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A general theory of polarization and spatial information recovery by modal dispersal and phase conjugation is
presented by means of a coherency matrix formalism. The theory is applied to a system that consists of a
multimode modal-scrambling fiber terminated by a conventional phase-conjugate mirror that reflects only one
polarization component. The degree of polarization and the signal-to-noise ratio of the reconstructed field are
discussed as a function of input-beam launching conditions. Some experimental results are also shown for
comparison with the theory.

1. INTRODUCTION

It is well known that when a polarized laser beam is launched

into a multimode modal-scrambling fiber, the initially cou-
pled fiber modes are scrambled among all the fiber modes,
including those of orthogonal polarization by strong inter-
modal coupling, and consequently the output beam from the
fiber shows speckled spatial structures and depolarization.'
These types of beam aberration, i.e., wave-front distortion
and polarization scrambling, can be corrected if the aberrat-
ed fields including both orthogonal polarizations are phase
conjugated. 2 -8 However, it was found recently that even

when only one polarization component of the forward-trav-
eling beam from the fiber was reflected by an ordinary

phase-conjugate mirror (PCM) and fed back into the fiber,
the resultant beam, emerging from the input plane of the
fiber, could be a phase-conjugate replica of the original input
beam including its original polarization state, i.e., this would
be true phase conjugation of vector wave fronts. 9

Since this first observation in such a fiber-coupled phase-
conjugate mirror (FCPCM), a theoretical model'0 was pro-
posed, and a number of new applications, including correc-

tion of nonreciprocal distortions," correction of lossy ampli-
tude distortions,12 temporal data channeling between
beams,' 3 and all-optical beam thresholding,1 4 have been re-

ported. In addition, the fidelity of the true phase conjuga-
tion using the FCPCM was also studied, 5 and it was found
that the fidelity was strongly dependent on launching condi-
tions of an input beam [i.e., input-beam numerical apertures
(N.A.'s)]: if an input-beam N.A. is close to the fiber's N.A.,

then the reflected beam within such an input-beam N.A.
carries nearly the same amount of the noise power as that of

the true phase-conjugate beam, resulting in the degradation
of polarization and spatial information recovery. Although
this input-beam N.A. dependence was explained by a phe-
nomenological model' 5 and its asymptotic case (i.e., a case of

a large N.A. input) was also reported,1 6 a detailed analysis

has not been given so far.

In this paper we present a general theoretical description
of polarization and spatial information recovery using the

FCPCM by means of a coherency matrix formalism. The
treatment involves the analysis of the polarization state of
the field transmitted through the fiber and the dependence
of the polarization recovery and the signal-to-noise ratio
(SNR) of the phase-conjugate field on the input-beam N.A.
The effects of the modal-scrambling property of the fiber
and the fidelity of phase conjugation by the PCM on the
polarization recovery are also discussed. The physical pro-
cesses considered in the present analysis are twofold: (1) a

(time-reversed) phase-conjugation process, which is deter-
ministic in nature; and (2) a scattering process in the fiber,
which results from partial phase conjugation of the mode-
scrambled field and is seemingly completely random (or
stochastic) but is in fact constrained by the unitarity condi-
tion of the scattering matrix (i.e., the energy-conservation
condition). In this case we take the coupling strength in this
scattering process to be essentially the same among all the
fiber guided modes but its relative phases to be random
under the constraint of the unitarity condition. In the anal-
ysis of the polarization properties of the phase-conjugate
field, unlike in the treatment of the Jones calculus for ran-
dom media,17 we do not resort to a statistical ensemble

average over the coherency matrix elements but use the
modal averaging' 0 over phase-mismatched fields in this

phase-conjugation process, which may be analogous to the
phase-matching condition in the coupled-mode theory.18
The main reason for our approach is that one usually treats
only a single fiber in phase-conjugation experiments. In the
SNR treatment, however, we simplify the analysis by using
an a priori knowledge of the statistical properties of a
(speckle) noise field instead of considering statistical prop-
erties of the scattering matrix and its relation to the proper-
ties of the noise field. This is done by assuming a probabili-

ty-density function of the outcoupled noise field in the free
space, and the SNR can then be obtained from the root-
mean-square (rms) value of (statistical) intensity fluctua-
tions of the noise field.

With the above treatment the present analysis enables us
to evaluate theoretically the fidelity of polarization and spa-
tial information recovery by using the FCPCM and to give a
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criterion for the limitation of the use of the FCPCM. Some
experimental results are also shown for comparison with the
theory.

2. BASIC FORMULATION USING
SCATTERING MATRICES

Figure 1 shows a schematic of the FCPCM. An image-

bearing incident field E) is launched into a multimode
modal-scrambling fiber, which is assumed to be linear with
negligible loss. Because of the strong intermodal coupling

in the fiber, the input power initially coupled into any one
fiber guided mode is distributed essentially uniformly
among all the other spatial and polarization modes during
propagation, and the outcoupled beam E(2) from the fiber
exhibits speckled spatial structures and nearly complete de-
polarization. The PCM, e.g., a self-pumped PCM,19 is
placed after a polarizer (set to the x direction) and phase
conjugates only the x component of the field E(2). The
phase-conjugate field E(3) retraces the original path and is
launched into the output side of the fiber. After the propa-
gation and the strong intermodal coupling in the fiber, the
left-traveling field forms the output field E(4) at the input
end of the fiber.

By using the same notation as in Ref. 10, the input field

E(1) is expressed, in terms of the fiber guided modes, as

N

E(1)= [a(')ex. + ae,.]

n=1[A'(l)]( )

where N is the total number of the fiber guided modes in one
polarization; exn is the nth transverse fiber guided mode,
which is predominantly x polarized; eyn is the nth y-polar-

ized mode; and A(') and A(') are column vectors of rank N
whose elements are the complex amplitudes an and a,
respectively. Note that we neglect the coupling into other
possible fiber modes (e.g., leaky and radiation modes) for

simplicity of the analysis.
The output field E(4) is expressed as

E(4) = rM'CM*[E(l)]*, (2)

where r is the PCM amplitude reflectivity, M is the scatter-
ing matrix of the fiber in the forward direction given by

Lmyx Myy_ 

in which Mij (i, j = x, y) are N X Nsubmatrices, and M' is the
scattering matrix in the backward direction. In addition,
the matrix C, representing the removal of the y polarization
by the polarizer, is given by

C =[I ] (4)

where I is an N X N unit matrix. We note that a mode-
independent (scalar) reflectivity ofthe PCM is assumed in
Eq. (2). If a mode-dependent reflectivity is taken into ac-
count, r should be replaced by a 2N X 2N matrix. We
discuss this effect in Section 4. In what follows we examine

Multimode Fiber
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Fig. 1. Schematic of the FCPCM for polarization and spatial infor-
mation recovery. The (polarization- and modal-scrambling) multi-
mode fiber is assumed to be linear with negligible loss.

the properties of the scattering matrices and express the
fields E(2) and E(4) in terms of the scattering matrix ele-

ments.
Because of the conservation of the energy in a lossless

linear fiber, we require the following unitarity condition1 0 :

MtM =[I 0], (5)

where t denotes the Hermite transpose operation. By using
Eq. (3), Eq. (5) can be translated into the following sum
rules:

(Mxx)ik(Mxx),k' + (Myx)ik(Myx)k'= 0

(Myy)ik(Myy)k' + (Mxy)ik(Mxy)lk' = 0

(Mxy)ik(M..)i'k'+ (MYY)ik(Myx)i k'= 0

(MXX)ik(Mxy)iko + (Myx)ik(Myy)k' = 0,

(6a)

(6b)

(6c)

(6d)

and

(MXX)ki(MXX)ki + (My)ki(Mxy)ki = kk

(Myy)ki(Myy)k'i + (Myx)ki(Myx)k'i = 0

(My.)ki(M.dk'i + (MYY)ki(Mxy)ki = 0,

(MXX)ki(Myx)k'i + (Mxy)ki(Myy)*'i = 0,

(7a)

(7b)

(7c)

(7d)

where henceforth summation over repeated indices is under-
stood.

For the time-reversal symmetry of any fields in a lossless
linear fiber we also require that 9"10

M'M* = ]0.
From Eqs. (5) and (8) we obtain

M = Mt,

(8)

(9)

where t denotes the transpose operation. By using the sub-
matrices given in Eq. (3), Eq. (9) can be rewritten as

(MXX)ij =(MXx)ji'

(Myy)ij = (Myy)ji,

(M'y)j = (My)jL.

(M ) = (M )i

(lOa)

(lOb)

(lOc)

(lOd)

Here we note that the elements of the scattering matrices are
interrelated by the constraint given by Eqs. (6), (7), and (10).
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3. SPATIAL AND POLARIZATION
PROPERTIES OF THE FIELD E(2)

With the relation E(2) = ME(), we express the correlations
between the 2N modes of the field E(2 ) by means of the

following 2N X 2N Hermitian coherency matrix:

L(2)- (E(2)E(2)t)

[L(
2
) L(2)1

- = x~~~~x xy b (1M(E(1)E(1) )M I = L(2)t L(2)] 

LXY YY

where (. . .) denotes the time average and LM (i, j x, y) are
N X N matrices given by

L(') = MXXL'x)Mx + MXXL)MtY

+ MXYL) tMX + MXYLyJMxY, (12a)

L(2) = M XL()Mt + MYXLJ)MtY

+ LYYI4?M + M (12b)

L(') = M QL~)At + M L(l)AMt

+ MXYLI)
t
My + MXYL(I)MtY, (12c)

in which L() (EME(1)t) denotes the correlations between

the 2N modes of the input field EM1). We note that the effect
of a possible decrease of the temporal coherence of the light

source at the output, which is due to the modal dispersion in
the fiber,20 is not taken into account in the present analysis.

We now introduce the following modified 2 X 2 coherency

matrix:

j()-Ej1) j
2
)

c2)[ Xj(
2
)* j

2
) I

xy jyy 

Here each element J(j2) (i, j = x, y) is given by

N N

j(j2) = J [L keike*jldxdy
k=1 1=1

N

= (const.) X [L,()]k

k=1

= (const.) X Tr[L(?)].

(13a)

(L1j,= (M4 )kI
2
[Lyy = {yx l Xx)kk + (Myx)ik(Myx)ik'(Lx kk' 

(k= M kk'

[Lx)i =Y (Mxx~k(MyxAik'[Lxx kk'-

(14b)

(14c)

As was mentioned in Section 1, we assume that, because of
the strong intermodal coupling in the fiber, the amplitudes
of the matrix elements Mij, i.e., the coupling strength be-
tween modes, are essentially the same (or symmetrically and
widely distributed with respect to the diagonal elements
Mii), while their relative phases are distributed essentially
uniformly over the -7r - +7r interval (henceforth we refer to
this as the random coupling approximation; see Appendix
A). Then we see from Eqs. (14) that the input power initial-
ly coupled into any one fiber guided mode is redistributed
among all the other fiber guided modes, including those of
the orthogonal y polarization during propagation. In addi-
tion, the out-coupled different spatial modes possessing ran-
dom phases interfere with one another at any point, result-
ing in the speckled spatial structures in the free space.

The polarization state of the field E(2) can be obtained by
using J(

2
). From Eqs. (13) and (14) we have

JX
2
X = akk[Lv.)]kk + akk[Lxx] kk' 

(k k')

J(y
2
y) = (6kk - akk)[Lxx)]kk - akk'[Lx(x] kk' 

(kk)
J 2) = bkk[LT] kk

(15a)

(15b)

(15c)

where we used the sum rules given in Eqs. (6) and introduced
the following parameters:

(16a)

and

bkkE-(Mxx)ik(Myx)ik.

(13b)

(16b)

Here we note that the terms akk, and bkk' in Eqs. (16) are
(k 6k')

much smaller than akk because of the modal averaging in the
random-coupling approximation. The Stokes parameters
(So, S1 , S2, S3 ) and the degree of polarization [(

2
)] (Ref. 22) of

the field E(2) are then given by

In Eq. (13b) Tr denotes a trace of a matrix, and we have used
the orthogonality of the fiber modes,21 i.e., ff, eime*jndxdy =

(constant) X amn (i, j = x, y; m, n = 1,... , N), where 
denotes the whole fiber cross section and a circular fiber is
assumed, so that we can neglect the contributions of the off-

diagonal elements of LX2), L2) , and L(2) to J(2) on the detec-

tion of the field E02) over o-. We note that, unlike in the usual
definition of the coherency matrix,2 2 the elements of J(

2
)

have the dimensionality of power [hereafter, however, we

shall omit the constant in Eq. (13b) for brevity].
For the sake of simplicity we consider the x-polarized

input here. Then, with L(') = L(') = 0, we can write the

diagonal elements in Eqs. (12) as follows:

[Lxx)] = (Mxx)ik(Mxx)ik'[Lx(x]kk'

|(Mxx)ikl'[L()]kk + (Mxx)ik(Mxx)ik'[L(1}] lk'

(k#k')

N

so JMx + J = [L(1)]kh

k=l

-J Jx2x)- J () = 2ak[L(1)]k + 2akk'[L'xx)] kk' -SO

Y ~ ~~~~~~~~(k Sk'

S2-2y) + y) = Rtk'[L(1)1kk'),

i[J-(2x) -Jxy)] = 2 Imjbkk,[Lxx]kk'1

and

p(2) (S 2 + s + )1/2

So

(17a)

(17b)

(17c)

(17d)

(18)

By using the random-coupling approximation, i.e., akk 0.5
for any k, p(2) can be reduced to

p(
2
) - (

2
+ iU12)l/2

! (19)

(14a) where
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Table 1. Experimental Data of the Stokes
Parameters and the Degree of Polarization of the

Field E(
2
)a

Input-Beam N.A. Si/so S2/SO s3/so p(2 )

0.02 0.003 0.008 -0.016 0.018

0.11 0.033 0.023 -0.028 0.049

0.25 0.004 0.041 -0.021 0.046

In the experiment a multimode (N.A.fiber = 0.29; 5 m long) graded-index
fiber and a linearly polarized input (X = 5145 A) were used.

2akk4[Lxx] kk'

q (k k') (20a)
so

and

2bkk'[L(x)]kk'U =. - . (20b)
sO

We thus find that q and u, which are expressed by akh'
(k k)

and bkk', respectively, are responsible for the residual polar-
ization of the field E(2). Table 1 shows the experimental
data of the Stokes parameters and the degree of polarization
of the field E(2

) for the different values of input-beam N.A.'s.

It is seen that sl, s2, and S3 are much smaller than so; there-
fore the degree of polarization p(

2
) is much smaller than

unity, i.e., Iql and lul are much smaller than unity, and conse-
quently the field E(2) is almost completely depolarized, inde-
pendently of the input-beam N.A.'s. These data clarify the
validity of the random-coupling approximation and the as-
sumption of the modal averaging by which the cross terms
akk, and bkk' are much smaller than unity. We note that

(k k')
the parameter q will play an important role in the fidelity of

the reconstruction of the original information, as we discuss
in Section 4.

=j {(kxx)ki(A4xx)kj (I =d I)
D 0i - l° (i = I)

= -(Myy)ki(Myy)kj (i i D

Qi= (Mxx)ki(Mxy)k;.

Then the field E(4) given by Eq. (21) becomes

E(4) = l/2r[E(l)]* + V,

(23a)

(23b)

(23c)

(24)

where V = rS2[E(O)1*. The first term on the right-hand side
of Eq. (24) corresponds to the true phase-conjugate replica
of the input field E(l, while the second term corresponds to
the noise-possessing random phases in the field E(4).

Figure 2 shows a diagrammatic explanation of the forma-
tion of the field E(4). The ith fiber guided mode of the x
polarization that is excited initially at the input plane of the
fiber is coupled into all the fiber guided modes at the output
plane in the forward direction. After the elimination of the
y-polarized component and phase conjugation of the x-po-
larized component, each mode at the output plane is, again,
coupled into all the fiber guided modes at the input plane in
the backward direction. In Fig. 2(a) the (time-reversed)
paths in the backward direction are deterministic and are
exactly the same as those in the forward direction, resulting
in a constructive coherent superposition of the scattered
fields at each mode at the input plane. Because of the
constructive interference this true phase-conjugate field,
corresponding to the term l/2 r[E(l]* in Eq. (24), has almost
one half of the total reflected power. [Note the factor 1/2 in

Eq. (24) and remember that almost one half of the power of
the field E(2) is eliminated by the polarizer and the remain-

input plane output plane

4. SPATIAL AND POLARIZATION
PROPERTIES OF THE FIELD E(4)

In Section 3 we showed that the field E(2) suffers spatial

distortions and nearly complete depolarization because of
the strong intermodal coupling in the fiber. In this section
we show that such a distorted and depolarized field can be

corrected, under certain conditions, even when only one
polarization component of the field E(2) is phase conjugated.

First we rewrite Eq. (2) as

E(4) = rS[E(i)]*, (21)

where the scattering matrix S in the round-trip propagation
is given by S = M'CM*. Here we again use the random-

coupling approximation, i.e., Yi 1 (Mxx) ik12, ZN 1 (Mx)ikI2

0.5. Then S = S1 + S2, where

2s [0 ]
and

S2 = [Qt D,

in which D, D', and Q are N X N submatrices given by

(22a)

x-polarized
modes

y-polarized
modes

(a)

ii

I -- ~~~~~~ 

I - I -. - I 

- - -- n

I I(b

(22b) Fig. 2. Diagrammatic description of the formation of the field E(
4)

:
(a) deterministic phase-conjugate paths that result in true phase
conjugation of the input field E); (b) randomly scattered phase-
conjugate paths that result in the noise.
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der is reflected by the PCM.] On the other hand, in Fig. 2(b)
the remainder of the paths in the backward direction are
random and different from those in the forward direction,
and therefore because of the random interference at each
mode at the input plane these field components form the
noise V given in Eq. (24). We will see below that the total

power of this noise is nearly the same as those of the true
phase-conjugate field, but it is distributed essentially uni-
formly among all the fiber guided modes, independently of

the input-beam N.A.'s. For this reason the noise power per
mode is much smaller than that of the true phase-conjugate
field, provided that the input field initially excites only a
small fraction of the fiber guided modes (i.e., a small input-
beam N.A. is used) and that the detection is made within
such a small input-beam N.A. In this case we can actually

neglect such noise contributions designated by V in Eq. (24),

and the field E(4) can be the true phase-conjugate replica of
the input field El.

The correlations between the 2N modes of the field E(4)
can also be expressed by means of the following 2N X 2N

Hermitian coherency matrix:

L (4)- (E (4)E4 M)

= Irl2SL(l)*St

= IrI¶14L(l)* + S2L(I)*S2t + 1/2[S2L(l)* + L(l)*S2t]1.

(25)

In the right-hand side of the last equation above, the first
term corresponds to a time-reversed polarization state of the
input field El, while the rest of the terms correspond to the
noise. Since the expression given by Eq. (25) is linear in L(l),

it is sufficient to consider the case of the x-polarized inci-
dence for simplicity. In this case we can express the noise

terms in Eq. (25), in terms of the submatrices D and Q given
by Eqs. (23), as

S 2L(l)*S2t = [DL)Dt
DLxx) 1
QtL(1)*Q,

DL('* + L('*Dt
[ 2L(l)* + L(l)*S2t] -L Qf~

2 2 tI)

L()*Q]
O j

Each diagonal element in Eq. (26a) can be rewritten as

[DL(')*Dt]ii = ID l 2[L(lJ1% + DD*,[L(1)I* 1u, (27a)

[QtL(l)*Q]ii IQ I2
[L(1x]%+ Q*iQ1,[L()]* Ij, (27b)

(1i 1')

[DL(')*Q]ii = DiQlti[L(1)1* (27c)

where the summation over and 1' is understood. In the
above expressions Eq. (27a) corresponds to the noise power

of the x-polarized ith fiber guided mode of the field E
This consists of the interference between the other initial
modes that are finally coupled into the x-polarized ith fiber
guided mode through different scattering paths after the
round-trip propagation. Likewise Eq. (27b) corresponds to

the y-polarized noise power of the ith fiber guided mode.
Each diagonal element in Eq. (26b) can also be rewritten

as

[DL(')* + L(1)*Dt]ii = 2 ReJDiJL(1)]*J,

[L(x)*Q] = QuJ [L()]1

(28a)

(28b)

where the summation over I is again understood. Equation

(28a) corresponds to the interference between the true
phase-conjugate field and the noise field at the ith fiber
guided mode of the x polarization. This term is related to
the residual polarization of the field E(2 ). Note that Da = ail
for i 0 1 and therefore the total power of this noise contribu-
tion, Y ,[DL')* + L(Z)*Dtlii/2, is equal to qso/2; see Eqs.
(16a), (20a), and (23a).} We also note that this noise is

distributed only inside the input-beam modal distribution
[Q)]ii, i.e., this noise is x polarized.

In order to estimate the ratio of this noise power to the
true phase-conjugate beam power per mode, we consider the
simple form of the scattering matrix elements, Mij = 1N
exp i(k0).10 Then, by inserting this form into Eqs. (27), we

immediately see that [DL(1)*Dtii and [QtL2*)*Q]ii are of the

order of so/N independently of the mode number i, where the
total input power s0 is given by Eq. (17a). It is therefore

seen that the x- and y-polarized noise powers given by Eqs.

(27) do not differ from each other significantly at any ith
mode, so that the noise power of the field E(

4
) is almost

essentially uniformly distributed among all the fiber guided
modes, independently of the input-beam N.A., i.e., of the

distribution of [L(1)]ii. We will see below that this noise is

nearly completely depolarized. The ratio of the noise power
to the true phase-conjugate beam power per mode is of the
order of Mo/N (Mo is the number of the fiber guided modes
that are excited initially). This ratio can be negligibly small
when MO/N << 1, justifying the fact that the noise V in Eq.
(24) can be neglected for small N.A. inputs. In addition, the

noise given by Eq. (28a) is of the order of IqisO/Mo, where q is

given by Eq. (20a). The ratio of this noise power to the true
phase-conjugate beam power per mode is of the order of qi,
which is also much smaller than unity and is independent of
the input-beam N.A.'s. Although this noise is x polarized,
its spatial structure is distorted because of the random
phases. Therefore we refer to this as the polarized noise.

We are now in a position to evaluate quantitatively the

polarization recovery of the input field E(1M as a function of

input-beam N.A.'s. Suppose that the whole power of the
field E(4) is detected. Then, according to the definition of
the coherency matrix [see Eqs. (13)], the polarization state of
the field E(

4
) is expressed by means of the following 2 X 2

coherency matrix of the field E(4
):

4) =J(x4x) X4
jl

4
)* 1j4)l

L j yyJ

= /41IrI
2 l+ Jn$oise,

where

(30a)

and

,j(4) = fTr[L ) - /irl2so Tr[Lx(y)

noise Tr[L 4)] Tr[L4)]J
(30b)

(29)
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After some calculations using Eqs. (25)-(27) together with
the sum rules, each component of Jn4ise can be written as

[oise]xx = (l + /2qso)lr12, (31a)

[J
4
4)ise]yy = (/4s0 - al)lr12 , (31b)

J44.isehxy = (a2 + l 4vso)lrl
2, (31c)

where

a1 = Tr[DL()*Dt], (32a)

a2 = Tr[DL*)*Q], (32b)

2 Tr[L(l)*Q]
V = XX ~~~~~~(32c)
sO

and the total noise power PN is found to be

PN=-Tr[Je4o)ise = /4 lrlso(1 + 2q). (33)

It is seen from Eqs. (29)-(33) that almost one half of the
reflected power [i.e., r12(1 + 2q)so/4] is from the noise and

the rest is from the true phase-conjugate beam. Since the
polarization noise terms [given by alr2 for the x polarization
and by (so/4 - ao)r12 for the y polarization] can be regarded

as the probabilities that the initial th mode of the x polar-
ization is randomly coupled into all the fiber guided modes
of the x and y polarizations after the round-trip propagation,
these two terms may be almost equal, and then we have al
so/8. Consequently we can write the 2 X 2 coherency matrix

of the noise as

J4nise- C>X 2 1 ]' (34)

where X - IrI2so/8 and we have neglected a2, which is smaller

than vso/4 because of the complete phase mismatching.
Note that, since v is the same order of magnitude as that of q

and u, most of the noise expressed by relation (34) is nearly
completely depolarized, except for the excess x-polarized

noise denoted by 4qX. The degree of polarization for the
total integrated intensity of the field E(4 ) is then given by

p(4) 1+ 2q
2(1 + q)

(35a)

j 4)
R - X

= 
1/81rl2(3 + 4q), (35b)

where we neglect the second-order terms in q and v. It is
seen from expressions (35) that P(4) and R depend on the
residual polarization of the field E(2), i.e., nonzero values of
q. Furthermore, the degree of polarization recovery9 p,
which is defined as p [Jx - Jy][Jx4 + Jy)] i.e., the
recovery of the linearly x-polarized component, is found to
be equal to p(4) to first order in q and v. If a linearly y-
polarized light is used as an input, we obtain the same results
as those given above with q = 2D'1[L(')g/so. Finally, if the
field E(2) is completely depolarized (i.e., q = v 0 O), we obtain

j(
4

) F0 X] (36)

so the noise field in the field E(4) is completely depolarized

and one half of the reflected power is equally distributed
among all the fiber guided modes of both polarizations. In
this case the degree of polarization P(4) of the total integrat-
ed intensity of the field E(4) goes to 0.5. This asymptotic

behavior was also observed and explained theoretically by
McMichael et al.

16

In practice, however, the input field E(l) excites only a
fraction of all the fiber guided modes (i.e., the input-beam
N.A. is smaller than the fiber's N.A.). In addition, the
detection is usually made only within the same (input-beam)
N.A., and therefore the total noise power within the detec-
tion area is smaller than the total noise power discussed
above. To see the effect of the input-beam N.A. on the
degree of polarization p(4), we introduce the following modal
partition functions for the true phase-conjugate field and
the noise field, respectively:

true phase-conjugate power in the ith mode
2X

[LV)Iii

so

polarized noise power in the ith mode
4qX

(37a)

and the reflectivity R, defined as a ratio of the x-polarized
reflected power to the input-beam power for the x-polarized
input beam, is given by

A depolarized noise power in the ith mode of each polarization
X

[DL(')*Dt]ii

(a)
[QI*Q 37c)

(X)

Re[DL(x)* ]= .~~~~~~~~~~
qso

2

(37b)
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Using these partition functions and the maximum mode
number M on the detection and then diagonalizing J(

4
), we

can express the polarized power PpO1 . and the depolarized

noise power PM as

where [r1] is a mode-dependent reflectivity that is a 2N X 2N
matrix. The explicit form of [rl] may depend on a type of

the PCM. We then identify the scalar reflectivity r used so
far as an effective scalar reflectivity such that

M M

PP. = 2XA.Z Oi + 2q E Ai)

i=l i=l 

(38a)

and

M

PM = 2X Ai,

i=1

(38b)

where we neglect the contribution of the off-diagonal ele-

ments in L(
4

) and also the second-order terms in q and v.

Then the degree of polarization P(4) and the reflectivity R on
the detection are given by

p(
4
) = PPOI.

PP-L + PM

1 + 2ql
1 + 2ql + 132 (39a)

and

1 2M
R = 8 Ir121 Oi(2 + 4ql + 12),

i=1

(39b)

where

Tr[E(')E(')'] = IroI2 Tr[E(2)*E(2)*t ] + Tr[E OE (3) ]

+ 2 RejTr[rOE )*E )f]}

-- 1 2 Tr[E (2) *E (2)*I].

We then define the efficiency -q(O < •7 S 1) as

Iro12

=I 
2

(42)

(43)

which denotes a fractional power of the true phase-conjugate
field E2 ) in the total power of the field E 3) reflected by the
PCM. For the output field E(4) we can write [see Eq. (21) for

comparison]

E = roSE(l)* + MEW

- E(4) + E4) (44)

We further assume that each mode of the wrong phase-

conjugate field E 4) has no correlation to the other modes
[i.e., the field Ew is completely depolarized], so that we can

neglect the interference between E(4) and E(4) and the resid-

ual polarization of E w (and therefore 2 RefTr[rbE) *EW )t]).

Under these assumptions we may express J(
4
) as

j0) = j(4) + j0)

qX[2 + 42q + 1 2v] + 2(1 - + q 1 ]

(45)

where we have assumed the detection of the whole power of

the field E(4) and X is again given by IrI2so/8. From relation

(45) we see that the true phase-conjugate beam power is

decreased by the factor n but the depolarized noise power is
increased because of the field EW . Consequently we can

write the following general formulas for P(4) and R [see Eqs.

(39) for comparison]:

p(4) = 1 + 2qO1

1 + 2q1l + [1 + 2(E - 1)(1 + q)102

(46a)

where expressions (34) and (37) were used to derive Eq.

(39b). From Eq. (39a) we see that P(4) is again equal to the

degree of polarization recovery p and that p(4) approaches
0.5 asM - N.

So far we have treated r as a scalar value, i.e., r is indepen-

dent of the spatial structure of the field Ex . Since the field
E02) emitted from the fiber has a large field of view, the

fidelity of the phase-conjugate field E(3) reflected by the

PCM may be degraded because of spatial frequency depen-
dence of a phase-conjugate reflectivity. In what follows we

consider the effect of this possible degradation on the polar-

ization recovery.
We first decompose the field E(3) into the true phase-

conjugate field E(2)* multiplied by a scalar reflectivity ro and

the possible wrong phase-conjugate field E(3:

E(3) = rOE(2)* + E(3)

= rOE(
2
)* + [r1]E(

2
)*, (41)

and

M

R = -Jr2 2 Oi2 + 4q11 + [1 + 2(E-1)(1 + q)1321, (46b)

where and we have assumed that the depolarized
noise field E(4) has the same partition function as Ai.

We now consider the case of M = Mo so that EM i = 1

and B1 = 1, i.e., the detection aperture is the same as the

input-beam N.A. According to the experimental observa-
tion15 we let 12 have a Gaussian distribution of the average

depolarized noise intensity 'd in each polarization in the

detection plane (which is usually a far-field plane of the fiber
end). Replacing a discrete modal intensity by a continuous

one for a large N, that is,

Id= 10 exp( - (47)

M

>LAi
0,=i=1
11 M

Zei
i=1

and

(40a)

M

Ai

132 M

zOi
i=1

(40b)
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Fig. 3. Theoretical curves of (a) the phase-conjugate reflectivity R
and (b) the degree of polarization p(4) as a function of (0/ko)

2
for (q,

7) = (0, 1), (0.035, 1), (0, 0.8), (0.035, 0.8). The Gaussian distribu-
tion (/o = 0.5) of the depolarized noise intensity is assumed. The
experimental data of (a) R (a) and (b) p (0) and p(4) (0) are also
shown.

where A is an effective diameter of the depolarized noise

intensity distribution in the detection plane, and Io = Ir12so/
2r SO that ffe Iddxdy = IrI2so/8, we then obtain

M

E \ 1 - exp[-2(/0 0 )
2
/(0/0 0 )

2
], (48)

i=1

where

00 - the input-beam diameter corresponding to N

and

the input-beam diameter corresponding to M,

where the parameter (0/0o)2 is equal to MIN and to (input-
beam N.A./fiber's N.A.)2.23

* Figure 3 shows the theoretical curves of R and p(4) when A/

Oo = 0.5 is used as a function of (0/0o)2. Four pairs of (q, -) =

(0, 1), (0.035, 1), (0, 0.8), (0.035, 0.8) were used to see the

effects of the residual polarization of the field E(2) and the

fidelity of the phase-conjugated field E(3). [Note that a

positive value of q is consistent with the experiment in which

the successive measurement of the Stokes parameters for
the field E(2) revealed that s1 > 0. See Table 1.] The values
of q = 0 and q = 0.035 used correspond to p(

2
) = 0 and P =

0.05, respectively, when Iqi lul is assumed [see expression
(19)]. The experimental data of R and of p and p(4) for the
x-polarized input are also shown in Figs. 3(a) and 3(b), re-

spectively. (In the experiment a self-pumped PCM using
internal reflection 1s was used. See Ref. 15 for detailed re-

sults.) Since the experimental data of R included unwanted
losses due to reflection and absorption by optical compo-
nents, the proportional factors in the theoretical curves of R
were determined by the least-squares fits with the experi-
mental data. In Fig. 3(a) it is seen that as (4/0o)2 (i.e., an

input-beam N.A.) increases, R also increases and finally
saturates at a certain value. On the other hand, in Fig. 3(b)
P(4) decreases steeply and finally saturates as (0/0o)2 in-
creases. This occurs because the depolarized noise power
within the detection aperture increases as (0/0o)2 increases,
and finally it becomes comparable with the true phase-con-
jugate beam power when the input-beam N.A. is close to the
fiber's N.A. We also see the increase of p(

4
) for q = 0.035

since the polarized noise is added when q is positive. We

note that when the input-beam N.A. is much smaller than
the fiber's N.A. [i.e., (0/'ko)2 << 1], then p(4) is close to unity
independently of q (i.e., almost complete polarization recov-

ery is possible). This is so, as mentioned above, because the

depolarized noise power is distributed among all the fiber

guided modes so that for small input N.A.'s the depolarized
noise power occupied within such a small fraction of all the

fiber guided modes can be negligible compared with that of
the true phase-conjugate beam. It is seen that the theoreti-
cal curves for (q, t7) = (0, 0.8), (0.035, 0.8) in Fig. 3, which are
based on the assumption that the field E(4) given in Eq. (44)

is completely depolarized and distributed among all the fi-
ber guided modes, are found to be in good agreement with
the experimental data.

5. SIGNAL-TO-NOISE RATIO OF THE
RECONSTRUCTED SPATIAL INFORMATION

In this section we consider the SNR of the reconstructed
spatial information on phase conjugation. As was men-
tioned in Section 1, we employ the statistical treatment here.
Goodman2 4 analyzed the SNR, which is defined as the ratio
of the deterministic image intensity I, to the rms value oa of
the total image intensity at the same point, in a reconstruct-
ed image by a hologram. In our case it is necessary to derive

the expression for the rms value of speckle noise intensity

that results from the depolarized noise field reflected from
the fiber on phase conjugation. In addition this speckle
field, possessing both polarizations, is coherently added to
the true phase-conjugate field, which acts as the x-polarized
uniform coherent background signal.

The statistical properties of the sum of speckle patterns
with coherent background intensities were studied theoreti-
cally by Ohtsubo et a.2 5 for uncorrelated, partially devel-
oped speckles and by Steeger et al.2 6 for partially polarized,
partially developed speckles. For the case of speckles from

a multimode fiber, Steeger et al.2 7 found experimentally that
the partially polarized speckle field of a multimode fiber

q 17
- 0 1.0
\ ----- 0.035 1.0-55 -- 0 0.8

0.035 0.8

i~~~~~~----- - -=
. o 4

_ .~~~~~~~~ p(4 )
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follows a negative exponential distribution in each linearly
polarized speckle intensity and the speckle field is spatially
stationary in its intensity and polarization statistics when all
the fiber modes are equally excited. From these results we
may calculate the SNR in our case (for simplicity we put q =
0 and n = 1 in the following calculation). Before the calcula-
tion, the following features of the field E(4) should be repeat-
ed:

(1) The true phase-conjugate field acts as a coherent
background intensity I, in the x-polarized intensity.

(2) The speckle noise field is completely depolarized so
that there is no correlation between two orthogonal x- and y-
polarized components, and in an ensemble-averaged sense
such speckle intensities in both polarizations are equal at
one point in the detection plane.

(3) Each polarized component of the speckle noise field

is fully developed, and therefore its intensity statistics obey
a negative exponential distribution.

First consider the x-polarized intensity that is the sum of
fully developed speckle intensity and coherent background
intensity. The probability-density function of such intensi-
ty is well known and is called a modified Rician density. 2 8

Its characteristic function is given by25

1 (iv) 1 exp -S + -.- is ]
(1 -VInoise) L'noise Inoise(l VInoise)

(49)

where Inoise is the ensemble-averaged speckle noise intensity
of one polarization at one point in the detection plane. For
the y-polarized intensity, which is only fully developed
speckle intensity, its characteristic function can be obtained
from Eq. (49) with I, = 0:

C (iV) 1 (50)

',
(SNR)XY_ 

1'

(53)
= YG 2 )1/2,

\1 + 2y/

where y = I/2noise is the beam-ratio parameter.2 8 If an
analyzer (set to the x-polarization direction) is used to mea-
sure only the x-polarized component of the field E(, then
the SNR can be given straightforwardly by

(54)(SNR)x = (l+ 7_ 1
(1 + 4,y) 

1 1 2

To illustrate the dependence of these SNR's on the input-
beam N.A., we identify I = rI2s/(7r02) [i.e., the input is
assumed to be a two-dimensionally uniform beam with the
diameter 0 so that the total power of the true phase-conju-
gate beam is rI2so/4 given in Eq. (29)] and noise = Id, where

the average noise intensity Id is given by Eq. (47) in Section
4. Then the beam-ratio parameter y is given by2

ly = 0) at the center or the signal beam.

2to 

(55)

We therefore see the parametric dependence of the SNR on
p(4) given by Eq. (39a) through (0/qo) 2 (i.e., an input-beam

N.A.).

Figure 4 shows the dependence of the two SNR's, as given
by Eqs. (53) and (54), on (0/ko)2 at the center of the true
phase-conjugate beam with the value of t'/ko = 0.5 used in
Fig.3. The insets are photographs of the x-polarized phase-
conjugate images of the letter H when (/ko) 2

= 0.015 [Fig.
4(a)] and (0/,o)

2
= 0.74 [Fig. 4(b)]. It is seen that the two

SNR's decrease rapidly when (/,o)2 exceeds about 0.01, i.e.,
the input-beam N.A. exceeds about 10% of the fiber's N.A.
This is because, given a deterministically constant value of

Since there is no correlation between two orthogonal speck-
les, it follows immediately that the total characteristic func-
tion of interest is the product of Eqs. (49) and (50):

>1(iv) = 1 -2 exp[ , + - i - _s]
(1 - iVInoisd) 'noise Inoise(l iV~noise)5

The rms noise intensity is then given by

1 = [P - ()2]1/2

= [ 2 2 (iv)= 0 - (IS + 2noise)2]

= [2lnoise(Inoise + Is)]1/2.

4
1) C,

2

0

(52)

It is seen from Eq. (52) that the rms noise intensity is ex-

pressed by 'noise and the interference term between the true
phase-conjugate field and the depolarized noise field. The
SNR can be written as

Fig. 4. Theoretical curves of the two SNR's, (SNR) 5 y and (SNR) 5,
at the center of the signal beam as a function of (0/,o) 2. The
Gaussian distribution (/00 = 0.5) of the noise intensity is assumed.
The insets are photographs of the x-polarized phase-conjugate im-
ages of the letter H for (a) (0/0o)

2
= 0.015 and (b) (/0o)

2
= 0.74.

8

6

0.4

( )2

0o0

Tomita et al.



Vol. 5, No. 3/March 1988/J. Opt. Soc. Am. B 699

the total power of the true phase-conjugate beam (i.e., Irl2so/
4), the intensity I, at the center of the phase-conjugate beam
decreases as the input-beam N.A. increases, while the noise
intensity 'noise is almost constant independently of the in-
put-beam N.A., resulting in a decrease of y (i.e., a decrease of
the SNR). On the other hand, if the input-beam N.A. is
much smaller than the fiber's N.A., then the intensity I is
much larger than the noise intensity 'noise, resulting in a large
value of -y and therefore in the increase of the SNR. It is also
seen that the two SNR's are almost the same over an entire
range of the input-beam N.A.'s. This indicates that, al-
though an analyzer is inserted in order to eliminate unwant-
ed speckle noise of the orthogonal polarization, the improve-
ment of the SNR is very small.2 9 The above-mentioned
features are apparent from the two distinct photographs in
Fig. 4. Finally it should be noted that the qualitative de-
pendence of the SNR on the input-beam N.A. is the same as
that of the degree of polarization shown in Fig. 3, although
the SNR in a linear scale seems to be more sensitive to the
input-beam N.A.

6. CONCLUSIONS

We have presented the detailed analysis of polarization and
spatial information recovery in the FCPCM by means of a
coherency matrix formalism. The basic physics behind this
phenomenon can be explained in terms of the modal dispers-
al of information and the modal averaging by means of phase
conjugation: because of the modal dispersal the initial in-
formation is distributed among all the fiber modes by which
the original information can be recovered even when one
field component of the mode-scrambled fields through the
fiber is phase conjugated. In this case when the input infor-
mation occupies only a small fraction of all the fiber guided
modes, the (phase-mismatched) noise power per mode is
much smaller (of the order of N-') than the true phase-
conjugate power per mode because of the modal averaging

and because these phase-mismatched fields are distributed
equally among all the fiber guided modes. This gives nearly
complete true phase conjugation of vector wave fronts for
the input-beam N.A.'s that are much smaller than the fiber's
N.A. On the other hand, since the total noise power is
deterministically almost the same as the total power of the
true phase-conjugate beam in the strong intermodal-cou-
pling regime, serious degradation of the fidelity of true phase
conjugation occurs when the input-beam N.A. is close to the
fiber's N.A., and therefore the total noise power cannot be
neglected. We have analyzed such effects theoretically, us-
ing the properties of the scattering matrix and the random-
coupling approximation. In addition, the effects of the
modal-scrambling property of the fiber and the fidelity of
phase conjugation by the PCM have been discussed. We
have also analyzed the SNR in a reconstructed image by the
FCPCM, based on the statistical properties of speckle noise
under the assumption of the negative exponential probabili-
ty-density function of speckle noise intensity distribution in
both polarizations. It has been shown that the SNR is
highly sensitive to the input-beam N.A. and seriously de-
grades when the input-beam N.A. exceeds about 10% of the

fiber's N.A. This may be a criterion for the limit of the
information-handling capacity when this simple FCPCM

scheme is used for pictorial information processing 230 -38

and interferometry3 5 39 applications, but such a limit in spa-
tial frequencies may not cause serious problems in signal-
processing applications, such as gyroscopes,40 -43 sensors,1

and multichannel switching devices,'3"14 44 when signal
beams with large input-beam N.A.'s are not required for
such applications. It should be noted finally that, although
we have specifically considered the case of the x-polarized
input, an input of any polarization state can also be consid-
ered straightforwardly by using the present formulation.

APPENDIX A

Express each element of the scattering matrix M as

Mij = mij exp(iij); (Al)

these elements are interrelated by the unitarity condition
given by Eqs. (6) and (7). Suppose that there is strong
intermodal coupling in the fiber so that the initially excited
fiber modes at the input are redistributed among all the fiber
modes during propagation. Then it is appropriate to as-
sume that the amplitudes mij are either nearly the same or
symmetrically and widely distributed with respect to the
diagonal elements mii, while the phases pij are distributed
essentially uniformly over the -7r - +7r interval under the
constraint of the unitarity condition. In this case the fol-
lowing random-coupling approximation may be adequate
from Eqs. (6) and (7):

EI(1Aij)k121 1

E 2(Mu)k1I2 1
1=1

(A2)

(A3)

where i, J = x, y and k, I = 1,... , N. In addition, because of
the modal averaging over phase-mismatched terms, all the
other cross terms are much smaller than unity.
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