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Theory of Periodically Specified Problems: Complexity and 

Approximability 

MADHAV V. MARATHE’ HARRY B. HUNT I11 DANIEL J. ROSENKRANTZ 
RICHARD E. STEARNS~ 

December 5, 1997 

Abstract 

We study the complexity and the efficient approximability of graph and satisfiability 

problems when specified using various kinds of periodic specifications studied in [Or82a, 

HT95, Wa93, HW94, Wa93, MH+94]. The general results obtained include the following . 

1. 

2. 

We characterize the complexities of several basic generalized CNF satisfiability prob- 

lems SAT(S) [Sc78], when instances are specified using various kinds of 1- and 2- 

dimensional periodic specifications [Or82a, Wa93, HW94, HW95, CM9 1, CM931. We 

outline how this characterization can be used to prove a number of new hardness results 

for the complexity classes DSPACE(n), NSPACE(n), DEXPTIME, NEXPTIME, EX- 
PSPACE etc. These results can be used to prove in a un$’ed way the hardness of a num- 

ber of combinatorial problems when instances are specified succinctly using various suc- 

cinct specifications considered in the literature [LW92, Ga82, BLT92, BG89, HH931. As 

one corollary, we show that a number of basic NP-hard problems become EXPSPACE- 

hard when inputs are represented using 1 -dimensional infinite periodic wide specifica- 

tions. This answers a long standing open question posed by Orlin [Or82a]. 

We outline a simple yet a general technique to devise approximation algorithms with 

provable worst case performance guarantees for a number of combinatorial problems 

specified periodically. Our efficient approximation algorithms and schemes are based 

on extensions of the ideas in [Ba83,HM85,MH+94] and represent the first non-trivial 

characterization of a class of problems having an e-approximation (or PTAS) for peri- 

odically specified NEXPTIME-hard problems. Two of properties of our results are: (i) 

For the first time, efficient approximation algorithms and schemes have been developed 

for natural NEXPTIME-complete problems. (ii) Our results are the first polynomial 

time approximation algorithms with good performance guarantees for “hard” problems 

specified using various kinds of periodic specifications considered in this paper. 

The results presented significantly extend the known results for succinctly specified 
problems in [LW92, Ga82, BLT92,Or82a, Pa94, Wa93, HW94, HW95, MH+94]. 
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1 Introduction 

Periodic specifications can be used to define large scale systems with highly regular structures. Us- 

ing periodic specifications, large objects are described as repetitive connection of a basic module. 

Frequently, the modules are connected in a straight line but the basic modules can also be repeated 

in two or higher dimensional patterns. i-dimensional specifications were studied by Orlin [Or82a], 

Wanke [Wa93], Hoppe and Tardos [HT95], Ford and Fulkerson [FF58] and Gale [Ga59]. Two dimen- 

sional periodic specifications arise naturally in the study of regular systolic arrays and VLSI signal 

processing arrays [HW94, CS81, IS86, IS86, IS871, discrete dynamical systems such as the cellular 

automata [Wo84], parallel programming [HLW92:, KMW671, etc. For example, in the design of Field 

Programmable Gate Arrays (FPGA's), the problem of compaction and routing can be modeled as a 

shortest path problem in two dimensional periodically specified graphs [Br95]. Similarly the prob- 

lem of mapping uniform recursive or iterative programs on a 2-dimensional mesh connected parallel 

computer is modeled as solving systems of periodically specified systems of equations (aka. uniform 

recurrence equations) [HLW92, KMW671. In digital signal processing periodic specifications are used 

to design bit parallel FIR filter [CSSI]. Finally, two dimensional periodic specifications can also be 

easily seen as a way of representing the dynamic changes in the configuration of finite one dimensional 

cellular automata over time (i.e the second dimension represents time) [Wo84]. Using this represen- 

tation the configuration reachability problem for a finite one dimensional cellular automata is simply 

the circuit value problem for periodically specified circuits. Typically, the periodic specifications stud- 

ied in the literature are generalizations of standard specifications used to describe objects. In general, 

periodic specifications can describe objects that are exponentially larger than size of the specifications 

themselves. Other researchers have studied 2-dimensional and more generally d-dimensional periodic 

specifications. (See [CM91, IS87, K091, KS88, Wa93, HW94, HW951.) In [Or82a, Pa941, the prob- 

lem 3SAT, for 1-dimensional infinite narrow periiodically specified formulas (denoted here by 1 -PN- 

3SAT), is defined and shown to be PSPACE-complete. Apart from this single result, the complexity 

of periodically specified generalized satisfiability problems have not been studied previously. 

2 Summary of results 

We study the complexity and the efficient approximability of graph and satisfiability problems when 

specified using various kinds of succinct specifications with emphasis on various kinds of periodic 

specifications studied in [Or82a, HT95, Wa93, HW94, Wa93, MH+94]. We present general techniques 

for proving both hardness results as approximately solving problems so specified. To obtain our results, 

we systematically define various kinds of periodic specifications. For uniformity and space reasons, we 

will concentrate on generalized CN F satisfiability problems specified using various types of periodic 

specifications. The various kinds of periodic specifications considered depend upon the answers to the 

following questions: ( I )  Is the speciJied instance 1- or 2-dimensional ? (2) Is the speciJied instance 

finite or infinite ? (3) Are specijications narrow or wide ? (4) Are explicit boundary conditions al- 

lowed in the speciJications ? (5) Are bounds onjirzite dimensions speciJied in unary (U) or binary (B) 

? (6) Do the inJnite dimensions range over natural numbers (N) or integers (Z) ? For the purposes of 

illustration, we limit our attention in this section to the following specifications: (A) The 2-dimensional 

finite periodic narrow specifications of Wanke [Wa93], (referred as 2-F( B,B)PN-specifications), (B) 

The 2-dimensional finite periodic narrow specifications with explicit boundary conditions (referred 

as 2-F( B, B) PN( BC)-specifications) (C) The 2-dimensional finite toroidal periodic narrow specifica- 



tions of Hofting and Wanke [HW94], (referred as 2-F(B, B) PTN-specifications) and (D) the c-uniform 

1-dimensional finite wide periodic specifications of Orlin [Or84b] (referred as 1 -F( B)PW(c) specifi- 

cations). 

In Section 3.1 we detail the naming convention used to specify problems using various kinds of 

periodic specifications. 

Our work is motivated in part by two basic observations: (i) the lack of known general techniques 

to characterize the complexity and approximability of succinctly speciJied problems and (ii) lack of 

understanding of the inter-relationship between various succinct speciJications considered here. For 

instance, Quoting Orlin [Or82a], 

It is of interest to know if there are general properties that an NP-complete problem may 

have so as to guarantee the corresponding periodic problems to be PSPACE-complete. 

Our general results on characterizing the complexity of succinctly specified satisfiability problems 

and its applications in proving hardnesdeasiness results for other succinctly specified combinatorial 

problems can be seen as a first step towards answering the above question raised by Orlin. 

We also make progress in the direction suggested by the second observation above and show that 

1. Certain simple repetitive structures can be specified (using small specifications) by all the suc- 

cinct specifications studied here. 

2. We show that basic combinatorial problems are “hard” (for the respective complexity classes) 

even for such simple repetitive structures specified succintly; thus the problems are “hard” when 

specified by any of the succinct specifications studied. 

These result immediately imply (and provide alternative and uniJied proofi for) the hardness results 

obtained in the past. We elaborate on this further below. 

2.1 Complexity of Periodically Specified Problems 

A summary of our results, for the two problems 3SAT and 3SATWP appears in Table 1. Using the 

notation of Schaefer [Sc78], all of the hardness results for the problem 3SAT, also hold for each of the 

problems SAT(S) and SATJS) shown to be NP-complete in [Sc78]. 

We can show that efficient reductions involving local replacement (possibly augmented with fixed 

size enforcers) [GJ79] of the problem 3SAT I-3SAT, NAE-3SAT 3SATWP3 etc, to a problem II 

can be extended to obtain efficient reductions of the problems 3SAT 1 -3SAT, NAE-3SAT 3SATWP, 

etc, to the problem TI, when instances are specified using the kinds kinds of periodic specifications 

considered here. These problems include most of the basic problems in [Ka72, GJ791 as well as sev- 

eral basic P-complete problems [JL77]. These results yield a number of new hardness results for 

the complexity classes DSPACE(n), NSPACE(n), DEXPTIME, NEXPTIME, EXPSPACE etc. de- 

pending on the kind of periodic specification used. To our knowledge, previously no DEXPTIME, 

NEXPTIME, EXPSPACE-hardness or undecidability results were known for periodically specified 

problems. The periodic languages that can be formalized can be seen as a characterization of various 

spacehime complexity classes. For instance 1 -dimensional periodic specifications of Orlin [Or82a] 

3Horn formula satisfiability problem is the restriction of the problem 3SAT, in which each clause has at most one positive 

literal. This is the same as the problem SATWN, studied by [Sc78]. The problem 3SATWP is similar to 3SATWN except 

that each clause has at most one negated literal. 
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constitute an alternative characterization of PSPACE. In a similar fashion, the wide 1-dimensional pe- 

riodic specifications constitute an alternative characterization of EXPSPACE. Our study generalizes 

Orlin’s result [Or82a] that the problem 1 -1  ( Z)PN-3SAT is PSPACE-complete and Schaefer’s char- 

acterization [Sc78] of the complexity of generalized CNF satisfiability problems SAT(S), where S is 

a finite set of finite arity Boolean relations. As one corollary, we prove the EXPSPACE-hardness of 

a large class of combinatorial problems when specified by 1 -dimensional wide periodic specifications. 

answering the following open question posed by Orlin [Or82a]: “It is an interesting open question 

as to whether the non-narrow periodic graph problems are in the class PSPACE.” 
We consider representative applications of the above mentioned results. Most of these results were 

not known earlier. First, note that since 2-dimensional finite periodic specifications can be viewed as 

simple types of S.C.R. specifications, our hardness for problems specified using 2-dimensional finite 

periodic narrow specifications, strengthen the hardness results in [PY 86, BLT92I4 Second, the hard- 

ness results can be easily transformed to obtain hardness results for problems specified using hierarchi- 

cal specifications of Lengauer and Wagner [LW92] or the G.C.R. specifications of Galperin [Ga82]. 

The NEXPTIME-hardness results for problems specified using G.C.R. specifications constitute first 

such results in the literature. Finally, our undecidability results for 2-dimensional infinite periodically 

specified satisfiability problems imply a number of undecidability results for problems specified using 

recursive graph specifications. Since 2-dimensional infinite periodic graph specifications are clearly 

a simple type of recursive graph specifications, these results strengthen several undecidability results 

in Hare1 et. al. and Beige1 and Gasarch [Ha91, BG89, HH931. An important corollary of our result 

that the 2-F(B,B)PN-MCVP is DEXPTIME-complete. As pointed out in [LW87a], the circuit value 

problem is at the basis of most simulation algorithms for integrated circuits. These ideas easily extend 

to yield similar lower bounds for the simulation or evaluation of all classes of strongly acyclic period- 

ically specified functions, for which the allowed modules can emulate monotone Boolean logic. Thus 

our reduction and lower bounds apply to strongly acyclic periodically specified hnctions on many dif- 

ferent algebraic structures with 0 and 1. These include all the following algebraic structures (provided 

that they have at least two elements): lattices, rings with multiplicative identity, idempotent semirings 

with a multiplicative identity, finite semirings wifh a multiplicative identity they are not rings, etc. For 

examples of these structures see [MB, BHR841. In particular, our techniques and corresponding lower 

bounds apply to the various lattice-theoretical structures used to simulate faults, errors, transients, 

unknown states, variable strength signals, etc., in digital logic both at the gate and transistor levels 

[Ha]. Thus these results significantly extends the earlier results by Lengauer and Wagner [LW92] 
and Rosenkrantz and Hunt [RH931 on the complexity of simulating hierarchically specified acyclic 

circuits; moreover, previously no results were known for the complexity of simulating periodically 

specified acyclic circuits. 

In [LW92] Lengauer and Wagner state that: 

We find that the complexity of the nonhierarchical version of a graph problem says prac- 

tically nothing about the complexity of its hierarchical version. 

In [Or84b], Orlin states that 

There are no general conditions which guarantee that the dynamic variants of an NP- 

complete problem is PSPACE-complete. 

4Although we strengthen several of the results in [PYSC;, BLT921, we do not have general metatheorems such as those 

5MCVP denote the Monotone Circuit Value Problem. 

given in [PY86, BLT921. 
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Assuming P # PSPACE and/or NP # PSPACE, these assertions are true. But our proofs in this paper 

show that 

Our characterization of succinctly specified SAT(S) problems, combined with our knowl- 

edge about known local reductions in the non-succinct case can be used to predict the 

complexity of succinctly specified problems. 

The results also demonstrate that using known reductions in the non-succinct case that are merely 

resource bounded are inadequate for inferring the hardness of succinctly specified problems. But, the 

locality of reductions between problems specified using standard specifications is useful in lifting the 

reductions to the succinct case. 

2.2 Approximation Algorithms 

Given the hardness results in the previous section for solving the problems exactly when specified 

by one of the above specifications, we investigate the existence of polynomial time approximation 

algorithms for these problems. We present a uniform approach for developing the first efficient ap- 

proximation algorithms and/or schemes for a number of optimization problems when specified using 

one of the specifications a. To this end we present a fairly simple yet general technique consisting 

of two main steps. First, by an extension of ideas in Baker [Bas31 we show that for each fixed finite 

set S there is polynomial time approximation algorithm (and a scheme for planar instances6) for the 

problems MAX SAT(S) specified periodically using one of the specifications mentioned earlier in the 

section. In the next step, we show that a number of important class of problems when specified pe- 

riodically can be reduced in an approximation preserving way to appropriate problems MAX SAT( s) 
specified using the same type of periodic specifications. We all such reductions structure preserving 

L-reductions. The general approximation algorithms and schemes for the problems MAX SAT(S)are 

an attempt to answer the fundamental question which “hard ”periodically specijied optimization prob- 

lems have eficient approxmations ? In this direction the general theory developed here (and discussed 

above) provides a sufficient condition: 

Periodically specified graph and other optimization problems have a E-approximation al- 

gorithm (or PTAS) when the the semantics of the problem can be described by a SAT(S) 

formula such a way that the formula interaction graph inherits the structure of the graph. 

In the recent years (see [CK97, KT94, KM961, etc) there has been a significant interest in providing 

syntactic characterization of optimization problems in an attempt to explain and provide a uniform 

framework for solving such problems. Our results provide a syntactic (algebraic) class of problems, 

namely, MAX SAT(S) whose closure under L-reductions (or other appropriate approximation preserv- 

ing reductions) define one such characterization for problems that have e-approximations (or PTAS). 

This represents the first non-trivial characterization of a class of problems having €-approximations 

(or a PTAS) when restricted to periodically specified problems. The algebraic model (characterization) 

is general enough to express the optimization version of (i) the generalized satisfiability problems of 

Schaefer [Sc78], (ii) feasibility of systems of linear equations over a variety of algebraic structures, 

(iii) a class of nonlinear optimization problems (iv) several well known graph theoretic problems. We 

refer the reader to [KM96] for more details. Our main result in this context can be stated as follows: 

6corresponding bipartite graphs are planar. 
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Theorem 2.1 For each fixed I 2 1, and for each of the problems Ii listed in Table 1 ,7 the prob- 

lem CAI, has a polynomial time approximation algorithm with running time O(RT'(Z2 - /GI)) 

with performance guarantee8 (y)2 .FBESTn. Here /GI denotes the size of the specification, 

FBESTn denotes the best known performarice guarantee of an algorithm for the problem ll 
for non-succinctly specified instances and RTn(n) denotes the running time of the algorithm 

with input size n which guarantees a performance of FBEST' for the problem IT. 

As an example, using recent results in [GW94], we get that for all E > 0, the problems 2- 

F(B,B)PN-, 2-F(B,B)PN(BC)-, 2F(B,B)PTN- and 1 -F(B)PW(c)-MAX 2SAT have polynomial time 

approximation algorithms that output solutions within a factor of (1 + E) . 1.137 of an optimum solu- 

tion. As a corollary of Theorem 2.1, using the recent nonapproximability results of [AL+92] we get 

the following: 

Theorem 2.2 For all the problems II listed in 'Table 1, the problems a-ll have polynomial time 

approximation schemes if and only if P = NP. 

As a second result which follows from the proof of Theorem 2.1, we get that all of the above problems 

TI have a polynomial time approximation scheme (PTAS), when restricted to planar instances. We 

can show that many of these problems remain NEXPTIME-complete, even when restricted to planar 

instances. 

Theorem 2.3 For all the problems IT listed in Table 1, the problems WIT have polynomial time 

approximation schemes when restricted to plianar instances. 

The approximation algorithms have three desirable features: (i) they are conceptually simple, (ii) 

they apply to large classes of problems IT, and (iii) they apply to problems speciJied using any of 

the periodic specijications considered here. To our knowledge this is the first time, polynomial time 

approximation algorithms are developed for natural N EXPTl ME-hard problems. Thus our results 

provide the first natural problems for which there is a proven exponential ( and possibly doubly ex- 

ponential) gap between the time complexities of finding exact and approximate solutions'0. Only 

very recently has there even been work on the efficient approximability of PSPACE-hard problems 

(See [AC94, Co95, CF+93, CF+94, MH+94]). The NEXPTIME-hardness show that the very regular 

structure of problems specified periodically do riot suffice to make problems easy. But, the efficient 

approximation algorithms and schemes developed here show the following: 

The very regular structures of problem instances specified by the periodic specifications of 

A-D (mentioned earlier) suffice to make approximating many basic optimization problems 

easy. 

Approximating many of the optimization problems considered here, when instances are specified using 

he small circuit specijications of [PY86,LB89] can be shown to be NEXPTIME-hard by extensions 

'In fact we can show that the theorem holds for most problems Q-II such that II is in syntactic MAX SNP. 

'For the sake of uniformity we assume that the performance guarantee is 2 1. 

'Previous non-approximability results show that many optimization problems are N P-hard or PSPACE-hard to approx- 

imate beyond a certain factor. While these hardness results point out that it is unlikely in general to find "good" polynomial 

time approximation algorithms, they does not rule out this possibility. The results presented here show a provable gap be- 

tween approximation and decision since the decision problems are NEXPTIME-complete and hence requires at least 2'" 

steps and possibly 22Cn steps (if NEXPTIME # DEXPTIME) to solve. 

"Of course, it is easy to construct artificial problems, whose decision versions are NEXPTIME-hard, that have polynomial 

time approximation algorithms with good performance guarantees. 
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of the arguments in [Ar94]. Thus our results high-light one important dzference between multiple- 

dimension finite periodic specifications and small circuit specifications. 

Due to lack of space, the remainder of this paper consists of preliminary definitions and selected 

proof sketches. Additional results are discussed in the Appendix. 

3 Preliminary Definitions 

We first review, the concept of periodically specified instances. In what follows we discuss the concept 

of 2-dimensional periodically specified satisfiability problems. The notion of periodically specified 

graphs is given in [CM93, CM91, Wa93, HW94, HW951. Figure 1 shows an example of periodic 

specification and the associated expanded graph. 

For the rest of the paper, let Z and N denote the set of integers and natural numbers respectively. 

Let U = ( ~ 1 , .  . . , u,} be a finite set of variables (referred to as static variables). UMxN = 

{ u k ( i , j )  : 1 < k 5 n, i E {0,1,2, - - , M } ,  j E {0,1,2,. . . , N}}. (In our proofs, variable u k ( i , j )  

denotes the variable U k  at grid point (i, j ) . )  A literal of U is an element of ( ~ 1 , .  . . , u,, T i i ,  . . . , u,}. If 

wisaliteralofU,thenw(i,j),O 5 i 5 MandO s j  5 NisaliteralofUM,N. L e t C ( i , j , i + l , j + l )  

be a parameterized conjunction of 3 literal clauses such that each clause in C(i,  j ,  i + 1, j + 1) consists 

of variables u k ( i , j ) , u k ( i  + l , j ) , uk ( i , j  + l ) ,uk(i  + 1, j  + 1) with the constraint that at least one 

variable is of the form u k ( i , j ) .  We refer to the clauses C(i , j ,  i + 1,j  + 1) as static narrow clauses. 

(C( i? j )  is called narrow because for all (wl( i1 , j l )  V w2(i2,j2) V w ~ ( i 3 , j ~ ) )  E C(i , j , i  + 1,j + l), 
lis - i,l, Ij, - j,l 5 1 for 1 5 T 5 s 5 3.) The conjuction of static narrow clauses is referred to 

as static narrow formula. Let r = (U, C( i , j ,  i + 1,j  + l), M ,  N). Let C = &=o,J=o 
1, j  + 1). Then C is the 3CNF formula specified by r. Given UM,N and C, let CM,N be a subset 

of C with the following property: for each clause (wl( i1 , j l )  V w2(i2,j2) V w ~ ( i 3 , j 3 ) )  E C")", 

- 

C(Z,j, i + k M , J  =N 

wl(il,jl),w2(i2,j2),w3(i3,j3) E UMjN.  

Definition 3.1 A 2-dimensional finite periodic narrow specification (2-F(B,B)PN-specification) 

of a 3CNF formula F M ~ N ( U M , N , C M $ N )  is a four tuple r = (U,C(Z,j , i  + 1, j  + l ) ,M,N) ,  
where, U is a a finite set of variables, C ( i , j )  is a collection of static narrow 3 literal clauses. 

and M ,  N are non-negative integers specified in binary. The size of the specification denoted 

by size@') = IU( + \C(i,j,i+ 1,j + 1)1 +bits(M) +bits(N),  where bits(M) and bits(N) denote 

the number of bits used to represent M and N respectively. 
The problem 2-F(B,B)PN-3SAT (problem 3SAT specified using 2-dimensional finite peri- 

odic narrow specifications with both bounds in binary i.e. 2-F(B,B)PN-specifications) is the 

problem of determining if a 3CNF formula F M , N ( U M $ N ,  C M , N )  specified by I' = (U, C(i , j ,  i + 
1, j + 1) , M ,  N )  is satisfiable. 

2-1(2, B)PN-3SAT is the problem of, given a 2-dimensional periodic specification F = 

($'(U,C(z,j,i  + 1,j  + l ) ,m) ,  where m denotes the width (in terms of Y-axis) is specified in 

binary, determining whether the CNF formula, A ~ ~ ? ~ ~ ~ ~ C ( ~ ,  j ,  i + 1, j + 1) satisfiable. 

3.1 Note on Naming Convention 

Since we have a large number of parameters, it is necessary to state the notation used throughout this 

abstract for naming problems. We use F and I to denotefinite or infinite graphs respectively. Observe 

that while this is the property of the expanded object, we choose to use this as a way to classify the 

specification itself. The symbols U, B in the brackets following F specify, whether the finite bounds 
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are specified in unary or binary notation. The symbols N, Z following I spec@ whether the graph 

is infinite in one direction or both the directions. We have already explained the concept of narrow 

and wide specifications. We use N and W to denote narrow and wide specifications respectively. 

Dimensions of the expanded Graph: { 1,2, .  . . d }  denote the dimensions in which the static graph is 

translated. Some instances of problems arising in practice have a periodic specification of the graph 

or a formula along with explicit initial and final conditions. We call such periodic specifications as 

periodic specifications with boundary conditions [(BC). 

Example 1: Let the set of static variables U = (2, y, 2). The static clauses C is specified by 

C(i,  j ,  i + 1, j +  1) = [ ~ ( i ,  j )  + y (i, j )  +x( i ,  j ) ]  A [ ~ ( i +  1, j )  +y( i ,  j )  +X (i + 1, j)] A [ ~ ( i ,  j + 1) + ~ ( i ,  j)]. 

The set of clauses C1il is given by 

[40,0)+Y(O, O ) + X ( O ,  0) l~ [~ (O, l )+Y(O,  1)+4’,  1)1N41,  O)+Y(l, O)+Z(l, O)IA[41, l )+y( l ,  I>+  

41,1>1 AMI, O)+Y(O, O)+x(l, O)]A[41, 1 ) + ~ ( 0 ,  1)+41,1)3A[4o, 1)+40,O)lA[41, 1)+41,0)1 

4 NEXPTIME-completeness of 2-F( B,B)PN-3SAT 

The main idea involves the construction of a static formulas, force the satisfiability of the expanded 

formulas to correspond to the existence of legal. computations of Turing machines. Intuitively, we 

have one column for each step of a computation and one row for each tape cell of the Turing machine. 

Proving hardness results for satisfiability problems without explicit boundary conditions is subtle, since 

there is no obvious way to force the the Turing machine to start correctly. 

Theorem 4.1 2-F(B,B)PN-3SAT is NEXPTIME-complete. 

Proof Sketch: Membership in NEXPTIME follows easily by observing that the size of the expanded 
formula is 2 c ( ~ u + c ( i ~ ~ ~ z + 1 ~ ~ + 1 ) ~ + b z t s ( ~ ) + ~ t s ( N ) ) ,  where r = (U, C(i ,  j ) ,  M ,  N ) ,  is the specification 

of FM1”. Hence a NEXPTIME bounded TM car1 guess an assignment to the variables and then verify 

in DEXPTIME that the assignment satisfies all the clauses. 

Next, we discuss the reduction which shows !.he NEXPTIME-hardness of the problem. It is worth 

pointing out the basic technique used behind the reductions. Since the static formula associated with 

2-FPN-3SAT instance is the same for each time period, it is not possible to write a 3CNF formula 

which says that the machine has the correct starting ID. This makes the task of constructing the 3SAT 
instance more difficult. In order to overcome this difficulty, our reduction consists of two phases. In 

the first phase, we start with a given Turing machine q5 with input z = (z1, . . . , z,) and construct a 

new Turing machine dZ which simulates 4 on z and has the following additional properties that 

1 ,  If Turing machine 4 does not accept z, then every possible computation of 4z halts within 2con 

moves, else 

2. If Turing machine q5 accepts z, then q5z has a cycling computation, where the length of an ID 
never exceeds 2don, for some given do. 

The second phase consists of constructing an instance (U,(t,y),G,(t,y,t + 1,y + l),M, N ) )  

of 2-FPN-3SAT by a polynomial time reduction from 4,. Now we know that each ID of the Turing 

machine 4x is of length 2don + 1. From Property 2 above, we need to consider only 2d0n different 

ID’S for our reduction. In order to understand the construction imagine each ID of the Turing machine 

& being placed vertically in the plane. Two consecutive ID’S of q5x are placed vertically next to each 

other. For the sake of exposition we will refer to the X-axis as the time line. In the following discussion, 

each grid point is referred to as ( t ,  9). We now define the set of variables U,(t, y) and their intended 
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meaning. U,(t, y) consists of the following three different types of variables. (i) TAPE c U,(t, y),  

such that TAPE(t, y) encodes the yth symbol in the tth ID. TAPE@, y) takes values from the set 

{#} U r U  (Q x I'), where I? denotes the tape symbols and Q denotes the set of states of 4%. The number 

of variables needed to encode TAPE(t, y) depends only on the machine 4,. (ii) In order to simulate 

the behavior of 4, properly we need to have two set of counter variables; cy and et. The counter cy 

keeps track of the particular tape cell in a given ID. Let Q = don. The counter can be simulated by 

means of (don + 1) Boolean variables tcq, tcq-l, . . . tco. tco represents the least significant bit and tc, 

represents the most significant bit. The counter et keeps track of the number of ID'S. The counter et can 

be simulated by means of (don+ 1) Boolean variables. We use Boolean variables yco, ycl, yc2, . . . , ye, 

to simulate the counter cy. (iii) Auxiliary variables for making the resulting static formula narrow and 

in the 3CNF form. 

The initial ID is of the form #(Qo, XI) . . . z , B ~ ~ ~ ~ - ~  , where B denotes a blank. The static formula 

CNF formula G,(t,y) is given by G,(t,y) = f l ( t , y )  A f 2 ( t ,  y) A f 3 ( t , y ) .  We now describe each 

of the subformulas fi, 1 5 i 5 3 separately. Each f i  is described in terms of variables at coordinates 

y, y + 1, t ,  t + 1. Counter Updating formula f1 is used to simulate a counter to achieve implicit 

initialization. Implicit Initialization formula f i  can be thought of as a way to implicitly initialize the 

clauses to reflect that the machine starts out right whenever the counters are reset to 0. The initialization 

condition say that if both the counter values are 0, then we have # as the tape symbol and so on. 

Consistency Checking formula f 3  ensures the consistency of the tape symbols, i.e. that the contents 

of the tape cells i, i + 1 and i + 2 in IDt determine the contents of the tape cells i, i + 1 and i + 2 in 

lDt+l. The details of these formulas is given in the appendix. 

We now prove the correctness of our reduction. If the Turing machine # accepts z then we h o w  

that 4,  has a cycling computation. Hence by setting the counters ct(0,O) = cy(O, 0) = 0 we get 

that the first column of the grid contains the right initial ID. From then on, the consistency conditions 

ensures that the formula &-,;go G,(t, y, t + 1, y + 1) is satisfied. Conversely, assume that the 

formula is satisfiable. Since A4 and N are suitably large integers, it is guaranteed that the following 

two conditions hold: 

y=N t-M 

1. Since N is large enough, the simulation must be carried out for enough steps so that the Turing 

machine #, goes through the sequence ct = 0, et = 1, et = 2 , .  . . et = Zdon. This implies that 

the formulas f2(t, y) and f 3 ( t ,  y) would be true from the time when the value of et = 0. 

2. Similarly, since M is large enough, the grid is sufficiently long in the Y-direction so that the 

counter value cy goes through a sequence of values cy = 0. cy = I, cy = 2, . . cy = 2don. This 

implies that the first part of the implication in f 2  is true and from then on, it is ensured that the 

TM #, goes through the simulation correctly. 

G,(t, y, t + 1, y + 1) is satisfied The above two conditions imply that if the formula Ayzo,t=o y=N,t=h.I 

then the Turing machine # accepts E. 

4.1 Polynomial time solvability of 2-F(Z,Z)PN-3SATWP 

Next, we consider the problems 2-F( B,B) PN-3SATWP, 2-I(N,N)PN-3SATW P and 2-I(Z,Z) PN-3SATW P. 

Extending our results for these problems to similar problems involving Horn formula satisfiability is 

straightforward and is omitted here. In contrast to the undecidability of solving 2-I(N,N)PN(BC)- 

3SATWP, we show that each of the above three problems has a polynomial time algorithm. This 

points out a major difference between these variants of periodic specifications. 
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We first consider the problem 2-I(Z,Z)PN-3SATWP. Recall that a relation R is weakly positive if 

R is equivalent to some CNF formula having at most one negated variable in each conjunct. The algo- 

rithm for solving the problem 2-I(Z,Z)PN-3SATWP is relatively easy, and is based on the following 

two observations. The first observation is that if there is a clause with only one literal, all copies of the 

corresponding variable must have the same value. For instance, if there is a clause consisting of the 

single literal zi(t + 1, y), then all copies of variable zi have to be set to false. The second observation 

is that after simplifying the set of clauses as much as possible on the basis of the first observation, 

every remaining clause has either no literals or more than one literal. Weak positivity implies that each 

clause with more than one literal contains at least one positive literal, so setting all remaining variables 

to true will satisfy all such clauses. Since each simplification of the set of clauses based on the first 

observation assigns a value to a variable in the static formula which has not been previously assigned 

a value, the algorithm will terminate in polynomial time. Note that if the expanded formula for the 

given instance of 2-l(Z,Z)PN-3SATWP is satisfiable, there exists a satisfying assignment that assigns 

the same value to all the copies of a given variable in the static formula, 

Next consider the problems 2-I(N,N)PN-3SATWP and 2-F(B,B)PN-3SATWP. Any algorithm 

for solving these problems must deal with subtle issues created by the presence of a “boundary” in 

the expanded formula. A clause of the form x, ( t ,  y) implies that x, is set to true for all time periods. 

However, a clause of the form xz(t + 1, y) does not imply anything about the value of the variable 

x,(O, y) in a satisfying assignment of the formula. Similar arguments hold for clauses of the form 

xZ(t, y + 1) and zZ(t + 1, y + 1) (the second clause might arise after the elimination of other variables.) 

The following simple example, shows that even for 1 -dimensional specifications, there are cases where 

all satisfying assignments to the expanded formu’ia assign different values to the copies of a particular 

variable. 

Example 2: Let F = (U, C(t ,  t + l), 1) be an instance of 1 -F(B)PN-3SATWP where the set of static 

clauses are given by (zl(t) + ~ ( t  + 1)) A (xz(t)) A (x2(t)  + zl(t  + 1)). The set of variables are 

U = {x1,x2}. The expanded formula is 

-_ 

(xl(0) + ~ ( 1 ) )  A (x2(0))  A ( ~ ( 0 )  + q(1)) A (x2(1)). 

By inspection it is clear that any assignment to the variables of the expanded formula such that 

v[z1(0)] = u[x1(1)3 andv[z2(0)] = w[x2(1)] cannot satisfy the formula. Buttheassignment v[x1(0)] = 

1, u [ x l  (l)] = 0, u[x2(0)] = v[x2(1)] = 0 satisfies the expanded formula. A similar example can be 

constructed for the 2-dimensional case. 

Example 2 suggests that a polynomial time ;algorithm for solving 1 -I(N,N)PN-3SATWP should 

distinguish between the copy of each variable ai[ t = 0, y = 0 and the copies of the same variable 

at time t ,  y 2 0. Our polynomial time algorithm for 2-I(N,N)PN-3SATWP considers four groups of 

variables, corresponding to (t = 0, y = 0), ( t  = 0, y > 0), (t  > 0, y = 0), and (t  > 0, y > 0). 

5 Approximation Algorithms for :2-F( B, B) PN-specified problems 

The basic idea behind our approximation algorithms involves the conversion of solutions obtained from 

a local algorithm on small sub-grids to a solution of the global problem. The method of partial ex- 

pansion involves the application of a divide and conquer algorithm iteratively by considering different 

subsets of the given graph; solving each subset by a local algorithm, constructing a global solution and 

finally choosing the best solution among these iterations as the solution to II. The method can be seen 

as an extension of the shifting strategy devised by Baker [Ba83] for finding efficient approximation 

algorithms for several combinatorial problems. 

We outline the basic technique by discussing our N C-approximation scheme for the maximum 

independent set problem. Consider a 2-F(B,B)F‘N specification of a graph G, and an integer k > 1. 
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To begin with, for each i, 0 5 i 5 k ,  we partition the graph G into 1 disjoint sets GI, Gl by 
removing vertices with horizontal coordinates congruent to i mod ( k  + 1). For each subgraph G,, 
1 5 p 5 1, we find an independent set of size at least & times the optimal value of the independent 

set in G,. The independent set for this partition is just the union of independent sets for each of G,. 

By an averaging argument, it follows that the partition which yields the largest solution value contains 

at least (&)2 . OPT(G) nodes, where OPT(G)  denotes the value of the maximum independent set 

in G. (For simplicity, we use a symbol to denote a set as well as its cardinality. The intended meaning 

will be clear from the context.) 

It is important to note that the size of the graph we are dealing with is in general exponential in the 

size of the specification. Hence a naive application of the above idea will lead to algorithms that take 

an exponential amount of time. However, as we shall see, the “regular” structure of the graph allows 

us to solve the problems considered here in time polynomial in the size of the specification. 

ALGORITHM ALGORITHM ALG-2-FPN-MAX-IS 

0 Input: An instance (G, M ,  N) of a periodic graph GM>N and an E > 0 

0 Output: A periodic specification of a near optimal independent set in GMiN whose size is at least 

(1 - E ) 2  . FBEST . OPT where OPT is the size the maximum independent set in G”iN and 

FBEST denotes the best possible factor achievable by any polynomial time approximation algo- 

rithm for the maximum independent set problem specified using a standard specification. 

0 1. Let IC = [l/~] - 1. 

2. For each i ,  0 5 i 5 IC do 

(a) Partition the graph into T ,  disjoint sets G,-1 . . . Gz,r, by removing all the vertices at grid points 

with X-coordinate congruent to i mod ( I C  + 1). 

(b) Gz = Ul<j<r Gz,j 
(c) For eachj, 1 5 j 5 r, do 

i. For each il, 0 5 il 5 IC do 

A. Partition the graph G,,:, into s:, disjoint sets G::;’ . . . G::;”’ by removing vertices at grid 

points with Y-coordinate congruent to il mod (IC + 1). 
GZI J 1  

B. G:t = Ul<jl<S, 2 , j  

C. For each G;:;j1, 1 5 j ,  5 s:, compute the optimal (near optimal) value of the independent 

set denoted by IS(G”,;”). 

Remark: This can be done by running the algorithm on just three graphs namely; G:f;’, 

G::j2 and G::;”’ 

D. w?:, 1 = UKj,  Is, IS(GI;j”) 

(d) IS(Gz,j) = m a ~ < z , < k  IS(Gf:j) 

(e) IS(G2) = ul<j<r, IS(GZ>:,) 

3. IS(G) = maxOlz<k IS(G,) 

We illsutrate the basic technique by discussing an algorithm for solving 2-F( B,B)PN-MAX-IS 
problem ( ALGORITHM ALGORITHM ALG-2-FPN-MAX-IS). The correctness and the performance 

guarantee through a series of intermediate results is established in the Appendix. 
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Figure 1: (a)The static graph with 2-dimensional integer vectors associated with each edge. (b) The 

graph G2>l specified by I' = (G, 10,Ol). 

Appendix 

Details for the Proof of Theorem 4.1: 

Counter Updating: Formula f 1 

fl  E f :  A f f  A f," A f ," ,  where each f i ,  1 5 i 5 3 is given as follows: 

f,' 3 [ct(t  + 1, y) = (ct(t ,  y) + 1) (mod 2don + l),] f," [O i c,(t, y) < * ct(t ,  y + 1) = 

cdt, Y)1 

f :  G [cy(t,y + 1) = (cy(t,y) + 1) (mod 2don + l)] f," E [0 5 ct(t,y) < 2don =+ .y(t + 1 , Y )  = 

cy (t,  Y 11 
f,' says that the value of the counter ct at grid point (t  + 1 , y) is 1 more than the value of the counter 

at the grid point (t,  y). Moreover, the counter is reset after every 2don + 1 time units. f," says that the 

counter value for a value o f t  is the same for all y. Conjuncts f," and f," describe the desired 

properties of the counter cy in a manner similar to f,' and f ," .  

[(cy@, Y) = n) A (ct(t,  Y) 
TAPE(t ,y)  = B] 

f 2  can be thought of as a way to implicitly initialize the clauses to reflect that the machine starts 

out right whenever the counters are reset to 0. The initialization condition say that if both the counter 

values are 0, then we have # as the tape symbol and so on. 

0) * TAPE(t ,  Y) = ~ n ]  A[(n + 1 L ~ y ( t ,  9) I zn )  A (ct(t,  Y) = 0) =+ 

Consistency Checking: Formula f3 

(0 2 cy(t,y) I 2 d o n )  A (2n.+ 1 I ct(t,y) 5 2 d o y  =+ 

I) ,  TAPE(t + 1, y + 2)) 

Consistent(TAPE(t, y), TAPE(t ,  y + l), TAPE(t ,  y + a),  TAPE(t  + 1, y), TAPE(t + 1, y t 
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Poly 
Poly 
Poly 
Poly 

DSPACE(n)-C 
DEXPTIME-C 
DSPACE(n)-C 
DEXPTIME-C 
EXPSPACE-C 
undecidable 

1 -F(B)PN-BSATWP 
1 -I(Z)PN-SSAlWP 

2-l(Z, Z)PN-BSA?WP 
2-I(N, N)PN-BSATWP 

1 -F(B)PN(BC)-SSATWP 
1 -F(B)PW(BC)-3SATWP 

2-F(B, U)PN(BC)-3SATWP 
2-F(B,B)PN(BC)-3SAlWP 
2-F(Z, B)PN(BC)-BSATWP 
2-F(N, N)PN(BC)-SSAlWP 

3SATWP 

2 
2 

Table 1: Table summarizing the results for the problems 3SAT and 3SATWP when instances are specified 

using various kinds of periodic specifications. For example, the 8th row in the table specifies that the problem 

3SAT when specified using 2-dimensional finite periodic narrow specifications, with the bounds on the X-axis 

specified in binary and the bounds on the Y-axis specified in unary is PSPACE-complete. Z, N stand for integers 

and natural numbers respectively. 

Standard 
pecs 

Arbitrary 

4/3 

2 p  

2 

b 

log 6 

2 

3 

Problem 

MAX9SAT 

MAX-SAT(S) 

MIN-VC 

MAX-IS 

Planar 

(*)3 

( + ) 3  

( F ) 3  

(?)3  

i & ) 3  

( ) 3  

1+1 3 

( q L ) 3  

(?)2  

MIN-DOM-SET 

MAX ED- DOM-SET 

MAX-PART- INTO-TRIAN 

MAX-H- MATCH 

MAX-CUT 

(lil 3 
1 ) .  

Table 2: Performance Guarantee Results for Optimization Problems for problems specified using 2-F( B,B) PN- 

specifications. All the problems can be shown to be 

NEXPTIME-hard using the method outlined in the paper. Similar results hold for problems specified using 

2-F(B,B)PN(BC) 2-F(B,B)PTN and I -F(B)PW(c)-specifications respectively. b denotes the degree bound. p 

denotes the maximum arity of a relation in S .  The approximation results for the standard case for arbitrary and 

planar instances can be found in [CK94]. 

Problem names are clear from the abbreviations. 
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f 3  ensures the consistency of the tape symbols, i.e. that the contents of the tape cells i, i + 1 and 

i + 2 in I Dt determine the contents of the tape cells i, i + 1 and i + 2 in I Dt+l. The Consistency function 

of course depends on the state transition relation. 

Although, the above formula contains clauses which are not narrow, it is easy to transform them to 

a narrow set of clauses by adding temporary variables. We omit the details in this abstract. Now, it is 

easy to see that these equations can be transformed into an equivalent narrow 3CNF formula G,(t, y) 

whose size is polynomial is in n, (recall that n = 1x1.) The expanded finite periodic 3SAT instance is 

A,=o,t=o 
y=N,t=M G ,(t, y, t + 1, y + l), where M = 22don and N = 22don. 

5.1 Proving EXPSPACE-hardness of 2-I(N,B)PN-3SAT 

Although there are technical difficulties, the basic idea behind the proof is similar to the idea used to 

prove NEXPTIME-hardness of 2-F(B,B)PN-3SAT. Therefore, we only point out essential differences. 

Recall that we used two counters to keep a track of the length of each ID and also to keep track of the 

number of ID’S. Since in the proofs of NEXPTIME-hardness, we need only consider singly exponential 

many ID’S we were able to use a counter which had only polynomial number of bits. This in particular 

implied that the variables constituting the counter can occur together explicitly in the static formula. 

In this case, we want to simulate an 2Cn space-bounded Turing machine and this means that we need 

to keep track of roughly 22cn ID’s. To do this we need a counter with roughly 2Cn bits. Thus all the 

variables constituting the counter cannot occur together explicitly in the static formula. 

It is easy to see that the above ideas can be extended to prove hardness results for wide specifica- 

tions. We only give the basic idea behind the reduction. For this, it is useful to imagine each ID being 

rotated horizontally on the X-axis. Now observe that the narrow clauses used to describe the relation- 

ship between variables of consecutive ID’s in case of 2-dimensional specifications can be replaced by 

wide clauses in the 1 -dimensional specifications. Summarizing the discussion, we get the following 

theorem. 

6 Approxima for 2-F(B,B)PN-MAX-IS: Performance 

Lemma 6.1 For each iteration of loop 2(c)i, the graphs Gi;jJk, 2 5 j 5 r - 1 , 2  _< j k  _< sJ - 1 

(i.e. the graphs Gi:i2, Git;>l . . . G%l,’?F1) are isomorphic. 

Proof Idea: Follows from the definition of periodic specification. 

Let us define two subgraphs obtained in iteration 2.(a).i.A to be in the same equivalence class if they 

are isomorphic. Then it is easy to see that the maximum independent set problem need only be solved 

for exactly one member of each equivalence class. As a corollary of the above lemma and by definition 

of periodic specifications we get that the number of equivalence classes are finite. Furthermore, as 

result of our partitioning step, it can be shown that the size of the individual pieces is O(k2 . IGl). 

These crucial facts allow us to bound the running time of our algorithm by O(RTn(k2 . IC/)). 

Lemma 6.2 The number of equivalence classes is no more than 9. Furthermore, The number 

of elements in each equivalence class is a polynomial time computable function f (in the size 

of the specification) of M and N ,  denoted by f ( M ,  N ) .  

Proof Sketch: For the purposes of understanding, assume that the periodic graph as a large square 

which is partitioned into small square pieces. Figure 2 (given in the appendix) shows the possible 

different equivalence classes. rn 
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6 

Figure 2: Figure showing the possible equivalence classes as a result of decomposition. The black 

squares denote subgraphs and the black dotted lines denote the equivalence classes. 

Lemma 6.3 Each of the subgraphs G::;jl oblained in Step 2.(c).i.B is disjoint. 

Proof Sketch: Follows from the property of instances specified by 2-F( B,B)PN specifications; namely 

a vertex defined at grid point (2, j )  is adjacent only to vertices that are defined at grid points (1 ,  rn) such 

that IZ - il, ]rn - jl 5 1. 

Next, we prove that the algorithm given above indeed computes a near optimal independent set. 
That is, given any k > 1 the algorithm will compute an independent set whose size is at least (m) k 2  

times that of an optimal independent set. 

First, we prove that of all the different iterations for i ,  at least one iteration has the property that 

the number of nodes that are not considered in the independent set computation is a small fraction of 

an optimal independent set. 

Recall that for each i we did not consider the vertices which were placed at lattice points with 

horizontal coordinates j,, j 2  . . j p  such that j ,  E- i rnod(k + l), 1 5 1 5 p.  Let So, SI, - . Sl be the 

set of vertices which were not considered for each iteration i. Let ISopt(Sz) denote the vertices in the 

set S, which were chosen in the optimal independent set OPT(G).  

Lemma 6.4 

k 
max IOPT(Gi)l 2 (-)IOPT(G)I 

O l i l k  ( k  + 1 

Proof: The proof follows by observing that the fbllowing equations hold: 

0 5 i , j  5 1, i # j ,  Sin S j  = 4; "t=l s t - - V(G) .  H 

The proofs of the theorem follows by an averaging argument. We omit the proofs due to the lack 

of space. 

. I  . 
c 

Theorem 6.5 jIS(G)l 2 (&)'. FBEST - /OPT(G)I. Here FBEST denotes the performance 

guarantee of the best algorithm known to solve the independent set problem. 
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