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“In the history of controlled thermonuclear fusion, there have been no ideas
comparable in beauty and conceptual significance with that of the stellara-
tor.”
(V.D. Shafranov, 1980)

“There is only one really original idea in the whole of magnetic fusion and
it is the Stellarator.”
(J.B. Taylor, 2007)

1 Introduction

Stellarator research began on a definite date, 25 March 1951. It was trig-
gered by an article on the front page of the New York Times reporting
that the Argentinian dictator Juan Péron had announced that his country
had achieved energy production by controlled nuclear fusion. The claims
were quickly dismissed by most leading physicists of the day, but Lyman
Spitzer Jr, head of the Princeton Astrophysics Department, started think-
ing seriously about the problem of how to confine an ionised plasma, and
summarised his ideas in a classified report “A Proposed Stellarator” on 23
July [1]. It is a visionary document that anticipates the development of
fusion research in several important ways. Of course, the problem turned
out to be far more difficult than originally thought, but most of Spitzer’s
key ideas have stood the test of time.

In the intervening years, many concepts for achieving fusion energy pro-
duction have been proposed and many types of experimental devices have
been built, but only a few have proved to be practical. The most prominent
one is the tokamak, also invented in 1951 by Tamm and Sakharov but in-
dependently conceived also by several others. Since the 1970’s most of the
world fusion energy effort has been on tokamaks, but it has also become in-
creasingly clear that the stellarator has important advantages. In both types
of devices, the fusion plasma is confined by a twisted toroidal magnetic field,
but the twist is produced in different ways. In tokamaks, it is created by
a toroidal plasma current, and in stellarators by non-axisymmetric coils.
Tokamaks are axisymmetric and therefore automatically confine all colli-
sionless particle orbits, which results in relatively good plasma confinement,
but the necessary current is usually induced by transformer action, making
these devices vulnerable to current-driven instabilities and difficult to oper-
ate in steady state. There are other ways of driving the plasma current, but
these tend to be expensive and restrict the achievable plasma parameters.
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Stellarators, on the other hand, are necessarily non-axisymmetric and do
not, in general, confine the plasma as well. But they are inherently able to
operate in steady state, and can have confinement properties comparable to
that of tokamaks, if the magnetic field is properly optimised.

It is not easy for a newcomer to learn stellarator physics, because most of
the results in the field are scattered over six decades of journal and conference
publications. Only one book [2] and a few review articles [3, 4, 5, 6, 7, 8, 9]
have been published on the subject, but these either do not describe the most
recent developments or do not go into mathematical details. The aim of the
present paper is to give a mathematical overview of the theory of stellarator
magnetic fields and their simplest physical properties. It is not meant to be
comprehensive, but rather to serve as an introduction to scientists entering
the field. For this reason, several elementary concepts are explained and
mathematical manipulations are given in detail. No attempt has been made
to review all the literature, and the attention has been restricted to basic
theory rather than experimental results. And within the realm of theory,
the emphasis lies on equilibrium and confinement, whereas the theory of
macroscopic and microscopic stability is not treated. On the other hand,
certain fundamental questions are ignored, particularly those that have not
yet been fully resolved, such as the existence of magnetic surfaces in fields
without a continuous symmetry.

The reader is assumed to have a basic knowledge of plasma physics,
including its underpinnings such as electrodynamics, analytical mechanics,
hydrodynamics and kinetic theory, but need not be a specialist in the field of
fusion physics. The material is divided into three chapters in a logical pro-
gression. The first one describes magnetohydrodynamic issues, such as the
structure of the magnetic field, the plasma current, magnetic coordinates,
etc. The following chapter treats particle motion and the problem how the
magnetic field may be optimised for good orbit confinement. Finally, the
concluding chapter gives an introduction into the kinetic theory of equilib-
rium and transport in non-axisymmetric plasmas, in particular the basics of
neoclassical theory.

2 Magnetic field

The first step in constructing a theory of plasma confinement in stellara-
tors must necessarily be a mathematical analysis of the confining, non-
axisymmetric magnetic field. What is required of such a field to confine
a plasma, and how is it most conveniently described mathematically? In
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the present section, the focus lies on the magnetic field itself and on the
conditions imposed upon it by magnetohydrodynamics (MHD).

2.1 Force balance

The aim of a stellarator or a tokamak is to confine a plasma with a certain
pressure p by means of a magnetic field B. This is possible since the pressure
force of the plasma can be balanced by a magnetic force produced by a
plasma current. If the plasma current is denoted by J, it is related to the
magnetic field by Ampère’s law,

∇× B = µ0J, (1)

in steady state. Most of the magnetic field is usually created by external
coils, and this “vacuum field” is modified by currents within the plasma. The
amount of plasma current necessary for confinement is determined from the
MHD equation of motion,

ρ

(

∂V

∂t
+ V · ∇V

)

= J × B −∇p−∇ · π, (2)

where ρ denotes the density, V the plasma flow velocity, and the viscosity π

is much smaller than the pressure p if the plasma is in a state close to local
thermodynamic equilibrium. In a steady state (mechanical equilibrium)
without flows,

∂

∂t
= 0, V = 0,

the equation of motion thus becomes

J × B = ∇p. (3)

It follows from this equation that the vectors B and J lie in surfaces of
constant pressure,

B · ∇p = 0, J · ∇p = 0.

According to a famous theorem in topology, the Poincaré index (or “hairy
ball”) theorem, a compact surface which is everywhere tangential to a non-
vanishing vector field free of singularities must have the topology of a torus
(see e.g. Thurston [10]). The theorem implies, for instance, that you cannot
comb the hair on a coconut in a uniform way, and that there is always one
place on Earth where the wind is not blowing horizontally. In the present
context, it says that surfaces of constant pressure in a magnetically confined
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Figure 1: Toroidally nested surfaces of constant pressure.

plasma must have toroidal topology. On each such surface, the stream lines
of B and J are wound around the torus, intersecting each other at a finite
angle according to Eq. (3).

The inertial term ρV · ∇V on the left-hand-side of Eq. (2) contains the
centrifugal and Coriolis forces and is comparable to the pressure gradient
only if the flow velocity is of the order of the ion thermal speed vT ∼ (p/ρ)1/2.
It will be shown from kinetic theory below that such a large flow velocity is
unattainable in most magnetic field configurations as long as the ion gyro-
radius is much smaller than the equilibrium scale length.

2.2 Magnetic coordinates

The most desirable situation for plasma confinement is when the surfaces
of constant pressure are nested, i.e., lie inside each other. The innermost
surface is then just a line, the so-called magnetic axis. To describe such
an equilibrium, it is useful to introduce magnetic coordinates, where one
coordinate is constant on the constant-pressure surfaces and the field lines
are straight in terms of the other coordinates [11]. To this end, first let ϑ
and ϕ be arbitrary poloidal and toroidal angles. That is, we let (p, ϑ, ϕ)
be an arbitrary coordinate system such that ϑ increases by 2π when the
the torus is traversed the short way around (the poloidal direction), and ϕ
increases by 2π the long way around the torus (the toroidal direction). Since
B · ∇p = 0, the magnetic field can then be written as

B = B1(p, ϑ, ϕ)∇p×∇ϑ+B2(p, ϑ, ϕ)∇ϕ×∇p, (4)
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and since ∇ · B = 0 we have

0 = ∇B1 · (∇p×∇ϑ) +∇B2 · (∇ϕ×∇p) =

(

∂B1

∂ϕ
+
∂B2

∂ϑ

)

∇p · (∇ϑ×∇ϕ).

Hence
∂

∂ϕ

∫ 2π

0
B1dϑ = 0

for all values of p and ϕ, so that

∫ 2π

0
B1dϑ = g(p)

for some function g(p). This implies that B1 and B2 can be written in the
form

B1 =
∂f

∂ϑ
+
g(p)

2π
(5)

B2 = −∂f
∂ϕ

+
h(p)

2π
, (6)

for some functions f(p, ϑ, ϕ) and h(p). By renaming the functions f , g, and
h, writing ψ′(p) = g(p)/2π, χ′(p) = h(p)/2π, and λ(p, ϑ, ϕ) = f(p, ϑ, ϕ))/ψ′(p),
where primes refer to derivatives, we thus obtain

B1 = ψ′(p)

(

1 +
∂λ

∂ϑ

)

,

B2 = χ′(p) − ψ′(p)
∂λ

∂ϕ
.

Then B = B1∇p×∇ϑ+B2∇ϕ×∇p becomes

B =

(

1 +
∂λ

∂ϑ

)

∇ψ ×∇ϑ+ ∇ϕ×∇χ− ∂λ

∂ϕ
∇ϕ×∇ψ,

or, finally,
B = ∇ψ ×∇θ + ∇ϕ×∇χ, (7)

where θ = ϑ + λ. This is the representation of B in magnetic coordinates,
and naturally leads to a decomposition of B into toroidal and poloidal com-
ponents (given by the first and second terms, respectively).

It is rewarding to interpret the result physically. We first note that ψ
and χ are constant on surfaces of constant pressure, and we can choose
both these functions to vanish on the magnetic axis. Let us calculate the
magnetic flux that passes through a poloidal cross section (ϕ = constant)
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between the magnetic axis and some surface ψ = constant, see Fig. 2. This
flux is given by the surface integral

∫

B · dS =

∫

B · n̂dS,

where n̂ = ∇ϕ/|∇ϕ|. The surface element dS is related to the volume
element

dV =
√
gdψdθdϕ,

by dV = dSdϕ/|∇ϕ|, and the Jacobian of the coordinates (ψ, θ, ϕ), taken
to be a right-handed system, is given by

1√
g

= (∇ψ ×∇θ) · ∇ϕ = B · ∇ϕ. (8)

The toroidal magnetic flux is thus
∫

B · dS =

∫ ψ

0
dψ′

∫ 2π

0
dθ

B · ∇ϕ
∇ψ′ · (∇θ ×∇ϕ)

= 2πψ. (9)

Here the prime in ψ′ does not denote a derivative but is used to distinguish
the integration variable from the end point of the integral, 0 < ψ′ < ψ.

B

j=const.

y=const.

Figure 2: The magnetic flux passing through a surface of constant ϕ is equal
to 2πψ.

Similarly, we can evaluate the poloidal flux, i.e., the amount of magnetic
flux that passes through a surface θ = constant between the magnetic axis
and a given flux surface ψ, as in Fig. 3. This flux is

∫

B · dS =

∫ ψ

0
dψ′

∫ 2π

0
dϕ

B · ∇θ
∇ψ′ · (∇θ ×∇ϕ)

= 2πχ (10)
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Since the toroidal and poloidal magnetic fluxes are constant on surfaces of
constant pressure, these surfaces are called flux surfaces. Functions that are
constant on such surfaces, i.e., only depend on ψ and are indendent of θ and
ϕ, are called flux functions.

If χ is regarded as a function of ψ, the derivative

ι(ψ) =
dχ

dψ
(11)

is called the rotational transform1, and q = 1/ι is called the safety fac-
tor. The rotational transform indicates how many poloidal turns a field
line makes during each toroidal turn around the flux surface. This conclu-
sion follows from the observation that, along a field line, θ and ϕ vary in
proportion,

dθ

dϕ
=

B · ∇θ
B · ∇ϕ =

(∇ϕ×∇χ) · ∇θ
(∇ψ ×∇θ) · ∇ϕ = ι.

This equation also indicates that the magnetic field lines are straight in the
(θ, ϕ) plane, which is the defining property of magnetic coordinates. In fact,
if we introduce α = θ − ιϕ, then

B = ∇ψ ×∇α, (12)

so that B ·∇α = 0 and α is constant along the magnetic field. Equation (12)
is called the Clebsch representation of the magnetic field and is a general
way of (locally) writing divergence-free vector fields, including those that do
not possess flux surfaces.

In order to explore the properties of magnetic coordinates further, we
first note that since J · ∇p = 0, we can write

µ0J = J1∇ψ ×∇θ + J2∇ϕ×∇ψ (13)

in analogy with (4). Furthermore, since ∇ · J = 0 because of Eq. (1) the
same reasoning as that leading up to Eqs. (5) and (6) implies J1 and J2 can
be written as

J1 = I ′(ψ) − ∂K

∂θ
,

J2 = −G′(ψ) +
∂K

∂ϕ
,

for some functions I(ψ), G(ψ) and K(ψ, θ, ϕ). Since then

µ0J = ∇× (I∇θ +G∇ϕ+K∇ψ) = ∇× B, (14)

1This quantity is sometimes denoted by ι/2π or ῑ.
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Figure 3: The poloidal component, Bp, of the magnetic field contributes to
the magnetic flux passing through a ribbon of constant θ. This flux is equal
to 2πχ.

it follows that it must be possible to write the magnetic field as

B = I∇θ +G∇ϕ+K∇ψ + ∇H, (15)

where the function H(ψ, θ, ϕ) plays the role of an integration constant. The
flux functions I(ψ) and G(ψ) have a simple physical interpretation. The
integral of the magnetic field around a contour of constant ψ and ϕ becomes
according to Eq. (15)

∮

ϕ=constant
B · dr = 2πI(ψ). (16)

According to Ampère’s law, this integral is equal to µ0 times the toroidal
current inside the flux surface ψ. Of course, the integral could be taken
along any poloidally closed contour without affecting the result. Similarly,
a toroidal contour integral of B implies that

∮

θ=constant
B · dr = 2πG(ψ)

is equal to µ0 times the poloidal current between the flux surface labelled
by ψ and infinity. In both tokamaks and stellarators, most of this current
tends to flow in the toroidal field coils. In a stellarator, I tends to be much
smaller than G.
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2.3 The flux-surface average

The volume enclosed by a flux surface is equal to

V (ψ) =

∫ ψ

0
dψ′

∫ 2π

0
dθ

∫ 2π

0

√
g dϕ, (17)

where the Jacobian was given in Eq. (8). The flux-surface average of an
arbitrary function f(ψ, θ, ϕ) is defined as the volume average of this function
over the volume between two neighbouring flux surfaces

〈f〉 = lim
∆ψ→0

1

V (ψ + ∆ψ) − V (ψ)

∫ ψ+∆ψ

ψ
dψ

∫ 2π

0
dθ

∫ 2π

0
f(ψ, θ, ϕ)

√
g dϕ

=
1

V ′(ψ)

∫ 2π

0
dθ

∫ 2π

0
f(ψ, θ, ϕ)

√
g dϕ (18)

Since the volume element can be written dV = dSdψ/|∇ψ|, where

dS =
dθdϕ

(∇θ ×∇ϕ) · n
is the area element on a flux surface whose normal vector is n = ∇ψ/|∇ψ|,
the flux-surface average can be written as

〈f〉 =

∫

f dS

|∇ψ|

/∫

dS

|∇ψ| .

If we regard the Jacobian
√
g as a function not of (ψ, θ, ϕ) but of the

Clebsch coordinates (ψ, α, ϕ), then

V ′(ψ) =

∫ 2π

0
dα

∫ 2π

0

√

g(ψ, α, ϕ) dϕ

The ϕ-integral is here taken at constant ψ and α, and can thus be interpreted
as an integral along the magnetic field. The line element along B is

dl =
Bdϕ

B · ∇ϕ =
√
g Bdϕ,

so

V ′(ψ) =

∫ 2π

0
dα

∫

dl

B
, (19)

where the l-integral is to be taken over the length of the field line once
around the torus. Similarly, the flux-surface average becomes

〈f〉 =
1

V ′(ψ)

∫ 2π

0
dα

∫

fdl

B
.
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The divergence of a vector F is given by

∇ · F =
1√
g

∑

i

∂

∂xi

(√
g F · ∇xi

)

,

in arbitrary coordinates xi. Choosing these to be our magnetic coordinates
(ψ, θ, ϕ), we find the useful relation

〈∇ · F〉 =
1

V ′(ψ)

∂

∂ψ

〈

V ′(ψ)F · ∇ψ
〉

. (20)

An immediate consequence is that

〈B · ∇f〉 = 0 (21)

for any single-valued function f . Another corollary is that a so-called mag-
netic differential equation

B · ∇f = S,

only has a solution if 〈S〉 = 0.

2.4 Magnetic field lines

Each magnetic field line is identified by two coordinates (ψ, α), where α =
θ − ιϕ is the Clebsch angle. We have already noted that, along a field line,
we have dθ/dϕ = ι in magnetic coordinates. Thus, if we follow a field line
once around the torus toroidally the poloidal angle changes by

θ → θ + 2πι.

We thus conclude that (ψ, α) and (ψ, α+2πι) label the same field line. There
is a qualitative difference between flux surfaces where rotational transform ι
is a rational number and where it is irrational. In the former case, ι = n/m,
the field line returns to where it started – it bites its tail, so to speak – after
m toroidal turns around the torus. If ι is irrational, it never does so and
instead traces out the entire flux surface. Not only does it come arbitrarily
close to each point on the surface, but in addition it covers the surface evenly
in a certain sense. This follows from “Weyl’s lemma” [12], which asserts that
if ι is an irrational number and f(α) an arbitrary, continuous, 2π-periodic
function, then

1

2π

∫ 2π

0
f(α)dα = lim

m→∞

1

m

m
∑

k=1

f(2πkι).

11



This result is intuitively plausible from the fact that if ι is not irrational but
a high-order rational (ι = n/m with large m and n), then the points with
the poloidal angle θ = 2πkι are approximately evenly distributed over the
interval [0, 2π) modulo 2π. Indeed, if ι = n/m then

1

2π

∫ 2π

0
f(α)dα ≃ 1

m

m
∑

k=1

f(2πkι)

if m≫ 1.
Weyl’s lemma enables us to interpret the expressions for the volume (17)

enclosed by a flux surface and the flux-sufrace average (18) in an interesting
way. If ι ≃ n/m we have

V ′(ψ) ≃ 2π

m

m
∑

k=1

∫

dl

B

∣

∣

∣

∣

∣

α=2πkι

.

But the right-hand-side of this expression is simply the integral along a
single field line m toroidal times around the torus, i.e., until the field line
closes on itself, which we write as

V ′(ψ) ≃ 2π

m

∮

dl

B
.

The flux-surface-average (18) can thus be expressed as

〈f〉 ≃
∮

fdl

B

/∮

dl

B
, (22)

in terms of integrals around a closed field line on a high-order rational mag-
netic surface. Since the rotational transform may be approximated to any
degree of accuracy by a sufficiently high-order rational number, this allows
us to interpret the flux-surface average for any continuous function f in this
way.

This result is readily understood in terms of volume averages in flux
tubes. A slender flux tube along the magnetic field has a cross section of
area

dS =
dΦ

B
,

where dΦ is the magnetic flux inside the tube. Its volume is thus

dV =

∫

dldS = dΦ

∫

dl

B
,
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and it is clear that the flux-surface average (22) is an average over the volume
of a long flux tube that is wound many turns around the torus.

There is an important application of these concepts to the theory of MHD
stability of stellarators. Although this subject is beyond the scope of the
present review, it is worth mentioning that a magnetic configuration with
V ′′(ψ) < 0 is said to possess a magnetic well. This is beneficial for stability,
as can be understood intuitively from the following argument. Consider an
interchange instability causing a certain flux tube to move radially outward.
In ideal MHD, the magnetic field is frozen into the plasma, so the tube
carries both plasma and magnetic field with it. Now, the quantity V ′(ψ)
can be understood as the “specific volume” of the plasma: dV = V ′(ψ)dψ is
the volume available to a bit of plasma threaded by the flux dψ. If V ′′(ψ) is
positive, the specific volume increases with radius, so that a flux tube that
moves radially outward will tend to expand. If the pressure decreases with
radius, p′(ψ) < 0, this liberates thermal energy stored in the plasma, and we
conclude that plasma equilibria with V ′′(ψ) > 0 are particularly vulnerable
to pressure-driven instabilities.

The curvature of a magnetic field line is defined by

κ = b · ∇b, (23)

where b = B/B is the unit vector in the direction of the field. Since b ·
∇b · b = 0, the curvature vector is orthogonal to the direction of the field
line. If the latter is locally approximated by a circle as closely as possible,
the curvature vector κ points in the direction from the field line toward
the centre of this circle, and its magnitude κ = 1/R is the inverse of its
radius. The component of κ that is orthogonal to the flux surface is called
the normal curvature

κn = n · κ,
where n = ∇ψ/|∇ψ|. The normal curvature is important in stability theory
since, according to the ideal MHD energy principle [13], negative normal
curvature is destabilising if the pressure decreases outward, dp/dψ < 0. The
component of the curvature vector that is tangential to the surface,

κg = (n × b) · κ,

is called the geodesic curvature. This quantity can be defined for any curve
with tangent vector b and vanishes for geodesics, which are defined as curves
of shortest length: a geodesic between two points (not too far from each
other) on a surface is the shortest curve between these two points lying
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entirely within the surface. That κg vanishes for such a curve is intuitively
clear from the fact that a curve of shortest length should be “as straight as
possible”. Since

κ = −b ×
(

∇× B

B

)

= −b × µ0J + b ×∇B
B

,

the curvature can be written as

κ =
µ0∇p
B2

+
∇⊥B

B
, (24)

where ∇⊥B = ∇B−(b·∇B)b is the component of ∇B that is perpendicular
to the field. We note that the first term in Eq. (24) is small in a low-pressure
plasma (in the sense p ≪ B2/2µ0) and never contributes to the geodesic
curvature, which can be written as

κg = (n × b) · ∇ lnB. (25)

2.5 Hamada and Boozer coordinates

In our construction of magnetic coordinates, we started with completely
arbitrary poloidal and toroidal angles, i.e., ϑ and ϕ were allowed to repre-
sent any functions with the right periodicity properties. The poloidal angle
was then modified so as to make the magnetic field lines straight, but the
toroidal angle was left intact. For each choice of toroidal angle ϕ there is
thus a corresponding choice of poloidal angle θ leading to the representation
(7). There are, therefore, many sets of magnetic coordinates (θ, ϕ), and the
freedom to choose ϕ arbitrarily can be used to achieve further simplifica-
tions. Two particularly useful sets of magnetic coordinates were identified
by Hamada [14] and Boozer [15], respectively.

If we write
θ = θ′ + ιω,

ϕ = ϕ′ + ω

where ω(ψ, θ, ϕ) is well-behaved and periodic in the poloidal and toroidal
directions, then Eqs. (7) and (15) become

B = ∇ψ ×∇θ′ + ∇ϕ′ ×∇χ = I∇θ′ +G∇ϕ′ +K ′∇ψ + ∇H ′ (26)

with
H ′ = H + (ιI +G)ω,
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K ′ = K − ω
d

dψ
(ιI +G).

For Boozer coordinates ω is chosen so that H ′ vanishes,

ω = − H

ιI +G

i.e.,
B = I(ψ)∇θ +G(ψ)∇ϕ+K(ψ, θ, ϕ)∇ψ, (27)

where we have dropped primes. The Jacobian for these coordinates is found
from the scalar product of the two expressions (26) for B, giving

1√
g

= (∇ψ ×∇θ) · ∇ϕ =
B2

ιI +G
(28)

The basic advantage of Boozer coordinates is that the magnetic field has
a particularly simple covariant representation (27). It may seem surprising
that this representation has a component proportional to ∇ψ although the
magnetic field is tangential to the flux surfaces. The reason is that the
coordinate system is non-orthogonal, so that ∇θ and ∇ϕ have components
that are perpendicular to the flux surface that need to be cancelled by the
final term in Eq. (27). Geometrically, Boozer coordinates have the property
that lines that are perpendicular to B and tangential to flux surfaces (the
streamlines of B ×∇ψ) are straight in these coordinates.

For Hamada coordinates, ω is instead chosen so that K ′ vanishes, i.e.,

B = I∇θ +G∇ϕ+ ∇H,

where I = I(ψ), G = G(ψ) and H = H(ψ, θ, ϕ). The current becomes

µ0J = ∇× B = ∇I ×∇θ + ∇G×∇ϕ (29)

In other words, the streamlines of both B and J are straight in Hamada
coordinates. They both wind around the torus, but do so with different
rotational transforms. By analogy with Eqs.(7) and (11), it follows from
Eq. (29) that the rotational transform of the current streamlines is equal to

ιJ = −G
′

I ′
= −dG

dI
. (30)

Finally, we note that the Hamada Jacobian is a flux function, as follows
from Eq. (31) below with K = 0.
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It is important to note that in axisymmetric configurations, the toroidal
Boozer and Hamada angles are not equal to the geometric angle used in
cylindrical coordinates around the axis of symmetry. The vector ∇ϕ does
not point purely in the toroidal direction if ϕ denotes the toroidal angle in
Boozer or Hamada coordinates.

2.6 More on force balance

We are now in a position to reconsider the force balance relation (3). Sub-
stituting Eqs.(7) and (14) gives

J × B =
1

µ0
√
g

(

ι
∂K

∂θ
+
∂K

∂ϕ
− ιI ′ −G′

)

∇ψ = p′(ψ)∇ψ, (31)

which we divide by ∇ψ and flux-surface average to obtain

ιI ′ +G′ = − µ0

4π2
p′V ′.

This is the basic requirement that the toroidal and poloidal currents, I and
G respectively, need to satisfy in order to produce a magnetic force that
balances the pressure gradient. It can be expressed as a condition on the
rotational transforms of the magnetic field lines (11) and the current lines
(30),

ι− ιJ = − µ0

4π2

p′V ′

I ′
.

Let us consider two magnetic field lines intersecting two current lines in
the points (P,Q) and (P ′, Q′), respectively, as in Fig. 4. These four lines
thus bound a “rectangle” on the flux surface, with current flowing across the
segments PQ and P ′Q′. If we consider the volume between this rectangle
and the corresponding one on the neighbouring flux surface ψ+dψ, the total
current across the boundary PQ is

IPQ =

∫

J · dS,

where the surface element is

dS =
∇α

(∇ψ ×∇α) · ∇ϕ dψdϕ,

in the coordinates (ψ, α, ϕ), or

dS =
∇α
B

dψdl,
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in terms of the arc length dl = dϕ/(b · ∇ϕ) along the field. Note that the
Clebsch angle α = θ− ιϕ is constant along the magnetic field and thus over
the surface of the integral.

B

B

J

J
P

P´

Q

Q´

Figure 4: Area bounded by two magnetic field lines and two streamlines of
the current. The currents flowing across the segments PQ and P ′Q′ are
equal.

Since
J × B = J × (∇ψ ×∇α) = (J · ∇α)∇ψ,

we have J · ∇α = p′(ψ) and

IPQ = (p′dψ)

∫ Q

P

dl

B
.

Since the current flowing across the segment PQ must equal that across
P ′Q′, we conclude that

p′(ψ)

∫ Q

P

dl

B
= p′(ψ)

∫ Q′

P ′

dl

B
,

as long as the end points in the two integrals lie on the same stream lines
of the current. In the special case of a rational magnetic surface, we can
take the integral along a closed field line, so that P and Q coincide. We
then conclude that the resulting integral, is the same for all field lines on
the same flux surface, unless p′(ψ) vanishes,

p′(ψ)
∂

∂α

∮

dl

B
= 0. (32)
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In other words, unless the pressure gradient vanishes, the so-called Hamada
condition needs to be satisfied: all flux tubes carrying the same magnetic
flux on a given surface must have the same volume. This condition hints at
a paradox in low-pressure plasmas: it must hold in any configuration with
J×B = ∇p 6= 0, no matter how small the pressure gradient may be, but is
not generally true in the absence of pressure. The reason for this difficulty
is the assumption that the magnetic field traces out perfectly nested flux
surfaces, which, as we shall see, in general requires a singular current on
surfaces with rational rotational transform.

2.7 Plasma current

The magnetic field in a stellarator is primarily created by the magnetic field
coils, but it is modified by the plasma current that arises to maintain force
balance (3). This current generally has components both perpendicular
and parallel to the magnetic field, J = J‖b + J⊥. Only the perpendicular
component of the current is necessary for producing a magnetic force J×B =
∇p, namely,

J⊥ =
B ×∇p
B2

, (33)

but in addition it is necessary to satify ∇·J = 0, which follows from ∇×B =
µ0J and usually requires a parallel (so-called Pfirsch-Schlüter) current since

∇ · J⊥ = (B ×∇p) · ∇
(

1

B2

)

in general does not vanish. Since ∇ · (J‖B/B) = B · ∇(J‖/B), the parallel
current density is given by

J‖ = u(ψ, θ, ϕ)p′(ψ)B +

〈

J‖B
〉

B

〈B2〉 , (34)

where the function u(ψ, θ, ϕ) satisfies the magnetic differential equation

B · ∇u = −(B ×∇ψ) · ∇
(

1

B2

)

(35)

and we have fixed the integration constant by requiring
〈

uB2
〉

= 0. The
Pfirsch-Schlüter current, which we define as the first term on the right-hand
side of Eq. (34),

JPS‖ = up′B, (36)
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vanishes in configurations with zero geodesic curvature (25), since

b · ∇u = −2κg|∇ψ|
B2

,

but otherwise always arises as soon as there is a non-zero pressure gradient.
The second term in Eq. (34) describes the Ohmic current, the bootstrap
current (see below), and any non-inductively driven current. In a plasma
that satisfies a conventional Ohm’s law,

ηJ‖ = E‖ = −∇‖φ−
∂A‖

∂t
,

where η is the resistivity, and φ and A the electromagnetic potentials, there
is no contribution to 〈J‖B〉 from the electrostatic field −∇‖φ, because of
Eq. (21).

The full current vector is given by the sum of the diamagnetic current
(33) and the parallel current (34),

J =
B ×∇p
B2

+



u(ψ, θ, ϕ)p′(ψ) +

〈

J‖B
〉

〈B2〉



B. (37)

In keeping with convention, we have defined the first term in the brackets
as the Pfirsch-Schlüter current, but one should note that this term is not
divergence-free and should therefore not be treated as an entity separate
from the diamagnetic current. A physically meaningful question, however,
is whether these two terms contribute to the total toroidal current flowing
around the torus? That is, does the pressure gradient alone create a net
toroidal current in an Ohmic plasma?

The net toroidal current flowing in the volume V bounded by the flux
surface ψ is equal to the surface integral of the current density across an
arbitrary surface of constant ϕ,

Itor(ψ) =

∫ ψ

0
dψ

∫ 2π

0
(J · ∇ϕ)

√
gdθ

∣

∣

∣

∣

∣

ϕ=const.

,

where dS = (∇ϕ)
√
gdψdθ is the surface element. Since this current cannot

depend on the toroidal location of the surface over which the integral is
taken, we can write

Itor(ψ) =
1

2π

∫ 2π

0
dϕ

∫ ψ

0
dψ

∫ 2π

0
(J · ∇ϕ)

√
gdθ =

1

2π

∫

V
J · ∇ϕdV.
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The last term in Eq. (37), which represents the Ohmic and non-inductively
driven currents, contributes the amount

1

2π

∫

V

〈J‖B〉
〈B2〉 B · ∇ϕdV =

1

2π

∫

V

〈J‖B〉
ιI +G

dV

to the net toroidal current, where we have used Boozer coordinates with the
Jacobian (28). As already mentiond, the first two terms in Eq. (37) should,
strictly speaking, be considered together since they are not individually
divergence-free, but the second term makes no contribution,

1

2π

∫

V
up′(B · ∇ϕ)dV = 0,

because of the condition 〈uB2〉 = 0. The diamagnetic current, finally, i.e.,
the first term on the right-hand side of Eq. (37), makes the contribution

1

2π

∫

V

dp

dψ

(I∇θ ×∇ψ) · ∇ϕ
B2

dV = −
∫

Ip′

ιI +G
dV,

which can be non-zero if I 6= 0. More precisely, the pressure gradient pro-
duces a net toroidal current on a given flux surface only if there is a net
toroidal current inside this surface. In other words, if a toroidal current is
driven by other means – for instance non-inductively or Ohmically, as in
a tokamak – then the diamagnetic and Pfirsch-Schlüter currents cause an
additional net current to flow in the toroidal direction. In the absence of
other currents (which is the usual situation in a stellarator), there is no net
diamagnetic plus Pfirsch-Schlüter current toroidally.

There is a simple geometric reason for this conclusion. Consider the line
integral

∮

C
B · dr,

taken along a contour C that

(i) lies entirely within a flux surface,

(ii) first runs perpendicular to B poloidally once around the torus until it
encounters the field line on which it started,

(iii) and then follows the magnetic field back to the starting point,

as in Fig. 5. Only the last portion of C will contribute to the integral.
On the other hand, according to Ampère’s law the integral is equal to the
enclosed toroidal current (16),

∮

C
B · dr = 2πI(ψ).
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Thus, if I(ψ) = 0 the curves perpendicular to B are poloidally closed. But
these curves are stream lines of the diamagnetic current, and it is thus
obvious that this current will only give rise to a net toroidal current if
I(ψ) 6= 0.

C

B

Figure 5: The integration contour C runs perpendicular to B poloidally once
around the torus, and then along B back to the starting point.

Like any current does, the Pfirsch-Schlüter current creates a magnetic
field and thus changes the magnetic equilibrium, making the latter depen-
dent on the plasma pressure. If this pressure is increased from zero, the
Pfirsch-Schlüter current builds up and changes the shape and position of
the magnetic surfaces. One of the most noticeable changes is an outward (in
major radius) shift of the central flux surfaces, the so-called Shafranov shift.
It arises for essentially the same reason that a rubber tyre expands radially
when it is being pumped up. In a classical stellarator, with inverse aspect
ratio ǫ ≪ 1,the Shafranov shift becomes large enough to be comparable to
the minor radius at an average plasma pressure of about

β =
2µ0p

B2
∼ ǫι2

2
,

which sets an equilibrium limit on the achievable pressure.

2.8 Magnetic shear

In general, the cross section of a flux tube changes shape along the tube. If,
for instance, the cross section is square at some location, further along the
tube it will typically be rectangular or trapezoidal, having been compressed
in one direction and stretched in the other; one speaks of magnetic shear.

Magnetic shear arises if the rotational transform varies from flux surface
to surface, dι/dψ 6= 0, since the field lines on neighbouring flux surfaces then
do not rotate equally fast around the magnetic axis and flux tubes therefore
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get sheared in the poloidal direction. For this reason, the global magnetic
shear is in the literature defined as ι′(ψ), or as some quantity proportional
to ι′(ψ). (In the tokamak literature it is usually defined as s = rq′(r)/q,
where q = 1/ι and r is an appropriately chosen flux function that reduces
to the minor radius when the flux surfaces are circular.)

The local magnetic shear is traditionally defined as [17]

S = −X · (∇× X),

with

X =
B ×∇ψ
|∇ψ|2 , (38)

but the nomenclature is not entirely consistent in the literature. Sometimes
ψ is replaced by some other flux function F (ψ), and some authors replace
X by b×∇ψ/|∇ψ|. In any case, using B = ∇ψ×∇α in the definition (38)
gives

X = ∇α− ∇ψ · ∇α
|∇ψ|2 ∇ψ

and

S = X ·
[

∇
(∇ψ · ∇α

|∇ψ|2
)

×∇ψ
]

= B · ∇
(∇ψ · ∇α

|∇ψ|2
)

.

If we denote the angle between ∇ψ and ∇α by λ, so that ∇ψ · ∇α =
|∇ψ||∇α| cosλ, it follows that the line integral of S/B along a field line
between two points, P and Q, is equal to

∫ Q

P

Sdl

B
=

[ |∇α|
|∇ψ| cosλ

]Q

P

.

Hence it is clear that S is a measure of the growth of λ along a field line.
The flux-surface average of S does not vanish, although it is of the form

(21), because the last term in

S = B · ∇
(∇ψ · (∇θ − ι∇ϕ)

|∇ψ|2 − ι′(ψ)ϕ

)

.

is not single-valued. Instead

〈S〉 = −4π2 dι

dV
,

where V (ψ) is the volume (17) inside the flux surface. On a flux-surface
average, the local shear is thus equal to (a multiple of) the global shear.
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2.9 Expansion around the magnetic axis

Spitzer was the first to realise that it is possible to create a rotational trans-
form without a toroidal current [1]. This may appear surprising in view of
Ampère’s law (16), which seems to state that a net poloidal field can only
arise if the toroidal current I(ψ) is non-zero. But the fact that the average
poloidal field vanishes in the sense expressed by this equation does not imply
ι = 0, because ι measures a different kind of poloidal-field average. In terms
of mathematics, the point is that the expression

ι =
〈B · ∇θ〉
〈B · ∇ϕ〉

is different from
I

G
=

〈B · (∇ϕ×∇ψ)〉
〈B · (∇ψ ×∇θ)〉 ,

which follows from Eqs. (15) and (18). In fact, most non-axisymmetric
MHD equilibria have non-zero rotational transform even in the absence of
a net toroidal current. An example from tokamaks is furnished by mag-
netic islands. A magnetic island need not enclose any plasma current but
nevertheless consists of flux surfaces traced out by field lines. A stellarator
example is shown in Figure 6, which depicts two poloidal cuts (at constant
toroidal geometric angle) of a magnetic surface in Wendelstein 7-X, with the
poloidal field indicated by arrows. There is no net toroidal current and the
line integral (16) thus vanishes.

A Spitzer realised, there are three ways of twisting the magnetic field
in a large-aspect-ratio torus [18]. The first is to use a toroidal current, the
second is to make the magnetic axis not lie in a plane, and the third is to
make the poloidal cross section of the flux surfaces (which are elliptical close
to the magnetic axis) rotate poloidally as one goes around the torus in the
toroidal direction. Most stellarators use a combination of these methods.

To see how a poloidal magnetic field and a rotational transform arises
mathematically, one needs to solve Maxwell’s equations, ∇ · B = 0 and
∇ × B = µ0J. We follow Mercier [19] and expand these equations in the
vicinity of the magnetic axis, which is denoted by r0(l) when parameterised
by the arc length l. Then ê1 = dr0/dl is a unit tangent vector along the
axis (which we have earlier denoted by b) and

ê2 =
1

κ

dê1

dl

is a unit vector in the direction of the curvature (23). A third unit vector can
be defined by ê3 = ê1× ê2, and since d(ê1 · ê2)/dl = 0 we have ê1 ·(dê2/dl) =
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Figure 6: The two up-down symmetric cross sections of a flux surface in the
Wendelstein 7-X stellarator. The arrows indicate the strength and direction
of the magnetic field projected onto these surfaces. There is no net toroidal
current, and the integral (16) thus vanishes.
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−κ. Because also ê2 · (dê2/dl) = 0 it must be possible to write

dê2

dl
= −κê1 + τ ê3

for some number τ , which is called the torsion. In a similar way, one con-
cludes from d(ê1 · ê3)/dl = d(ê2 · ê3)/dl = 0 that

dê3

dl
= −τ ê2.

If the magnetic axis lies in a plane, then dê3/dl = 0, but more generally
the torsion measures how much it departs locally from a plane curve. These
so-called Frenet-Serret relations play an important role in the differential
geometry of curves.

B

J

r

e1
^

e3
^

^^

e2
^

r0

r = r
0
+ (e cos + e sin )r J J2 3

Figure 7: Cylindrical coordinates locally aligned with the magnetic axis.

We now introduce local cylindrical coordinates (ρ, ϑ, l) in the vicinity of
the magnetic axis,

r(ρ, ϑ, l) = r0(l) + ê2(l)ρ cosϑ+ ê3(l)ρ sinϑ,

as in Fig. 7. Then

∂r

∂ρ
= ê2 cosϑ+ ê3 sinϑ,

∂r

∂ϑ
= ρ(−ê2 sinϑ+ ê3 cosϑ),

∂r

∂l
= (1 − κρ cosϑ)ê1 + τρ(−ê2 sinϑ+ ê3 cosϑ),
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and the distance between two neighbouring points is given by

ds2 = dr · dr = dρ2 + ρ2(dϑ+ τdl)2 + (1 − κρ cosϑ)2dl2.

Hence it is clear that the coordinate system is not orthogonal, but can be
made so by introducing the modified cylindrical angle

ω = ϑ+

∫ l

0
τ(l′)dl′,

where the lower limit of integration is arbitrary. Then

ds2 = dρ2 + ρ2dω2 + (1 − κρ cosϑ)2dl2,

and close to the magnetic axis, where the term κρ cosϑ can be neglected, the
variables (ρ, ω, l) are equivalent to ordinary cylindrical coordinates locally
aligned with the axis. We thus express the magnetic field as

B = Bρêρ +Bωêω +Blêl,

where

êα =
∂r

∂α

/∣

∣

∣

∣

∂r

∂α

∣

∣

∣

∣

, α = (ρ, ω, l)

denote the coordinate unit vectors. The components of B can be expanded
as

Bρ(ρ, ω, l) = a1(ω, l)ρ+O(ρ2),

Bω(ρ, ω, l) = b1(ω, l)ρ+O(ρ2),

Bl(ρ, ω, l) = B0(l) +O(ρ),

where numerical indices indicate the order in ρ. The current density on the
axis becomes

µ0J = êl · (∇× B) =
1

ρ

∂(ρBω)

∂ρ
− 1

ρ

∂Bρ
∂ω

= 2b1 −
∂a1

∂ω
, (39)

where we have used the expression for the curl in cylindrical coordinates.
Our remaining task is to relate this representation of the magnetic field

to that using magnetic coordinates (12), which close to the axis reduces to
B = ∇ψ ×∇α with

ψ = ψ2(ω, l)ρ
2 +O(ρ3),
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so that, to the requisite accuracy,

a1 =
∂ψ2

∂ω

∂α

∂l
− ∂ψ2

∂l

∂α

∂ω
, (40)

b1 = −2ψ2
∂α

∂l
, (41)

B0 = 2ψ2
∂α

∂ω
. (42)

Hence
∂

∂ω

(

b1
ψ2

)

+
∂

∂l

(

B0

ψ2

)

= 0

and
∂a1

∂ω
= −1

2

[

b1
ψ2

∂2ψ2

∂ω2
− ∂

∂l

(

B0

ψ2

)

∂ψ2

∂ω
+

∂

∂ω

(

B0

ψ2

∂ψ2

∂l

)

]

,

enabling us to write Eq. (39) as

b1 =
µ0J

2
− 1

4ψ2

(

b1
∂2ψ2

∂ω2
−B′

0

∂ψ2

∂ω
+B0

∂2ψ2

∂ω∂l

)

. (43)

We proceed by noting that the level curves of ψ at fixed l must be elliptical
near the magnetic axis, since the function ψ vanishes on the axis and is of
order O(ρ2) in its vicinity. The general equation for an ellipse is

x = re−η/2 cos v,

y = reη/2 sin v,

where v varies between 0 and 2π, eη denotes the ratio of the axes pointing in
the y- and x-directions, respectively, and the area is πr2. If we let d(l) denote
the angle between the x-axis and the curvature vector ê2, as in Fig. (8), then

x = ρ cosu,

y = ρ sinu,

with

u = ϑ+ d(l) = ω + d(l) −
∫ l

0
τdl′,

and it follows that y/x = tanu = eη tan v as well as r2 = ρ2(eη cos2 u +
e−η sin2 u).
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Figure 8: Close to the magnetic axis, the flux surfaces have elliptical cross
section. The angle between one of the semi-axes of the ellipse and the cur-
vature vector is denoted by d. In general, this angle rotates as one moves
along the magnetic axis around the torus, and this contributes to the rota-
tional transform.

From Eq. (9) we know that the toroidal magnetic flux is equal to 2πψ ≃
πr2B0(l), so we obtain the following expression for ψ close to the magnetic
axis

ψ =
B0r

2

2
=
B0ρ

2

2
(cosh η + sinh η cos 2u) .
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It follows that
∂ψ2

∂ω
= −B0 sinh η sin 2u,

∂2ψ2

∂ω2
= −2B0 sinh η cos 2u,

and Eq. (43) reduces to

b1
2ψ2

=
1

cosh η

[

µ0J

2B0
+

1

4ψ2

(

B′
0

B0

∂ψ2

∂ω
− ∂2ψ2

∂ω∂l

)]

,

which in turn can be written as

b1
2ψ2

=
1

cosh η

(

µ0J

2B0
+ d′ − τ

)

+
(η′/2) sin 2u− d′ + τ

cosh η + sinh η cos 2u
,

and be used to calculate the magnetic angle α from Eq. (41),

α(ρ, ω, l) = α0 −
∫ l

0

b1
2ψ2

dl′.

To do the integral, it is useful to recall that v = arctan(e−η tanu) and
therefore

(

∂v

∂l

)

ρ,ω
=
∂v

∂η
η′ +

∂v

∂u
(d′ − τ) =

−(η′/2) sin 2u+ d′ − τ

cosh η + sinh cos 2u
.

It thus follows that the Clebsch angle is equal to

α(ρ, ω, l) = α0 + v −
∫ l

0

(

µ0J

2B0
+ d′ − τ

)

dl′

cosh η
,

and we are now finally in a position to calculate the rotational transform ι.
To find out how many times a field line encircles the magnetic axis

poloidally during one toroidal turn, we consider the difference in poloidal
angle between the field line and the curve ϑ = 0, which we shall call C.
In a device with a circular magnetic axis, such as a tokamak, the curve C
describes a circle on the inboard side of the flux surface. More generally, in
any configuration with a plane magnetic axis, C lies in the same plane and
does not encircle the axis poloidally. Still more generally, if the magnetic
axis does not “wobble” too much, C will still not encircle the axis poloidally,
but may do so an integer number of times, N , if the magnetic axis is very
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twisted. If we go around the torus once toroidally, the angle d, which mea-
sures the rotation of the elliptical flux surface cross section must increase by
an amount

∫ L

0
d′(l)dl = mπ,

where m is an integer and L the length of the magnetic axis. Thus, if we
follow C once around the torus, the angle u = θ + d also increases by mπ,
and so does therefore v. The Clebsch angle α = θ− ιϕ thus increases by the
amount

∆α = α(L) − α(0) = mπ −
∫ L

0

(

µ0J

2B0
+ d′ − τ

)

dl

cosh η
,

when following C once aroung the torus. Relative to C, a magnetic field
line has a poloidal twist equal to −∆α, and since C itself rotates N times
poloidally we conclude that the rotational transform is equal to

ι =
1

2π

∫ L

0

[

µ0J

2B0
− (cosh η − 1)d′ − τ

]

dl

cosh η
−N. (44)

Looking at this equation, we conclude that a rotational transform can be
produced in three different ways: through an electric current, by rotating the
poloidal cross section of the flux tube, and by torsion of the magnetic axis.
Tokamaks and reversed field pinches use the first method, and stellarators
usually rely on the latter two methods. The last method alone was employed
by the first stellarator built in Princeton, which had circular cross section
and the magnetic axis bent into the form of a figure eight. This method,
which relies on torsion alone, is mathematically analogous to the famous
“Berry phase” in quantum mechanics [20].

To understand why a rotational transform can be produced without a
toroidal current, it is perhaps helpful to think of water flowing through a
pipe. This is, in fact, more than a mental picture, because Euler’s equation
for the steady flow of an incompressible fluid,

v · ∇v = −∇P,

where P denotes the pressure divided by the density, can be written as

(∇× v) × v = −∇Q,

with Q = P + v2/2, and is thus similar to the MHD equilibrium condition
(3), if we replace v by B. Every steady, incompressible flow thus corresponds
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to an MHD equilibrium. Thus consider water flowing in a toroidally closed
pipe, corresponding to a flux tube surrounding the magnetic axis. The
rotational transform is equal to the average number of poloidal turns taken
by a streamline during one toroidal revolution. Such a poloidally twisting
flow can arise even in the absence of vorticity, ∇×v = 0, if the cross section
of the pipe rotates. This will cause the streamlines to rotate similarly, albeit
with some slippage [21].

2.10 Variational principle

It is possible, and computationally advantageous, to formulate the equilib-
rium force-balance problem, J×B = ∇p, as a variational principle. That is,
one can show that solutions to this equation are states of minimum MHD
energy

W =

∫

(

p

γ − 1
+
B2

2µ0

)

dV, (45)

subject to various constraints. The first term represents the thermal energy
of the plasma (γ is the adiabatic index, which is 5/3 for a mono-atomic
gas) and the second term is the magnetic energy. To understand why there
should be such a variational principle at all, we cite the orginal source [11]:

“Suppose that everywhere in a given rigid toroidal tube T with perfectly
conducting walls there is a viscous perfectly conducting fluid with an adia-
batic equation of state, and also a magnetic field tangent to the tube walls.
Suppose that any heat generated by the viscosity is somehow magically re-
moved, so that each element of fluid is isentropic. The system can then lose
energy but not gain it, since there can be no energy flux through the walls.

Let the fluid be initially at rest. In general, it will not be in equilibrium
and will start to move. As long as it moves it loses energy, so it must
eventually come to rest in a state of less energy than its initial state. Clearly
an initially resting state of minimum energy cannot start moving at all, and
so must be in equilibrium, i.e., satisfy the magnetostatic equations.”

Of course, the minimum of W is B = p = 0, but this is not the state
we are interested in. We must remember that during the motion, there are
quantities that remain constant, and we should therefore seek the minimum
energy state subject to the corresponding constraints. Because the fluid
is assumed to be perfectly conducting, the magnetic field is frozen into it
and cannot change its topology. Flux surfaces can change shape but remain
otherwise intact. The total toroidal flux ψ enclosed by each flux surface is a
conserved quantity, and so is the rotational transform ι(ψ). And because the
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fluid is assumed to move adiabatically, the entropy density p/ργ is conserved,
so the total mass inside each flux surface ψ = ψ0 is proportional to

∫

ψ<ψ0

p1/γdV

and remains constant.
We now formulate the variational principle, following Ref. [11] closely.

Consider all functions p(r), B(r) and ψ(r) defined in a given toroidal (but
not necessarily axisymmetric) domain T and satisfying the constraints

(a) ψ has nested toroidal level surfaces ranging from the innermost one,
ψ = 0, to ψ = ψmax on the boundary;

(b) ∇ · B = 0;

(c) B · ∇ψ = 0;

(d) The toroidal magnetic flux (9) inside the toroid defined by each level
curve ψ = ψ0 ∈ [0, ψmax] is equal to 2πψ0;

(e) The corresponding poloidal flux (10) is equal to 2πχ(ψ);

(f)
∫

ψ<ψ0

p1/γdV = M(ψ0);

where χ(ψ) and M(ψ) are fixed, given functions. Among all such triplets
(p,B, ψ), the energy functional (45) is made stationary if, and only if, p is
a function of ψ alone and J × B = ∇p, where J = ∇× B/µ0.

To prove this statement, we start by varying the pressure p. Since dV =
dψdS/|∇ψ|, where dS is the area element on surfaces of constant ψ, the
constraint (f) can be written as

M ′(ψ0) =

∫

ψ=ψ0

p1/γdS

|∇ψ| (46)

and implies that only variations satisfying

∫

ψ=ψ0

p1/γ−1δp

|∇ψ| dS = 0

are allowed. For instance, if p0 and p1 are the pressures at two points r0

and r1 on the same ψ-surface, then

δp = [p
1−1/γ
0 δ(r − r0) − p

1−1/γ
1 δ(r − r1)]|∇ψ|
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is an allowable variation. But then

δW =

∫ ψmax

0
dψ

∫

δp

γ − 1

dS

|∇ψ|

only vanishes if p0 = p1, and we conclude that p must be a flux function,
B · ∇p = 0.

To vary B, we introduce arbitrary poloidal and toroidal angles (ϑ, ϕ),
and note that according to Eq. (7) it is possible to write

B = ∇ψ × (∇ϑ+ ∇λ− ι∇ϕ),

where λ(ψ, ϑ, ϕ) is a single-valued function and ι = dχ/dψ. This is a general
representation of a magnetic field satisfying the constraint (c)-(e), and we
can thus vary B by varying λ and ψ separately. Varying λ gives

µ0δW =

∫

B · (∇ψ ×∇δλ)dV =

∫

∇(δλ) · (B ×∇ψ)dV

= −
∫

δλ ∇ψ · (∇× B)dV = 0,

and imples J · ∇ψ = 0.
Finally, we need to vary ψ, remembering the constraint (f). When ψ is

varied the shape of the flux surface changes. The volume of the flux surface
ψ = c is equal to

V (c) =

∫ c

0
dψ

∫

dS

|∇ψ| ,

and its variation is

δV (c) = −
∫

ψ=c

δψ

|∇ψ| dS. (47)

According to Eq. (46), the pressure can be written as

p(ψ) =

(

M ′(ψ)

V ′(ψ)

)γ

,

and its variation at constant ψ is thus

δp(ψ)

p(ψ)
= −γδV

′(ψ)

V ′(ψ)
,

so that
∫

δp dV = −γ
∫

pδV ′(ψ)

V ′(ψ)
dV = −γ

∫

pδV ′ dψ.
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Integrating by parts and using Eq. (47) gives
∫

δp dV = γ

∫

p′(ψ)δV dψ = −γ
∫

p′δψ dV.

The pressure variation at a constant point in space is equal to the sum
of δp(ψ) and p′(ψ)δψ, where the second term arises because the surfaces
of constant ψ change shape. The variation of W with respect to ψ thus
becomes

δW =

∫ (

p′δψ + δp

γ − 1
+

B · δB
µ0

)

dV =

∫ (

−p′δψ +
B · (∇δψ ×∇α)

µ0

)

dV

where α = ϑ + λ − ιϕ. Integrating this expression by parts remembering
that δψ = 0 on the boundary gives

δW =

∫

δψ

[∇ · (B ×∇α)

µ0
− p′

]

dV,

and it follows that δW = 0 implies

(∇× B) · ∇α = µ0p
′(ψ).

Since J×B = (J · ∇α)∇ψ we finally conclude that J×B = ∇p. The proof
of the variational principle is thus complete, and we conclude that a three-
dimensional magnetic equilibrium is completely determined by the shape of
the outermost flux surface and two radial profile functions, which were here
chosen as χ(ψ) and M(ψ), but could also be chosen differently, e.g., ι(ψ)
and p(ψ).

2.11 Rational surfaces, magnetic islands and chaotic field

lines

The variational principle we have just proved ensures the existence of MHD
equilibria [22], but does not guarantee that the pressure profile and the
magnetic field are continuous or that the current is free from singularities.
The existence of well-behaved equilibria is an open and notoriously difficult
question since many decades [23]. In fact, if one insists on perfect magnetic
surfaces, in many cases the current density turns out to be infinite on every
magnetic surface where ι is a rational number.

To see where the troubles begin, we try solving Eq. (35) for the parallel
current (34) by Fourier expanding the functions 1/B2 and u,

u(ψ, θ, ϕ) =
∑

m,n

umn(ψ)ei(mθ−nϕ),
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1

B2
=
∑

m,n

hmn(ψ)ei(mθ−nϕ),

using Boozer coordinates. This gives

(mι− n)umn(ψ) = −(nI +mG)hmn(ψ),

which implies

umn(ψ) = −nI +mG

mι− n
hmn(ψ) + ∆mnδ (ψ − ψmn) , (48)

where ψmn denotes the resonant surface where ι = n/m, and the coefficient
∆mn multiplying the delta function is arbitrary. Note the mathematical
origin of this delta function: the solution to the equation xf(x) = 0 in the
space of generalised functions f(x) is not f(x) = 0 but f(x) = cδ(x), where
c is an arbitrary constant.

There are apparently two possible kinds of singularity on each rational
surface, a surface current represented by the delta function, to which we
return later, and a divergent Pfirsch-Schlüter current,

J‖ ∼
hmn

ψ − ψmn

dp

dψ
. (49)

At least one of the quantities p′(ψ) or hmn(ψ) must therefore vanish on
the rational surface lest there be an infinite Pfirsch-Schlüter current flowing
in either direction. That the product p′(ψ)hmn(ψ) indeed vanishes on the
rational surface can be seen from the relation

hmn =
1

4π2

∫ 2π

0
dθ

∫ 2π

0
e−i(mθ−nϕ) dϕ

B2

=
1

4π2

∫ 2π

0
e−imαdα

∫ 2π

0
e−i(mι−n)ϕ dϕ

B2
,

where the last integral can be written as

∫ 2π

0
e−i(mι−n)ϕ dϕ

B2
=

1

ιI +G

∫

e−i(mι−n)ϕ dl

B

and thus becomes independent of α on the resonant surface unless p′(ψmn) =
0 according to Eq. (32). Another way of stating this result is to say that
magnetic fields with hmn(ψmn) 6= 0 are unable to support a finite pressure
gradient at ψ = ψmn.
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One physical reason why they are unable to do so is that the transport
becomes infinite if the Pfirsch-Schlüter current diverges, because the dissi-
pation associated with this current due to finite resistivity then becomes
infinite [15]. For instance, if the current satisfies the simple Ohm’s law

E + v × B = ηJ,

then scalar multiplication by J and flux-surface averaging gives

〈v · ∇p〉 = −
〈

ηJ2
〉

,

where we have used J × B = ∇p and 〈J · E〉 = −〈J · ∇φ〉 = 0 in steady
state. Hence and from Eq. (49) it follows that the classical transport (as-
sociated with classical transport from Coulomb collisions and gyromotion
alone) becomes infinite, with a diffusion coefficient diverging as

D ∼
∣

∣

∣

∣

hmn
ψ − ψmn

∣

∣

∣

∣

2

.

The pressure gradient is thus proportional to (ψ − ψmn)
2 in the neighbour-

hood of the rational surface unless hmn(ψmn) = 0.
Another way of removing the singularities in Eq. (48) is to relinquish

the requirement of nested flux surfaces, and allow magnetic islands to form
at rational surfaces. These are widely discussed in the literature, but for
completeness we give a brief account of the essentials. We first note that
there is a general representation of the magnetic field that has the same
form as Eq. (7) but does not require the existence of magnetic surfaces. If
(r, θ, ϕ) are general coordinates, and

A = Ar∇r +Aθ∇θ +Aϕ∇ϕ,

is the covariant representation of the magnetic potential, we introduce

g(r, θ, ϕ) =

∫ r

r0
Ar(r

′, θ, ϕ)dr′,

ψ = Aθ −
∂g

∂θ
,

χ = −Aϕ +
∂g

∂ϕ
,

where r0 is arbitrary. Then

A = ψ∇θ − χ∇ϕ+ ∇g, (50)
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and
B = ∇× A = ∇ψ ×∇θ + ∇ϕ×∇χ (51)

becomes superficially equal to Eq. (7). If χ can be written as a function
of ψ alone, then nested flux surfaces exist (since then B · ∇ψ = 0) and
Eq. (51) is entirely equivalent to Eq. (7). However, the representation (51)
is completely general and holds even if magnetic surfaces do not exist. It
implies that the equations for the field lines are Hamiltonian,

dψ

dϕ
=

B · ∇ψ
B · ∇ϕ = −∂χ

∂θ
,

dθ

dϕ
=

B · ∇θ
B · ∇ϕ =

∂χ

∂ψ
.

The fact that magnetic field lines describe a Hamiltonian system can
also be realised from the fact that they satisfy a variational principle. This
follows from the circumstance that a charged particle moves in such a way
as to make the action

S =

∫

Lpdt

stationary, where in the Lagrangian

Lp =
mv2

2
+ ZeA · v − Zeφ, (52)

Ze denotes the charge, m the mass, v the velocity and φ the electrostatic
potential. In the limit m/Ze → 0 and φ = 0, the particle exactly follows
the magnetic field, and the action reduces to

S → Ze

∫

A · dr = Ze

∫

(ψdθ − χdϕ) , (53)

where we have used Eq. (50), ignoring the term ∇g, which only adds an
unimportant constant to S and does not contribute to its variation δS, if
the end points of the integral are fixed. Equation (53) is similar to

S =

∫

(pdq −Hdt) ,

so it is not surprising that the equations for the field lines are Hamiltonian.
Hamiltonian systems are generally chaotic, and so are, therefore, mag-

netic fields if the “Hamiltonian” χ(ψ, θ, ϕ) depends on all three coordinates.
If the Hamiltonian is Fourier decomposed,

χ(ψ, θ, ϕ) = χ0(ψ) +
∑

m,n6=0

χmn(ψ)ei(mθ−nϕ),
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the field-line equations become

dθ

dϕ
= ι(ψ) +

∑

m,n6=0

χ′
mn(ψ)ei(mθ−nϕ),

dψ

dϕ
= −i

∑

m,n6=0

mχmn(ψ)ei(mθ−nϕ),

with ι = dχ0/dψ. If χ0 ≫ χmn, so that the magnetic field “almost” possesses
good flux surfaces, then a straightforward expansion of the equations give
the field lines as

θ = θ0 + ι(ψ0)ϕ,

ψ = ψ0 −
∑

mn

mχmn(ψ0)

mι(ψ0) − n
ei[mθ0+(mι(ψ0)−n)ϕ].

This treatment obviously fails near rational surfaces, and also indicates that
the Fourier components with n/m = ι(ψ) play a dominant role there. Dis-
carding all other components gives the Hamiltonian

χ(ψ, θ, ϕ) = χ0(ψ) + f(ψ, θ, ϕ),

where
f(ψ, θ, ϕ) =

∑

n/m=ι(ψ0)

χmn(ψ)ei(mθ−nϕ).

If we instead of (ψ, θ) use ψ and α = θ − ι(ψ0)ϕ as canonical coordinates,
we need to replace the Hamiltonian by

H(ψ, α, ϕ) = χ(ψ, θ, ϕ) − ι(ψ0)(ψ − ψ0) = χ0(ψ) + f(ψ, α) − ι(ψ0)(ψ − ψ0),

where we have recognised that the function f(ψ, θ, ϕ) can be written as
a function of only two variables, ψ and α. Apart from an unimportant
constant, this Hamiltonian is approximately equal to

H(ψ, α, ϕ) =
χ′′

0(ψ0)(ψ − ψ0)
2

2
+ f(ψ0, α).

Being independent of “time”, ϕ, this Hamiltonian is clearly integrable and
describes the formation of magnetic islands around the resonant surface in
question. The shape of these islands depends on the shape of the “potential
well”, f(ψ0, α), and becomes sinusoidal if only a single pair of harmonics is
kept in the Fourier series,

H(ψ, α, ϕ) =
χ′′(ψ0)(ψ − ψ0)

2

2
+ 2χmn cosmα.
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The system is then mathematically equivalent to an ordinary pendulum.
Different values of H correspond to different field lines, and the separatrix
of the magnetic island corresponds to H = 2χmn, so that

ψ − ψ0 = ±
√

4χmn(1 − cosmα)

ι′(ψ0)

on the separatrix. The width of the island becomes

∆ψ =

√

32χmn
ι′(ψ0)

.

If this width is much smaller than the distance to the next island, our neglect
of the non-resonant Fourier components is justified. If the islands are wide
enough to overlap, the treatment breaks down and the magnetic field is
generally chaotic.

If the aspect ratio is large and the poloidal cross section circular, then
ψ′(r) = rBϕ, ι′(ψ) = ιs/r2B, where s is the magnetic shear, Br = δBr sinmα,
with

δBr =
2mχmn
rR

,

and the radial width of the island becomes

∆r =
∆ψ

rBϕ
= 4

√

rR

ns

δBr
Bϕ

.

If a chain of well-defined islands exists, these form little “stellarators”
in their own right, consisting of nested flux surfaces, each having a certain
rotational transform (44). If a current were to be added in each island, with
a magnitude chosen so as cancel the rotational transform and thus “unwind”
the twisted magnetic field within the island, the latter would disappear. This
is the origin of the delta-function singularity on the right of Eq. (48), which
indicates what current is necessary to produce a magnetic field free from
islands.

As already mentioned, magnetic fields that do not possess any (contin-
uous) symmetry are, in general, chaotic, and do not possess nested flux
surfaces everywhere in the plasma. A long-standing question is under what
conditions such surfaces do exist, at least approximately, and how they can
be computed numerically. The most expeditious way to do so is to use
the variational principle from the previous subsection, which is the strategy
employed by the widely used VMEC code [24]. If flux surfaces do not exist
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throughout the plasma, the problem is much more complicted, but numerical
codes have been constructed to calculate the magnetic field [25, 26]. Some
of the complications are of deeply conceptual nature [23, 27], but notable
progress has been made in recent years [28, 29].

Finally, it should be pointed out that the actual small-scale proper-
ties of the magnetic field is not a question of ideal MHD alone. On small
enough scales, J×B does not necessarily equal ∇p, since other terms in the
force balance relation (2) can become important. For instance, neoclassical
transport can force the plasma flow velocity to change abruptly across a
magnetic island. As we shall see below, the requirement that the cross-field
transport should be ambipolar determines the radial electric field in most
non-axisymmetric plasma equilibria. The E × B flow therefore changes
rapidly across the separatrix of a magnetic island, making the viscosity ap-
preciable in this region. This can lead to a back-reaction on the magnetic
island, causing the island to shrink and the magnetic field to “heal” [30].
The extent to which the field has islands or chaotic regions can therefore
depend decisively on non-ideal MHD effects.

3 Particle orbits

Having developed the necessary mathematical apparatus for describing plasma-
confining, non-axisymmetric magnetic fields, we now turn to the question of
how charged particles move in such fields. Since the mean free path of the
plasma constituents is very long in a fusion plasma, a necessary condition
for good confinement is that most collisionless orbits of particles starting
within the plasma volume should remain in there. In the present section,
we analyse this requirement mathematically.

3.1 Guiding-centre Lagrangian

Particle orbits are of paramount importance for plasma confinement. A
magnetised plasma is characterised by the condition

δ =
ρ

L
≪ 1, (54)

for the largest gyroradius ρ (usually that of the ions) and smallest macro-
scopic scale length L of interest. When this condition is satisfied, particle
orbits can be described in terms of the motion of guiding centres. The
guiding centre of a charged particle is located at

R = r − b × v

Ω
,
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where r is the particle position, v its velocity and Ω = ZeB/m its gyrofre-
quency. Guiding centres move along the magnetic field and drift relatively
slowly across it, i.e.,

Ṙ = v‖b + vd,

where |vd/v| ∼ δ. On the particle level, the point of magnetic plasma
confinement is to prevent the plasma particles from moving across the flux
surfaces, and in a magnetised plasma this goal is thus ensured to zeroth
order in δ.

To first order in δ, the guiding-centre motion is described by the gyro-
average of the Lagrangian (52), which is equal to [31, 32]

L =
m(b · Ṙ)2

2
+ ZeA · Ṙ − µB − Zeφ, (55)

where A and φ are the electromagnetic potentials and µ = mv2
⊥/2B is the

magnetic moment, which is regarded as a constant of the motion. In reality
it is not perfectly, but very nearly, conserved. More precisely, one can show
that an “improved” invariant µ exists which is equal to mv2

⊥/2B in lowest
order and remains constant to all orders in δ [33]; its variation is

µ̇

Ωµ
∼ e−c0/δ,

where c0 is a constant of order unity. The magnetic moment is an example of
an adiabatic invariant, a quantity that is approximately conserved because
of a separation of scales. In the present case, this separation of scales occurs
if δ ≪ 1 and the time scale on which guiding-centre motion is considered is
longer than the inverse cyclotron frequency.

The Lagrangian (55) is simply the gyro-average of the particle Lagrangian
(a simple proof is given in Ref. [32]), and all space-dependent quantities are
thus to be evaluated at the position R. It provides an accurate description
of the motion under three conditions: the plasma should be magnetised,
δ ≪ 1, the electric field should be relatively small,

E

vB
∼ δ,

and the fields should vary slowly in time, ∂/∂t ∼ δΩ. The Euler-Lagrange
equations,

dP

dt
=
∂L

∂R
,
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where P = ∂L/∂Ṙ, yield the usual drift equations found in every textbook
on plasma physics. The Hamiltonian is defined as

H = P · Ṙ − L =
mv2

‖

2
+ µB + Zeφ, (56)

with v‖ = b · Ṙ, and is, as usual, equal to the energy. It is a conserved
quantity for motion in steady-state fields.

3.2 Guiding-centre motion in a stationary field

The Lagrangian formulation makes it straightforward to calculate the guiding-
centre motion in arbitrary coordinates. To describe the motion in a steady-
state toroidal equilibrium, we use Clebsch coordinates (ψ, α, l), where B =
∇ψ × ∇α and l is the arc length along the field. The choice of the ori-
gin is somewhat arbitrary; we may for example measure the length l along
each field line starting from some surface that cuts the magnetic field at
a non-zero angle, e.g., at a toroidal location ϕ = ϕ0. It is clear that this
construction only works locally, since after one turn around the torus the
points would be multiply labelled.

Because ∂R/∂l = b, the parallel velocity becomes

b · Ṙ = b ·
(

∂R

∂l
l̇ +

∂R

∂ψ
ψ̇ +

∂R

∂α
α̇

)

≃ l̇,

since ψ̇ and α̇ vanish to lowest order in δ. The Lagrangian (55) thus becomes

L =
ml̇2

2
− Zeαψ̇ − µB − Zeφ,

where we have chosen A = −α∇ψ. Since L does not contain α̇, the canonical
momentum conjugate to α vanishes, pα = ∂L/∂α̇ = 0, which implies ṗα =
∂L/∂α = 0, or

ψ̇ = − µ

Ze

∂B

∂α
− ∂φ

∂α
.

We are interested in motion in a stationary field, so it is logical to use
Eq. (56) to express v‖ as a function of (H,µ,R),

v‖ = ±
√

2(H − µB − Zeφ)

m
, (57)

and we conclude that

ψ̇ =
mv‖
Ze

(

∂v‖
∂α

)

H,µ,ψ,l
. (58)
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Similarly, from

pψ =
∂L

∂ψ̇
= −Zeα,

and ṗψ = ∂L/∂ψ we find

α̇ = −
mv‖
Ze

(

∂v‖
∂ψ

)

H,µ,α,l

. (59)

These relations describe the first-order drift away from a field line (ψ, α)
and become particularly useful if instead of the instantaneous motion we
consider the accumulated drift over a finite time interval,

∆ψ =

∫

ψ̇dt =

∫

ψ̇dl

v‖
.

Here, we are treating the radial drift as a small perturbation on the zeroth-
order motion along the magnetic field. If we consider the change in ψ accu-
mulated along an unperturbed orbit from l1 to l2, we obtain

∆ψ =
1

Ze

∂J
∂α

, (60)

∆α = − 1

Ze

∂J
∂ψ

, (61)

where

J (H,µ, ψ, α) =

∫ l2

l1
mv‖dl, (62)

and the end points are held fixed when the derivatives are taken. The
symmetry displayed by Eqs. (60) and (61) indicate that the time-averaged
motion can be expressed in Hamiltonian form. This can, for instance, be
accomplished by taking the appropriate average of the Lagrangian (55) and
then forming the Hamiltonian for the average motion. There is a simple
expression in terms of J for the time t12 required for the particle to travel
from l1 to l2. Since ∂v‖/∂H = 1/mv‖ we have

t12 =

(

∂J
∂H

)

µ,ψ,α,l1,l2

.

The quantity J plays a particularly important role for trapped parti-
cles. When the cross-field drift is neglected, these particles bounce back
and forth along the magnetic field between points where v‖(H,µ,R) = 0.
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Superimposed on the bounce motion, there is a slow cross-field drift, so that
the field-line coordinates (ψ, α) change slowly with time. But if we take t1
and t2 to be the bounce points, Eqs. (60) and (61) imply that J (H,µ, ψ, α)
remains constant, since the amount it changes by over one period of the
bounce motion vanishes,

∆J =
∂J
∂ψ

∆ψ +
∂J
∂α

∆α = 0.

J is usually called the parallel, or second, adiabatic invariant (µ being
the first), and is approximately conserved also in non-stationary fields that
evolve slowly. In fact, life on Earth would be difficult without this property.
Cosmic rays consisting of highly energetic ions continuously bombard the
magnetosphere and are trapped in its magnetic field. They undergo bounce
motion and precession around the Earth, and the requirement that µ and
J should be constant prevents them from hitting the Earth’s surface.

3.3 Orbit confinement in a torus

We are now in a position to discuss the confinement of particle orbits to
first order in our expansion parameter δ. Our main concern is to determine
whether the magnetic field provides confinement in the radial direction, i.e.,
whether ∆ψ is small.

In zeroth order, the particle orbits strictly follow the magnetic field lines
and are either trapped or untrapped (circulating) depending on the magnetic
moment. Trapped particles bounce back and forth between two points of
equal magnetic field strength whilst circulating particles simply follow a field
line around the torus. In addition to this motion there is the first-order drift,
and this is far less harmful for circulating orbits than for trapped ones. In
fact, it follows from Eq. (60) that the untrapped orbits are well confined to
first order in δ. Consider, for instance, a circulating particle on a high-order
rational surface, ι = n/m, so that the zeroth-order orbit comes back to
the starting point after n poloidal and m toroidal revolutions. An identical
orbit is obtained by shifting the starting point poloidally by any multiple of
2π/n. If l1 and l2 are chosen to be equal to the initial and final point (which
coincide) in Eq. (62), it follows that

∆J
∆α

= 0,

if ∆α = 2π/n. For large n, this should be a very good approximation to
∂J /∂α, leading us to conclude that the radial displacement (60) must be
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small. This can also be seen from the following expression for the guiding-
centre drift in a stationary field,

vd =
v‖
B
∇×

(

v‖B

Ω

)

, (63)

where Ω = ZeB/m and the differentiation is taken at constant H and µ.
(This can either be proved from the Lagrangian formalism above [32] or be
verified directly by comparing the resulting expression for v ·∇ψ and v ·∇α
with Eqs. (58) and (59) above.) We use Eq. (63) to evaluate

∆ψ =

∫

(vd · ∇ψ)
dl

v‖
=

∫

∇ ·
(

v‖B ×∇ψ
Ω

)

dl

B
,

along a zeroth-order orbit many turns around the torus. It follows from
Eq. (22) that this integral is proportional to the flux surface average

〈

∇ ·
(

v‖B ×∇ψ
Ω

)〉

= 0,

which vanishes according to Eq. (20). The radial drift of a circulating par-
ticle thus vanishes when averaged over a zeroth-order orbit.

Trapped orbits are, however, not so easily confined and constitute the
Achilles heel of stellarators. The net radial drift of a trapped orbit between
two consecutive bounce points, l1 and l2, is given by Eq. (60), which is non-
zero in general. When the integral (62) is taken between two bounce points,
the result usually depends on α. A stellarator will only confine trapped
orbits if special care is taken.

The simplest way to avoid the problem (mathematically speaking) would
be to eliminate trapped orbits altogether. If we assume that the electrostatic
potential is a flux function, which we shall later prove to the accuracy re-
quired, trapped orbits are absent if, and only if, the magnetic field is constant
on each flux surface,

|B| = B(ψ). (64)

This is however a very restrictive condition that is generally impossible to
satisfy. For instance, near the magnetic axis the pressure gradient vanishes
and Eq. (24) thus implies ∇⊥B = Bκ. The magnetic field strength thus
increases in the direction of the curvature vector and cannot therefore be
independent of the poloidal angle unless κ = 0. But the curvature must be
finite somewhere along the magnetic axis, and it follows that the field cannot
satisfy the condition (64) in its vicinity. For the same reason, quasipoloidal
symmetry (defined below) is impossible.
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Trapped orbits must thus exist, but would be perfectly confined if the
cross-field drift vanishes in each point,

vd · ∇ψ =
v2
⊥/2 + v2

‖

Ω
(b ×∇ lnB) · ∇ψ = 0.

Such magnetic configurations are called isodynamic [34] and require the
geodesic curvature (25) to vanish everywhere, so that all field lines are
geodesics. Unfortunately, the class of such fields is very restricted in toroidal
geometry. The proof is complicated and will not be reproduced here. It is,
however, possible to try to reduce the geodesic curvature as much as possi-
ble, by making B almost constant in the direction b×∇ψ. Besides reducing
the radial drift, this has the additional advantage of minimising the Pfirsch-
Schlüter current (36) and thus making the Shafranov shift smaller. This is
an important element of stellarator optimisation.

3.4 Quasisymmetry

The second most straightforward way to confine the trapped orbits is to use
a magnetic field whose strength is independent of α, i.e.,

|B| = B(ψ, l). (65)

If the variation of B = |B| along the field is the same for all field lines
on each flux surface, then the integral (62) with v‖ given by Eq. (57) will
clearly be independent of α. (We are still assuming that the electrostatic
potential does not vary within the flux surface.) Such a magnetic field is
called quasisymmetric [35, 36]. In a quasisymmetric field, a guiding centre
does not “know” what field line it is on, within a given flux surface; for
a guiding centre “feels” the magnetic field strength, which regulates v⊥
through the constancy of µ = mv2

⊥/2B, and its gradient along B, which
controls the mirror force, F‖ = −µ∇‖B. If it drifts to a point on another
field line with the same local values of B and ∇‖B, it cannot “tell the
difference” as far as its motion along B is concerned.

The use of the condition (65) requires some caution. We have already
mentioned that the arc length l can only be used as a local coordinate, and
we therefore do not expect to be able to write the magnetic field strength in
the form (65) globally. What we require is rather that Eq. (65) holds locally
to ensure that the integral (62) becomes independent of the field line along
which it is taken. This is the case if the parallel variation of B is a function
only of ψ and B,

b · ∇B = f(ψ,B),
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which requires
(∇ψ ×∇B) · ∇(b · ∇B) = 0. (66)

To explore the implication of this requirement, we note that the vector
B ×∇ψ is tangential to flux surfaces and can therefore be written as

B ×∇ψ = E∇ψ ×∇B + FB, (67)

for some functions E and F . Taking the scalar product of this equation with
∇B gives

F =
(B ×∇ψ) · ∇B

B · ∇B ,

while instead taking the vector product with B yields E = −B2/B · ∇B.
Finally, evaluating the divergence of Eq. (67) and using J · ∇ψ = 0 gives

B · ∇F = (∇ψ ×∇B) · ∇
(

B2

B · ∇B

)

.

Hence and from Eq. (66) it follows that B · ∇F = 0, so that F is constant
along each field line. It must therefore be constant on flux surfaces with
irrational rotational transform, since each field line on such a surface covers
it densely. If ι is rational this is not the case, but F must, by continuity, still
be constant since it is so on neighbouring irrational surfaces. Quasisymmetry
thus means that the quantity

(B ×∇ψ) · ∇B
B · ∇B = F (ψ) (68)

must be a flux function (if J · ∇ψ = 0).
It is instructive to explore the implication of this condition in Boozer

coordinates (ψ, θ, ϕ). In terms of these coordinates, the magnetic field is
given by (27) and Eq. (68) becomes

G
∂B

∂θ
− I

∂B

∂ϕ
= F (ψ)

(

ι
∂B

∂θ
+
∂B

∂ϕ

)

. (69)

If B is Fourier transformed,

B(ψ, θ, ϕ) =
∑

m,n

Bm,n(ψ)ei(mθ−nϕ),

this requires that the condition

[mG+ nI − F (mι− n)]Bm,n = 0
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should be satisfied for all (m,n), which requires either Bm,n = 0 or

F (ψ) =
(m/n)G(ψ) + I(ψ)

(m/n)ι(ψ) − 1
.

Since the left-hand side is independent of m/n, this relation can only be
satisfied for one particular value of this ratio, M/N say. The magnetic field
variation over the flux surface then only contains the corresponding helicity

B =
∑

k

BkM,kN (ψ)eik(Mθ−Nϕ),

and thus can be written as B = B(ψ,Mθ −Nϕ).
If N = 0, the field is quasiaxisymmetric [37], ifM = 0 it is quasipoloidally

symmetric, and if neither M nor N vanishes it is quasihelically symmetric
[35]. In either of these cases, the magnetic field strength depends only on ψ
and a particular linear combination of the Boozer angles [36, 38]. It is, in
this sense, independent of one of the two angles. It should be emphasized
that it is only the magnitude of B that has this property; its direction will
still in general depend on all three coordinates, see Fig. 3.4.

Figure 9: A flux surface in the quasi-axisymmetric stellarator design ES-
TELL [39]. The colours refer to the magnetic field strength.

The fact that the magnetic field strength only depends on one of the
Boozer angles leads to a simple explanation why quasisymmetric configu-
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rations confine guiding-centre orbits. In ordinary Boozer coordinates, the
guiding-centre Lagrangian (55) is

L =
m

2B2

(

Iθ̇ +Gϕ̇
)2

+ Ze
(

ψθ̇ − χϕ̇
)

− µB − Zeφ, (70)

where we have chosen A = ψ∇θ − χ∇ϕ, see Eq. (7). If we replace the
poloidal coordinate by ϑ = θ −Nϕ/M we instead obtain

L =
m

2B2

[

Iϑ̇+ (G+NI/M) ϕ̇
]2

+ Ze
[

ψϑ̇− (χ−Nψ/M)ϕ̇
]

− µB − Zeφ.

(71)
Now, if B and φ are indendent of ϕ, the canonical momentum conjugate to
this angle,

pϕ =
∂L

∂ϕ̇
=
m(G+NI/M)v‖

B
− Ze(χ−Nψ/M) (72)

is a constant of the motion,

ṗϕ =
∂L

∂ϕ
= 0.

The point is the following. Guiding-centre motion in a magnetised plasma
usually possesses two invariants, the energy H and the magnetic moment µ.
A third constant of the motion is in general required for confining the orbits,
and in a quasisymmetric field this is provided by the canonical momentum
pϕ conjugate to the ignorable coordinate ϕ. The key is that the guiding-
centre Lagrangian, when written in suitable coordinates, only depends on
the strength of the magnetic field and not on its direction.

Since the term in Eq. (72) that is proportional to v‖ is a small correction
(of order gyroradius over scale length) to the last term, the conservation
of pϕ implies that a particle can only move a small distance radially. This
conclusion is the basis for confinement in axisymmetric fields and is known
as Tamm’s theorem.

In a quasisymmetric field, the level contours of the field strengthB(ψ,Mθ−
Nϕ) are, on each flux surface, straight lines in Boozer coordinates. Since
the magnetic field lines are also straight, it is obvious that all field lines are
equivalent in the sense expressed by Eq. (65). The level contours of B are
actually straight not only in Boozer coordinates, but in a large class of other
magnetic coordintes too, including Hamada coordinates. In fact, whenever
a magnetic coordinate system (ψ, θ, ϕ) has a Jacobian (8) that is a function
of ψ and B only,

(∇ψ ×∇B) · ∇√
g = 0, (73)
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the quasisymmetry condition (68) implies that B only contains a single
helicity in these coordinates, B = B(ψ,Mθ − Nϕ). This can be seen as
follows. Multiplying the co- and contravariant representiations of B, Eqs. (7)
and (15), with each other gives

B2 =
1√
g

(

ιI +G+ ι
∂H

∂θ
+
∂H

∂ϕ

)

,

and Eq. (73) thus implies

(∇ψ ×∇B) · ∇H ′ = 0,

where we have denoted the derivative along B by a prime. The function
H ′ = b · ∇H therefore depends only on ψ and B, a property it shares with
the function B′ = b ·∇B according to Eq. (66). If we regard H as a function
of the coordinates (ψ, α,B), so that

H ′ =
∂H

∂B
B′,

we thus have

0 = (∇ψ ×∇B) · ∇H ′ = − ∂2H

∂α∂B
B′2.

At points where B′ 6= 0 we thus require ∂2H/∂α∂B = 0, which has the
general solution

H(ψ, α,B) = H1(ψ,B) +H2(ψ, α), (74)

where H1 and H2 are arbitrary functions. The function H2(ψ, α) can be
discarded on the grounds that it is constant along field lines and there-
fore on entire flux surfaces if the rotational transform is irrational (and, by
continuity, also on rational surfaces). We thus conclude that

(∇ψ ×∇B) · ∇H = 0,

which in our magnetic coordinates (ψ, θ, ϕ) can be written as

∂H

∂θ

∂B

∂ϕ
− ∂H

∂ϕ

∂B

∂θ
= 0.

But when expressing the quasisymmetry condition (68) in these coordinates,
using

(B ×∇ψ) · ∇B =
1√
g

(

G
∂B

∂θ
− I

∂B

∂ϕ
− ∂H

∂θ

∂B

∂ϕ
+
∂H

∂ϕ

∂B

∂θ

)

,
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we then obtain exactly the same result (69) as when using Boozer coor-
dinates, which implies the single-helicity condition, B = B(ψ,Mθ − Nϕ).
This relation thus holds not only in Boozer coordinates but in any magnetic
coordinate system with the property (73).

Finally, we note that quasisymmetry can be formulated simply and suc-
cinctly as a condition that the magnetic field strength should be periodic,

B(ψ, α, l + L) = B(ψ, α, l),

with a period, L = L(ψ), that is constant on each flux surface. To see this,
consider a series of points on the same field line, a distance L apart from
one another, i.e., the points

(ψ, α, l0 + nL), n = 1, 2, 3, · · · ,

The angular separation (in Boozer coordinates) between consecutive points
is

∆ϕ =

∫ l0+L

l0
(B · ∇ϕ)

dl

B
=

1

ιI +G

∫ l0+L

l0
Bdl, (75)

∆θ = ι∆ϕ,

and is independent of l0, because of the periodicity of B(l). Hence it fol-
lows that the contours of constant field strength are straight lines in Boozer
coordinates (if ι is irrational), which we have seen is equivalent to quasisym-
metry.

3.5 Omnigenous fields

Quasisymmetry is a sufficient condition for the confinement of particle orbits,
but it is not necessary. There is a much wider class of magnetic fields that
have the property that the time-averaged radial drift vanishes,

∫

(vd · ∇ψ)
dl

v‖
= 0, (76)

where the integral is taken between two bounce points for trapped particles.
Such fields are called omnigenous [40], and quasisymmetry is thus a special
case of omnigeneity (or omnigenity).

As already mentioned, the orbits that circulate around the torus auto-
matically have the property that their time-averaged radial drift vanishes in
lowest order. In an omnigenous field this is also the case for trapped orbits,
which therefore, on the slow time scale of the bounce-averaged motion, pre-
cess from one field line to the next on the flux surface in question. As we
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shall see in the next chapter, the electrostatic potential is usually approxi-
mately a flux function, φ ≃ φ(ψ). In this case the bounce points are points
of equal magnetic field strength, and the topology of the precession is then
determined by the topology of the constant-B contours on the flux surface.

Since the net radial drift between two consecutive bounces of a trapped
particle vanishes in an omnigenous field, Eq. (60) implies that ∂J /∂α = 0,
and the contours of constant J must therefore coincide with flux surfaces.
It is understood, of course, that the end points of the integration in the
definition (62) of J are chosen to coincide with the bounce points. When
the J -contours and the flux surfaces thus coincide, there are clearly two
possibilities: the magnetic axis is either a maximum or a minimum of J .
Depending on the sign of ∂J /∂ψ < 0, the precession frequency

ωα =
∆α

∆t
= − 1

Zeτb

∂J
∂ψ

(77)

is either positive or negative. Here we have used Eq. (61) and denoted the
bounce time by

τb =

∫ l2

l1

dl

v‖
.

To characterise the direction of the precession, it is useful to compare it
with that of the diamagnetic rotation ωdia = vdia · ∇α, where vdia = b ×
∇pa/ZnaeB is the diamagnetic velocity of the species a. (The diamagnetic
velocity refers, of course, to the fluid and not to the particles of the species
in question.) Hence

ωdia =
p′a(ψ)

naZe
,

where the pressure gradient p′a of the species in question is usually negative,
and it follows that the precessional and diamagnetic frequencies have the
same sign if ∂J /∂ψ > 0, and opposite signs otherwise.

Omnigenous configurations have a number of important properties [41].
One such property concerns the local minima of B = |B| along the magnetic
field. A particle trapped in the immediate vicinity of such a minimum has
a very small parallel velocity, and therefore J = 0. Since J is conserved as
the particle drifts to neighbouring field lines, it continues to be trapped at
the bottom of the magnetic well (B = Bmin) on each field line it reaches.
Since the flux surface is an isopotential (by assumption), both the kinetic
energy E = mv2/2 and the magnetic moment mv2

⊥/2B are conserved, and
since v‖ = 0, they are related by E = µB. It thus follows that B remains
constant along the drift trajectory of the particle. Since the latter follows
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the contour B = Bmin = const. on the flux surface, it follows that all the
B-field minima it visits are equal. The contours of minimum magnetic field
strength are therefore poloidally, helically, or toroidally closed.

If the other contours of constant B are similarly closed, all trapped
particles will precess around the torus according to these three topological
possibilities, since the magnetic field strength at the bounce points E/µ is
conserved during the precession. An omnigenous field where the contours
close poloidally, rather than toroidally (as in the tokamak) or helically, is
called quasi-isodynamic [42].

If the various constant-B contours close in topologically different ways,
for instance, if the global maximum of B on the flux surface is a point rather
than a curve, there will generally be particles that make a transition between
trapped and circulating trajectories. When a trapped particle precesses to
a field line where the maximum field strength equals the field strength at
the bounce point, it will spend a very long time in the vicinity of this point
and its bounce time formally becomes infinitely long, τb → ∞. The pertur-
bative calculation of the precession (61) then fails, since it depends on an
integration along a field line rather than an exact trajectory. The adiabatic
invariance of J is then broken, and it turns out that this quantity receives
a quasi-random addition as the topology of the orbit changes. The addition
is quasi-random because it depends on the phase of the particle along its or-
bit, and is thus not available within the bounce-averaged description. Thus,
after many such orbit transitions (several precessions around the torus) the
particle has essentially undergone a radial random walk. By definition, this
is not allowed in an omnigenous field, where all constant-B contours must
therefore be closed topologically in the same way.

Now let us consider the constancy of the normalised parallel invariant

Ĵ(ψ,Bb) =
J
mv

√

µ

E
=

∫

√

Bb −B(l) dl

in greater mathematical detail [41]. The integral is taken between two con-
secutive bounce points and we have denoted the magnetic field strength at
these points by Bb = E/µ. For each value of the field strength B between
Bmin and Bb there are (at least) two points lk of equal field strength between
the bounce points, so if the integration variable is changed from l to B we
obtain

Ĵ(ψ,Bb) =

∫ Bb

Bmin

√

Bb −B f(ψ, α,B)dB,
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with

f(ψ, α,B) =
∑

k

(

1

|∇‖B|

)

l=lk

.

In an omnigenous field,

∂Ĵ

∂α
=

∫ Bb

Bmin

√

Bb −B
∂f

∂α
dB = 0 (78)

for all values of Bb ∈ [Bmin, Bmax]. To see what this implies for f , we
multiply Eq. (78) by 1/

√
X −Bb and integrate over Bb from Bmin to some

arbitrary field strength X between Bmin and Bmax. Interchanging the order
of integration and using

∫ X

B

√

Bb −B

X −Bb
dBb =

π(X −B)

2

gives
∫ X

Bmin

∂f

∂α
(X −B)dB = 0.

Differentiating twice with respect to X finally gives

∂f

∂α
=

∂

∂α

∑

k

σk
∇‖B(lk)

= 0, (79)

where σk = sign∇‖B(lk). This result can be pictured as follows. Consider
the variation of B along a field line. The field strength will typically equal
a given value B ∈ [Bmin, Bmax] in two points, l− and l+, one at either sign
of the minimum, see Fig. 3.5. The field strength will thus lie in the interval
[B,B + dB] in the regions [l−, l− − dl−] and [l+, l+ + dl+]. The differential
lengths dl− and dl+ are in general unequal, and are different on different
field lines, but their sum is the same for all field lines on the same flux
surface,

∂(dl− + dl+)

∂α
= 0,

since ∂f/∂α = 0.
This property implies that every integral of the form

∫

B<Bb

F (B)dl (80)

is independent of α, where F (B) is an arbitrary function depending only
on B and the integral is taken between two bounce points with fixed field
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Figure 10: The variation of magnetic field strength along a field line.

strength Bb. A collorary is that the field lines are of equal length. i.e.,
the arc length measured along the field between two points of equal field
strength, Bb, on either side of Bmin is the same for all field lines on a flux
surface. So is, in fact, also the toroidal angular separation in Boozer co-
ordinates (75). Specifically, taking Bb = Bmax we find that the toroidal
separation between two successive field maxima is independent of α. Since
the corresponding poloidal separation is ∆θ = ι∆ϕ, we conclude that the
level contour B = Bmax (at fixed ψ) is a straight line in Boozer coordinates
(and in other magnetic coordinates whose Jacobian only depends on ψ and
B). In quasisymmetric configurations all contours of B are straight, while
in omnigenous ones only the maximum-B contours are in general straight.

3.6 Quasi-isodynamic fields

By definition, a quasi-isodynamic field is omnigenous and has poloidally, but
not toroidally, closed contours of the magnetic field strength B. If the net
toroidal current inside a particular flux surface ψ vanishes, we have already
noted that the perpendiculars to B also close poloidally on themselves, see
Fig. 5. Since both these curves and the Bmax-contours are straight lines in
Boozer coordinates, they must coincide. Therefore, within each flux surface,
the field strength reaches its maximum on curves that are perpendicular to
B if the toroidal current vanishes.

In any quasi-isodynamic configuration, it is appropriate to use (ψ, α,B)
as independent coordinates within each period [43, 44]. Of course, each B
then corresponds to two points in each period, l− and l+, which we shall
refer to as the two branches of the field. The Jacobian is

(∇ψ ×∇α) · ∇B = B · ∇B, (81)
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and the covariant representation for the magnetic field is

B = Bψ∇ψ +Bα∇α+BB∇B.

The components are obtained by taking the scalar product with the basis
vectors, e.g.,

eα =

(

∂r

∂α

)

ψ,B
=

∇B ×∇ψ
B · ∇B , (82)

eB =

(

∂r

∂B

)

ψ,α
=

B

B · ∇B , (83)

so that

Bα = B · eα = −(B ×∇ψ) · ∇B
B · ∇B , (84)

BB =
B2

B · ∇B .

Hence and from Eq. (68) we conclude that Bα is a flux function in quasisym-
metric configurations.

In general omnigenous fields this is however not the case, but from the
fact that the line integral of the magnetic field once around the torus in the
poloidal direction is equal to µ0 times the enclosed toroidal current (16)

∮

B · dr =

∮

B · ∂r
∂α

dα = 2πI(ψ),

it follows that there must exist a function h(ψ, α,B) such that

Bα = I(ψ) +
∂h

∂α
, (85)

The function h is thus defined only up to an additive constant, which could
depend on the branch but which can be chosen so as to make h branch-
independent,

h(ψ, α,B)|l− = h(ψ, α,B)|l+ .
To see this, we note that the requirement that no current should cross the
magnetic surface, ∇ψ · (∇× B) = 0, implies

∂Bα
∂B

− ∂BB
∂α

= 0,

which can be written as

∂

∂α

(

B2

B · ∇B

)

=
∂2h

∂α∂B
.
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Summing over the two branches and applying the result (79) thus gives

∑

k

σk
∂2h

∂α∂B
= 0,

which can be integrated in B to yield

∑

k

σk
∂h

∂α
= 0,

and it follows that h can be chosen to be branch-independent. So is, then,
also the function Bα according to Eq. (85).

This conclusion has an important consequence for the Pfirsch-Schlüter
current (36). If we regard the function u entering in the latter as a function
of ψ, α and B, we have according to Eqs. (35) and (84)

∂u

∂B
= −(B ×∇ψ) · ∇(1/B2)

B · ∇B = −2Bα
B3

.

The difference in u measured at two points on the same field line where B
has maximum and a minimum, respectively, is thus

u(ψ, α,Bmax) − u(ψ, α,Bmin) = −
∫ Bmax

Bmin

2BαdB

B3
.

Since Bα is branch-independent, it follows that u has the same value at two
consecutive maxima. In other words, referring to Fig. 3.5, we can write

u(l−(Bmax)) = u(l+(Bmax)).

Thus, when following a field line around the torus, the function u always has
the same value at the field maxima, and since these form poloidally closed
curves, u is constant on these curves. Moreover, u must vanish on these
curves since the Pfirsch-Schlüter plus diamagnetic currents do not carry
any net toroidal current. (We assume that the net toroidal current inside
the flux surface under consideration vanishes.) Finally, since the Bmax-
curves are perpendicular to B, the diamagnetic current (33) is parallel to
these curves, so no current crosses them. In other words, the streamlines of
the current close upon themselves within each period of a quasi-isodynamic
stellarator [45]. This is very different from a tokamak, where the Pfirsch-
Schlüter current has a dipolar structure, flowing in one toroidal direction (co-
current) on the outboard side and in the other (counter-current) direction
on the inboard side of the torus. It is this dipolar current that produces
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most of the Shafranov shift, and quasi-isodynamic stellarators therefore have
relatively small such shift. This is advantageous since it is the Shafranov
shift that normally sets the equilibrium beta limit in stellarators.

The covariant component Bα of the field given by Eq. (84) is related to
the radial orbit excursion. By using Eqs. (63) and (84), the radial drift can
be written as

vd · ∇ψ = v‖(b ×∇ψ) · ∇
(

v‖
Ω

)

= −Bαv‖∇‖

(

v‖
Ω

)

. (86)

Hence it follows that the net radial displacement of a particle moving along
the field from l0 to l is equal to

∆ψ = −
∫ l

l0
Bα∇‖

(

v‖
Ω

)

dl′.

This result holds generally, but in a quasi-isodynamic field it is useful to
employ Eqs. (84) and (85) to write

∆ψ = − I

Ω

[

v‖(l) − v‖(l0)
]

−
∫ B(l)

B(l0)

∂h

∂α

∂

∂B

(

v‖
Ω

)

dB. (87)

The corresponding equation in a tokamak field, B = F (ψ)∇ϕ+ ι∇ϕ×∇ψ,
is

∆ψ =
F

ιΩ

[

v‖(l) − v‖(l0)
]

,

as follows from the constancy of

pϕ = mR2ϕ̇+ ZeRAϕ =
mFv‖
B

− Zeχ.

We thus note that the first term on the right-hand side of Eq.(87) is “tokamak-
like” whilst the second term is peculiar to stellarators, depending, as it were,
on a non-zero α-derivative, i.e., on the non-equivalence of different field lines
on the same flux surface. This is the only term present if the enclosed current
vanishes, I(ψ) = 0, which is the normal situation in a stellarator without
much bootstrap current.

An important difference between tokamaks and quasi-isodynamic stel-
larators follows from these relations. Let us consider trapped orbits and
choose the reference point l0 to be the bounce point, so that

∆ψ = − ∂

∂α

∫ B(l)

B(l0)
h
∂

∂B

(

v‖
Ω

)

dB
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in a current-free quasi-isodynamic stellarator and

∆ψ =
Fv‖
ιΩ

in the tokamak. In the latter case, there is a relation between the sign of the
parallel velocity and the radial displacement: ∆ψ > 0 if a particle is moving
in the direction where it makes a positive contribution to the current, and
vice versa if ∆ψ < 0. In a quasi-isodynamic stellarator, there is no such
correlation, and a trapped particle with given σ = v‖/|v‖| is just as likely to
be displaced radially inward as outward (as measured from the location of
the bounce point). As we shall see, this implies that the bootstrap current
vanishes at low collisionality in a quasi-isodynamic stellarator.

3.7 Maximum-J configurations

We have already remarked that the sign of ∂J /∂ψ determines the direction
of the precessional drift. In so-called maximum-J configurations, where J
peaks on the axis and ∂J /∂ψ < 0, this drift is in the opposite direction to the
diamagnetic drift for each species. This property is known to be beneficial
for microstability [46]. For instance, the collisionless trapped-electron mode
arises because of a resonance between the precession of trapped electrons
and the electron drift wave, which is absent if these are in the opposite
directions [47, 48].

We now demonstrate a simple property of maximum-J configurations.
Consider the precession of deeply trapped particles in an omnigenous field.
Substituting

∇B =
∂B

∂ψ
∇ψ +

∂B

∂α
∇α+

∂B

∂l
∇l,

where the last term vanishes at B = Bmin, in the expression for the magnetic
drift gives

vd · ∇α =
v2
⊥

2ΩB2
(∇B ×∇α) · B =

v2
⊥

2Ω

∂B

∂ψ
.

Comparing with Eq. (77), we conclude that that the magnetic field strength
needs to increase with radius,

∂B

∂ψ
> 0,

in a maximum-J configuration, in order for the deeply trapped particles
to precess in the correct direction. Since B also increases in the direction
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along the field away from the minimum, B = Bmax, we conclude that B
must have a local minimum on the magnetic axis, away from which the field
strength increases in all directions. At the point of this minimum, Eq. (24)
implies that the magnetic axis must have vanishing curvature, since the
pressure gradient vanishes. Thanks to the diamagnetic effect of the plasma,
it is much easier to achieve a minimum in the magnetic field strength, and
the maximum-J property, in a plasma of finite pressure than in a vacuum
magnetic field.

Another circumstance worth noting is that the maximum-J property of
a magnetic configuration is not entirely independent of whether it possesses
a magnetic well. The latter, it will be recalled, arises if the volume V (ψ)
inside the flux surface ψ has negative second derivative, V ′′(ψ) < 0, which
is beneficial for ideal MHD stability. But the sign of V ′′(ψ) coincides with
that of the average precession, in the sense that the average is taken over
velocity space and over the entire magnetic surface. Because of Eq. (63),
the drift in the direction of ∇α is

vd · ∇α =
v‖
Ω
∇ ·

(

v‖b ×∇α
)

,

and its average over the pitch angle ξ = v‖/v and the flux surface becomes

〈∫ 1

0
vd · ∇α dξ

〉

=

〈

∫ 1/B

0

v‖
Ω
∇ ·

(

v‖b ×∇α
) Bdλ

2
√

1 − λB

〉

,

where λ = (1 − ξ2)/B. Hence

〈∫ 1

0
vd · ∇α dξ

〉

=
v2B

3Ω

〈

∇ ·
(

B ×∇α
B2

)〉

=
v2B

3ΩV ′

d

dψ
V ′
〈

B ×∇α
B2

· ∇ψ
〉

= −v
2B

3Ω

V ′′

V ′
,

where we have used Eq. (20), and it follows that the average of vd · ∇α and
V ′′(ψ) have opposite signs. In maximum-J configurations, vd ·∇α is positive
for all trapped particles on a bounce-average; in magnetic-well configurations
its average over all particles is positive. The question whether a magnetic
field satisfies the maximum-J condition is thus related (but not identical)
to the question whether it has a magnetic well.

3.8 Negative results

We have saved the bad news for last in this section: neither quasisymmetric
nor omnigenous magnetic fields exist. Garren and Boozer [49] showed that it
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is possible to satisfy the requirements of quasisymmetry on one flux surface
but that neighbouring ones will in general not be quasisymmetric. This
negative result was established by an expansion in the distance from the
magnetic axis and comparing the number of free parameters with the number
of constraints that need to be satisfied. It is possible to satisfiy these up
to second order in the inverse aspect ratio, but quasisymmetry is broken in
third order. However, since this happens only in third order and stellarators
tend to have large aspect ratio, this result is probably not very serious
in practice. Very good approximations to quasisymmetry throughout an
entire toroidal volume have been constructed numerically, e.g., by enforcing
quasihelically symmetry at the plasma edge [50]. One quasihelical device,
HSX, has also been built and found to confirm several theoretical predictions
concerning the effect of quasi-helical symmetry on plasma behaviour [51].

The second negative result concerns quasi-isodynamic magnetic fields,
which can be shown not to exist unless they are quasi-poloidally symmet-
ric. For a simple proof, we recall that it is possible to construct magnetic
coordinates for any choice of the toroidal angle ϕ. For a quasi-isodynamic
field, it is convenient to choose this angle so that B is independent of the
poloidal angle [52],

|B| = B(ψ,ϕ).

Recalling the Jacobian (8) and the co-and contravariant representations (7)
and (15), we quickly find that

B2 = (ιI +G)B · ∇ϕ+ B · ∇H,
which we can use to evaluate integrals of the form (80),

I(α) =

∫ ϕ1

ϕ0

F (B)
Bdϕ

B · ∇ϕ,

taken along a field line labelled by α = θ − ιϕ between two points with the
same field strength, B(ϕ0) = B(ϕ1). We have already proved that any such
integral is independent of α, but

I(α) =

∫ ϕ1

ϕ0

F (B)

B

(

ιI +G+
B · ∇H
B · ∇ϕ

)

dϕ,

where
B · ∇H
B · ∇ϕ =

(

∂H

∂ϕ

)

ψ,α

,

and it follows that

0 =
dI

dα
=

∫ ϕ1

ϕ0

F (B)

B

∂2H

∂ϕ∂α
dϕ.
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This condition can only hold for all F (B) if ∂2H/∂ϕ∂α = 0, i.e., if H is of
the form (74),

H(ψ, α, ϕ) = H1(ψ,ϕ) +H2(ψ, α).

By the same argument as that following Eq. (74) it follows that the field must
be quasi-poloidally symmetric. Only such fields are thus quasi-isodynamic,
and, more generally, only quasisymmetric fields are omnigenous. Fortu-
nately this “negative” result seems not to be very serious. As argued al-
ready by Cary and Shasharina [41], who first established it, it appears pos-
sible to construct fields that are arbitrarily close to being omnigenous but
are still very far from quasisymmetric. That it is indeed possible to con-
struct fields that are omnigenous to a high degree of approximation is seen
from Fig. 3.8, taken from Ref. [45], which shows contour levels of J for a
range of different values of the pitch-angle variable Bb = E/µ measuring the
magnetic field strength at the bounce points. These values are chosen as
Bb = Bmin + n(Bmax −Bmin) with n ranging from 1 to 6.

4 Kinetic theory

We now turn to the kinetic theory of non-axisymmetric plasma equilibria.
We are only interested in length scales exceeding the ion gyroradius and
therefore consider the drift kinetic equation for the distribution function
fa of each species a. The form of this equation depends decisively on the
magnitude of the electric field. In the so-called drift ordering,

E/B = O(δvTa),

where vTa = (2Ta/ma)
1/2 denotes the thermal velocity, the drift kinetic

equation has the familiar appearence

∂fa
∂t

+ (v‖b + vda) · ∇fa = Ca(fa), (88)

where the independent variables are the guiding-centre position, the energy
(Hamiltonian)H = mav

2/2+eaφ, and the magnetic moment µ = mav
2
⊥/2B.

In the MHD ordering, however,

E/B = O(vTa),

the drift kinetic equation is more complicated. Our first task is therefore
to determine which ordering is appropriate. As already mentioned following
Eq. (3), it turns out that the MHD ordering is not possible in stellarators.
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Figure 11: Curves of constant J for a quasi-isodynamically optimised stel-
larator [45] in a polar coordinate representation (

√
s, θ), where s is the

toroidal flux normalised to its value at the plasma edge and θ is the poloidal
Boozer angle. The J -contours are approximately aligned with the flux sur-
faces, which are circular in this representation. The six figures refer to
different values of n = (E/µ−Bmin)/(Bmax −Bmin) ranging from 1 to 6.
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4.1 Impossibility of rapid plasma rotation

To prove this assertion [53], we explore the consequences of the MHD or-
dering, assuming that the E×B flow is comparable to thermal speed of the
bulk ions. Their Larmor orbits then do not close in the the laboratory rest
frame and the magnetic moment mav

2
⊥/2B is not conserved. Moreover, it

is straighforward to show that the plasma fluid generally has a lowest-order
flow speed V comparable to the ion thermal speed, approximately satisfying

E + V × B = 0. (89)

This conclusion follows from the Fokker-Planck equation,

∂f

∂t
+ v · ∇f +

e

m
(E + v × B) · ∂f

∂v
= C(f),

using the shifted velocity u = v − V as an independent variable,

∂f

∂t
+ (V + u) · ∇f +

e

m

(

E′ + u × B − ∂V

∂t
− (V + u) · ∇V

)

· ∂f
∂u

= C(f),

(90)
where V is arbitrary at the moment, and E′ = E + V × B is the electric
field in the moving frame, see, e.g., p. 77 in Ref. [32]. If the distribution
function and the electric field are expanded in δ, we obtain in zeroth order

e

m

(

E′
0 + u × B

)

· ∂f0

∂u
= 0. (91)

This equation implies that f0 is constant along characteristics in velocity
space. In the direction of B, these extend to infinity unless b · E′

0 = 0,
and we must therefore require E‖ = 0 in order that f0 should vanish for
infinitely large u‖. Since we are interested in plasma equilibria (∂/∂t = 0),
the electric field is at least approximately electrostatic, E0 = −∇φ0, and
we conclude the potential is a flux function in lowest order, φ0 = φ0(ψ), a
result we have already used repeatedly in the previous chapter. We can thus
choose V so that E′

0 = 0, namely by taking the perpendicular component to
be V⊥ = B ×∇φ0/B

2. Equation (91) then implies that f0 is independent
of the gyro-angle and that the plasma flow velocity approximately equals V

in the direction perpendicular to B. V can thus be chosen to be equal to
the plasma flow velocity in lowest order.

The drift kinetic equation is derived from Eq. (90) by averaging over the
gyro-angle [54, 55, 56, 57]. If the velocity space coordinates are taken to be
w = mu2/2 and µ = mu2

⊥/2B, the result is in lowest order

∂f0

∂t
+ (u‖b + V) · ∇f0 + ẇ

∂f0

∂w
+ µ̇

∂f0

∂µ
= C(f0), (92)
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where µ̇ = 0 and

ẇ = eE‖u‖ −mu‖V · ∇V · b −mu2
‖b · ∇V · b + µBV · ∇ lnB. (93)

Thus, when defined relative to the moving frame, the magnetic moment µ
is conserved, but the kinetic energy w varies in the complicated way given
by Eq. (93).

We now look for stationary solutions of the drift kinetic equation (92).
Of course, we expect these to be Maxwellian, which is proved by multiplying
the equation by ln f0 and integrating over velocity space, which gives

∇ · Y = −
∫

ln f0C(f0) 2πv⊥dv⊥dv‖, (94)

where

Y = −
∫

(V + v‖b)f0(ln f0 − 1) 2πv⊥dv⊥dv‖

is the entropy flux. The left-hand side of Eq. (94) is annihilated by a flux-
surface average, and it follows from the H-theorem [32] that f0 must be a
Maxwellian, whose density n and temperature T may however vary over
each flux surface.

The next step is to substitute this Maxwellian into Eq. (92) without the
time-derivative, which gives an equation that can only be satisfied if the
following five relations are satisfied [56, 57]:

(

∇ lnn+
e∇φ1

T
+
m

T
V · ∇V

)

· b = 0, (95)

b · ∇T = 0,

V · ∇
(

lnn− 3

2
lnT

)

= 0,

∇ · (nV) = 0,

b · ∇V · b − 1

3
∇ · V = 0.

The second of these equations implies that irrational flux surfaces (and, by
continuity, also rational ones) are isothermal. Since V · ∇ψ = 0, the third
equation thus implies V · ∇n = 0. This reduces the fourth equation to an
incompressibility condition,

∇ · V = 0, (96)

and the fifth one to
b · ∇V · b = 0. (97)
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We now recall Eq. (89) and note that

0 = ∇× (V × B) = B · ∇V − V · ∇B, (98)

which combined with Eq. (97) leads to V·∇B·B = 0. Since (∇B)·B = B∇B
we thus conclude that

V · ∇B = 0. (99)

In other words, the streamlines of the flow are given by the intersection
between flux surfaces and surfaces of constant B. This means that the
velocity field can be written as

V(r) = g(r)∇ψ ×∇B

for some function g(r) of the spatial coordinates r. The parallel component
of the flow is thus

V‖b = g(r)∇ψ ×∇B − dφ0

dψ

b ×∇ψ
B

,

where E0 = −∇φ0. Taking the scalar product of this equation with b×∇ψ
gives an expression for g,

gb · ∇B +
1

B

dφ0

dψ
= 0,

and thus enables us to write down an explicit expression for the lowest-order
flow velocity,

V = −dφ0

dψ

∇ψ ×∇B
B · ∇B . (100)

The requirement (96) that this flow field should be incompressible now
implies a constraint on the spatial variation of the magnetic field strength,

(∇ψ ×∇B) · ∇(B · ∇B) = 0, (101)

which is identical to Eq. (66) and therefore implies quasisymmetry. One
should perhaps be slightly careful with this choice of words, because in the
MHD ordering the equilibrium is described not by Eq. (3) but by

ρV · ∇V = J × B −∇p.

Since we defined Boozer coordinates assuming Eq. (3), we cannot take qua-
sisymmetry to mean that B should be independent of one of the Boozer
angles; instead we note that the large flow ordering implies quasisymmetry
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in the sense defined by Eq. (68). In any case, it is clear that most magnetic
fields cannot support rapid rotation.

It is remarkable that this conclusion follows from the drift kinetic equa-
tion already in zeroth order of the gyroradius expansion. The result is
therefore robust against any effects of turbulence, regardless of its nature,
as long as the turbulent fluctuations are small. For instance, the gyrokinetic
equation, which is commonly used to describe turbulence, treats first-order
(in δ) fluctuations. Physically, the point is that, in zeroth order, the trans-
port is infinitely much faster within flux surfaces than across them. This
implies that such surfaces must be isothermal and isopotential, and the par-
allel viscosity forces the flow velocity to be small (in comparison with the
ion thermal speed) unless the magnetic field is quasisymmetric.

Moreover, rapid plasma rotation may be impossible even if the field does
satisfy the quasisymmetry requirement (68). The ion drift kinetic equation
then has a lowest-order Maxwellian solution, but the electrons also need to
be considered and quasineutrality should be satisfied. The density distri-
bution over the flux surface is governed by Eq. (95), where the last term
represents the centrifugal force associated with the plasma rotation. This
term can be rewritten using the fact that V ·B is a flux function because of
Eqs. (68) and (100),

V · ∇V · B = −V · ∇B · V (98)
= −B · ∇V · V,

so that

b · ∇
(

lnn+
eφ1

T
− mV 2

2T

)

= 0.

For electrons, whose charge is −e and thermal velocity exceeds V , this ex-
pression reduces to a Boltzmann relation, ne ∝ exp(eφ1/Te), while for the
ions

ni ∝ exp

(

miV
2

Ti
− eφ1

Ti

)

.

Quasineutrality, ni = ne serves to determine the potential variation φ1

within the flux surface, and we find that the density becomes

ne = ni = N(ψ) exp

(

miV
2

2(Te + Ti)

)

. (102)

This expression is analogous to that in a toroidally spinning tokamak [56],
where the density bulges out on the outboard side due to the centrifugal

67



force. In a quasisymmetric stellarator, it severely constrains the magnetic-
field geometry.

To see why, let us again employ z = (ψ, α,B) as our coordinates and
recall the covariant basis vectors (82)-(83). The metric elements are defined
as gmn = em ·en. According to Eqs. (100) and (101), the vector eα points in
the symmetry direction in which neither B nor b · ∇B varies, and it follows
that

∂gBB
∂α

=
∂

∂α

(

B

b · ∇B

)

= 0.

Furthermore, since V points in the direction of eα and ∇·(nV) = V·∇n = 0,
Eq. (102) implies ∂V 2/∂α = 0 and thus

∂gαα
∂α

= 0,

because of Eq. (100). Also, because

gαB = eα · eB = −(B ×∇ψ) · ∇B
(B · ∇B)2

,

we have
∂gαB
∂α

= 0,

and we conclude that the metric elements gBB, gαB and gαα governing the
Riemannian geometry within the magnetic surface are all independent of
α. Using techniques from differential geometry, Sugama et al. [58] have
demonstrated that, at least close to the magnetic axis, this implies that the
surface is not only quasisymmetric, but also (axi)symmetric in the usual
sense. The conclusion is that stellarator plasmas cannot rotate at velocities
comparable to the ion thermal speed.

4.2 Neoclassical equilibrium and transport

We are thus free to use the drift kinetic equation (88) in the small-flow
ordering. As we shall see, the transport is of second order in δ, so if we
restrict our attention to plasma equilibria (time derivatives of order δ2vT /L),
these should be described by the steady-state equation

(v‖b + vda) · ∇fa = Ca(fa).

Solving this equation is the aim of neoclassical transport theory [59, 60, 61,
62, 63], which we now outline.
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4.2.1 Moderate collisionality

If the distribution function is expanded in δ ≪ 1 as fa = fa0 + fa1 + · · ·,
then we obtain in lowest order

v‖∇‖fa0 = Ca(fa0).

(Plasma regimes with sufficiently small collision frequency cannot be de-
scribed by this procedure and will be discussed later.) We multiply this
equation by ln fa0 and integrate over velocity space, using

d3v =
∑

σ

2πBdHdµ

m2|v‖|
, (103)

where the sum is taken over both signs, σ = ±1, of the parallel velocity.
Because of the property (21), the left-hand side vanishes upon flux-surface
averaging, and we obtain

〈∫

Ca(fa0) ln fa0 d
3v

〉

= 0,

The physical interpretation is that collisions should not produce entropy
from the equilibrium distribution. For an electron-ion plasma, it follows that
the electron and ion distribution functions are Maxwellian, possibly with
different temperatures (because of the smallness of the collisional energy
transfer between electrons and ions when me ≪ mi),

fa0 = Na(ψ)

(

ma

2πTa

)3/2

exp

(

−mav
2/2 + eaφ

Ta

)

,

and quasineutrality, ne = ni, with na = Na exp(−eaφ/Ta), implies that the
electrostatic potential is a flux function, φ = φ0(ψ), in lowest order.

The correction to the Maxwellian is determined from the first-order ki-
netic equation

v‖∇‖fa1 − Ca(fa1) = −vda · ∇fa0. (104)

The solution of this equation can be accomplished analytically in certain
asymptotic collisionality regimes, but frequently the solution needs to be
found numerically. Whatever method is used, the distribution function fa1
is a linear combination of the driving terms on the right,

−vda · ∇fa0 = (vda · ∇ψ)

[

A1a +A2a

(

mav
2

2Ta
− 5

2

)]

fa0, (105)
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where

A1a = −dφ0

dψ
− dpa
dψ

,

A2a = −dTa
dψ

,

are the so-called thermodynamic forces. The function fa1 is thus uniquely
determined by the local density and temperatures, their gradients, and the
radial electric field, φ′0(ψ). From fa1 most equilibrium properties of interest
can be calculated, such as the parallel flow velocity of each species

Va‖ =
1

na

∫

v‖fa1 d
3v, (106)

the parallel current
J‖ =

∑

a

naeaVa‖,

and the neoclassical cross-field fluxes

〈Γa · ∇ψ〉 =

〈∫

fa1vda · ∇ψ d3v

〉

, (107)

〈qa · ∇ψ〉 =

〈

∫

(

mav
2

2
− 5Ta

2

)

fa1vda · ∇ψ d3v

〉

. (108)

In the present ordering, all these quantities will thus be linear functions of
the thermodynamic forces.

We do not endeavour to solve the first-order drift kinetic equation (104),
but give a brief outline of the various collisionality regimes where this can
be accomplished analytically. At very high collisionality, in the so-called
Pfirsch-Schlüter regime, the collision frequency νa exceeds the transit fre-
quency ωta = vTa/L, where L is the macroscopic length, making the colli-
sional mean free path λ = vTa/νa shorter than L. By performing a subsidiary
expansion of fa1 in the small parameter ωta/νa = λ/L [64]

fa1 = f
(−1)
a1 + f

(0)
a1 + f

(1)
a1 + · · · , (109)

one finds a series of “Spitzer problems”,

Ca
(

f
(−1)
a1

)

= 0,

Ca
(

f
(0)
a1

)

= v‖∇‖f
(−1)
a1 ,
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Ca
(

f
(1)
a1

)

= v‖∇‖f
(0)
a1 + vda · ∇fa0.

The reason why the expansion (109) starts at the -1st order is that the

notation is such that each term f
(n)
am is order δm(λ/L)nfa0, and the first

term turns out to be of order δ(λ/L)−1fa0. When the equations have been

solved, the neoclassical transport can be calculated by inserting f
(−1)
a1 in

Eqs. (107) and (108). The cross-field fluxes thus scale as δ2L/λ and are
proportional to the collision frequency.

The mathematical treatment of the opposite, low-collisionality limit,
νa/ωta ≪ 1 depends on whether the magnetic configuration is omnigenous.
If the radial drift velocity vanishes upon a bounce average (76), it can be
written as a derivative, taken at constant energy and magnetic moment,

vda · ∇ψ = v‖∇‖∆ψ,

of some function ∆ψ of the phase-space coordinates. Equation (104) then
becomes

v‖∇‖

(

fa1 + ∆ψ
∂fa0
∂ψ

)

= Ca(fa1),

and is solved by taking the left-hand side to vanish in lowest order, and then
considering the orbit-average of the next-order equation. This is the route
taken in neoclassical transport theory for tokamaks [32].

If the magnetic field is not omnigenous, the correct subsidiary expansion
of the distribution function in the small parameter νa/ωta ≪ 1 is

fa1 = f
(−1)
a1 + f

(0)
a1 + f

(1)
a1 + · · · ,

where
v‖∇‖f

(−1)
a1 = 0,

v‖∇‖f
(0)
a1 − Ca(f

(−1)
a1 ) = −vda · ∇fa0. (110)

The first of these equations implies that f
(−1)
a1 is a function of constants of

the motion, H, µ, and ψ. In the second equation, the first term represents a
time derivative along the orbit, and can therefore be annihilated by taking
an orbit average. This is done by dividing the by v‖ and integrating along
the field. For circulating particles, the integral can be extended indefinitely
and converted to a flux-surface average (22), giving

〈

B

|v‖|
[

vda · ∇fa0 − Ca(f
(−1)
a1 )

]

〉

= 0,
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where the first term vanishes because of the argument given in connection
with Eq. (63). In the trapped domain of velocity space, we instead multiply
Eq. (110) by dl/|v‖|, sum over σ = v‖/|v‖|, and integrate over l between two
consecutive bounce points, yielding

B
∑

σ

∫ l2

l1

[

σ
∂fa1
∂l

+
vda · ∇fa0 − Ca(f

(0)
a1 )

|v‖|

]

dl = 0. (111)

The first term vanishes because we impose the boundary condition that the
number of co-moving particles at each bounce point should equal the number
of counter-moving ones, f(lj , σ > 0) = f(lj , σ < 0). The remaining equation

is solved for f
(−1)
a1 , which apparently becomes of order f

(−1)
a1 ∼ vdafa0/(νaL),

where νa denotes the collision frequency. The transport,

〈Γa · ∇ψ〉 =

〈∫

f
(−1)
a1 vda · ∇ψ d3v

〉

,

thus scales as v2
da/νa ∝ T

7/2
a since vda ∝ v2 and νa ∝ v−3 for fast particles

(which make the dominant contribution to the transport). This so-called
1/ν-transport can be interpreted in terms of a random walk of trapped par-
ticles taking radial steps of length vda∆t at time intervals ∆t equal to the
inverse effective collision frequency for scattering in and out of the trap-
ping regions. If these comprise a fraction ft of velocity space, the effective
scattering frequency is νa/f

2
t and we expect a diffusion coefficient

Da ∼ ft
∆r2

∆t
∼ f3

t v
2
da

νa
. (112)

This type of transport scales very unfavourably with temperature, Da ∼
T

7/2
a , and can lead to prohibitively large energy losses in unoptimised stel-

larators.

4.2.2 Low collisionality

Whereas the treatment above is adequate in all collisionality regimes for ax-
isymmetric systems, it needs to be modified at low collisionality in stellara-
tors with unconfined orbits. For instance, in the limit of vanishing collision
frequency, some particles will simply drift out of the device, leaving a “hole”
in velocity space, and the distribution function will not even approximately
be Maxwellian. More importantly, at slightly higher collisionalities, there
are experimentally important regimes of transport that cannot be captured
by the ordering employed above.
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To treat these, we again expand fa = fa0 + fa1 + · · · but now require in
lowest order

v‖∇‖fa0 = 0,

thus ruling out the possibility of short mean free path. In next order, then,

v‖∇‖fa1 + vda · ∇fa0 = Ca(fa0). (113)

In order to annihilate the first term, we again take an orbit average, just
like in the previous subsection. For circulating particles, we have already
seen that the average of the driving term, vda · ∇fa0, vanishes, so that

〈

BCa(fa0)

|v‖|

〉

= 0, (114)

and for trapped particles we obtain
∫ l2

l1
[vda · ∇fa0 − Ca(fa0)]

dl

v‖
= 0. (115)

Because of the appearance of the first term, containing the drift vda, there is
no guarantee that fa0 must be Maxwellian. Only if the time scale for radial
drift motion is longer than the collision time for some reason, or the fraction
of escaping trapped particles is small, can we expect the plasma to be in local
thermodynamic equilibrium. In practice, this is usually the case for thermal
ions unless the temperature is too high. But above a critical temperature
(which is high in configurations that are optimised for good confinement),
the radial drift is not negligible in Eq. (115) and the neoclassical transport
becomes non-local in nature, because the radial steps in the random walk
are no longer short in comparison with the gradient length scale [65]. This is
a qualitatively difference between stellarators and tokamaks, where the drift
orbits are closed and the random-walk step size is limited by their width.

If the drift term is small enough, we can make a subsidiary expansion

fa0 = Fa0 + Fa1 + · · · .

and obtain in zeroth order
∫

[vαda · ∇Fa0 − Ca(Fa0)]
dl

v‖
= 0, (116)

where the integral is taken once around the trapped orbit (back and forth
along the field). Here we have split the drift velocity into its components
within and across the magnetic surface,

vda = vαda + v
ψ
da.
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The most important contribution to the drift within the magnetic surface
typically comes from the E × B drift, b × ∇φ0(ψ)/B, which is principally
in the poloidal direction. Then multiplying Eqs. (114) and (116) by lnFa0,
integrating over H and µ, and again appealing to the H-theorem shows
that Fa0 must be Maxwellian and φ a lowest-order flux function. Note that
vαda · ∇ψ = 0 by assumption, so that the drift term in Eq. (111) vanishes for
a Maxwellian flux function. 2

The correction Fa1 to the Maxwellian is obtained from the remainder of
the bounce-averaged drift kinetic equation (115),

∫

[vda · ∇Fa0 + vαda · ∇Fa1 − Ca(Fa1)]
dl

v‖
= 0. (117)

As in the case of moderate collisionality considered ealier, the function Fa1
depends only on the local plasma parameters and their gradients. However,
the dependence on φ′(ψ) is no longer linear because this quantity appears
not only in the thermodynamic force A1a from vda ·∇Fa0 but also in the drift
term vαda ·∇Fa1. Note that the first term in the integral (117) vanishes upon
integration in omnigenous configurations, which can thus be treated by the
moderate-collisionality expansion considered earlier. In configurations that
are not omnigenous, there is enhanced transport, whose character depends
on which of the two terms involving Fa1 dominates in Eq. (117). If the last
term does so, then

∫

[vda · ∇Fa0 − Ca(Fa1)]
dl

v‖
= 0,

which is identical to the equation (111) that was solved in the previous
subsection when treating the 1/ν-regime of transport. Our two expansion
schemes thus overlap and yield similar results in this regime.

At lower collisionality, the first term containing Fa1 in Eq. (117) instead
dominates, so that

∫

(vda · ∇Fa0 + vαda · ∇Fa1)
dl

v‖
= 0, (118)

approximately holds in the trapped region of phase space, whereas Fa1 still
vanishes in the circulating region. Its derivative is discontinuous across the
trapped-passing boundary in this approximation, indicating that collisions

2There is actually a complication having to do with the the fact that (B/v‖)v
α

da is not
necessarily divergence-free, but usually it is so to a good approximation. In the DKES
code, this is achieved by approximating the E × B velociy by B ×∇φ0/〈B

2〉 [66].
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must be taken into account in a boundary layer. Before considering the
latter, we note that Eq. (118) indicates that

Fa1
Fa0

∼ vψda
vαda

,

where we have indicated the orbit average by an overbar. Our expansion
scheme is only consistent if this ratio is small. Note that this is purely a
matter of magnetic-field geometry. The ratio is not small in the gyroradius or
collisionality expansions; it is only small if the magnetic and electric drifts for
some reason have the property that their poloidal components dominate over
the radial ones on a bounce average. This is typically the case at large aspect
ratio, where the E ×B drift scales inversely with the minor radius and the
magnetic drifts with the major radius. What then happens is that the drift
vαda convects the trapped particles poloidally around the torus before they
have had time to drift far radially, and the radial excursion of the bounce-
averaged orbits becomes of order ∆r ∼ vψda/ωα ≪ r, where ωα ∼ vαda · ∇α is
the frequency of the poloidal drift. The collisionless orbits are thus confined,
but collisions will scatter the particles in and out of the local trapping regions
and thereby make them undergo a random walk with the step size ∆r. The
effective collision frequency for such scattering depends quadratically on the
distance ∆ξ (in terms of pitch angle) to the trapping boundary in velocity
space, νeff ∼ νa/∆ξ

2. Multiplying νeff∆r2 by the fraction of participating
particles (∼ ∆ξ) gives the diffusion coefficient estimate

Da ∼
νa
∆ξ

(

vda
ωα

)2

,

which diverges as ∆ξ → 0, indicating that the most important role is played
by particles close to the trapping boundary. The width of this boundary
layer is limited from below by the assumption νeff < ωα made in deriv-
ing Eq. (118), which implies ∆ξ > (ν/ωα)1/2 and results in the diffusion
coefficient

Da ∼
ν

1/2
a v2

da

ω
3/2
α

, (119)

which is proportional to the square root of the collision frequency.
If the local magnetic field maxima, Bmax, on each flux surface are dif-

ferent from each other, so that Bmax varies from one field line to another,
the precessional drift in Eq. (118) will also cause collisionless detrapping
and retrapping. As mentioned in Sec. 3.5 above this leads to transport even
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in the limit of vanishing collision frequency, since each de- or re-trapping
event is associated with a radial displacement. This type of transport can
be important for high-energy ions [67].

In practice, the collisionality regimes discussed above are usually not
well separated. For this reason, and because of the complexity of the full
Coulomb collision operator, it is necessary to solve the drift kinetic equation
numerically in order to obtain accurate transport coefficients. A comprehen-
sive overview of efforts in this direction has recently been given by Beidler
et al. [63]. Figure 4.2.2 shows an example of such a numerical calculation,
with the various asymptotic regimes indicated by dashed lines.
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Figure 12: The so-called “mono-energetic” diffusion coefficient (see Ref. [63]
for details) vs collisionality, ν∗ = νR/ιv, where ν is the mono-energetic
pitch-angle-scattering frequency, R the major radius and v the speed of
the particles, in the standard configuration of W7-X (bold) and a tokamak
(dashed) with similar aspect ratio (r/R = 0.255/5.527) and an elongation
of 1.5. The asymptotic regimes are indicated by dotted straight lines. In
the order of increasing collisionality: the

√
ν-regime, the 1/ν-regime, the

plateau regime and the Pfirsch-Schlüter regime. At very low collisionality
(below the range shown) the transport again becomes proportional to ν. The
diffusivity has been normalised to the plateau value in a circular tokamak,
and the radial electric field has been chosen as Er/vB = 3 ·10−5, where B is
the magnetic field strength. If the electric field is made larger, the transition
from the

√
ν-regime to the 1/ν-regime occurs at higher collisionality. From

Ref. [48].
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4.3 Fluctuations and turbulent transport

In the treatment just given, we foucussed on the equilibrium properties of
the plasma, treating the time derivative as O(δ2vT /L). This is sufficient
for calculating the collisional (neoclassical) transport but fails to capture
turbulent fluctuations and transport. To do so, we need to elevate the time
derivative to order O(δvT /L) and also allow fa1 to vary on the length scale
of the gyro-radius. If it is assumed that the fluctuating electric and magnetic
fields, δE = −∇δφ − ∂δA/∂t and δB = ∇ × δA, are small and the wave
numbers are ordered as

k‖L ∼ k⊥ρi ∼ 1, (120)

the result is the famous gyrokinetic equation

∂ga
∂t

+ (v‖b + vda + δvda) · ∇(fa0 + ga) − 〈Ca(ga)〉R =
eafa0
Ta

∂ 〈χ〉
R

∂t
, (121)

where the distribution function has been written as

fa1 = −eaδφ(r, t)

Ta
fa0 + ga(R, H, µ, t),

and where χ = δφ−v·δA is the gyrokinetic potential. Here, the gyro-average
at fixed guiding-centre position is denoted by 〈· · ·〉

R
, and the perturbation

of the drift velocity is given by

δvda =
b ×∇〈χ〉

R

B
. (122)

According to Eq. (120) perturbations are assumed to vary much more rapidly
across the field than along it. The physical reason for this ordering is that
unless the parallel phase velocity exceeds the ion thermal speed,

ω

k‖
≫ vT i,

there is strong ion Landau damping. Since the frequency for drift waves
is of order ω∗ ∼ k⊥ρivT i/L, it follows that the parallel wavelength must
be of order L if k⊥ρi = O(1) to avoid Landau damping. For each Fourier
component of the fluctuations we then have

〈χ〉
R,k = J0

(

δφk − v‖δA‖k

)

+
J1v⊥
k⊥

δB‖k, (123)

where the argument of the Bessel functions is k⊥v⊥/Ωa, δB‖ = b · δB, and
we have adopted the Coulomb gauge, ∇ · δA = 0.
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The gyrokinetic field equations determining δφ, δA‖ and δB‖ are

∑

a

nae
2
a

Ta
δφ =

∑

a

ea

∫

gaJ0 d
3v,

δA‖ =
µ0

k2
⊥

∑

a

ea

∫

v‖gaJ0 d
3v, (124)

δB‖ = −µ0

k⊥

∑

a

ea

∫

v⊥gaJ1 d
3v,

where the volume element in velocity space is given by Eq. (103). The
gyrokinetic particle and heat fluxes are

(

δΓa · ∇ψ
δqa · ∇ψ

)

=

∫

(

1
mav2

2 − 5Ta

2

)

gaδvd · ∇ψ d3v,

and are thus of order δ2 in our basic gyroradius expansion (54). This is the
same order as the neoclassical transport, and we thus expect that the two
transport channels should be comparable, at least generally speaking. In
practice, turbulent transport tends to dominate except in low-collisionality
plasmas with axisymmetry.

4.4 Ambipolarity and plasma rotation

There is an important difference between neoclassical and turbulent trans-
port concerning ambipolarity. It follows from Eqs. (122), (123) and (124)
that the turbulent transport is automatically ambipolar,

〈δJ · ∇ψ〉 =
∑

a

ea 〈δΓa · ∇ψ〉 = 0,

in leading order, regardless of the magnitude of the radial electric field. But,
as we shall see, neoclassical transport is in general not ambipolar unless the
electric field assumes a particular value. Since the total transport must
be ambipolar (on the transport time scale ∂/∂t ∼ δ2vTa/L), the radial
electric field must therefore adjust so as to make the neoclassical channel
ambipolar (unless the field is quasisymmetric). This fixes the perpendicular
flow velocity of each species,

Va⊥ =
b × (∇φ−∇pa/naea)

B
,
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and the parallel flow through Eq. (106). The rotation of the plasma within
each flux surface is thus determined by the local density and temperature
gradients of all species.

If, on the other hand, the field is axisymmetric or quasisymmetric, the
neoclassical transport turns out to be automatically ambipolar and there is
no constraint on the electric field in this order. The plasma is, so to say, free
to rotate as it wishes, and the rotation is only governed by slower (next-order
in δ) processes – the transport of angular momentum in an axisymmetric
device. The point is that, if the field is axi- or quasisymmetric, then the
momentum in the symmetry direction is a conserved quantity that cannot
be created or destroyed, only moved elsewhere, just like mass or energy.
The profile of the electric field is then set by momentum transport, just like
the density profile is determined by particle transport. Non-quasisymmetric
devices are different: there is no direction in which plasma momentum is
conserved, and the rotation is clamped at a level determined by the density
and temperature gradients.

To prove our assertion that only quasisymmetric fields exhibit automatic
ambipolarity [68, 69], we multiply the first-order drift kinetic equation (104)
by fa1/fa0, integrate over velocity space and take the flux-surface average.
This gives an equation for the entropy balance

−
〈

Γa ·
(∇pa
pa

+
ea∇φ
Ta

)

+
qa · ∇Ta
T 2
a

〉

= −
〈∫

fa1Ca(fa1)

fa0
d3v

〉

. (125)

If the collisionality is very low, we instead multiply Eq. (117) by (Fa1/Fa0)πv
3dvdλ

and integrate, which gives an entropy-balance equation similar to Eq. (125).
Now, if the transport is to be automatically ambipolar, it must be so for

all gradients, and we are thus free to choose the density and temperature
gradients to vanish. Multiplying Eq. (125) by Ta and summing over all
species then gives

−〈J · ∇φ〉 = −
∑

a

Ta

〈∫

fa1Ca(fa1)

fa0
d3v

〉

≥ 0, (126)

where we have invoked the H-theorem on the right. A similar equation, but
involving Fa1 instead of fa1, can be obtained in the case of low collisionality
from Eq. (117). By definition, the transport is intrinsically ambipolar if,
and only if, this current vanishes, regardless of the value of φ′0(ψ) (as long
as it is small enough to satisfy the linear approximation). According to the
H-theorem the current only vanishes if fa1 is of the form

fa1 =

[

∆na
na

+
mav‖V‖
Ta

+

(

mav
2

2Ta
− 5

2

)

∆Ta
Ta

]

fa0,
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where ∆na, V‖ and ∆Ta are density, parallel flow velocity and temperature
contained in fa1. Since the collision operator vanishes whenever the current
(126) does so, it follows from the drift kinetic equation (104) that the part
of fa1 that is caused by the radial electric field is odd in v‖, so that ∆na
and ∆Ta vanish. But then

v‖∇‖fa1 =
mav

2

Ta

[(

1 − λB

2

)

∇‖V‖ −
λ

2
∇‖(V‖B)

]

fa0,

where the derivative is taken at fixed λ = 2µ/mav
2 and v, must equal

−vd · ∇fa0 =
mav

2fa0
TaB3

dφ

dψ

(

1 − λB

2

)

(B ×∇B) · ∇ψ,

for all λ, where we have recalled Eq. (105). This can only be the case if the
following two conditions are satisfied:

∇‖V‖ = −dφ
dψ

(B ×∇B) · ∇ψ
B3

,

∇‖(V‖B) = 0.

The second of these conditions implies that the parallel velocity is of the
form V‖ = U(ψ)/B, where U(ψ) is a flux function. Substituting this result
in the first condition gives

U(ψ) = −dφ
dψ

(B ×∇ψ) · ∇B
B · ∇B ,

which implies that the expression (68) must be a flux function. The neoclas-
sical transport is thus automatically ambipolar only if the magnetic field is
quasisymmetric. The total plasma flow velocity is obtained by adding the
E × B drift,

V =
U(ψ)b

B
+
dφ

dψ

b ×∇ψ
B

,

and has the property V ·∇B = 0, so that the plasma flows in the symmetry
direction.

As already emphasised, the radial electic field in a non-quasisymmetric
stellarator is determined by ambipolarity,

〈J · ∇ψ〉 =
∑

a

ea 〈Γa · ∇ψ〉 = 0,

where the current is generally a nonlinear function of the electric field. Be-
cause of this nonlinearity, the equation may have several roots. Generally
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speaking, a large negative (inward pointing) radial electric field reduces the
ion current and enhances the electron current, and vice versa for a positive
field. Since the transport coefficients tend to be larger for ions than for
electrons, because of the scalings (112) and (119), the radial electric field
normally points inward, and the so-called ion root is realised. But if the
electrons are heated stongly and preferentially, their diffusion coefficient can
exceed that of the ions and the electron root, corresponding to positive ra-
dial electric field, is instead attained. If some flux surfaces exhibit the ion
root and others the electron root, there will be an intermediate region where
the radial electric field varies rapidly, giving rise to strongly sheared E ×B
rotation. This is indeed observed in experiments.

4.5 Quasisymmetric and quasi-isodynamic configurations

The neoclassical transport in a perfectly quasisymmetric stellarator is very
similar to that in a tokamak. We have already seen in Eq. (71) that the
guiding-centre Lagrangian is identical to that in a tokamak if one makes the
replacements

θ → θ − (N/M)ϕ,

G→ G+NI/M,

χ→ χ−Nψ/M.

With these replacements, the orbits are thus identical, and so is therefore
the first-order drift kinetic equation (104). There is a one-to-one mapping,
an isomorphism [70], between the drift kinetic equation in a tokamak and a
quasisymmetric stellarator. If one has computed the neoclassical transport
in a tokamak, the corresponding transport in a quasisymmetric stellarator
can thus be obtained immediately by a suitable replacement of variables.

To see this explicitly, we assume that the magnetic field strength depends
on the coordinates as B = B(ψ, ϑ), where ϑ = θ − Nϕ/M , and note that
then

b · ∇f =

(

ι− N

M

)

v‖B

ιI +G

(

∂f

∂ϑ

)

ψ,ϕ
,

and

vda · ∇ψ =
v‖
B

(G∇ϕ×∇ψ) · ∇
(

v‖
Ωa

)

=

(

G+
NI

M

)

v‖B

ιI +G

∂

∂ϑ

(

v‖
Ωa

)

ψ,ϕ
,

so that the first-order drift kinetic equation (104) becomes

v‖B

ιI +G

∂

∂ϑ

(

fa1 +
G+NI/M

ι−N/M

v‖
Ωa

∂fa0
∂ψ

)

=
Ca(fa1)

ι−N/M
. (127)
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For an axisymmetric device M = 1 and N = 0, and for a quasisymmetric
stellarator N 6= 0. It is clear that if we compare two devices with the same
magnetic field strength dependence B = B(ψ, θ − Nϕ/M) but different
N/M , the distribution function will be same if the collision frequency ν and
the radial gradients are adjusted so as to make

ν

ι−N/M
and

G+NI/M

ι−N/M

∂fa0
∂ψ

(128)

the same in the two devices.
It follows that in perfectly quasisymmetric stellarators there are no col-

lisionality regimes where the transport scales as Eq. (112) or (119). In
practice, however, it is difficult to achieve quasisymmetry to the accuracy
required to avoid enhanced neoclassical losses, as compared with tokamaks.
Neoclassical transport tends always to be important in stellarators, at least
if the temperature is sufficiently high. There is, in all stellarators so far,
however quasisymmetric or omnigenous, always a 1/ν-regime of enhanced
transport, as can be seen, for instance, from several figures in Ref. [63].

In quasi-isodynamic magnetic fields, the mathematical problem of calcu-
lating the neoclassical transport can also be reduced to that in a tokamak,
if the collisionality is sufficiently low [43, 44]. This is readily seen by using
Eq. (87) in the drift kinetic equation (104), written as

v‖∇‖

(

fa1 + ∆ψ
∂fa0
∂ψ

)

= Ca(fa1),

where the radial displacement ∆ψ is split into a “tokamak” part and a
“stellarator” part,

∆ψ = ∆tψ + ∆sψ,

defined by

∆tψ = − I

Ω

[

v‖(l) − v‖(l0)
]

, (129)

∆sψ = − ∂

∂α

∫ B(l)

B(l0)
h
∂

∂B

(

v‖
Ω

)

dB. (130)

The distribution function can thus be split accordingly,

fa = fa0 + fat + fas.

where the tokamak part, fat, -solves the kinetic equation

v‖∇‖

(

fat + ∆tψ
∂fa0
∂ψ

)

= Ca(fat),
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which is identical to that solved in the neoclassical theory of axisymmetric
systems. The stellarator part can be written as

fas = ga − ∆sψ
∂fa0
∂ψ

,

where ga solves the equation

v‖∇‖ga = Ca

(

ga − ∆sψ
∂fa0
∂ψ

)

.

At low collisionality, where the bounce frequency exceeds the collision fre-
quency, it is appropriate to expand the solution, ga = ga0 + ga1 + · · ·, and
require

v‖∇‖ga0 = 0,

v‖∇‖ga1 = Ca

(

ga0 − ∆sψ
∂fa0
∂ψ

)

.

The orbit average of the second of these equations annihilates the left-hand
side and determines ga0. Since the displacement ∆sψ is odd in v‖, there is
no net drive in the trapped part of velocity space, where thus ga0 = 0. In
the circulating region, we multiply the equation by B/v‖ and take the flux-
surface average, which is equivalant to an orbit average many turns around
the torus, as seen from

〈

B

v‖
(· · ·)

〉

=

∮

dα

∫

B(· · ·)
v‖

dl

B

/∮

dα

∫

dl

B
,

where the l-integral is taken along the field over one period of the device.
Since

∮

dα

∫

∆sψ dl

v‖

vanishes because of the α-derivative in Eq. (130), we conclude that ga0 van-
ishes also in the circulating region of phase space. Thus, at low collisionality,
the first-order distribution function is equal to

fa1 = fat − ∆sψ
∂fa0
∂ψ

. (131)
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4.6 Bootstrap current

One of the most important predictions of the kinetic theory of plasma equi-
librium is the so-called bootstrap current. We have seen in Eq. (34) that the
quantity 〈J‖B〉 is not determined by the requirement of MHD equilibrium
alone and thus needs to be calculated kinetically, by solving the drift kineic
equation (104) or (113). In general stellarator geometry, this is a difficult
task, and the bootstrap current has only been calculated analytically in the
limit of vanishing collision frequency, using a simplified collision operator
[71]. As in tokamaks, the bootstrap current is independent of the collision
frequency in this limit. When the collisionality is finite but small, the first
correction to the bootstrap current is proportional to the square root of the
collision frequency and tends therefore to be important in practice [72]. At
higher collisionality, the current, and indeed all neoclassical transport coef-
ficients, need to be computed numerically [63, 73]. There are, however, two
limits in which an analytical calculation is possible.

The first such limit is that of a perfectly quasisymmetic stellarator, where
the calculation is similar to that in a tokamak according to isomorphism
discussed in the previous section. In accordance with Eq. (127) and (128),
the bootstrap current is proportional to

JBS ∝ G+NI/M

ι−N/M

∂fa0
∂ψ

, (132)

where the term NI/M in the numerator can usually been neglected, being
negligible in practically all stellarators. This physical reason for the scaling
(132) can be understood from the particle orbits in a quasisymmetric field.
Since the canonical momentum (72) is conserved, the radial excursion, ∆ψ,
of a particle as it moves along its orbit can be determined from ∆pϕ = 0,
which implies

∆ψ =
G+NI/M

ι−N/M
·
∆v‖
Ze

for small ∆ψ, so that ∆χ = ι∆ψ. As a trapped particle moves around its
orbit, it is thus shifted outward or inward depending on the sign of v‖ times
the same multiplier as in Eq. (132). For a density gradient with the usual
sign, the bootstrap current is positive (in the sense that it increases the
rotational transform) in tokamaks and quasi-axisymmetric configurations.
According to Eq. (132), it is negative in quasi-helically symmetric ones if
N/M > ι, and then acts to “unwind” the magnetic field.

The second tractable limit is that of quasi-isodynamic geometry, where
the distribution function is given by Eq. (131). Hence the parallel current
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carried by each species on a particular flux surface consists of two terms,

〈

Ja‖B
〉

=

〈

eaB

∫

v‖

(

fat − ∆sψ
∂fa0
∂ψ

)

d3v

〉

,

where the first, tokamak-like, term vanishes if the total current enclosed by
the flux surface vanishes, I(ψ) = 0, so that Eq. (129) and fat vanish. The
second term, which is specific to quasi-isodynamic stellarators,

−
〈

eaB

∫

∆sψ
∂fa0
∂ψ

d3v

〉

= −
〈

2πeaB
2
∫

∆sψ
∂fa0
∂ψ

v3dvdλ

〉

,

also vanishes when the flux-surface average is performed, because of the
α-derivative in Eq. (130). One therefore concludes that the total current
vanishes (for any collision operator) in quasi-isodynamic stellarators.

The importance of the bootstrap current is that it changes the rotational
transform of the magnetic field. This can improve plasma confinement (in
a tokamak because the banana width decreases with increasing ι), and the
bootstrap current is indeed a relatively “cheap” way of producing rotational
transform, which is otherwise created by complicated and expensive coils in
stellarators. A bootstrap curent of either sign will affect the radial profile
of the rotational transform, ι(ψ), and may cause undesired resonances, ι =
n/m, and magnetic islands to form within the plasma. Furthermore, if the
total bootstrap current is non-zero, the rotational transform at the plasma
edge is changed, which may interfere with divertor operation.

5 Further reading

In the present review, an attempt has been made to collect and explain ba-
sic results that are fundamental to the understanding of three-dimensionally
shaped plasma equilibria. The selection of material is inevitably somewhat
arbitrary, but has, first and foremost, been done with the student in mind.
The theory of three-dimensionally shaped plasmas is not an orderly docu-
mented field of theoretical physics, and simple derivations of useful results
can be difficult to find in the literature.

Several important topics have been omitted in this paper, and the great-
est omission is the theory of MHD stability. This is an old and well de-
veloped area of plasma physics – indeed, the energy principle of ideal MHD
[13] originally arose out of the need to assess the stability of early stellarator
experiments – but this topic is already explained pedagogically in several
other texts [2, 16, 17, 74]. Within the area of ideal MHD, other omissions
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are the question of the mathematical existence of equilibria devoid of any
continuous symmetry [23, 27] and the various numerical techniques that
have been developed for calculating such magnetic fields [24, 28, 29]. For a
general introduction to the theory of three-dimentional magnetic equilbria,
the early review by Solovev and Shafranov can be recommended [3].

Regarding other topics, readers specifically interested in neoclassical
transport in stellarators are encouraged to consult Refs. [61, 62, 63]. MHD
equilibrium and stability, magnetic coordinates, particle orbits, and many
other topics are treated in the review by Boozer [75]. General introductions
to stellarator physics that do not go into mathematical details are found in
Refs. [6, 7, 8, 9]. They are valuable both as introductory overviews and as
a source for references to the wider research literature.
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