (D) + K (2) + K (3) + ved) GKL(1) + K (2) + K (3) + u2)
G(KL (1) + K (2) + Ko (3) + eue) G4
+ GIRL(D) + K (2) + K (3) + 402) GIRL(T) + K (2) + K(3) + oe)
G fw dRP(R) (K(1|R) + K(2|R) + K(3|R) + ...) c(r) (2m 381

o

On the right-~hand side of Eq. (2.1.15), terms of the same order need to be
collected together. Note, for example, that KT(Z) and (KT(1)2 are of the same

(second) order, while (Kp(1))3, Kp(1)Kp(2), and Ky(3) are of the same (third)
order. The result is
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-C(k) = G(K)¢(k) + [é(k)xT(1)é(k)$(k)] + [é(k)KT(z)é(k)$(k)

+ GO (NG K, (1)G(X) 6(K)]

+

[G(K,(3)G(R) §(K) + GOIK L (NG(RIK, (2)G(K) § ()

+ G(RIK,(2)G(K)K (1)G(k) (k) + G(k)KTU)G(k)KT(1)G(k)KT(1)G(k)¢(k)]

+ eee (2.1.16)
+ [6(K) [ ARP(RIK(3|RIC(R)(2m)°8(K) + G(K) [ dR'P(RVIK(1|RV)IG(X) |
[o] (o} o

dRP(R)K(ZlR)C(R)(2w)36(k)

+G(k) [ dR'P(RV)K(2|RIG(R) [ ARP(R)IK(1|RIC(R) (21)36(K)
(o] o]

+G(X) [ AR"B(RMX(I|RMG(K) [ aR'B(RMIK(1|RM)G(KX) [
o o] o

]

dRP(R)K(1|R)C(R) (27) 6(K)]

This completes the analysis based upon a macroscopic point of view. In
the next section (Section 2.2), we reanalyze this problem, working on the
assumption that the locations of all the grains are known. Subsequently, in
Section 2.3, we shall average the result fran Section 2.2 over a distribution
of grain sizes and locations (configurations) to obtain an equation for com-
parison with Eq. (2.1.16). This comparison will be carried out in Section 2.3
and will result in a revision of the formula, K(R) = 47DR, to take into

account the effect of grain density on the diffusion process.

2,2 Microscopic Equation of Motion and Its Solution

In this section, we seek to represent on a microscopic scale the diffu-
sion of molecules among the grains. We specifically consider a continuous

parent phase in which some grains of second phase are imbeded. The grains are
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N in number and have centers located by the set of coordinates {ri} = (r1,rz,
eeey rN). Iet c(r;{ri}) be the concentration of molecules diffusing among the
particular configuration, {ri}, of the grains. The equation of motion for
c(r;{ri}) is Fick's second law, which in steady state takes the form
5 N
DV c(r) = -¢(x) - .Z in(r - ri) (2.2.1)
i=1
where we have intentionally suppressed in c(r) the dependence upon {ri}. The
i-th grain is located at ri, has radius Ry and "strength" a4 which expresses
its ability to absorb or emit molecules. The spatial location of this
strength is given by §(r - ri). Inasmuch as &§(r = ri) represents the location
of a point particle, it is in seeming contradiction with our assignment of a
radius, R;, to the grain. This concept will be dealt with carefully when we
determine the values of the {qi}. For illustration, the geometry of just two
grains is shown in Figure 2.1. More on the Dirac delta function can be found
in Appendix A, whereas Fick's laws of diffusion are discussed in Appendix B.

¥4

X

Figure 2.1. Coordinates locating the centers of two grains of radii
Ry and R,, respectively.
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Each of the N grains is assumed to be in chemical equilibrium with the
parent phase just outside its boundary. Hence, the concentration just outside
each grain is specified by the Gibbs-Kelvin equation. Every point on the
surface of a grain, in fact, must satisfy the Gibbs-Kelvin equation, so we

have

where R; = IRil. If the grains are sufficiently dilute, then R, = lRi' <<
|ri|, and we may to sufficient accuracy replace Eq. (2.2.2) by

olr;i{r;}) = C(R,) = C(=) exp(zyV/kTRi), i=1,2, oo M (2.2.3)

Egs. (2.2.3) may be used to determine the {qi} as follows.

As shown in Appendix C, the Green's function for the operator DV2 is

given by

G(rlr') = =« ——4—— (2.2.4)
4nD|x - r'

which satisfies the boundary conditions

lim G(r|r') = lim vG(r|x') = 0 . (2.2.5)
o r>o

Hence, according to Appendix C, we may apply Green's theorem in the form
o(r) = [ &¥r' alr|r)e(x') . (2.2.6)

If on the right-hand side of Eg. (2.2.1) we replace i by j and make the
identification

N
f(r) = - ¢(r) - ): q.G(l' - r.) (202.7)
51 3 3
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then we may solve Eq. (2.2.1) for c(r) in the form

' N
—e(r) = [ &r Glr]e)e(x') + £ q.8(xr' - r,)]
o1 3 j
3 N
= [ &r G(e|x)e(r') + T q.G(r|x)) (2.2.8)
51 3 3

where we have used Eq. (A.9) of Appendix A to evaluate the integral involving

the delta function.

We next use Eq. (2.2.8) to evaluate c(r) on the boundary of the i-th
grain. We note that this value, C(Ri) is established by Eq. (2.2.3). We find

N
3
-C(Ri) =4 r'G(ri|r')¢(r') + in(Ri) + ji1 q.G(r
#1i

T rj) . (2.2.9)

To obtain Eq. (2.2.9) from Eq. (2.2.8), care has been exercised in
evaluating G(t‘rj) on the surface of each sphere. The cases i=3j and i#j must
be distinguished. To evaluate G(r|rj) on the surface of the i-th sphere where
i=4, we have set r = r, + Ri’ and written

G(r, + R |r,) = - ! -1 1 - G(Rr,). (2.2.10)
1 1 1 1

4nD|R,| 41DR,
1 1

This accounts for the term in(Ri) on the right-hand side of Eg. (2.2.9). To
obtain G(rlrj) on the surface of the i~th sphere (i#j), we have set r = r; +

Ri’ and written

1 1
+ = - o - = - o2
G(x, Rl|rj) G(x, rj) (2.2.11)

4nD|ri + R - rj| and|r, - rjl

Eq. (2.2.11) follows because the dilute nature of the sinks which implies
IRiI << 'ri - rjl and 'ri + Ri - rj| ~ 'ri - rj|. Eq. (2.2.11) accounts for
all the terms within the sum on the right-hand side of Eg. (2.2.9).
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By virtue of Appendix D and the fact that G(rilr') = -(41rD)_1

'ri - r'|-1 = G(r - ri), we may recognize the integral term on the right-hand
side of Eq. (2.2.9) as a convolution and write

G*¢(r) = [ &r'c(r - rp(r') . (2.2.12)

Substituting Egqs. (2.2.10) and (2.2.12), we solve Egq. (2.2.9) for q; s as

N
= * + 2.
aQ 41rDRi[G ¢(ri) + j__z_:1 G(rij) qj C(Ri)] (2.2.13)
#1
X _ - - -1 - -
where we write G(ri rj) = G(rij) = (4nDrij) with rij Irijl

Iri - rjl .

As it stands, Eq. (2.2.13) does not determine qy because the equation
depends for its evaluation upon a knowledge of the {qj}, j¥i. By the method
of successive approximations, however, we may use Eq. (2.2.13) to develop Eq.
(2.2.8) in a power series. To do this, we replace j by 1 in Eq. (2.2.8) and
write

N

-c(xr) = G*(x) + © gqG(x|r) . (2.2.14)
oy L i

Now substitute Eqe. (2.2.13) into the right-hand side of Eqe. (2.2.14). The

result is
N
~-c(r) = G*¢(r) + 151 G(r - ri) 4nDRi[G*¢(ri) +
N
j§1 G(ry,) g + C(rR)] . (2.2.15)
#1

We expand Eq. (2.2.15) further. 1In Eq. (2.2.13), replace i1 by j and j by ¢ to
obtain
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N

= N * . a4 G ] » . L] L]
ay 4ﬂDRJ[G plxy) + £i1 (r g, + C(Rj)l (2.2.16)

#3

Substitute Eq. (2.2.16) for qj on the right-hand side of Eq. (2.2.15) to
obtain

N
-c(r) = G*¢(r) + T G(xr - r )4wDR, [G*¢(r,) + C(R,)]
i=1 i i i i
N N
+ I I G(xr - r )4wDR,G(r, )4mDR_[G*¢(r ) + C(R,)] (2.2.17)
121 421 i i 713 3 j 3
3
#i
N N N
- * + .
+ E _z_ E G(r ri)41rDRiG(rij)4TrDRjG(rj2)41rDRl[G ¢(rz) C(Rk)]
i=1 =1 g¢=1
#1 #3

In Eg. (2.2.,17) in the triple sum on the right, we have replaced 9, by
4nDR£[G*¢(r2) + C(Rl)] which is the leading turn in the next substition. This
"closure" step is a necessary approximation if we are to have an equation for
c(r) which is free of explicit dependence upon any of the {qil. Equation
(2.2.17) is the result of only two successive approximations; the procedure,

however, may be carried out to any higher degree of approximation desired.

It is now worthwhile to examine a product such as G(r - ri) 41TDRi
G*¢(ri) which appears, for example, as a factor within the single sum in Eqg.

(2.2.17). If we define the "scattering" operator Ti(r,r') by
] = - LI «2.18
Ti(r,r ) 4nDRi5(r ri)G(r ri) (2.2 )

then the desired product can be written

G(r - ri)w4DRiG*¢(ri)

Glr - T)amDR, [ & r'G(r,~ £)o(r") (2.2.19)

fd3r"'G(r - ') fd3r"41rDR16(r"' - r)s(x'’ - r)

[ &@rer'’ - rglr') = G*T, *G*¢(T) .
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Using Egqs. (2.2.18) and (2.2.19), we may write Eq. (2.2.17) in the form

N
-c(x) = G*¢(x) + I G*Ti*[G*¢(r) + C(R,)]
i=1 .
N N
+ I X G*Ti*G*Tj*[G*¢(r) +c(Rj)]
i=1 =1
#1
N N N
+ I X r G*Ti*G*Tj*G*TQ*[G*¢(r) + C(RQ)] + o0 (2.2.20)
i=1 §=1 g=1
#i 3

The ultimate goal of this section is to obtain a result which can be
compared with Eqe. (2.1.16) of the previous section. In order to do this, we
form the Fourier transform of both sides of Eqe. (2.2.20). The transform of
-c(r) is -;(k), but the transform of the right-hand side must be analyzed with
some care. Because of the use of the convolution symbol throughout Eg.
(2.2.20), it would seem that the transform of each term within the various
sums would simply be the product of the individual transforms. However, Eq.
(2.2.18) involves the product of delta functions and is not explicitly a
function of r - r', which was a property exploited in going from Eq. (D.14) to
(D.15) of Appendix D. We will see, nevertheless, that Egs. (D.18) and (D.19)
apply if we define carefully the transform of Ti(r,r'). Consider the trans-
form of G*Ti*G*¢(r). Since this is a transform of a convolution, we denote
it by

(FIC) = [dr e KT G*T, *G*¢ ()

fd3r e-ik°rfd3r"'G(r-r"')fd3r"Ti(r"',r")fd3r'G(r"—r')¢(r')

fd3rfd3r"'fd3r"fd3r' e—ik.rG(r—r'")Ti(r"',r") G(r''-r')¢(x') . (2.2.21)

Replace the variable r by £ = r - r''', where d3r = d3g, so that Eq. (2.2.21)
p 13

reads
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(FIC) = [ aze ¥ 8ag) [ v
- o' !
/ d3r"f Srre iker T, (', )G(x! -t ) (') . (2.2,22)
vy L e 3ll 3 L} L LI}
Replace r by p=1r''"'-x'', where d r''' = d°p, and for Ti(r x'')
substitute
] = ' - LI
Ti(r" ') 4nDRiG(r ve ri)S(r' ri) (2.2.23)

so that Eq. (2.2.22) reads

(FTC)

fd3ge-ik°£G(£)4ﬂDRifd3r"e_ikor"é(r" - ri)fd3pe_ik.pé(p-(ri -r"))
3
x fd r'c(e'' - r')4é(x')

- fdséje-ik.EG(g)4nDRifd3r' ,e-ik-rl '6(1-' . ri) e_ik.(ri- r')

x [SriG(r'’ - re(r') . (2.2.24)

In Eq. (2.2.24), we have used the right-hand side of Eq. (D.7) to evaluate the
integral over d3p.

For §(r'' - ri), it is convenient to use the Fourier representation
given by Eq. (D.8) which reads

S(e't - ) = sy - ') = (1/2m)° [k HKEL ) (2.2.25)

In writing Eq. (2.2.25), we have exploited the fact that the delta function is
an even function of its argument [see Eqg. (A.14) of Appendix Al. Subsititut-
ing Egq. (2.2.25) into Eg. (2.2.24) yields
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(FTC) = fdsie-ik'gG(£)4nDRifd3r"e-ik.r" (;"] (@3kr etk o (xy = 1) mikelr, - ')

X fd3r'G(r" - r')elx)

[fd3ge_ik.EG(E)][4ﬂDRi(5%)3f Orrel (X = K)oy,

X [fd3r' |e-ik"r”f d3r'G(r" - r')¢(r')] (2.2.26)

[

[fPee™* Bace) |[anor, (53)% [k e 79 T p(xur) ]
< [f d3r,,e-ikor'v fd3r'G(l"' - rl)¢(r')] . (2.2.27)

Note that within the last bracket on the right-hand side of Egq. (2.2.27), we
have replaced k' by k, and in the next to last bracket introduced the symbol,
P(k|k'). The effect of P(k|k') is to change k to k' in all functions on its
right. This permits us to go from Eq. (2.2.26) to (2.2,27) and to identify

the last bracket as &(k);(k) using Egqs. (D.18) and (D.19). We further define

i(k'-k).r

- _ 133 (.3, .
T, (k) = 4nDR, (37)° [d'k'e 1 P(x|k') . (2.2.28)

With Eg. (2.2.28) and the results of this paragraph, we may write Eq. (2.2.27)

in the form
(FIC) = G(RIT, (X)G(K) ¢ (K) - (2.2.29)

Note carefully that because of the definition of P(klk'), T (k) is an operator

in k space, and it and functions of k, such as G(k) and ¢(k), do not commute.

To complete the calculation of the transform of Eq. (2.2.20), we need
also to compute the transform of terms of the type G*Ti*C(Ri). Let the trans-
form of a term of this type be called FTD. The manipulations for computing
FTD are the same as Eqs. (2.2.21)-(2.2.27); namely,

(F1D) = [[a’ge 1%’ *Ec(g) 1[4mDR, (52 1)3,d3k' LKD) X5 pixixr) ]

—iKer''

x [[a’rr e C(r)] . (2.2.30)
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Equations (2.2.27) and (2.2.30) are identical except for the last bracket in
Egq. (2.2.30) involving the constant C(R;), which replaces G*¢(r) in Eq.
(22.27). Since C(Ri) does not involve r", it may be factored out of the
bracket. After factoring, if wé then compare the last integral in Eq.
(2.2,30) with Eq. (D.10) with k' = 0, we have

e-ikor"

cr) [a " = ctr)(2m 80k (2.2.31)

Combining Egs. (2.2.30) and (2.2.31) and using the previous results of this

section, we find
(FTD) = é(k)%i(k)C(Ri)(zn)35(k) . (2.2.32)

Applying Egs. (2.2.29) and (2.2.32) to Eg. (2.2.20), we get

N

—c(X) = 6(K¢(K) + T G(OT, (K (G0N + C(R) (21 6(K))
i=1
N N ~ A A A A A 3
+ 3 ) G(k)Ti(k)G(k)Tj(k)[G(k)¢(k) + C(Rj)(2n) §(x) ) (2.2,33)
i=1  §=1
i#3
N N N A ~ A ~ A A A ~ 3
+ 3z z T G(R)T, (X)G(X)T_ (X)G(K)T (K)[G(k)é(k) + C(R )(2m) 8(k)] .
. i _ i J 2 - 2
i=1 =1 g=1
i#3  3#2

Equation (2.2.33) applies to a configuration of grains with specified radii
and fixed locations. Ordinarily, there are so many grains that it is
impossible to specify either their radii or their locations. Rather, only the
probability of a given radius and probability of a given location can be
specified. 1In Section 2.1, we let P{R)dR be the probability of a grain having
a radius lying between R and R + dR. 1If the volume of the system is V, the
probability of finding the center of the i-th grain within an element of
volume is d3ri/V. We now specify that the grains are randomly located and
exert no long range forces on one another. Furthermore, we shall take their
concentration small enough so that the fact that they must not overlap may be
ignored. For these reasons, their positions are uncorrelated and the

30




probability of a given configuration (specified set of values for the {ri}) is
N

just the product of individual probabilities, namely, I (d3ri/V). In Eq.
i=1

(2.2.33), c(k) is an implicit function of the radii {Ri} and the positions

{ri}. After drawing the {Ri} from the distribution P(R;), the
configurational average of c(k) should be equal to C(k) in Eg. (2.1.16). We

define

2

«e(k)>> = fd3rj c(k) = C(K) (2.2.34)

"
=2

> N
[ AR P(R.) V
1 1
1o

=

i =1
where <<c(k)>> symbolizes the average of c(k) over both the distribution of

grain radii and the distribution of grain configurations.

We form the average of both sides of Ege. (2.2.33), taking note that
because of (2.2.28), Ti(k) depends upon both R; and r;. The result is

A ~ A N A ~ ~ A
<«e(k)>> = G(k)p(k) + = [G(k)<<Ti(k)>>G(k)¢(k)
i=1

- - 3
+ G(k) <<T, (K)C(R,)>>(2m)8(K) |

+
[ I~
122

[é(k)<<fi(k)é(k)éj(k)>>é(k)&(k) +

N N N N - ~ a ~ ~ N ~
+ % z £ [G(X)<T, (K)IG(K)T (K)G(K)T (k)>>G(k)(k) +
‘s . - i ] L
i=1 =1 g=1
#1 #j

+ é(k)<<§i(k)é(k)éﬁ(k)éﬁ(k)é(k)ég(k)C(RQ)>>(2w)36(k) + eeel o (2.2.35)
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Note that P(RJL) is normalized to unity, namely,

(o]

f de‘P(Rl) = 1, ,Q, = 1, 2' s e, N (2.2036)
(o]
and also that
-1 3
v f dr = 1, Q, = 1, 2, se ey N . (2.2037)

L

Hence, averages of typical terms shown on the right-hand side of Eg. (2.2.35)

follow. For example,

8
4

~ A N
<<G(k) p(k)>> = T

=

[ ar.P(R) v fd3rj G(X) $(K) = G(K)p(k) (2.2.38)
o j=1

because neither G(k) nor ¢(k) depends upon any of the {Ri} or {rj} « Another

typical average is

-~ - A N had - N A a ~
QT (KGKT. (k)>> = T [ dR B(R IV T [ r T (KG(KT, (k)
i 3 PR A — mi 3
£2=1 o m=1
e ® ..2 3 3 ~ -~ ~
= [ AR P(R,) [ AR,P(R,)V “[d'r [d'r, T, (K)G(K)T,(k)
i it 3j j i J 1 J
o] o
N o N
i i dep(Rl)v'(N'Z) 1 [&r
2=1 o m=1
#i #1i
#] #]
- fw dR, P(R, ) fm dR.P(R,) V2 [d’r, [a3r, T, (K)G(KIT,(K) . (2.2.39)
5 ii g i3 i j i J
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Note that because of Egs. (2.2.36) and (2.2.37), the integrals involving

neither i nor j are unity.

This completes the analysis based upon the microscopic point of view.

2.3 Rate Coefficient and Diffusion-Controlled Growth Velocity

By virtue of the connection between <<c(k)>> and C(k) expressed by Eqg.

(2.2.34), Egs. (2.1.16) and (2.2.35) express the same thing. Both Egs.

(2.1.16) and (2.2.35) have been organized so that terms of like order have

been grouped together. Now coamparing terms of like order between the two

equations, we obtain

N N
KT(1) = 'Z <<Ti(k)>>
i=1
KT(Z) + KT(1)GKT(1) = 'z .z <<Ti(k)G(k)Tj(k)>>
i=1 =1
#i

KT(3) + KT(1)GKT(2) + GKT(Z)GKT(1) + KT(1)GKT(1) =

N N N A A ~ -~ A
r L z << Ti(k)G(k)Tj(k)G(k)Tl(k)>>'
i=1  §=1 =1
#i #5

etc. The terms involving the grain surface concentration yield,

o0

N N
[ aRP(R)K(1|R)C(R) = E <«T, (K)C(R, )>>

o i=1
[ darp(R)K(2|R)C(R) + [ ar'P(R")K(1|R*)G [ dRP(R)K(1|R)C(R)
o] (o] o

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)
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N N A A ~
= I I «T (K)G(K)T (K)C(R,)>> (2.3.5)
i=1 §=1 J ]
#i
[ aRP(RIK(3|R)IC(R) + [ QR'P(R'IK(1|R')G [ dRP(RIK(2|R)C(R)
o] o o]
+ [ QR'P(RVK(2|R)G [ dRP(R)K(1|R)C(R)
o] o

(<] oo

+ [ arR"P(RMK(1|R")G [ aR'P(R"K(1]|R")G [ ArRP(R)K(1|{R)C(R)
[e] o (o]

= I X T KT, (K)G(K)T . (K)G(K)T (K)C(R )>> , (2.3.6)
. . _ i Jj 9 A
i=1 =1 =1

#i +3

Equations (2.3.4)-(2.3.6) contain no information not already contained in Eqs.

(2.3.1)-(2.3.3); hence, we shall choose Eqs. (2.3.1)-(2.3.3) for further

analysis and proceed to the computation of the averages <Ti>, <<TiGTj>>

AA AA

and <<T,GT .GT >>.
i 3 £

2.3.1 Computation of <<Ti(k)>> and KT(1)

According to Eg. (2.2.28) and the definition of an ensemble

average expressed by Eg. (2.2.34), the meaning of <<Ti(k)>> is

<<Ti(k)>> =

= 1,3 13,3, LK )er;
[ 4R P(R 4R V ' [d r, (37) [ak'e P(k|k') . (2.3.7)
o]

We interchange the order of integration with respect to d3ri and a3k’ on the
right-hand side of Eq. (2.3.7) and use Eq. (D.10) to recognize a delta func-
tion. Because there is no function (i.e., only unity) to the right of

P(klk') on which it can act, we may set P(klk') = 1., We find,
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o

- - [ .
[ ar p(r,)amR v ‘(1) fa%k' [aPr, e K R 0Ty
° 1 1 i 27 i

[ dRiP(Ri)41rDRiV-1(2—11r]3fd3k'(2n)36(k'-k)
(o]

<<§.(k)>>
1

[ ]
4V [ &R P(R,)R,
o 1 1 1

47DV V<R> (2.3.8)

where we have used Eqe. (A.9) with r = k', r' = k, and f(r) = 1, and where by

<R>, we mean

<R> = [ dR,P(R, )R, . (2.3.9)
i 17
o
According to Egs. (2.3.1) and (2.3.8)
KT(1) = 7 <<Ti(k)>> = [ 47DV <R> = 47D<R>(N/V) (2.3.10)
i=1 i=1

because there are N terms in Eq. (2.3.10), each equal to 4nD<R>V-1. Hence,
KT(1) = 4nDp<R> (2.3.11)
where

N/V (2.3.12)

©
1

is the number density of grains.

2.3.2 Computation of <<T, (k)G(k)T_.(k)>> and K_(2)
h S I T

According to Egs. (2.2.28) and (2.2.39)

KT (XGK)T . (k)>>
i j

-] oo
-1,.3 1,3
= dR.P(R;) [ dR_P(R,) V fa ri41rDRi(-2—1'r) {
o o ~ < '
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i(k' - k)er,

e L op(k|x" )60
i(k'' = K)er,
x v fd3r,41rDR,(—1)3 rd3k"e I p(x|x'") (2.3.13)
: 3 i 2n
o (o] —2
-c{ dRiP(Ri)£ deP(Rj)V (41rDRi)(41TDRj)

~ i(k - k')'r.
x [aK'G(X) (2—:T-]3fd3rie *

i(k'' - K')er,
x [ax" (2—1)3 fd3rje J

where we have used the definition of P(k"'k') to exchange k for
N i(k'' = k)or,
k' in G(k) and in e 3.

We have also interchanged the order of integration with respect
to d3ri and a3k’ and with respect to d3rj and @3k". In Eqs (2.3.13), the
integral over d3ri is equal to (2n)36(k'-k) while the integral over d3rj is
equal to (2n)36(k"-k'). After these identifications, we note that

3,4 ~ 3
fd k'G(k'")8(k"'-k) = G(k) by Eq. (D.12) and fd k"§(k"-k') = 1 by Eq. (D.11).
Equation (2.3.13) becomes

-~ ~ A _2 o b ~
<<Ti(k)G(k)Tj(k)>> =V “(47D) £ dR, P(R, )R, (47D) £ deP(Rj)RjG(k)
= v'2(4nD<R>)(4nD<R>)é(k) . (2.3.14)
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We observe that on the right-hand side of Eq. (2.3.2) there is a
double sum, the inner sum having one less term (j#i) than the outer. The
outer sum (over i) has N terms (i = 1, ..., N) while the inner sum (over j)
has (N-=1) terms (j = 1, eee, i =1, 1 + 1, «ee, N). Hence, the double sum has
N(N-1) terms. Because é(k) on the right-hand side of Eq. (2.3.14) depends
upon neither i nor j, each of these terms is identical, and Eq. (2.3.2)

becomes
~ Ny N=-1 24
Ko (2) + K (1G(KK (1) = (_v)( <) (47D<R>) “G(Xk)
2 A~
= (47Dp<R>)” G(k) . (2.3.15)
To get Eqe. (2.3.15), we have taken the "thermodynamic limit," wherein
Nyo, V+o while the ratio, p = N/V, is held constant. When we substitute Eg.
(2.3.11) into the left-hand side of Eq. (2.3.15), we find

2.3.3 Computation of <<Ti(k)G(k)Tj(k)G(k)Tg(k)>>, KT(3)' and
Higher Order Terms. Use of "Diagrams

In computing <<Ti(k)G(k)Tj(k)G(k)Tz(k)>>, we need to distinguish
two cases.

Case I: i#2

In this case, we have

T (K)G(K)T .(K)G(K)T (k)>>
i j g

® ® ® -1,.3 1,3
(f) dRiP(Ri)(f) deP(Rj)!) deP(RZ)V fa ri41rDRi(-2—"-]f

3 i(k'-k)-ri -
a’k'e P(k|X')G(k)

-1,3 1.3 , 3., ‘K"K er, s
x vV [d r JATDR, 57) [ ke I p(k|x'")G(k)

i(k'''=k)+r
-1,3 13, 3 2
xV [d r£41rDRZ(——2“) [ak''re P(k|k''") . (2.3.17)
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To simplify Eq. (2.3.17), we make repeated use of the techniques employed to
go from Egq. (2.3.13) to Eqge. (2.3.15). The result is

<<cEi(k)é(k)ij(k)é(kﬁlm>> = v 3 (am<r>) 3 (G(x)) 2 . (2.3.18)

Case II: i=g

Evaluation of the triple sum on the right-hand side of Eq.
(2.3.3) requires j#i and g+#j. Not ruled out, however, by these restrictions
is the possibility, 2=i. We now treat this case. Because g2=i, we must return
to Eq. (2.2.39) to reexamine the averaging process. On the basis of Eq.

(2.2.38), an average over three {Tj(k)} operators is

) -N N
f dR, P(R )V n f
1 o m=1

=2

T, (K)G(K)T (K)G(K)T. (k)>> =
i j i .

&Sr T, (KG(K)T, (K)G(K)T, (k)
m i 3 i

[ 0 oo N 00
oo -2, 3 3_ 2 Al P
= £ dRiP(Ri)£ dRiP(Ri)£ dR ;P(R )V [&r, fa roi(k)G(k)Tj(k)G(k)Ti(k)121 L
#i
#]
N 3
dR P(R)) 1 [ &’
m=1
#1
#3
_ 0 o0 ' ' o0 -2 3
= £ dR, P(R, ) £ dR, P(R,) £ dR,P(R,) V [&x, |
d3rj%i(k)é(k)£j<k)é(k)ii(k) (2.3.19)

where we used Egs. (2.2.36) and (2.2.37) to evaluate integrals not involving i
and j. Substituting Eq. (2.2.28) into Eq. (2.3.19) we obtain
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<< (K)G(K)T . (K)G(K)T, (k)>>
i j i

® ® vmroes -1, .3 1,3
= [ @r.P(R) [ dRIP(R}) dR.P(R) V [ a ri41rDRi(2—") [
o] (o] o]
3 i(X'-K) or, .
a’k' e P(k|k')G(k)
i(k''-k).r,
-1 3 153, 3., 3 .
xV [ a , 4wDRj (2"] [ &k''e P(k|k'')G(Kk)
i(k'*'-K).r,
1 ] 1 3 3 LB ] 1 e

x 47DR! (5;) [ak'' e P(k|k''") . (2.3.20)

In Eq. (2.3.20), we gather together the integrals over dr, ,
]
dRi’ de, compute them, and obtain the result (4nD<R>)3o Operating on unity,
P(klk"') has no effect. The remaining interchange operators must be care-

fully computed, however. We write the relevant factors from Eg. (2.3.20),

. L(X''-K).er, A AKTeR)er,
P(k|k')G(K)e I p(x|x")G(Kk)e P(k|k'"'")
. i(k''-K)er, TR SN
= P(k|k")G(K)e I G(x'")e
. i(k''=k')er. . i(klll_kll).ri
= G(k')e I e e . (2.3.21)

Taking note of Eg. (2.3.21) and the other results of this paragraph, we write
Eqe (2.3.,20) in the form
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T, (K)G(K)T, (X)G(K)T, (k)>>
i 3 i

® LI I ® -2, 1,3
= (4nD) £ dR P(R, )R, (47D) £ dR, P(R, )R, (47D) L dRP(R )R,V (37 1

d3k'é(k')(3%)3fd3k"é(k")(E%)3fd3k"'

-ir_ (k'-k'')

3 -ir, e (k~k'+k''-k''"') 3
x [fa're "1 J[fa’x e ] ]. (2.3.22)

In Eq. (2.3.22), the first integral in brackets is equal to
(2m) 36 (k=" +k" =k' 1) = (2m) 8(K' ' mk'+Kk! T-k) = (2m) 6 (K' = (k' =K' '+K) )
because the delta function is even. The second integral in brackets is

(2n)36(k'—k“). Putting these results in Eg. (2.3.22), we obtain

T, (K)G(K)T, (K)G(K)T, (K)>>
i 3 i
= (41rD<R>)3V-2(3%)3f Arrex')
3 A 3
x Id K''§(k" l_kl)G(kll)J’d K'"'S (k' = (k'~k"'"+k))
= (am<r) > v2(N)3 1 @Bkreen? . (2.3.23)
27 .

In obtaining the last line of Eq. (2.3.23), we have noted that the integral
over d%k''' is unity due to Eg. (D.11) while the integral over ak'" is

é(k') because of Eq. (D.12). To complete the evaluation of Eq. (2.3.23), we
need to compute the remaining integral over d3k'. We may replace

G(X') by (-1/D(k')?) using Eq. (D.35). Although written G(k'), this function
in fact depends only upon the length of the vector, k' [see Eg. (D.35)], and
not its direction. Hence, it is worthwhile to compute the integral over d3k'
using polar coordinates (k',ek,,¢k,) as follows
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«<T. (K)G(X)T, (K)G(K)T, (k)>>
i 3 i

o 27 ™
= (v (50 [ a e i [ ap [ s, sine,,
o] o o
= (4mD<r>) V2. —i"'aﬂi Atk e (2.3.24)
(2m) D

The integral on the third line of Eq. (2.3.24) is elementary, and also
infinite! We deal with this difficulty below.

The left~-hand sides of Egs. (2.3.18) and (2.3.24) may be repre-
sented in terms of diagrams. Since é(k) is the Fourier transform of the
Green's function for free diffusion (which occurs between the grains), we
represent a factor of a(k) by a line containing an arrowhead. On the other
hand, %i(k) is the Fourier transform of the operator describing interaction of
a solute molecule with a precipitate grain of radius Rj» We represent a
factor of %i(k) as a circle. Hence, the left-hand side of Eq. (2.3.18) may be

represented as shown in Figure 2.2a

Oo—0O—0

SR

Figure 2.2a. Diagram representing the left-hand side of Eq. (2.3.18).

This may be interpreted as interaction at grain "i," followed by free diffu-
sion, followed by interaction at grain "j," followed by free diffusion, fol-
lowed by interaction at grain "¢." The left-hand side of Eq. (2.3.24) can be

represented as shown in Figure 2.2b,
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Figure 2.2b. Diagram representing the left-hand side of Egq. (2.3.24).

This may be interpreted as interaction at grain "i," followed by free diffu-

sion, followed by interaction at grain "3j," followed by free diffusion back to
"i", followed by interaction at "i." For three grains, this diagram in Figure

2.2b is generalized as in Figure 2.2c,

Figure 2.2c. Ring diagram for three grains.

Closed diagrams of the sort represented by Figures 2.2b and 2.2c are called
"ring diagrams." Hence, the terms in the triple sum on the right-hand side of
Eg. (2.3.3) are of two types: those represented by open diagrams, such as

Figure 2.2a, and those represented by ring diagrams, such as Figure 2.2b.

Separating the two types of terms, the triple sum may be written
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T bX T <<Ti(k)G(k)T,(k)G(k)Tl(k)>>
i=1 §=1 2=1 )
#1 #]
N N N A A A ~ A
= I z I KT, (XK)G(K)T_ (K)G(K)T (k)>>
i - 1 J 2
i=1  j=1 =1
#i #i
#3
N N - A~ -~ -~ -
+ E I KT, (K)G(K)T,(k)G(k)T, (k)>> . (2.3.25)
. . i 3j i
i=1  j=1
#1

Making a count of terms of the type represented by Figure 2.2a,
we note that there are N integral values that can be taken on by i, but once
it is fixed, only (N-1) values can be assigned to j, and once j is fixed, only
(N-2) can be assigned to f. Hence there are N(N-1)(N-2) terms in the triple
sum of this type. Counting terms of the second type, i may be fixed in any of
N ways, which leaves (N-1) ways of fixing j. Hence, there are N(N-1) terms of
this type in the triple sum.

Because of Eg. (2.3.18), each term in the triple sum on the
right-hand side of Eq. (2.3.25) is identical to every other term in that
sum. Likewise, because of Eq. (2.3.24), each term in the double sum on the
right-hand side of Eg. (2.3.25) is identical to every other term and is also
infinites Hence, using Eq. (2.3.18), Eq. (2.3.25) may be rewritten

N N N N N N N N
z b T <<Ti(k)G(k)Tj(k)G(k)Tz(k)>>
i=1 §=1 g=1
#1 #i
#]

- (g)(ﬁél) E%£)(4WD<R>)3(é(k))2 +

N(N-1) << T, (K)G(K)T, (K)G(K)T, (K)>>
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= o3 (am<r») 3 (G2 + N(N-1) << %1(k)é(k)%z(k)é(k)$1(k)>> (2.3.26)

where in the final step, we have taken the thermodynamic limit. In the second
term on the right in each line of Eg. (2.3.26), we have replaced %i(k) by
31(k) and %j(k) by éz(k), because Eq. (2.3.24) is independent of i and j;
hence, we may choose any convenient values for i and j so long as they are

different.

We now substitute Eq. (2.3.26) into Eq. (2.3.3) and use Egs.
(2.3.11), and (2.3.16) to simplify the results. We obtain

K (3) + 47Dp<R>G(K) 4nDp<R>G(k) 47Dp<R>
= o3 (amcr>) 3 (G(x)) 2 + N(N-1)<<§1(k)é(k)%z(k)é(k)§1(k)>> . (2.3.27)
Because the terms involving <R> on either side of Eq. (2.3.27) cancel, we have
K, (3) = N(N-1)<<§1(k)é(k)%z(k)é(k)§1(k)>> (2.3.28)

which shows that KT(3) is determined solely by the infinite terms in the

triple sum.

2.3.4 Summing Ring Diagrams

So far, our analysis has carried us only up to the partial rate
coefficient Kn(3). If we were to push on to find Kp(4), we could do so in
complete analogy with the above. We would find

N N N A A~ A -~ ~ ~ ~
KT(4) = I T I <<Ti(k)G(k)T,(k)G(k)T (k)G(k)Ti(k)>> . (2.3.29)
i=1 F=1 g=1 J .
# #j

The right-hand side of Eqg. (2.3.29) is a sum over ring diagrams involving
three grains. The diagrams are of the type shown in Figure 2.2c. When the

ring sum in Eq. (2.3.29) is reduced as in the steps leading from Eq. (2.3.25)
to Eq. (2.3.28), we find
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X (4) = N(N—1)(N-2)<<$1(k)é(k)iz(k)é(k)§3(k)é(k)%1(k)>> . (2.3.30)

Now read Eq. (2.3.30) from right to left. Refer respectively to Egqs. (2.2.28)
and (2.3.21) for the definition of %i(k) and for an example of the effect of
the operator P(k!k')' In reading Eq. (2.3.30) from right to left, the first
%1(k) operates on unity to its right, which has no eff?ct. Hence, this opera-
tor is just a function of k in no wise different than G(k). The next operator
fncou?tered in this direction is %3(k) which replaces k by k' in Ehe groduct,
G(k) T1(k) on its right. Once thisais accomplished, the product G(k)T1(k) is
no longer a function of k although T3(k) is. The next operator encountered is
%z(k), which changes k to k" in the product é(k)£3(k) to its right.

However, k' and k" are independent variables of integration and may be inter-
changed (i.e., whichever is immaterial). This means that the order in which
the factors of %z(k)é(k) and 63(k)é(k) occur in Eq. (2.3.30) is unimportant,
and we may group them in arbitrary fashion. Moreover, the integrals implied

by the terms éz(k)é(k) and 53(k)é(k) are the same so we may write
K, (4) = N(N-1)(N-2)<<i'1(k)é(k)('fz(k)é(k))2 %1(k)>> . (2.3.31)

The right-hand side of Eq. (2.,3.31) is infinite just as was found in Eq.
(2.3.24).
If we were to generalize Eqg. (2.3.29) still further to compute

KS(T), we would confront rings of the type shown in Figure 2.24

j L
Figure 2.2d4. Ring diagram for four grains.

and also multiply connected rings of the type shown in Figure 2.2e.
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Figure 2.2e. Multiply connected ring diagram for four grains.

The diagrams in Figure 2.2e are less singular than those shown in Figure 2,24
and will be ignored in our subsequent analysis.
Hence, our final result is a sum of terms of the general type

displayed in Egs. (2.3.11), (2.3.28), and (2.3.31). That is

where Kn(2) is missing because of Eqe. (2.3.16). The sum on the right-hand
side of Eq. (2.3.32) is diagrammed in Figure 2.3.

Figure 2.3. Diagrammatic representation of the sum on the right-~hand side
Of Eq' (203.32).

If we add and subtract the quantity N<<T1(k)>>G(k)>> to the right-hand
side of Ege. (2.3.32) and use Egs. (2.3.10), (2.3.28) and (2.3.30), we obtain

K, = N<<$1(k)>> + N<<§1(k)é(k)$1(k)>> - N<<$1(k)é(k)§1(k)>> (203.33)

+ N(N-1)<<61(k)é(k)(fz(k)é(k))f1(k)>>
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+ N(N=1) (N=2)<<T, (K)G(X) (T, (K)G (X)) T, (K)>>

+ cee

By Eq. (2.1.5), we imply that K(R) is the effective rate coef-
ficient for a single grain, the configurations and radii of all other grians
taking on average values. We may obtain a formula for K(R) at R = R, simply
by failing to take the average over P(R4)dR; implied by the brackets in Eq.
(2.3.33). Also factoring out the common factor N and grouping other terms, we

may write Eqe. (2.3.33) in the form

N 3 A ~ ~ ~ A
K(R,) = (7)[ar {7, () + T, (KG(K)[1 + (N-1) (T, (K)G(K)>>)
A ~ 2 A ~ A ~
+ (N=1) (N-2) (<<T, (K)G(K)>>)" + ... ]T (k) - T (KGOAT, (K} . (2.3.34)

Referring to Egs. (2.3.7) and (2.3.8), <<T2(k)G(k)>> may be computed as

follows:

<<%2(k)é(k)>> =

o
f dR,P(R,)47DR
o]

-1, 1\3,.3, , .3 ~i(k'-k).r -
L,V (F) a7k [d7r e 2 P(k|k')G(k)

* -1,1 13,3, S
({ dR,P(R, )4mDR,V (z—ﬂ-) [@7k' (2m) 78 (k'-k)G (k')

AnDV V<R>G (k) . (2.3.35)

where in going from the first to the second lines, we have as usual inter-
changed the order of integration with respect to d3k' and d3r2 and recognized

a delta function. Substitution of Eqe. (2.3.35) into Eg. (2.3.34) yields

N ~ ~ -~ N_1 ~
Y = (F)f&7r [T, ) + TG [1 4+ (5] (4nD<RG () )
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N=1, N=2 - 2 - - A
+ () (F7) (A< (k) 7 + Lol T, (X)) = T, (KG(K)T, (k) }
= pjd3r1{%1(k) + %1(k)é(k)[1 + p(ATDCRIG(K)) + 0 (4nD<R>G (X)) >

¥ e - T GUAT () | (2.3.36)

where in the last line we have taken the thermodynamic limit.

In Eq. (2.3.36), the series within the square bracket is a geo-
metric series in the variable, 4wDp<R>, and sums to (1 - (4pr<R>))—1. We

substitute this result into Eq. (2.3.36) and simplify.

R(R )=p[a’r {T, (4T, (G (X [1 = 41Dp<R>G(X) 17 T(K) =T (R)G(RIT, () }

1

pjd3r1{$1(k) + 51(k)é(k)[ — - 17,0}
1 - 47Dp<R>G(k)

[ 41[Dp<R>G(§) ]&‘1 (k) }

n

pfd3r1{§1(k) + §1(k)é(k)
1 - 4mDp<R>G(k)

4"Dp<R>G(§) ]g (x) . (2.3.37)

3 -~ 3 ~ ~
p[a7x Ty () + pfd T (G| 1

1 = 47Dp<R>G(k)

The first integral on the right-hand side of the last line in Eq.

1

(2.3.37) is the same as Eq. (2.3.8) except for a factor of v~ ' and an average

-1 %
over R;. Removing V deiP(Ri) fram Eq. (2.3.8), 1 = 1, and calling the

o
resulting integral I4, we have

= (3r T -
1, = [@r T (K) = 4mDR, . (2.3.38)
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In the second integral on the right-hand side of Eq. (2.3.37), we
replace &(k) within the bracket by Eq. (D.35), replace %1(k) by its definition
in terms of Eq. (2.2.28) and simplfy. 1In evaluating the effect of the
P(klk') operators, we rely upon Eq. (2.3.21). Calling the integral I,, we
find
[ 47Dp<R>G(k) 1

T1(k)

)
]

3 A -~
fa r,T, (k)G (k)
1 - 47Dp<R>G(k)

'- 41er<R>(—1/k2D) -'

fa’r (amr ) (52)> fa’kr e TR T p(xlxnG i) >
i 1 = 47Dp<R>(=1/k"D)

i(k"-k).r

x (4n0R,) (57)° [ ke 1 P(x|x")

(4ﬂDR1)2(—4np<R>)

(E:’r')afd3k'é(k' )} o . (_2_%)3'rd3k" fd3r1ei(k"-k) .r1

(k)2 + 4rpcr>

(4wDR1)2(—4np<R>)

= (5%)3fd3k'é(k') . . (5%)3fd3k"(2w)36(k"-k)

(k')2 + 47p<R>

re3 3 (4mR ) % (~ampcr>)
5;) fa'x'G(k') - 3 . (2.3.39)
(k")" + 4np<R>

According to Eq. (D.35) G(k') depends only upon the length of k'; hence, the
integral in Eg. (2.3.39) is spherically symmetrical, and it is especially

worthwhile to perform the integration in spherical polar coordinates. We find

2

® _ (47DR ) “ (=4mp<R>)

1, = (5%)3 f dk'(k')z( ! 5) - 12 .
o D(k') (k')" + 4qp<R>
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27 ﬂ

f do, s i de, ,sine, ,
o o

(4wDR1)2(4np<R>) o ax"'
= 3 . (4m) o f 5 . (2.3.40)
(2n)™D o (k")° + 4mp<R>

The integral over k' on the last line of Eg. (2.3.40) can be found in tables

-1
and is equal to (7/2) (4mp<R>) 72 . Hence Eg. (2.3.40) becomes
(41rDR1)2(4Trp<R>)(41r) (n/2)
I = .
2 (211')3D (41rp<R>)1/2
1
= (41rmz1)R1(41rp<R>)/2 . (2.3.41)

Finally, we substitute our evaluations of I, and I, [Egs.
(2.3.38) and (2.3.41)] into Eg. (2.3.37) to obtain our final result for K(R1),

which is

¥
K(R,) = 47DR [1 + R, (4mp<R>)"7 | (2,3.42)

In the limit of an infinitely dilute system of sinks (p+0), we have according

to Eqe (2.3.42)

lim K(R1) = 47DR
p>0

1 (2.3.43)

which is identical to Eq. (1.5.27). On the basis of the arguments and results

of this section, we have demonstrated that for a slightly concentrated system

of sinks that corrections to the infinitely dilute limit rate constant,
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1
4nDR1, deggnd upon p 4%

We now return to Egs. (1.5.26) and (1.5.35), replacing in the
former the factor 41DR by Eg. (2.3.42). The resulting equation is

bulk dR V'D

— % bulk
V(R,C, ) = < §Z§ [1 + R(4mp<R>) ﬂ[cA - CA(R)] (243.44)

which gives the rate of growth of the grain radius taking into account the

proximity effects associated with neighboring grains.

If the bulk concentration is changing with time, i.e., CAbulk =

CA(t), Eq. (2.3.44) may be rewritten

v(r,t) = LR 1 4 R(4wp<R>)1/2][CA(t) - c,m1 . (243.45)
X R
A
During a precipitation, R = R(t) will be an implicit function of t. Eq.
(2.3.45) shows that V(R,t) = V(R(t),t) depends implicitely on t through R(t)

and explicitly on t through C,(t).
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I1II. DETERMINATION OF THE GRAIN-SIZE DISTRIBUTION FUNCTION
AND RELATED PARAMETERS

3.1 Summary of Governing Equations

In Section 1.2, we found that the local solubility in the parent phase of

a component A just outside a grain of radius R was given by
= V! - e le
CA(R) CA(m)exp(ZyVA/kTR) (3.1.1)

The grain size distribution function, n(R(t),t), was introduced in Section 1.3

and was found to satisfy the continuity equation

an(R(t) ,t) 3(n(R(t) ,£)V(R(E),t))

ot 3R =0. (3.1.2)
In Section 1.4, the equation,
c (0) = c (&) + (2T) x fwdRRsn(R t) (3.1.3)
A A = A ! °e

KATA (o}

was derived expressing the conservation of component A in the case where the
grains were concentrating A while the parent phase was rejecting it. Finally,
at the end of Chapter II, we found that the grain radius growth velocity was
given by (see Eq. (2.3.45))

D

'
R
A

[1 + R(4np<r>) /2 [c,(t) = C,(R)] (3.1.4)

|<|

V(R(t), CA(t)) =

]

where p is the number density of grains at time t.

The object of the remainder of this Chapter is to solve Egq. (3.1.2) for
n(R(t),t) subject to the constraint provided by the mass conservation
principle expressed by Eq. (3.1.3). To start the process of solution, Eq.
(3.1.1) will be used to evaluate CA(R) in Egq. (3.1.4) and the resulting
formula will be substituted for V(R(t),t) in Eg. (3.1.2).
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3.2 Introduction of Dimensionless Variables

Since the parent phase is rejecting the substance A, the concentration
CA(t) is a monotonically decreasing function of time. When t+«, the
precipitation is complete, and the parent phase has reached the saturation
concentration CA(m). Prior to that, C,(t) > CA(m), which permits us to define

a diminsionless supersaturation, o(t), by

C (t) - C_(»)
olt) = -2 S (Q)A . (3.2.1)
A

By the time, t+», at least one grain has achieved macroscopic dimensions;
mathematically expressed, this means R+w, The equilibrium solubility of a
macroscopic grain is CA(w) given by Eq. (3.1.1), which must be identical to

the long time limit of CA(t). Hence,

lim CA(t) = lim CA(R) = CA(w) . (3.2.2)
t9oo R

We conclude that symbols CA(m) in Egqs. (3.1.1) and (3.2.1) are identical.
The number of grains per unit volume of the system with radii between R

and R + dR is n(R,t)dR. Hence, at any time the grain number density is

p(t) = [ &R n(R,t) . (3.2.3)
o

The volume of a grain of radius R ig (4n/3)R3. Hence, the fraction of
the total volume occupied by grains is f dR(41r/3)R3 n(R,t). As t+w, we may

define a limiting volume fraction ¢w byo

s, = (41/3) [ ar R n(R,=) = (C,(0) = c, (=) (V'/x}) (3.2.4)
[0}

where to obtain the far right-hand side of Eq. (3.2.4), we have used the limit
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of Eq- (30103) as tyow,

We now define a dimensionless length, a, by
a = R/q (3.2.5)
where
o = 2y§A/kT (3.2.6)
and a dimensionless time, T, by
T = tD(F'/XNC, (=) /o . (3.2.7)
A A

We convert from n(R,t) to a dimensionless distribution, F(a,t), by writing

nRt) = (——) Fla, 0y - (3.2.8)
4na /3

Substituting Eqs. (3.2.1), (3.2.4), and (3.2.7) into Eq. (3.1.3) gives

[+ -]

o(1) = 0(0) (1 = [ da F(a,D)a’] (3.2.9)
O

where

C_(0) - C_(w)
o(0) = A C A . (3.2.10)
A (=)

Turning to Eq. (3.2.3), we substitute Eq. (3.2.8) and obtain

o0

plt) = (—=5—) (1) (3.2.11)

47a /3
where
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o0

p(t) = [ daF(a,1) . (3.2.12)
o]

It is helpful also to define

[ daF(a,1)a
<a> = . (3.2.13)

©

[ aaF(a,T)
o]

Next in Eq. (3.1.1), note that Zyei/kTR is much less than unity for most
substances at roam temperature in the form of precipitate grains exceeding a
few hundred Angstroms in radius. Hence, we may expand the exponential in Eq.

(3.1.1) and write more simply
= + . 3 [ ]
CA(R) CA(N) (1 o/R) (3.2.14)

Substitute Eq. (3.2.14) into (3.1.4) to obtain

v'D
V(R,t) = FR [1 + R(4'n'p<R>)1
A

/2 _ _ -
] [(CA(t) CA(w)) aCA( Y/R] . (3.2.15)

Next use <R> = o <a>, replace p by Eq. (3.2.11), and replace Cp(t) =~ CA(m) by
Ege (3.2.1). With these substitutions, Eq. (3.2.15) becomes

vV'D CA(m)

Vi = St lete) - (Va0 s a(3p ean)]

/2] . (3.2.16)

2 -
Next substitute AR = qda, dt = XAa dr/DV'CA(w), Eq. (3.2.8) and Eq.
(3.2016) into qu (3'1‘2)' The result is

F(a, 1 3
D 4 2 qra, D) otn - (DI + a3} =0 @207
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which may also be written

3F(a,1) , 3[F(a,D)W(a,T)]

5t 5a =0 (3.2.18)

where W(a,1) is a dimensionless velocity defined by
1 1 ~ 1
Wwia,t) = (;ﬂ[o(r) - (;)][1 + a(3¢_p<a>) /2] . (3.2.19)

Summarizing the accomplishments of this section, we may state that we
have combined Egs. (3.1.1) and (3.1.4) and substituted the result into Eq.
(3.1.2) which has been expressed in dimensionless variables to obtain Eq.
(3.2.17). We have also written Eg. (3.1.3) in dimensionless variables to
obtain Eq. (3.2.9). The four equations (Eg. (3.1.1)=(3.1.4)) have been
condensed to two equations (Eg. (3.2.9) and (3.2.17)). We must now solve Eq.

(3.2.17) for F(a,1) subject to the side condition expressed by Eq. (3.2.9).

3.3 Similarity Transformation

Eq. (3.2.18) is a rather complicated first order partial differential
equation, whose exact solution does not seem to be known. Hence, we propose
to separate variables and search for a series solution of the form good for

large T,

- 4
Fla,T) =1 y[FO(Z) + T 1 F1(Z) + eeee] , (3.3.1)

where y1>y>0. The variable Z is defined by the similarity transformation

alt) = z(1)t" (3.3.2)

where x is some power. If for large t, where Eg. (3.3.1) is meant to apply,
we suppose that a is growing as a power of {, say a ~ Tx' then Z can depend
only weakly upon t. In this sense, it may be said to be the proper or

canonical length for the problem.
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Substitute Eq- (3'3-1) and (3.3.2) into E(Io (3.2.9). Noting that

da = Tx dZ. The result is

00 -y o0
4 x-— 3 1 3
olt) = ol(0)[1 = " Y( [ 22 P(2) + 1 [ dzz
o o
-y,
For large t, o{1) ~ 0., Since Tt does to zero as tT+», Eq. (3.3.3) can be

F (2) + eee) ], (3.3.3)

satisfied for large t only if

y = 4x (3.3.4)
and

® 3

[ azz” F_(2) =1 . (3.3.5)

o

Equation (3.3.5) is required in order to cancel the leading term of unity
within the brackets in Eq. (3.3.3). Using Egqs. (3.3.4) and Eq. (3.3.5), Eq.

(3.3.3) may be written to lowest order as

-y1
o(t) = o4 T (3.3.6)
where
g, = =0(0) fw dzz3 F,(2) . (3.3.7)
1 o 1 ¢

Keeping only the leading term in Eg. (3.3.1) and using Eg. (3.3.4), we

obtain

Fla,1) = 1 % F(2) . (3.3.8)

Substitute Eq. (3.3.8) into Eg. (3.2.12). The result is

plt) = Po T (3.3.9)
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where

o0
Py = £ dz F_(2) .

Likewise substitute Eg. (3.3.8) into Eg. (3.2.13) to obtain

a> = a T
o

where

o
[ azz F_(2)
o

a =

fo) oo
[ az F (2)
! $

We next introduce the canonical length into Eg. (3.2.18).

(3.3.10)

(3.3.11)

(3.3.12)

In computing

the relevant derivatives, however, it is important to note that 2 is an

implicit function of 1. Using Eq. (3.3.2), we compute

3F(a,71) _ 3 [ —4x
3T 9T (T FO(Z))
= aay o AXED) (z) + -ax OF,(2) EE
t o t 92 T '
According to Eg. (3.3,2)
32 L 3 (17%a) = —x¢ ¥V o L'k
Tt 9t
so that Eg. (3.3.13) becomes
3F (2)
3F(a, 1) _ _,. _~(4x+1) o, =ax+l) o
——5;——— 4x T FO(Z) XZT ——SE_-
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(3.3.14)

(3.3.15)



The next derivative to compute is

d(F(a,IWa, )] _ A[F(Z,1)W(Z,T)] 32 _ -4x 3[F _(Z)W(Z,1)] 32 (3.3.16)
Ja Y- sa | 3% 9a ° 3
According to Eg. (3.3.2),
B_Z_ = T-x (303017)
Ja
so that Ege. (3.3.16) becomes
3[F(a,T)Wla,1)] _ -5x 0 Fo!ZW(Z,1)]
! - . (3.3.18)
Jda 82
Substituting Egqs. (3.3.15) and (3.3.18) into Eq. (3.2.18), we obtain
oF (2) [F (ZYW(Z,1)]
-(4x+1) _ =5x o
-T [4xF_(2) + xz — = =z (3.3.19)

which suffices to transform Eg. (3.2.18) to canonical variables.

The explicit form of the velocity which appears in Eg. (3.3.19) may be
obtained by substituting Egqs. (3.3.2), (3.3.9), and (3.3.11) into Eqg.
(3.2.19). The result is

1/2

W(z,7) = (207 [oln) - (1/20] 11+ (3¢ o a) /%21 . (3.3.20)
If we set

e = (3¢ poa°)1/2 (3.3.21)
Eqe (3:3.20) may be written simply

W(Z,1) = (1/277) lol1) - (1/209] [1 + €21 . (3.3.22)
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The asumptotic foxrm of o(t1) is given by Egq. (3.3.6). 1In Appendix E, we
showed that Yy = X [see Eq. (E.1.16)]. Combining these results and
substituting into Eq. (3.3.22), we obtain

-2
Wiz, 1) =1 (1/2) Loy = (1/2)] 11 + ezl . (3.3.23)
Next, we substitute Eq. (3.3.23) into the right-hand side of Eq. (3.3.19).
The factor T_zx which leads Eq. (3.3.23) is combined with the factor

- -7
of t Sx on the right-hand side of Egq. (3.3.19) to produce 1t X, Because of

-(4xH1
Eq. (E.2.2.), which specifies x = 1/3, the factor of t (4x+1)

n the left-hand
-5
side of Eq. (3.3.19) cancels the factor of t X on the right. The end result

of these cancellations is shown in Eq. (3.3.24).

dF (2z)

o d -1 _
-4xFO(Z) - X2 = + = [FO(Z) z (01 - (1/2))(1 + g2)] =0 . (3.3.24)

Equation (3.3.24) may be cast in a more compact form by adding -xZFo(Z) to the
terms within the brackets and subtracting —(d/dZ)(xZFO(Z) from the terms

outside. The result is

d
'FO(Z) + az [W(Z)FO(Z)] =0 (3.3.25)

where we may identify a new dimensionless velocity by

wiN

wz) = ()G (o, - D)1 +em - 2] . (3.3.26)

We now summarize the progress to this point. 1In Section 3.2, we were
left with Eq. (3.2.18) to be solved for F(a,t) subject to the condition
on o(t1) expressed by Eq. (3.2.9). By expanding the grain size distribution
function as in Eq. (3.3.1) and introducing the variable change specified by

qu (30302), we have converted qu (3.209) into Eq- (303'6) With g defined by

1
Eq. (3.3.7). The variable change specified by Eq. (3.3.2) plus the simple
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asumptotic forms given by Egs. (3.3.6), (3.3.8), (3.3.9), and (3.3.11) have
served to convert the partial differential equation, Eg. (3.2.18), to the
ordinary differential equation, Eq. (3.3.25), with w(Z) defined by Eq.
(3.3.26), The constraint expressed by Eq. (3.2.9) has been completely
incorporated into Eq. (3.3.26) and no further refernce to it is needed to
obtain the general solution of Eq. (3.3.25) for FO(Z).

In the process of changing variables from a(t) to z(z1), we have converted
Eqe (3.2.12) to the form of Egs. (3.3.9) and (3.3.10) and converted Eq.
(3.2.13) to the form of Egqs. (3.3.11) and (3.3.12). Once we have solved Eq.
(3.3.25) for Fo(z), we will use Eq. (3.3.10) to compute the normalization
factor for Fo(z) and use Egq. (3.3.12) to compute the mean radius. The
technique used to solve Eq. (3.3.25) is motivated by some physical arguments

which we explore in the next section.

3.4 Critical Radius and Supersaturation

As was explained in Section 1.1, in a distribution of grain sizes
maturing through Ostwald ripening, there exists a critical radius specified by
the value of the supersaturation. Grains smaller than this critical radius
will dissolve while larger grains will grow. As the precipitation evolves,
however, the supersaturation diminishes and the critical radius increases. In
the case of a grain whose initial radius exceeds the critical radius, there
ensues a race between it and the critical size. Even though such a grain is
initially growing, it is possible for the critical radius to grow faster and
at some time to catch up. When this happens, a grain of this size stops
growing, turns around and begins dissolving. In fact, when t=», all grains
except the largest have disappeared. The sole remaining grain has absorbed
all of the available solute and is in stable equilibrium at the saturation
concentration.

For large yet finite times (1 < ©) there is an asymptotic distribution of
grain sizes given by the function FO(Z). Within this distribution, a grain
which is neither growing nor dissolving has attained the critical radius.
Because it is in equilibrium with the instantaneous superstauration, its
growth velocity, as defined in canonical variables by Ege. (3.3,26) must be

zero. The canonical critical radius Zo thus satisfies

W(Zo) =0. (3.4.1)
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Combining Eqs. (3.3.26) and (E.2.2) and substituting the result into Eq.
(3.4.1), we obtain

(1/20)(01 - (1/Zo))(1 + ez ) - (1/3) z_ = 0 . (3.4.2)
Equation (3.4.2) may be rearranged to read

Z2
o

1
1 = 3(Teez * Z (3:4:3)
o] o

so as to serve as an expression for 04

Now consider a grain with radius, Z > Zge This grain cannot grow forever
or else the principal of mass conservation expressed by Eq. (3.3.5) would be
violated, and no asymptotic steady state could exist. Hence, asymptotically
no velocity larger than the critical velocity,>w(Zo) = 0, can exist.

Therefore w(Z) must have a maximum at Zgye The condition specifying this is

aw(z) _ _
- Oatz=2_ . (3.4.4)

Using Eq. (E.2.2) and substituting Eq. (3.3.26) into Eq. (3.4.4), we

obtain

% 2 , € 1 1 _
-5+El ey (B)og-a]-3=0- (3.4.5)
Z0 Z0 o [o]

Equation (3.4.5) may be solved so as to provide another expression for ¢

1 in
terms of Zo’ namely,
Z2
=2 _ .2, (3.4.6)
94 Z_ 3 € e
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Eliminating ¢, between Egs. (3.4.3) and (3.4.6) yields a polynomial

1
equation for Zo’

ez ¥ 4223 - 3%2° -6e2 -3=0. (3.4.7)
(o] o] O (o)

For ¢ = 0, Eqe (3.4.7) becomes a simple cubic equation, the physically
significant root of which is

z, = (3/2)'/3 . (3.4.8)
Equation (3.4.8) serves as a zeroth order estimate of the root of the quartic

which is Eq. (3.4.7). Isolating the term in Zz on the left-hand side, Eqg.

(3.4.7) may be rewritten

173 24 1/3

[1+ (22 - =) e+ Z02 = (3.4.9)

N
n

)

N

o=

Now substituting Eq. (3.4.8) for Z, on the right-hand side of Eg. (3.4.9), one

obtains

3 1/3

3 2/
e + (%) e . (3.4.10)

4/
1+ ()

Expanding the right-hand side of Egqe. (3.4.10) in a binomial series, including

terms through order ¢, yields

1/3 1/3

z «(2) 1+ DB €] (3.4.11)

Replacing £ by Eq., (3.3.21), Eg. (3.4.11) becomes

/3 1/2

1/3 1.3.1
[1+3(3) e, e a0 ]- (3.4.12)

N
o
i
~
Njw
p—
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To calculate ¢ substitute Eq. (3.4.11) for Z, in Eq. (3.4.6). The

1’
result is

3 2

1/3 1/3 -1 2/3 1/
[ - (%)(%) e] - (%)(%) [ +(%)(%) e] +e. (3.4.13)

oy = 2(3)

The quantities within brackets are next expanded in bimonial series up to

order g. When coefficients of like terms are collected, one obtains

3

1/3 1/
(1~ (%1(31 el . (3.4.14)

9 (%)

Replacement of ¢ by Eq. (3.3.21) gives finally

1/3 1/3

9 14,4 1/2
o=@ [1-QE) G e, (3.4.15)

3.5 Integration of Eq. (3.3.25) to obtain Fo(z)

In Eqe (3.3.25) the indicated differentiation of the quantity within the
brackets may be carried out and the result divided through by w(Z)Fo(Z). One

thus obtains

1 dFo(Z) . A dw(2) 1 (3.5.1)
F (z) az w(z) az w(z) ° Tt
Integration of Eq. (3.5.1) yields
Co daz
FO(Z) = 2 + exp [ f W(Z)] (3.5.2)
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where Co is a constant of integration.
To compute the integral indicated in Eq.

Egse. (3.3.26) and (E.2.2) to obtain

(3.5.2), we begin by combining

wz) = (Do, - ()] (1 +em - £ (3.5.3)

For 04r oOn the right-hand side of Eq. (3.5.3), substitute Eq. (3.4.6). The
result is

1 2
E 3 > 3 (3.5.4)
o

Multiply the right-hand side of Eq. (3.5.4) by (-3zozz)/(-3zozz) to obtain

-1 3 3
w(z) = (3Z Zz) {z(z - 6) + 3(3_/2) - 3z e][1 + ez] + 2 2} . (3.5.5)
o

If on the right-hand side of Eq. (3.5.5) terms of order ¢ and higher are

dropped, the result is

3

-1
w(z) = ) 2 2
3zoz2 °

3
+ (ZO - 6) + 3ZO] Y (3.506)

If terms of order ¢ and higher are ignored in Eq. (3.4.10), Eq. (3.4.8)

applies. Since according to Eq. (3.4.8) 3 =~ Zzi = 0, we may add

(3 - ZZZ)Z2 to the quantity within the bracket in Eq. (3.5.6) to obtain

-1 3 2, 2 3
w(Z) = (3Z zz) [zoz + (3 - 2zo) z° + (2 - 6) Z + 3z°]. (3.5.7)
o

The quantity within the bracket in Eq. (3.5.7) factors so that
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w(z) = =(1/32%) (2 - zo)2 (z + 3/zi) . (3.5.8)

Evaluation of Eq. {3.5.2) calls for 1/w(Z). Also involved is an integral of
this quantity. To compute the integral, we expand 1/w(Z) in partial

faractions and arrive at

322 323 (23+6)
1 o 1 o o 1 27 1

= - - - . - . . (3.5'9)
w(Z)

(z3+3)  (z-2 )2 (z3+3)2 2y (ZPen)? (z43/20)
(o] o] [} (o] (o]

The details associated with the derivation of Ede (3.5.9) may be found in
Appendix F.
After substitution of Eq. (3.5.9) into the integral on the right-hand

side of Eq. (3.5.2) and integrating, one obtains

az
f w(z)
4 3,.3
3z 32°(2° +6)
o) 1 o o 27 2
= . v - n(Z =7) = ——— n(Z+3/27) . (3.5.10)
(zi+3) (2,-2) (z2+3)2 ° (2 z+3)2 o

In Eq. (3.5.10), we have used the following:

-2 _ _ -1

[az(z =2 )" = (2 -2 (3.5.11)
-1 _

[ azz - z) = n(z = 2) (3.5.12)
2 1 2

[ az(z + 3/2) = gn(z + 3/2) . (3.5.13)

Finally, we substitute Eqs. (3.5.9) and (3.5.10) into Eg. (3.5.2) to

obtain

C 22
o]

F (2) = . exp(- §/(Z =2)) (3.5.14)
° (zo—z>“(2+3/22)3 ©
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where o, B, and § are defined by

3z3 z3+6)
o (o]

@ =—2-2 42 (3.5.15)
(z3o+3)2

27

+ 1 (3.5.16)
3 2
+
(Zo 3)
4

3z

§ = ——39—- . (3.5.17)
(Z+3)

For later comparison, it is useful to have Egs. (3.5.15)-(3.5.17) in the

limit e€+0 (infinitely dilute system of grains). 1In this limit, Z, is given by

Eq. (3.4.8) and according to Egs. (3.5.15)-(3.5.17),

o = %1 (3.5.18)
B = % (3.5.19)
3173
§ = (3) . (3.5.20)
Using qu (3.5.14)’
2
c'z 1/3
, o (3/2)
lim F (2) = . exp(- ) (3.5.21)
g0 © ((3/2)"3-21"" 3 ze2(3/2) 137 /3 ((3/2)V/3-z2]

where‘C; is the ¢ = 0 limit of Cg.
One should note that Z = Z_ in Eq. (3.5.14) and % = (3/2)1/3 in Eq.
(3.5.21) cannot be exceeded by 2, otherwise FO(Z) would take on complex values

which are unphysical. Hence Z = Z_  serves as a cut-off in the former while Z
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= (3/2)1/3 is a cut-off for the latter. For values of Z larger than these

cut-off points, the respective distributions are zero.

3.6 Evaluation of C', p , and a_ for ¢ = 0
O O o

3.6.1 Evaluation of CA

Equation (3.3.5) may be used to determine C;. We note, however,
that because of the cut-off at Z = Zé = (3/2)1/3, integration beyond this

point is unnecessary and Eq. (3.3.5) can be rewritten

Zl
° 3
1 = £ dz 2z FO(Z) .

(3.6.1)

If we substitute Bq. (3.5.21) into Eq. (3.6.1) and let z = (2/3)2/3 x 1/3,

Eq.
(306.1) becolnes
27/8
1 1 X 1
—T = - f dx . exp(- )o (3.602)
c 3o ((3/2)x"3) (34x"/3) 773 1-(2/3)x'/3
The integral on the right-hand side of Egq. (3.6.2) has been evaluated
numerically by Lifshitz and Slyozov [3] and found to have the value 0.0488,
Equation (3.6.2) implies
C; = 3/(0.,0488) . (3.6.3)
Equation (3.5.21) may be transformed to another form by
multiplying the right-hand side by e and dividing Cé by e« Eg. (3.6.3)
becomes
C' /e = —3 . 22.6 (3.6.4)
o (0.0488)e

and Eq. (3.5.21) becomes
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22.6 Z2

]11/3

V4
(/)"

F (2) (3.6.5)

73973 - ool :

)
[(3/2) V32 tz+2(3/2) /3 /3_z

3.6.2 Evaluation of P

The quantity 6 can be computed using Eq. (3.3.10). Taking into

7! = (3/2)1/3 Eq. (3.3.10) becomes

account the cut-off at 2z

Zl
o]

"

(3.6.6)

o] daz FO(Z) .

(o]

Replacing (3/2)1/3 in Eq. (3.5.21) by the sumbol, Zé and substituting the

14

result into Eq. (3.6.6), one obtains

L}
Zo C; Z2 Zé
[o] = I dz . exp[- _7 . (30607)
° o (z' - 203 (z4221)7/3 (z' - 2)
o o o
Now in Egq. (3.6.7), we express binomial terms involving fractional exponents

as exponential functions of logarithms.

integrand by (-3). The result is

c! o 2
-3Z
Py =~ —?— f 4az ( > ) exp[-(
o (z2'-2) (2+2Z')
o o
% T :
= = —— [ az — {exp[~(—) - (
S an g fel-(==
o
C; z2!
= - = {exp[-(—=
z2'-z
o

Last, we multiply and divide the

'
O

5 . 4
Z'_Z) - (3)an(z! -2) - (F)ancz+2z )]
o

5 L . - i L
g)gn(zo Z) (3)zn(z+2zo)]}

ZI

5 Ve - i ' o
) = 3)an(zi-z) - (Fen(z+222) 1}

(o]
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) (Cé/e)
9(2)1/3

1.994 (3.6.8)

°
I

where in the last line, we have used Eg. (3.6.4).

3.6.3 Evaluation of a,

The quantity, a_, can be evaluated directly in terms of its

definition expressed by Eq. (3.3.12) or indirectly by exploiting the results
of Section E.1 of Appendix E. We choose the latter procedure because it is

simpler.
On the basis of Egq. (E.1.14), we have letting t+,
A 2 - NS
lim [ 4z z F_(2) V(Z) ~ lim T =0 (3.6.9)
T>00 o] T>o0

Into the left-hand side of Eg. (3.6.2), substitute Eq.

since yq = x = 1/3.
(E.1.15) to obtain

o
[ az (0,2 = 1 + o, z2 - ¢2) F(2z) =0 . (3.6.10)
(o]
Since by definition, the average of ZX is
K ® k
<Z >~ [ az z F (2) , (3.6.11)
(o]
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Eq. (3.6.10) becomes

Because of Eg. (3.3.12), <Z> = a,. Hence when ¢ = 0, Eg. (3.6.12) gives

_ _ 1/3
a = 1/o1 = (4/9) (3.6.13)

where we have used Eq. (3.4.14) with ¢ = 0.

3.7 Evaluation of Cys P, and ;Difor e#0

When ¢#0, C, must be evaluated by numerical iteration. The independent
variable is ¢ s which is the volume fraction under consideration. One then
estimates Po and a, by choosing the b, = 0 values given by Egs. (3.6.8) and
(3.6.13), respectively. Having specified o v Py and a_, Eq. (3.4.12) dgives
Z,s which in turn determines a, B, § by virtue of Egqs. (3.5.15)=(3.5.17). At
this point Co can be determined from Eg. (3.3.5). This completes the first
iteration.

With o, fixed as before, the second iteration is begun by using the
function FO(Z) obtained from the first iteration and computing o and a_ using

(o]

Egs. (3.3.10) and (3.3.12). Next, Z, is recomputed using Eq. (3.4.12). With

Z, specified, Co is determined as before, which completes the second
iteration.

The procedure described above converges nicely after a few iterations.
Part of the results obtained may also be expressed analytically. Let Py and
a, be given by the zero volume fraction results, Egs. (3.6.8) and (3.6.13).

Substituting these into Eq. (3.3.21) gives

e = 2.134(4,00)1/2 . (3.7.1)
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When Eq. (3.7.1) is substituted into Eg. (3.4.11), we obtain

zZ, = (3/2)1/3 1+ 1.222(¢w)1/2] . (3.7.2)

Likewise, substitution of Eq. (3.7.1) into Eg. (3.4.14) gives
2
o, = (/8311 - 0815060 "% (3.7.3)

To obtain a s, we turn to Eq. (3.6.12). We define a, by

[ az zzpo(z)
a. = <z%> =2 = 0.609 . (3.7.4)
2 ”
[ az F (2)
‘ O
o]

The value, 0.609, on the right-hand side of Eq. (3.7.4) was found by replacing
the integral in the denominator by Eq. (3.6.8) and computing the integral in
the numerator numerically using Eq. (3.6.5). With a, thus found, Eq. (3.6.12)

may be rewritten

aj = —— - (3.7.5)

Into the right-hand side of Eq. (3.7.5), we substitute Eq. (3.4.14). Up to

terms of order €, the result may be written

1-a,(3/2)%3¢

a o . (3.706)
°  (3/20%-(3/2)¢

Expanding the denominator of Egq. (3.7.6) in a binomial series and collecting

terms up to order g gives
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1/3
4 3 2/3
o ° 2(3/2)2/3 2

We now substitute Egs. (3.7.1) and (3.7.4) into Eq. (3.7.7). The result is

1/3

4
a_ = (3) [1 + 0.739 (¢ )

1721, (3.7.8)

This completes the determination of the relevant parameters in the case g#0.

3.8 Summary and Discussion

3.8.1 Results in Terms of Laboratory Parameters

The use of dimensionless variables for mathematical analysis has
led us to a number of important results. In this section, we summarize a set
of parameters (mostly dimensional) which are appropriate for expressing these
results in a form convenient for laboratory use.

The mean molecular volume in the A-rich phase (the phase

consisting of grains which are concentrating A) is

_ X'(MW) + X' (MW)
vl = A A. B B (3.8-1)
PN

where (MW)A and (MW)B are the molecular weights of A and B, respectively, and
XA and xﬁ are the mole fractions of these components in the phase. The mass
density of the phase is p', while Ny is Avagadro's number. The volume

occupied by a molecule of A in this phase is
v = XA V' . (3.8.2)
Using Eqe. (3.8.2), we may calculate the natural length scale
a = 2y V'A/kfr (3.8.3)
which was introduced in Eq. (3.2.6); o is the radius beyond which the

curvature of a grain no longer greatly enhances its solubility.
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The equilibrium concentration {(molecular number density) of A in

the B-rich phase (the continuous phase which is rejecting A) is

X pN

A (o}

A XA(MW)A + XB(MW)B

where p is the density of the phase and Xa and X, are the respective mole

fractions.

With the quantities defined so far, we may also introduce a

natural time scale,

9 = m———— (30805)

Having the units of seconds, 9§ is proportional to the time, a2/D, required by
a molecule to diffuse a distance, a».

By combining Egs. (3.2.4) and (3.2.10), we obtain an expression
for the initial supersaturation, ¢(0), in terms of the volume

fraction, b7 occupied by the A-rich phase at equilibrium,

X'¢m
G(O) = “i—_ . (3.8-6)
CA(m)V'

According to Egs. (3.2.7), (3.3.6), (3.8.5), and (E.2.2), the supersaturation

decays with time as

o(t) = 01(9/1:)1/3 (3.8.7)

where 0, may be determined from the graph in Figure 3.1 or calculated from Eq.

(3.7.3).
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1.6
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1.2
(3/2) '3

1.0 i 1 1 | 1 1 i
0.02 0.06 0.10 0.14

R

Grain size distribution normalization constant, Pe [Eq.
(3.3.10)], supersaturation constant, o, [Eq. (3.7.3)],

and
mean radius constant, ag [Egqse (3.7.8)], shown as functions

of the equilibrium volume fraction occupied by grains, ¢
[Eqe (3.2.4)].

Figure 3.1.

According to Eqs. (3.2.4), (3.2.7), (3.2.10), (3.2.11), (3.3.9),

and (E.2.2), the total number of grains of the A-rich phase per unit volume

decreases with time according to

3p°c(0)

p(t) = 270 "

o=

(3.8.8)

where Po may be determined from Figure 3.1.

As we know, within the population, p(t), there is a distribution

of grain sizes. This distribution, n(R,t), depends upon both radius and

time. Combining Egqs. (3.2.4), (3.2.5), (3.2.8), (3.2.10),

(E.2.2), we may write

(3.3.8), and

F (2) 1/3
ol0) | _o© E. (3.8.9)

n(R,t) =

(08/02)  (47a°/3)
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where FO(Z) is given by Eqg. (3.5.14) and Z is defined by Eqs. (3.2.5) and
(30302) r nanlelYI

z = (R/a) (a/t) V3 . (3.8.10)

The function F,(2Z) is shown in graphical form in Figure 3.2. ©Note that with
increasing volume fraction, b7 FO(Z) decreases in height and broadens. The
broadening is caused because competition increases the rates of both growth
and dissolution of grains [see Eq. (2.3.45))]. This means that the large
grains grow even faster, shifting both the mean and maximum radii to larger
values., With broadening, however, the height must decrease because FO(Z) is
normalized according to Eg. (3.3.5). Associated with the distribution are a

number of radii, which we discuss below:

Fo(l)""’

1 L 1 1 | 1 |

04 0.8 1.2

2 =

Figure 3.2. Grain size distribution function, FO(Z).

There is no sharp minimum radius in the distribution. To
represent an effective minimum radius, however, we arbitrarily select from
Figure 3.2, 2 = 0.2, the point where FO(Z) diminishes to a few percent of its

maximum value. Setting Z = 0.2 in Egq. (3.8.10), we obtain
76




/3

min
Inspection of Eq. (3.2.15)
of the radius, call it Rcrit' at which

radius may be written

Rcrit = a/o(t) .

The value of RCrit

radii at time t are greater than Rcrit

are dissolving.

follows the inverse

are smaller than Rcrit

(3.8.11)

reveals that there is a critical value

V(R,t) = 0. Using Egq. (3.2.1), this

(3.8.12)

of the supersaturation. Grains whose

are growing while grains whose radii

The mean radius in the distribution is found by combining Egs.

{(3.2.5), (3.2.7), (E.2.2),

/3

> = a altre) V3.
[}

(3.3.11), and (3.8.5).

The result is

(3.8.13)

The wvalue of a, depends upon the volume fraction and may be read from Figure

3.1 or calculated fram Eq. (3.7.8).

for ¢ = 0, shows that a_(¢_ = 0) =

Comparison of Egs.

/o (g, = 0) = (4/9) /7.

(307.3) and (307.8)

1/3

Hence, because

of Eqs- (3.8.7)’ (3.8.12), and (3.8013)’ we find that <R> = Rcrit when

¢m= 0.

<R>.

The maximum radius in FO(Z) is 2 =

discussion following Eq. (3.5.21)].

R = /3

Z a(t/e)1
max o

where 2, may be read from Figure 3.3 or calculated using Eq. (3.7.2).

< <R> < R

general Rnin crit < Rnax®

For ¢_ > 0, however, Eqs. (3.7.3) and (3.7.8) indicate that R,

Setting 2 = Z

rit >

Z, [see Eq. (3.5.14) and the

o in Eg. (3.8.10), we obtain

(3.8.14)

In

77




002 006 010 0.4
¢,

Figure 3.3. Maximum grain size constant, Zo [Eqe (3.7.2)], as a function
of volume fraction occupied by grains, b [Eq. (3.2.4)].

Finally, it is worth noting that all quantities which depend upon

volume fraction (e.g., p(t), olt), R 4¢r <R>, R .., and F (7)) do so as a
1/2

function of (¢m) (see Chapter II above). This has its origin in the growth

velocity expressed by Eq. (2.3.45), which encompasses the competition effect.
The square root dependence is in contrast with (d)(w)1/3 which might be expected
if the competition effect depended upon the mean separation between the
grains, which is proportional to the cube root of the volume. In the
treatment supplied above, we have assumed that the surface of each grain is in
equilibrium with its local environment and that its growth is diffusion-
controlled. If, however, the relaxation of the grain radius to accommodate
changes in its local environment is not instantaneous, then the growth of the
grain is not diffusion-controlled. The volume-fraction effects predicted
above diminish as the degree of diffusion-control decreases, becoming zero in
the limit that diffusion is infinitely fast. In this limit, the mean radius

1/2 2/3

increases as t , the number of grains per unit volume decreases as t . and

the grain size distribution function Fo(z) is substantially broadened {5].
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3.8.2 BApplication to the System Succinonitrile/Water

The growth of grains described above involves an evaporation-
condensation mechanism with molecular transport between grains by diffusion.
In almost all systems, the continuous phase and the granular phase have
different densities, however. This means that the evaporation-condensation
mechanism (Ostwald ripening) may be obscured by the gravitational convection
and collisional coagulation of the growing grains. Expermentation in the
acceleration-free environment of an Earth orbiting laboratory removes the
effect of gravitational convection and permits the free observation of the

Ostwald ripening of the precipitate grains.

Phase equilibrium in the two component system, succinonitrile
(NCCH20H2CN) and water is summarized in the phase diagram shown in Figure
3.4. The diagram is marked by a monotectic point (two liquids and solid
C4H4N2) in equilibrium, which is characteristic of many two-component metal
alloys. The system succinonitrile/water has some distinct advantages for
studying the process of Ostwald ripening. These are: (1) The system is
transparent to visible light at all compositions and temperatures, so that the
growth of second phase droplets can be observed photographically. (2) The
consolute and monotectic points occur near roam temperature, so that little
heat is required to keep the system in a liquid state; in space flight where
electric power is at a premium, this is an important advantage. (3) The
thermophysical properties of the system are rather well studied. (4) Near 41
°C, the droplet and continuous phases have the same density, so that at this
temperature the Ostwald ripening process can be observed even in Earth's
gravity.

In Table 3.1, we have summarized the thermophysical properties of
the succinonitrile/water system at 25%1 °C. The primed symbols refer to the
succinonitrile rich phase (droplets). The coefficient for interdiffusion on
the water-rich side of the phase diagram (continuous phase) is D. The
interfacial tension is y. The subscript A refers to succinonitrile while the

subscript B refers to water.
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Figure 3.4. Phase diagram for the system succinonitrile/water.

TABLE 3.1 THERMOPHYSICAL DATA FOR THE SYSTEM C4H4N2/H20 AT 251 °C

A= C4H4N2, B = H20. Primes on symbols refer to the succinontrile-rich phase.

Succinonitrile Rich Phase Water Rich Phase

xl

H

0.646 X

X' = 0.354 X, = 0.968
B B
o' = 1.0121 gn/cm’ o = 1.0052 gm/cm3

Other data: y = 2.484 erg/cm2: D =

1.27 x 107> cm?/sec (MW), = 80 gn/mole;
(MW), = 18 gm/mole.
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If the continuous phase is to be water-rich, the initial
composition of the system must lie to the right in the phase diagram. By the
lever rule, the initial mole fraction of A, XAO, is related to the equilibrium

values, Xp and XA, by

== (3.8.15)
n

where n' and n are the number of moles of A-rich and B-rich phases,
respectively, in the equilibrium mixture. The volumes occupied by the two

phases at equilibrium are, respectively,

V' = n'V' (3.8.16)
and

V= nv (3.8.17)
where

V' o= (X3, + XMW L) /p'N (3.8.18)
and

v = (X, (M), + X (M) ) /pN_ (3.8.19)

are the respective average molecular volumes in the two phases. the fraction

of the total volume occupied by the A-rich phase at equilibrium is

oV 1
b =T T IRV

(3.8.20)
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where by Eqs. (3.8.16) through (3.8.19),

(o]
+ '~
v _po' XplM g My Xa¥a . (3.8.21)
L] - * 1 + [ ] ® L] ]
v P X (MW) , +Xp (MW) x;-xA

The thermophysical data in Table 3.1 are for equilibrium at 2511
°C, We specify the desired equilibrium volume fraction of the A-rich phase to
be ¢ = 0.1, since this is one of the larger values considered in Figures 3.1-
3.2 and can be expected to demonstrate the competition effect. Combining the
data in Table 3.1 with b, = 0.1 according to Egs. (3.,8.20) and (3.8.21), we
find that the system should be prepared initially so that its composition is

o

XA = 0.055, that is it should be 5.5 mole percent C4H4N2 and 94.5 mole

percent water. This and other results are summarized in Table 3.2.

From Egs. (3.8.1), (3.8.4), and (3.8.6) we find that the initial
supersaturation, ¢(0), is 0.70. This means that the initial succinonitrile
concentration in the continuous phase is 70% greater than it will be when
equilibrium is achieved. This immediately determines the initial critical
radius for growth or dissolutin through Eq. (3.8.12) with t set equal to

. _ -4
zero. We find R .., (0) = 1.64 x 10 pym or 1.64 A.

The other quantities in Table 3.2 cannot be calculated at t = 0,
because the formulae, Eqs. (3.8.7), (3.8.8), (3.8.9), (3.8.11), (3.8,13), and
(3.8.14), are all asymptotic and accurate only when t >> 6. We have chosen to
evaluate these formulae at a time where the mean radius in the distribution
achieves 1 pym, which is a size convenient for holographic photography. This
occurs at t = 89 sec, which may be seen from Table 3.2 vastly to exceed § =
30.4 ps. At this time, the minimum radius in the distribution is 0.21 ym,
while the maximum radius is 1.7 pm. The critical radius, 1.1 pym, slightly
exceeds the mean radius. Having been initially 70%, the supersaturation is
just 6.8 x 1073%. There are 2.2 x 1010 droplets of the C,H,N,-rich phase per

cm3 .
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TABLE 3.2 CALCULATED RESULTS FOR THE SYSTEM C4H4N2/H20 AT 25%1 °C
[+
The results in the table are based on the following quantities; the equation
or figure used to specify each quantity is shown in parentheses next to the
numerical value: V' = 9,52 x 10~23 cm3/molecu1e [Eq. (3.8.1)]). GA' = 6.15 x
10~23 cm3/molecule [Eq. (3.8.2)]. CA(w) = 9,66 x 1020 molecules/cm3 [Eq.
(3.8.4)].

a
(3.8.5)]. p°= 101 (Figure 301). [s]
(o]

= 7.43 x 102 cm [Eq. (3.3.3)]. 6 = 3.04 x 10~1! sec [Eq.

1 = 0.97 (Figure 3.1). a, = 0.94 (Figure

3.1). ZO = 106 (Figure 3.3). XA= 00055.
t(sec) o (cn™) o Ryjp(m) Ry (i)  <RXGm) R (ym)
0 —_— 7.0 x 10~! — 1.1 x 1074 _— _—
89 2.2 x 1010 6.8 x 1075 0.21 1.1 1.0 1.7
3.45 x 10° 5.6 x 10° 4.3 x 107 3.3 17 16 27

After 4 days (345,600 sec), which might be the length of an
experiment carried into orbit by the space shuttle, the mean radius has
increased to 16 ym. The minimum radius is 3.3 uym, while the maximum radius is
27 ym. The remaining supersaturation is just 4.3 x 1076 = 4.3 x 107%%, which
is extremely close to equilibrium. The number of droplets has decreased to

5.6 x 10° per cm3.

Because the characteristic length, o = 7.43 x 10~° cm, is quite
small, the approximation, R > a, invoked to obtain Eq. (3.2.14) is established
early in this system. In fact, because the interfacial energy, y = 2.484

erg/cm2

s is small, the approximation becomes good when the droplet has just
barely achieved molecular size. It is doubtful that interfacial energy even
can be defined at this small size, although this in no way diminishes the

power of the approximation.

Likewise, because a is so small, the characteristic time
scale, 6§ = 30.4 ps, is very short. For times of the order of 1 ps or less,
molecular motion as represented by a diffusion coefficient cannot be
defined. Hence, in the system succinonitrile/water, the condition,
t > 8, required for the validity of the asymptotic formulae, is established
rapidly. This means that the theory should be applicable as soon as the

initial nucleation phase is complete and the surface between the droplet and
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the continuous phase is sufficiently established for an interfacial energy to

be defined.

It is useful to compare the phase separation of metallic alloys
with the system succinonitrile/water. For liquid alloys, the interfacial
energy is about a factor of 10 higher, which increases o by a factor of 10,
assuming roam temperature. On the other hand, according to Eq.

(3.8.5), 8 increases by a factor of 100. Nevertheless, because of Eq.
(3.8.13), droplets of 1 ym size can be expected to be observed after 8.9 sec
at room temperature, which is a factor of 10 sooner. On the other hand, in
$01id non-equilibrium metal alloys, the diffusion coefficient should be about
10-11 cm2/sec, implying that 6 increases by about a factor of 1013 over
succinonitrile/water. The time to form grains of 1 ym extends to 8.9 x 1010
sec, implying that these non-equilibrium alloys are metastable over times

substantially exceeding their expected useful lifetimes.
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APPENDIX A -~ THE DELTA FUNCTION AND ITS PROPERTIES
To
PAUL DIRAC

who saw that it must be true,

LAURENT SCHWARTZ
who proved it,

and

GEORGE TEMPLE
who showed how simple it could be made

The above is from the dedication to the book by M J. Lighthill, Fourier
Analysis and Generalized Functions, Cambridge University Press, 1964.

The Dirac delta function has many applications in applied mathematics,
not the least of which is its use as a representation of a point source with
the partial differential equations of mathematical physics.

The delta function can be represented as a limit of a sequence of func-
tions. Consider, the sequence, defined by (other sequences are also possible),

n

1/2
L

5 (x) = exp(-n2x2), n=1, 2, eee . (A1)

The delta function is the liwmit

s(x) = lim 6 (x) = lin —D exp(~n2x2) . (2.2)
n»o n+o T
In Figure A.1, we show how én(x) looks for increasing values of n. Each
Gn(x) gets taller and narrower as n becomes larger. In the limit n+w, Gn(x)
gets infinitely tall and narrow (a point source), and is called the Dirac

delta function, &8(x).

Although §(x) is highly singular, it has many uses when it appears

within integrals. For example

40 400
f dxs (x) f dx lim Gn(x)

-00 -00 n-oco

+o0 2 2
= lim —2 f[axe " % = 1. (a.3)
1/2
n+o T -co
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Figure A.1. Sequence of functions representing the Dirac delta function
in the limit n»e.

Summarizing, this important property is

+o0
[ axs(x) = 1.

-0

(A.4)

Let f(x) be an integrable function of x. Another important property is

+o0
f dxf(x) 8§(x - x*) = £(x").

-00

(A.5)

We demonstrate this using Eq. (A.1)
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S(x = x') = lin —2- expl-n(x - x')2]. (A.6)
n»>o T

To be specific, let f(x) = e*, then

* X n * X -nz(x - x')2
- x') = i -
[ axe” 8(x - x') lim /2 [ax e e
-0 n->o T =00

+
n -nzx'2 ® -n2x2 + (2n2x' + 1)x
= 1lim e [ dax e
1/2
nye T -0
n _nzx,z n2(2n2x'+1}2 +o0 - [x _1/ (2n"x' + 1)]2
= lim ——— e . e 2 [ 3z e 2
1/2 2n - n
Ny T =00
2,2 2 2n2x' + 1 2 1/2
= lim = e-'n * . en ( 2 ) Lt
1/2 2n n
n-o ™
x' (1/4n2) x' o x'
= e lim e = e e = e . (A.7)

We have shown explicitly that

+o0 ’
[ ax e*s(x - x') = e* .

=00

The delta function can be generalized to three dimensions. In rectangu-

lar coordinates, §(r - r') means
§(r = r') = 8(x - x")8(y -~ y')d(z -~ 2'). (A.8)
The integral property expressed by Eq. (A.5) can be generalized to

£(r') = [ &ri(r)slr - ') (2.9)
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where the symbols in Egq. (A.9) have the meanings:
f(xr) = £f(x, v, 2) (A.10)
3.
d" r = dxdydz. (A.11)

The integral sign in Eq. (A.9) represents a triple integral, namely

3 +oo +oo +oo
[d&r=z= [ ax [ ay [ az. (A.12)
=00 -00 -00

Combining Egqs. (A.8)-(A.12), we can show how the right-hand side of Eqg. (A.9)

is computed.

+o0 +o0 +oo0
[ &Srf(r) s(r' - x') = [ daxb(x - x') [ aysly - y') [ dz6(z - 2') £(x,y,2)
+o0 +oo
= [ axs(x -x') [ dy§ly - y") f(x,y,2")
+o0
= [ axs(x - x') f(x,y',2') = £(x',y',2") (A.13)

-00

where we have used Eq. (A.5) on each coordinate separately.

Finally, it is worth noting that by virtue of Egs. (A.2) and (A.8), the

delta function is an even function of its argument, namely

6(!- - r') = G(r' - r)o (Ao14)
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APPENDIX B ~ FICK'S FIRST AND SECOND LAWS WITH DELTA FUNCTION SINKS

Fick's first law of diffusion is

dc( x)

J(x) = «D ax

where C(x) is the concentration [say molecules/cmzl of the diffusing species
and J(x) [molecules/cm2 sec] is the flux of that species measured across a

plane whose normal points in the +x-direction.

Fick's first law makes physical sense. Consider the concentration

profiles shown in Figure B.1.

C (x) C (x)
J (x)——

dC/dx <0 dC/dx >0

+x +x

(a) (b)

Figure B.1. (a) Negative concentration gradient showing
direction of molecular flux; (b) Positive concentration
gradient showing direction of molecular flux.

In both cases, J(x) points in a direction so that particle motion serves to

smooth out the concentration gradient.

Generalized to three dimensions, Fick's first law reads
J(x) = -DVC(r) (B.1)

where r = (x,y,z) is the position coordinate locating a point in space where

the concentration is C(r).
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Now, return to one dimension and consider the flux J(x) crossing a plane
at x and another flux J(x + dx) crossing a plane a distance dx away at x +

dx. This is depicted in Figure B.2.

d (X)— —14J (x+dx)

X x+dx

Figure B.2. Geometry for derivation of Fick's second law.

Inside the volume enclosed by the two planes, we allow material to be gene-
rated by some sources (e.g., chemical reactions). For mathematical con-
venience, we may separate these into two types: (1) Continuous sources are
defined everywhere and are represented by continuous functions, ¢(x). The
units of ¢(x) are, for example, molecules/cm3 sec. (2) Point sources are
represented by delta functions as g8§{x - x') where g is a constant (strength

of the source) and x' lies between x and x + dx. If the units of x are cm,

then the units of §(x = x') must be cm-1 so that the integral

+o
[ axs(x = x') =1

=00

is dimensionless. This implies that g has the units molecules/cm2 sec; hence,

as(x - x') has the units molecules/cm> sec.
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The distinction between a source and a sink is a matter of sign. Every-
where ¢(x) < 0, it describes a sink. Likewise, if g < 0, q§(x - x') is a

point sink.

The buildup (depletion) of material between x and x + dx can be de-
scribed in terms of the fluxes and the sources and sinks. Let the planes at x
and x + dx have the common cross section, A. The volume of material between
the planes is Adx, whereas the amount of material is C(x)Adx. If we allow all
functions to depend also upon the time t, then the net rate of buildup of
material within this volume is (3C(x, t)/3t)Adx and

3C(x, t)

3t Adx = J(x, t)A - J(x + dx, t)A + $(x)Adx + qf(x - x")Adx (B.2)

where we have allowed for the presence of both continuous and point sources.

We expand J(x + dx, t) in a Taylor series about x, as

3J(x, t)

J(x + dx, t) = J(x, t) +
ox

dx (B.3)

keeping only terms up to the first order in dx. We now substitute Eg. (B.3)

into Eq. (B.2) to obtain

i‘”;”TU Adx = J(x, t)Adx - J(x, t)Adx - 3‘](—;}’(—” Adx

+ ¢(x)Adx + gb(x - x'")Adx . (B.4)

After cancellation of terms of opposite sign, common factors, and algebraic

rearrangement

3C(x, t) + aT(x, t)
ot 9x

= ¢(x) + q6(x - x'") (B.5)

Egq. (B.5) can be generalized to three dimensions:
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3C(r, t)

Y + 7V J(x, £) = ¢$(xr) + gb{r - ") (B.6)

where we have used the definition of §(xr - r') given by Eq. (A.8). We substi-

tute Eq. (B.2) and obtain

oC(xr, t)

= - Dv2C(x, t) = ¢(x) + q8(r = r') (B.7)

which expresses Fick's second law.

In the steady state, the concentration field, C(r, t) is no longer a

function of time and 3C/3t = 0, so that Egq. (B.7) becomes

DY2C(x) = =4(x) - q8(r - r') . (B.8)

94




APPENDIX C - THE GREEN'S FUNCTION METHOD

C.1 General Principles

The Green's function method is a technique for integrating inhomogeneous
partial differential equations. Essentially, it is a generalization of the
method of variation of parameters used to solve inhomogeneous ordinary dif-

ferential equations.

In steady state diffusion, we are faced with the solution of a partial

differential equation of the form
2
DV ' C(x) = £(r) (C.1)
where f(r) is a source term which, by virtue of its presence, makes Eg. (C.1)
inhomogeneous. There must also be some conditions specifying the value

of C(r) on the boundaries.

C.2 Green's Problem

In order to solve Eq. (C.1) by the Green's function method, we suppose

that we may solve exactly the equation
2 L] L}
DV G(x|x') = §(r - ') (Ce2)

where G(rlr') is called the Green's function, whose values we are free to
choose on the boundaries. Because of the singular properties of the delta
function, Eq. (C.2) is homogeneous everywhere except at the point r = r'. Eq.

(C.2) is known as Green's problem.

We proceed to solve Eq. (C.2) for G(rIr'). To accomplish this, we wmake

use of the divergence theorem, which states
3
[ &rv.errx = [d4d5 .+ F(x) (C.3)

where F(r) is a vector-valued function of the position r and where in rectang-
ular coordinates, r = (x,y,z). The triple integral covers the entire volume

enclosed by the boundary S.
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Consider the vectors, r and r', as shown in Figure C.1.

X

Figure C.1. Geometry of origins O and 0'.
We define the vector E by
E=r~-r' =(x-x',y=-y',z~-2") (C.4)

With r' fixed and the origin at oO', Vr *, the divergence with respect to r, is

identical to V_ +, the divergence with respect to . This is because

£

% 3% - x) (C.5)

etc. With the variable change specified by Eq. (C.4), Eg. (C.2) becomes
DVEZ G(E|x") = s(E). (C.6)
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Note that

2 Glglr) = v_ . (V

G ' L] L]
Ve £ . (g|r")) (C.7)

Integrate Eq. (C.6) over all space starting from the origin at O'.

f d355(g) 1= d3g D VE . (vE G(E|x"))

(C.8)

D [ as, - v, G(E|r")

where we have used Eq. (C.3) with F(xr) = VE G(g'r'). We let our volume of
interest be a sphere centered on 0'. The radius of this sphere is E = Ig'
which has surface area 4w§2- The normal to the surface of this sphere points
in the E-direction. We intend for §(E), to represent a point source {(iso-
tropic) centered on 0O'; hence, G(glr‘) must also be isotropic (i.e., depending
only upon £ = |£| and independent of angles). The surface integral in Eq.

(C.8) is then equal to
D [ dsE . vgc(Elr') = 4n€2 DéEL%%ELl (C.9)

where 3G/3f is the gradient of G in the E-direction (the radial direction for
spherical polar coordinates centered on O'). Putting Eg. (C.9) into Eq.
(C.8), we obtain

aG(efr') _ _ 1
9g 4nD52

(C.10)

Eqe. (C.10) can be integrated to read

- 1
47DE

G(g[x*) = +C (c.11)
where C is a constant. We take as boundary condition, G(wlr') = 0, from which

we conclude

1

G(rlr') = - Z;BT;—:—;TT (C.12)

where we have used Eg. (C.4) and £ = |g| = Ir - r'|. The gradient of

G(r|r') is 97




R N R N 1
v Gixjr') = rpr gl E} 8x+33y+kaz] 5 ) , 172
((x=x")" + (y=-y")" + (z~2')7)
1 (x-x") 1 + (y-y') 3 + (z-2') i
=305 [ 3/2] (C.13)

((x-x')2 + -y ? + (z-2")?)

which, in the limit that x, y, z all go to infinity, is zero. Hence, the

Green's function expressed by Eq. (C.12) satisfies the boundary conditions
lim G(r|x') = lim V G(r|r') = 0. (C.14)
o X0

Note further that because of the absolute value sign in Eq. (C.12), G(rlr') is

symmetric upon interchange of r and r', namely
G(r|r') =aG(r'|n) ., (C.15)

This is called the reciprocity relation for the Green's function and is due to

the fact that the operator V2 is self-adjoint.

C.3 Green's Theorem

We propose to solve Eg. (C.1) by expressing C(r) in terms of some inte-
grals involving G(rlr'), f(r), and the values of C(r) specified on the bound-
aries (boundary conditions). To begin, we reexpress Egs. (C.1) and (C.2) as

partial differential equations in terms of the variable, r',

DV'2 c(r') = £f(x'") (C.16)

py*? G(r'|r) = 8(xr' - 1) (C.17)

2
where V' 1is the lLaplacian operating on the variable r'. Now multiply Eq.

(C.16) through by G(r'lr) and Eq. (C.17) through by C(r') and subtract. The
result is

a(r'|o) pv'ic(x') - c(x')pv'?e(z|e') = G(x' |D)E(L') - C(r')8(x'- ©).  (C.18)
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The left-hand side of Eq. (C.18) may be simplified by using the vector identi-
ty

V's(A V'B) = V'A.¥'B + A V'B2 (C.19)

where A(r') and B(x') are functions of r'. Eg. (C.19) can be rearranged to

read

A V'2B = -V'A.V'B + V'+(AV'B) . (C.20)

Using Eg. (C.20) with A = G and B = C, the first term on the right-hand side
of Eq. (C.18) may be written

(x' [o)DvPe(r') = DV'-(G(x' [D)V'C(x')) = DV'G(x' |r) -v'C(x') (C.21)

and using Eqg. (C.20) with A = C and B = G, the second term on the left-hand

side may be written
C(r')DV'2G(r'|r) = Dv'o(C(r')V'G(r'lr)) - DV'C(r')-V'G(r'|r) . (C.22)
Substituting Eqs. (C.21) and (C.22) into Eq. (C.18), we obtain
DV'« [G(x'|x)V'C(x') - C(xr")V'G(x'|r)] = G(r'|p)E(r') - C(x")&(r' - r). (C.23)
We next integrate both sides of Eg. (C.23) over the volume of all space,

i.e., f d3r', and apply the divergence theorem to he left-hand side. The

result is

D [ ds' « [G(x'|p)V'C(x') - C({x")IV'G(r' |x)]

= [ d3r'G(t'Ir)f(r') - Src(e) st - 1. (C.24)
99




On the basis of Eq. (A.9), the second term on the right-hand side of Eg. (C.8)
{note that the roles of r and r' have been interchanged) is just equal to

C(r). Hence, Eq. (C.s24) may be rewritten

C(r) =D [ as's [C(r")V'G(x'|p) - G(x'|B)v'C(x")]

+ [ &rer (e, (C.25)

If we let the surface, S', recede infinitely far away, i.e., r'+o, we
may employ Ege. (C.14) to evaluate the surface integral in Eq. (C.25). We
conclude that so computed this integral is zero. Hence, we obtain finally
fran Eq. (C.25) the result

-_ 3 v ] L}

c(r) = [ d'r'clr|r)E(x") (C.26)

where we have used the reciprocity of G(rlr') expressed by Eq. (Ce15). Pro-

vided that the integral on the right-hand side of Eq. (C.26) may be computed,

this serves to solve Eq. (C.1).
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APPENDIX D - FOURIER TRANSFORMS

D.1 General Principles

Let ¢(x) be a function of the variable x where ~o < x < + =, The

Fourier transform, &(k) of ¢(x) is
$(x) (D.1)

where k is the transform variable and i = (—1)1/2. Starting with Eq. (D.1),

Fourier showed that ¢(k) and ¢(x) are also related by

1 ® ikx -
5 [ ak e gt (D.2)

d(x) =

g — +

Equation (D.1) may be generalized to three dimensions. Consider

R +o0 -ik1x +oo -ikzy +eo -ik3z
o(kyr kyr k) = -£ dx e -£ dy e _L dz e o(x,y,z) (D.3)
or
" ~ike.r
3
(k) = [ard $(r) (D.4)

where the triplet (k,, ky, ky) is treated as a vector, k = (k1, k2, k3) and r

= (%, y, z2). Equation (D.2) generalized to three dimensions becomes

1 +oo ik1x 1 +oo ikzy 1 +oo ikzz R
o(x,y,2) = (2—")~f dk, e (2—"]_0{ dk,, e (5;1 f dk, e (k) (D.5)
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or
17 0 3 dker *
$(r) = (37) [dkad o(k). (D.6)

D.2 Fourier Integral Representation of the Delta Function

In Fq‘ (Do4), let ¢(r) = 6(1' - r')[ then

3(k) = [ @&r e KT 5y = pry = g iKT" (D.7)
¢

We substitute Eq. (D.7) into Eq. (D.6) to obtain

3 : [ ]
§(r - ') = (%;) [ &k g7tk (x = T (D.8)

Equation (D.8) is the very valuable Fourier integral representation of the

delta function. It is much more useful than the representation expressed by
Eq. (A.2).

An integral representation of the delta function in k-space, namely

§(k - k'), is obtained if in Eq. (D.6) we let ¢(k) = §(k - k'), We find

3 3 '
$(r) = (%;) / a’k T gk - x7) = (%; et¥ er, (D.9)
Now substitute Egq. (D.9) into Eq. (D.4)
13, 3 -i(k-K')er
5(k - k') = (5;) [ dare . (D.10)

Equation (D.10) is an integral representation of §(k - k').

The delta function in Fourier integral space has properties analagous to

those it exhibits in real space, namely
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1
-

[ &k s(x' - X (D.11)
[ &k s(k' - KEK') = £(XK). (D.12)

D.3 Convolution Theorem of the Fourier Transform

The function f(x) is said to be the convolution of the functions g(x)
and h(x) if

+oo
£(x) = [ ax' g(x-x')h(x') = g*h(x) (D.13)

-0

where g*h(x) is the short hand notation for the convolution of g(x) and h(x)

and is defined by the integral to the left.

The Fourier transform of f(x) is

+o0 . +o
£ = [ ax e ¥ [ ax' g(x - x') h(x'). (D.14)

In the integrand, let £ = x -~ x', df = dx, so that

a +o0 4+ —ik(E + ")
£ = [ ag [ ax e TFUET X gimnix)
+c0 . 400 .

= [ ar e e [ oax e n(xn)

£(k) = g(k) h(k) (D.15)
where we have used

N +o -ik
glk) = [ ag e Eg(e) (D.16)
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- +oo _ik L]
h(k) = [ dax' e " h(x"). (D.17)

- 00

The above results may be generalized to three dimensions, namely

£(r) = [ &r' g(r - r')h(r') = g*h(x) (D.18)

and

£(k) = g(k) h(k) (D.19)

where the transforms are defined in the sense of Eq. (D.4). We conclude that
the transform of a convolution is equal to the product of the individual

transforms.

D.4 Fourier Transform of V2C(r)

Let C(xr) be a scalar-valued function of the coordinates r = (x, y, 2).

The Laplacian of C(r) expressed in Cartesian coordinates is

VZC(r) = + + . (D.20)

For simplicity, we compute explicitly only the transform of 82C/ax2. We
integrate by parts.

. 2 +eo -ik, x +o =ik, .y +o -ik_z .2
-ike C
fd3rel rac_ [ ax e ! [ ay e [ dz e 3 3—2
ox -0 -0 =00 X
+oo -ik2y +oo -ik_z +ow -ik1x 32C
=f ay e [ az e [ ax e — (D.21)
=00 =00 -0 3x
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+o0 —ik2y +oo -ik_z -ik, x +o -ik, x +oo

1 3C \ 1
=[ dye [ az e {[e T + 1k1[e c]
-00 =00 -00 ~00
+o0 -ik_x
2 1
- X [ ax e cl.
-C0
The boundary conditions are often
lim C(x, y, z) = lim 2E(X. ¥. 2) _
ax
X+t X>to
in which case Eq. (D.21) simplifies to
. 2 +o -ik ., x +o -ik.y +o -ik.y
f Sy o7ikeT é—g = - f [ ax e ! [ ay e [ az e 3 C(x,y,2z)
ax - =00 -0
or
3 -iker 32C 2 2
[ d&re ~— = -k, C(k
2 1
ax
where
ci) = [ &r KT ¢(py.

Generalizing to three dimensions, the transform of Eq. (D.20) is

(D.22)

(D.23)

(D.24)

{D.25)
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[ &r T v2c(n) = k% C(k) (D.26)
where
2 .2, .2 2
K® = k] + X, + k3 = |k[7 . (D.27)

-1
D.5 Fourier Transform of G{(r) = =(47uDr)

In Appendix C.2, we showed that the solution to Green's problem for the
steady state diffusion operator was given by Eq. (C.12), If in Eq. (C.12)

r' = 0, we obtain

a0 ° (D.28)

It is useful to have the Fourier transform of Eq. (D.28). To compute this, we

substitute Eq. (D.28) into Eg. (D.4). The result is

| G(k) = =(1/4m) [ a°r e *T(y/r) . (D.29)

We evaluate the integral using spherical polar coordinates. Let k and the

polar axis (z-axis) point in the same direction (see Figure D.1). We obtain

for the inner product, ke.r,
ker = kr cosf, (D.30)

and for the volume element

&Sr = ar r2 df sing d¢ . (D.31)
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X

Figure D.1. Geometry for computing the integral in Eqg. (D.29).

Transformed to spherical polar coordinates, Eq. (D.29) becomes

~ bt ™
G(k) = =(1/4m) [ ar r2(1/x) [ a8 sing e
o o] o

. 27
ikr cos® 4, . (P.32)

If we let x = cosh, and dx = -sinf 49

- * 2 1 ~ikrx T
G(k) = -(1/4nD) [ ar r“(1/r) [ dax e X [ ap
o -1 o

-]

~(1/4wD) [ ar r%(1/r)(2/kr) (sin kr) (27)
o

-(1/kD) [ dr sin kr .
o]

(D.33)
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The remaining integral in Eg. (D.33) may be evaluated by writing sin kr in

terms of exponentials and inserting an integrating factor as

oo 0 eikr _e—ikr
f dr sin kr = f dr (_—_—EI__———)
o o
1 * i k ® -ikr-
= (37) {um [ ar & - m [ oar e
1 e*0 o e»0 o
(1 { [eikr-er]w re-ikr-er]w}
= [— lim | ——— - lim |~
21 - 0 ikr-¢ o €0 (ikr+e) o

(1 (1im [ - lim [+—] } = 1k .
~21 €20 - €50 1kr+¢

We substitute Eq. (D.34) into Egq. (D.33) and obtain our desired result

G(k) = - 1/k°D .
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APPENDIX E - SPECIFICATION OF EXPONENTS

E.1 Proof of y, = x

We first consider the limit of W(Z, t) for large 1. To do this, we

substitute Eq. (3.3.6) into Eq. (3.3.22) and write

- -y,
WzZ,1) = T /2 fogr |- 7 /D] 1+ ezl (E.1.1)

The functional form of W(Z, t) for large 1 depends upon the magnitude of yq as
compared to x. Letting t+» in Eq. (E.1.1), we find the results

~(1/2)2 (14ez) 2% if v, > x
Wz,1) = {(1/2) (0, - (1/2))(1+e2) T 2% if y, =
T %4 ealt Yg=x - (E.1.2)
=(x+y,)
(1/Z)G1T if Y, < x
Equation (E.1.2) in turn may be written as a single equation
W(Z,1) =t " V(2) (E.1.3)
where both n and V(z) depend upon the relative magnitudes of yq and x.
9F (Z) 3[F_(2)V(2)]
-4 (x+1) ={5x+n) o
- + —_—— = . e le
T [FO(Z) Xz — T Y (E.1.4)
Equating exponents of Tt in Eq. (E.1.4), we find
n=1-x. (Eo1.5)

We next consider the time derivative of the supersaturation ¢(7) given

by Eq. (3.2.9), which we reproduce below 109
0



o(1) = o(0)[(1 = [ da F(a,a’] . (E.1.6)
o]

The derivative of Eq. (E.1.6) with respect to T is

- o0) [ aa 221 3 (E.1.7)
° 9T

dolt) _
3T

We may write Eq. (3.2.18) as

3F(a,1) _ _ 3[F(a,T)W(a,1)] (E.1.8)
T da
and substitute into Eq. (E.1.7) to obtain
da(t) _ z 3 3[F(a,)W(a, )]
¥ o(0) [ da a = . (E.1.9)

(o]

Using F(»,T1) = 0, Eqe (E.1.9) may be integrated by parts. The result is

-

= =3¢g(0) j da azF(a,T)W(a,T) . (E.1.10)
o

3o(T)
T

Using Eqe. (3.3.2) to convert Eg. (E.1.10) to an integral over the canonical
length Z, we obtain

3o(t) 3

2 X [ az 22Kz, 0)W(Z,1) . (E.1.11)

(o]

= =30(0) 1

In the limit t+», we may replace W(Z,1) by Eq. (E.1.3) and F(Z,t) by Eq.
(3.3.8): In this limit Egq. (E.1.11) becomes
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3o(T)

T-(x+n)
T

2

= =39(0) [ az z

(o)

FO(Z)V(Z) . (Ee1.12)

On the other hand, differentiating Eg. (3.3.6), we obtain

-(y1+1)

dolt) = -y 04T (E«1.13)

3T 1

and substituting Eqe. (E.1.13) in the left-hand side of Eq. (E.1.12) while
using Eq. (E.1.5), we have

® 4
2 -—
30(0) [ az 2°F (2)V(2) = y, 0,1 v, (E.1.14)
o
4
Since yq > 0, T +0 as T1+o. The left-~hand side of Eq. (E.1.14), however, is

independent of t. If the left-hand side is to be zero, the integrand must
have compensating positive and negative portions. In as much as FO(Z) is a
distribution function of grain sizes, it is positive definite, which implies
that V(Z) must possess both positive and negative swings. Referring to Eq.
(E.1.2), we find that this is true only for

v(z) = (1/2) (0, = (1/2))(1 + €2) (E.1.15)

which imples

Y9 =X . (E.1,16)

E.2 Proof of x = 1/3

Since yq = X, we find by comparing Eqs. (E.1.2), (E.1.3), and (E.1.16)
that
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2X . (E.201)

3
]

Substituting Eq. (E.2.1) into Eq. (E.1.5), we conclude

X = 1/3 . (E.2.2)
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APPENDIX F - EXPANSION OF 1/w(Z) IN PARTIAL FRACTIONS

Rewriting Eq. (3.5.8), we may use partial fractions,

1 22 By B, B,

- = = + + . (Fo1)
3w(2) 2 2 2 - 2
(Z—Zo) (Z+3/Zo) (Z Zo) (Z Zo) (Z+3/Z°)

The coefficients Ayr Ay, and By are obtained by evaluating

(z-zo)2 z2 zi
A, = [ ] = ———— (F.2)
1 2 2. ‘z=2 3
(z—zo) (z+3/z°) o (Z°+3)
2 2 3, 3
L4 [ (z-2 )" 2 | ) Z_(Z_+6) (F.3)
2 ", )2 (ze3/7d) 5 (2343)2
(o] (o] (o]

2, .2
(z+3/zo) 7 °

B1 = [ ] 2 = —— (F.4)
(z-z )2 (z+3/2%) T T2, (P2
(o] o (o]

respectively. Substitution of Egs. (F.2)-(F.4) yields

4 3 ,.3
T NS T YL St IR e 1 (r.5)
w(2) 3 2 3..,2 (z-2 ) 3,442 ' )
(zo+3) (Z-zo) (z°+3) o (z°+3) (z+3/zo)
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Abstract

When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immisecible
phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by
which these nuclei proceed toward equilibrium is called Ostwald ripening. We shall assume that the nuelei are spheres, thereby treating
the case of droplets rigorously and the case of grains approximately.

The dynamies of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upen its radius and
the interfacial energy between it and the surrounding (continuous) phase. The equation governing this phenomenon is associated with the
names of Gibbs and Kelvin, and we derive it for the case of two components. There is a critical radius determined by the supersaturation
in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concen-
trate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two
components in the continuous phase. Associated with this diffusion is advection, which is accounted for in our theory to lowest order in
the center of volume velocity of the two components. Moreover, when the droplets occupy a finite fraction of the total volume of the
system, there occur effects of inter—droplet competition on the concentration field in the continous phase. This increases the overall rate
of growth of the droplet phase. Using diagrammatic techniques and rigorous statistical mechanics, we show that this effect depends upon
the square root of the volume fraction associated with the grains, and that it accelerates both the rate of growth and the rate of dissolu-
tion of droplets. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of material in the droplet phase plus the
remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of
droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisifes a continuity
equation, which we solve asymptotically by a similarity transformation method.

The final results of our theoretical analysis consist of the following quantities determined as functions of time: (1) the supersaturation
remaining in the continous phase, (2) the total number of droplets in the continuous phase, (3) the distribution of droplet sizes, (4) the
critical droplet radius, (5) the mean droplet radius, and (6) the maximum droplet radius. Each of these is also determined as a function of
the volume fraction occupied by the droplets. We apply these results to the system, succinonitrile/water, which separates into two immis-
cible liquid phases below its consolute temperature at 58 °C. This system is particularly attractive because it is transparent to visible
light, so the rate of formation of the droplet phase can be followed photographically. In general, the droplet phase has a different density
than the continuous phase. Separation of the two by sedimentation competes with the process of Ostwald ripening. In the acceleration-
free environment of an Earth orbiting laboratory, the Ostwald ripening in the system succinonitrile/water should be observable without

interference by sedimentation or any other effects associated with gravitation. We provide a complete set of specifications for the design
of such an experiment.
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