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The polaron mobility is calculated by making use of the general theory of electrical 

conductivity. We take the states determined by Feynman's trial action as the unperturbed 

states and treat the difference between the true action and the trial action as a perturbation. 

Numerical values of the polaron mobility at very .low temperatures are given and are dis· 

cussed in comparison with the results obtained by Shultz and .by Morita. 

§ I. Introduction 

We have investigated the static properties of polaron at finite temperatures 

in the previous paper1> (hereafter referred to as I). We shall investigB;te the 

polaron mobility in the present paper. In the same way as in I, we calculate 

the polaron mobility by using Feynman's path-integral method. In the polaron 

problem, the interaction between an electron and lattice vibrations is so large 

that the usual perturbation theoretic treatment fails. Therefore the calculation 

of the mobility in the present paper will be based on the general theory of 

electrical conductivity recently developed by many authors,2> which is applicable 

to a system which does not allow us to set up the Boltzmann equation. We 

take the states determined by Feynman's trial action as unperturbed states and 

treat the difference between the trial action and the true action as a perturba

tion which yields a decay of electronic current correlation. 

The following assumptions will be made in the present paper. i) The 

electrical conductivity is determined by the asymptotic form of a correlation 

function of electronic current. ii) This asymptotic form has the property of 

exponential decay in time. These assumptions are valid in the case of weak 

interaction. It is not sure whether or not they are applicable to the present 

problem which includes the case of strong interaction. In the present treat

ment, however, ~he states determined by Feynman's trial action instead of the 

states of a free electron are chosen as the unperturbed states. It is expected 

that the perturbation in the former case may be made weaker than in the latter 

case and that the above mentioned assumptions may be valid. In fact the self

energy of polaron at 0°K calculated by using these assumptions agrees with 

that obtained by Feynman3> as will be shown _in § 3. Therefore, the approxi-
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.518 Y. Osaka 

mation used in the present calculation for the mobility may not be so bad even 

for strong interactions. 

In § 2, the calculation of electrical conductivity, using the _path-integral 

method, is discussed. Then, it is applied to the calculation of the polaron 

mobility in the case of a weak interaction. In § 3, we shall calculate the 

polaron mobility in the case of strong. interaction based on the evaluation in 

:§ 2. In § 4, the result will be discussed in comparison with the results by 

Shultz and by Morita. 

§ 2. Calculation of the polaron m.obility 

(in the case of weak interaction) 

In this paper, we take the units so that h=1, the electron mass m=l, 

and the optical phonon frequency = 1. 

The conductivity u is generally expressed by a current correlation function 

X(t) in the following way: 

"' 
u=P 1 X(t)dt, '(1) 

0 

X(t) =(j.,(t)j,+j.,j.,(t) )/2, (2) 

where P=1/kT, ;, is the x component of electronic current operator and 

j.,(t) =e-iHtj.,emt, 

H being the Hamiltonian of the system. In this equation and in what follows 

<A) denotes Tr pA/Tr p where p is the density matrix defined by e- 13H. The 

following equation is easily derived : 

Tr(e-!3H e-iHtj,eiHtf~) 

where e is the electronic charge, A=- it, and X is the electron coordinate, Q 

denotes the many-dimensional coordinates of phonons, and ojoXfx-).. operates 

only ~n x2 i"n p(XlQl, X2Q2; P-A) and not on x2 in p(X2Q2, XlQl; A). In what 

follows; we try to rewrite the density matrices by the use of the path-integral 

method. 

Let us take the Hamiltonian as follows : 

where rk(X) is some function of the electronic coordinate X, and pk are the 

-coordinate and its conjugate momentum of the k-th normal mode of lattice 
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Theory of Polaron Mobility 519 

vibrations, respectively, and M is the reduced mass of the lattice ions. In the 

polaron problem, rk= (2312an-jV) 112 ·1/k·e'k·X and (uk=1 for all k, where V is 

the volume of the crystal and a is the coupling constant used in I. The densi

ty matrix p in the .path-integral representation is given by 

u 

= J exp[- {J ! X2(t)dt+ ~P(q 11 ., q2,.., X(t))} J ~( X(t) : i~~~D, (5) 

where 

and 

0 

P(qrk, q2k• X(t)) =[(qJ+q2t) coshwku-2qu, ·q2,., 

+2Ak ·qrk+ZBk ·q2,,+2Ck]/2 sinhwku, 

u u 

Ak=J rk(X(t) )sinh(uktdt, B"= J r,,.(X(t)) sinhwk(u-t)dt, 

0 0 

u t 

(6a) 

Ck.=- J d~ J dsn,(X(t) )rk(X(s)) sinhwk(u-t) sinh(u,.,s. (6b) 

0 0 

~ (x(t): i~~~~) means that the path-integration must be carried out under the 

conditions X(O) =X1 and X(u) =X2• 

Using (5) and (6), we obtain, after some calculations, the following equa

tion for the polaron problem : 

(e.e12je.e-1)-aNH dQrdQ2p(XrQr, X2Q2; /3-J.)p(X2Q2, XrQr: J.) 

.e->. ), 

=JJexp[- J ! X'2 (t)dt- J! X 112 (t)dt+Q(X'X")J~(x'(t): i:~g);.)) 
0 0 

(7a) 

where N is the total number of unit cells in the crystal and 

Q(X', X") =Qr(X' X"; (3J.) +Scross(X' X"; (3J.). 

Qr and Scross are given by 

), T fl-), T 

= ~ ~ 2 [J dr J do- lw(X" (r), X" (o-) ; 1) + J dr J do- lw(X" (r), X' (o-) ; 1)], 

0 0 0 0 

(7b) 
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520 Y. Osaka 

/1-). ). 

Seross(X' X"; p).) V(e11 -1) /2312 tX?r= [ ~ ~ 2 J dr J dO" Iw(X1 ( r), X" (0") ; 1)]. 
0 0 

(7c) 

where 

Iw(x(r), y(cr); X) =eX</1-r+o-)-.iw(«:(r)-y(u))+eX(r-u)+iw(oo(r)-y(u)). ( 7d) 

In this section, we hereafter confine ourselves to the case in which the 

interaction of the electron with phonons can be treated as a small pertur

bation. In order to calculate the mobility in such a case, we shall make the 

approximations that (1) the correlation function of electronic current is, as

sumed to have the property of simple exponential decay in time and that (2) 

all averages over the canonical distribution are replaced by those of the unper

turbed system. Substituting (7a) in (3) and omitting the unimportant numer

ical factor (e1112/ eP -1) -sN which is cancelled by the normalization factor for 

phonon, we get 

where 

/1-). ). 

Xexp[- 1 +X'2 (t)dt-1 ~ xm(t)dt]x[1+ (28
'
2n-aj(eP-1)V) 

0 0 

). T 

x{~ ~ 2 {1d•1dO"lw(X"(r), X''(O"): 1) 

0 0 

/1-). T /1-). ). 

+ 1 dr J dO" Iw(X'(r), X'(O"): 1) + 1 dr 1 dO" Iw(X'(r), X"(O"): 1)}} J. 
0 0 0 0 

(Sb) 

It should be noted here that the approximation 

exp[Q(X', X") J = 1 +Q(X', X") (8c) 

was used to obtain (Sb). As is seen from (7b), Q(X'X'') is proportional to 

the coupling constant a which is small in the present case. 

The perturbational treatment in the present path-integral method consists 

of replacing exp (±iw·(X"(r)-X"(O"))), exp (±iw·(X'(r)-X'(O"))), and 

exp(±iw·(X'(r)-X"(a-))) by their average values over the path with a free 

action -[1/2·X112 (t)dt and -1:-\/2·X'2(t)dt. In the same way as in I, these 

average values are given by 
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Theory of Polaron Mobility 521 

< ±(tw•(XII(•)-XII(o-)).> 
e . .;r.x,;:~o 

. · ( w 2 
( (r-o-) )) =exp(±tw·(X~-X 1 )(<-u)jp-A) exp - 2 (r-u) 1- p-A , 

(e±tw·X'<•>)x,x.;.e-:~.=exp( ±iw· (X2-Xl)</p-A) exp (- ~ 2 '(1- p~A)), 

(e:liw·X"<.->)x.x,;~=exp( ±iw· (X1-X2)u/A) exp ( ~ 2 
<T (1+ ; ) ) . (9) 

We shall give another method to calculate the average values of Eq. (9) in 

Appendix I, which will be" used in the calculation in § 3. Noting that the 

identity 

holds with 

-H dXldx2ca;axt"'-:~.> fp-}o.(xl> X2) ca;ax~"') f},.CX2, xl) 

= H dKldK2Kl.,K2:cg{J-}o.(Kl, K2)g:~,(K2, Kl) 

f},.CX1X2) '= (2n-)-s J g},.(K1, K 2) ei<K,x,-x.x.> dK1 dK2 

(lOa) 

and that the density matrix p0 (X1X2; u) for a free electron 1s (v2n/u) 3 

xexp(- (X1-X2) 2/2u), and furthermore, using (8) and (9) one can obtain 

Tr(e-flBe-iHtj.,et_otj.,) = ~ e2 k.,2e-""fll2[1 + ~ {2st2ajVw2(e.e-1)} 
k 'U! 

~ 

X {J dr(A-<) (eP-•(l-k·w+WOJ2)+e-•<-l+k·w+w•J2)) 

0 

fl-:1. 

+ J dr(p-A-<) (efl-•(l-1Nc+w•J2l+e-•<-l+k.·•v+p.t•J2l) 

0 

/3->. :1. 

+ J d< J du(efl-<•-o-)(l-k·w+w•J2) +e<•-o-)(-l+k·w+w•/2)} J. 
0 0 

(11) 

The first four terms appearing in, brackets in the right-hand side of Eq. (11) 

are simplified by using the formulae for a large time t 

- /3+it -it 

-~F(Q)) [ J ds(p+it-s)e-t<.,>• + J ds( -it-s) e-t< .. >•] =2m~ F(Q))a(f(Q)) ), 

0 0 

(A·2·1) 
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522 Y. Osaka 

which will be proved in Appendix II, Here F((J)) andf((J)) are some func

tions of (J). The remaining terms which come from the terms S.,., of Eq. (7c) 

become quantities being independent of t for a large time t as will be shown 

in Appendix II. Then, one obtains 

(12a) 

for a large time t, where 

1/<,.,={21r·2312 a1r/V(e11 -1)} ~ ~ 2 {e 11 1l(1-k·w+ ~ 2 )+a(-1+k·w+ ~ 2 )}. 

(12b) 

This expression of <"k agrees with the collision time obtained by the ordinary 

perturbatioi;l theory with the electron-phonon interaction as a perturbing Hamil

tonian. In the perturbation theory, the energy shift LIE .. and the collision time 

.-.. of an unpertl.).rbed state are given, respectively, by 

LIE .. =PL, J(mJH'Jn)i2/(E .. 0-E,.0), 
m 

1/2m· .. = L, ll(E,.0-E,.0 ) J(mJH'Jn)li, 
m 

where H' is the perturbing Hamiltonian and E.,.0 is the energy of the unper

turbed state m. Comparing these two equations with one another, it is ex

pected that the self energy LIEk corresponding to •k given by Eq. (12) becomes 

LIEk.= {2812a1rj(e11-1) V} L, {e11 P/(1-k·w+w2/2) +P/( -1+k·w+ur/2)}. 
w 

(13) 

This result also agrees with that obtained by the ordinary perturbation treat

ment. 

Adopting the assumption that the asymptotic form of a correlation function 

of electronic current has the property of simple exponential decay in time and 

using of Eqs. (1), (2) and (12a), we get, as the expression of the mobility Po. 

"' 
Po=eP L. k.,2e-<Tr;lf2){1 r e-tt~"dt/L. e-<Tr;lf2>f1. 

k J " 
0 

Substituting the value r;k of Eq. (12b) in this equation, the mobility Po at very 

low temperatures is given by 

Po=e/2iia, (14) 

where 
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Theory of Polaron Mobility 

§ 3. Calculation of the polaron mobility 

(in the case of strong interaction) 

523 

We shall calculate the polaron mobility in the case of strong interaction 

by using the evaluation in § 2. We take states determined by Feynman's trial 

action as the unperturbed states and treat the difference between it and the 

true action as a perturbation. 

We shall start with the approximate expression 

Tr(e-({Hit)Hj.,eiHtj.,) = -e2 JJ dX1dx2ca;axr:c-).) ca;ax~,)G(X1, X2), (15a) 

where 

and 

acxl> X2) =JJ ~(x'(t): i:~g)A)) ~(x"(t): i~~~D 

Xexp[So,.e-:~.(X') +S0,,(X") +So,:~.,.e-:>..(X', X")](1+F(X' X"; (3, A)), 

(15b) 

). ... 

F(X' X" ; (3, A) =2-312 a (e.e -1)-1 u dr J dr:r F 1(X" ( r), X" (r:r)) 

0 0 

,8->. ... ,8->. ). 

+ J drJdr:rF1(X'(r), X'(r:r))+ J drJdr:rF1 (X'(r), X"(r:r))} 
0 0 0 0 

). ... 

+C(e.e .. _l)-1/2 u dr J dtr F 2(X"(r), X"(r:r)) 

0 0 

,8->. ... ,8->. ). 

+ J drJdr:rF2 (X'(r), X'(r:r))+ J d.-Jdr:rF2(X'(<), X"(r:r)}, (15c) 
o- o o o 

where 

Sau(X)=- ~ jx2(t)dt-C(e.e"'-1)-1/2Id•Jdr:rF2(X(r), X(r:r)), (15d) 

0 0 0 

,8->. ). 

So,>-,.e-:>..(X' X") =C(e.e"'-1)-1/2 J d.-J dr:r F 2 (X(<), X(r:r) ), (15e) 
0 0 

F1(x(r), y(r:r)) = lx(r) -y(r:r) l-1(e<P-•+-->+e<•-.->), (15f) 

F 2(x ( r), y( r:r)) = lx( r) -y(r:r)l 2 (e"'<.e~ ... +.-l +e"'< ... -.-)). (15g) 

Here SCJu denotes Feynman's trial action. To derive (15) from (3), we con

sidered F(X'X"; (3A) small, since it corresponds to the difference between the 

true action and the trial action, and we used an approximation similar to (8c) 
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524 Y. Osaka 

in the case of weak interaction. C and cu are variational parameters which 

should be determined so as to minimize the free energy of the system. 

Let·us first consider the term which do~s not include the terms F(X'X"; ~).) 

in Eq. (15b), that is, 

-e2 H dXldX2(a;axr.,-") (aiax~ .. ) H ~( (X'(t): i:~g)-<>) 

(16) 

where 

Sa(X' X") =So,p-A(X') +So,A(X") +So,A,P-A(X' X"). 

As was shown in I, the states determined by the ·trial action So are equivalent 

to the states of a system with the Lagrangian 

(17) 

where 

tc=Mcu2 and M=4C/cu2• 

The Hamiltonian Ho corresponding to the Lagrangian Lo. is expressed .bY 

Ho=- _1_ fJ2/fJxo2 + (--1_ fJ2jfJr2 +~r2) ' (18) 
2mo · 2~ 2 

where the new variables x 0 and r defined by 

x 0= (Mq+X)j(M+1), r=X-q 

are used instead of X and q, and also 

m0 =v2/w2, ~=4C/v 2 • 

The energy eigenvalues of this Hamiltonian are given by 

E 0(k, n1n2na) =k 2/2m0+ (ni+n,+ns+3/2)ll, 

(19) 

(20) 

where k is the wave number specifying a free motion for Xo and n1, na and 

n3 are the quantum numbers of the harmonic oscillator for r. 

It is not so difficult to show, by performing calculations similar to that 

used in § 2, that 

the quantity (16) = ~ e-<P-,>~e-"E~'(mJj,,Jm') (m'Jj.,Jm) 
mml 

(21) 

where we simply express the eigenstates I k n1n2n3) and their eigenvalues 

E 0(kn1n,n3) by lm) and E.,.0, respectively. Using 'Eq. (21) and noting that 

(22) 

we obtain that 

the quantity (16)= ~ e 2 exp{-~E 0 (kn 1 n 2 n 8 )}[kx 2 /m 0 2 
k ......... 

+ (1C~)If2(ni + 1)e-A• /2+ (~)If2nieA• /2]. (23) 
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Theory of Polaron Mobility 525 

Next, we consider the term including F(X'X"; {jJ.) in Eq. (15). This 

quantity .is transformed into 

~ .. fl-~ ~ 

x [ ~ c .. 2(etl-1)-1 {J dr j dO" I .. (X"(r), X"(O"): 1) + j dr j dO" I .. (X'(r), X'(O") : 1) 
0 0 . 0 0 

fl-]>. ~ ~ .. 

+ f dr J dO" I .. (X' ( -r), X" (0"); 1)} + ~ D .. 2(e,e .. _1) -lu dr f dO" J..(X" ( r), X" (0"); tv) 

0 0 0 0 

tl-~ .. fl-1o ). 

+ J dr J dO" I .. (X'(r), X'(O") ; w) + J d-r J dO" /.,.(X'(r), X"(O") ; w)}]. (24) 
0 0 0 0 

where we used the notation of Eq. (7d) and the identities 

JX1-X2J-1=47r L:; etu·<Xt-X•>jVu2, 
u 

JX1-X2 J2 = -8;r3 L:; a(u)fi',/eiu·<Xt-Xolj"V 
u 

and the definitions 

c .. = v' 2812mxjVu' D .. =- i v' 22 7r3 ca ( u )fi' ,//V. (25) 

Now we replace e±iu·(X"(•J-Xli(.-JJ, e±iu·(X'(•J-XI(.-JJ and e±iuo(X'(•l-X"(.-JJ by their 

average values e±iu·(XII(•J xrl(.-))' e±iu·(X'(•J xr(.-JJ and e±iu·(X'(•> XII(.-JJ taken along 

the path with the action So,tl-~(X') +So,).(X") +So,~ . .e-~(X'X") as was done in 

§ 2. These average values are calculated as follows. Noting that 

rr ~ (x'(t) : X2({j-J.)) ~ (x"(t) : Xl(A)) eifo(XI,XII) 

JJ X1(0) . X2(0) 

= L:; ff dqldq2e-<t1-).>E~e>.E'fn, sf/j._*(Xlql)lfm 0 (X2q2)¢~*;(X2q2)¢';..,(Xlql), 
mm1JJ 

where ¢m0 (X1q1) is the eigen-function of H 0, and making use.of Eqs. (A·1·1) 

and (A ·1 · 2), ·it is shown that 

[ rr ~ (x'(t) . X2((j-J.)) ~ (x"(t) . Xl(A)) eifo(XI,XII)]e±iu·(X"(•) XII(.-)) 
JJ . X 1 (0) . X 2 (0) 

= L:; JJdqldq2e-<tl->.lE~HE~, ¢~*(Xlql)¢m 0 (X2q2)¢~*;(X2q2)fj.J~,(Xlql) 
mml 

(26a) 

= L:; e-<P->.>E"m+>.E'fn, ¢~*(Xlql)lfm 0 (X2q2)¢~*;(X2q2)¢';..,(Xlql) 
mml 

(26b) 
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526 Y. Osaka 

and 

[ rr ~ (x'(t). X2({j-).)) ~ (x"(t). XrO)) fiO<XI,XII)]e±"-·<XI(T)-XII(or)) 
JJ . Xr(O) . X2(0) 

= lim ~ ff dqrdq2e-<P->.>Eg.HE;,., ¢'0,.*(Xrqt)lf'm0 (X2q2) 
al-+0,.,.1-+0 mm.f J J 

X ¢0,."'; ( x2 q2) ¢0,., ( xl ql) < m I e:l:"-·X(T) e=Fiu·X(TI) I m >< m' I e±m•X(vl) e=Fm·X(v) I m'), 

(26c) 

where 

The quantity (24) can be replaced, using of Eq. (26), by 

). .. 
~ c .. 2(e11-1)-l u dr J du(e<fl-T+v)ft,•+(r, (]") +e(T-V)j;,;-(r, u)) 

0 0 

13->. .. 

+ J drJdu(e<P-.-+.->jf,->-,+(r, u)+e<.--.->Jf,->.·-(r, u)) 

0 0 

P->. >. 

+ J dr J du(e<P-.-+.->g;,;P->-,+(r, u) +e<.--.->g;,;P->.,-(7:, u))} 

0 0 

), .. 
+ ~ Du2(e11"'-1) -t {J dr J du(e"'<P-.-+.->ft,·+ (r, u) +e"'<.--.->j;,;- ( r, d)) 

where 

and 

0 0 

/3->. .. 

+ J dr J du(e"'<P-.-+v>jf,->-,+(r, u) +e"'<.--.->Jf,->-·-(r, u)) 

0 0 

fJ->. ), 

+ J dr J du(e"'<tJ-.-+v>g;,; 13->-,+(r, u) +e"'<.--.->g;,;P->.,-(7:, u))}, 

0 0 

j;,;±( r, u) = ~ e-PEo<kn,,.,n.> e2 {k,2/m0
2 +V IC~(nr + l)e->."/2 

k~n2ns 

Jf.->-,±(r, u) = ~ e-PEo(kn,n•"'•'e2 {k,2hi),(kn1 n2ns; ru)/mo2 

k,.. ... ,.. 

+(n 1 +l)V1C~e->-•hi),(k, n1 +1, n2ns; ru)/2 

+nrV~e>-•hi),(k, nr-1, n2n8 ; ru)/2}, 

(27a) 

(27b) 

(27c) 
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Theory of Polaron Mobility 

g~P-).,:1:(1", u) = lim :E e-Jillo(im,.nsna> tf 
,.1-+0,rl-+0 kn,. ..,,.. 

X {k"''h;;,(knln,na; rr')hi;,(kn1n2 n8 ; u' u)/mo'+ (n1 +I)y' tc)Je-).• 

Xhi;(kn1nsna; rr')hi;,.(k, n1 +1, n2n8 ; u'u)j2+n1v'IC)Je).• 

Xhi;(kn1n,n8 ; rr')hi;,(k, n1-1, n,n8 ; u' u)/2}, 

and notation 

is employed, for simplicity. 

527 

(27d) 

·(27e) 

For convenience of calculations in what follows, let us consider operators 

X,(r) and e'Xo<Tl•u defined below. X,(r) is defined by 

X,(r) =x01 (r) +)Jr,(r) =x01 (r) +v' )J/211(b,* e-• .. +b,e" .. ), (28) 

where the suffix s stands for one of x, y and z-components, b, * and b, denote 

the creation and annihilation operators of the harmonic oscillator for r,. In 

Eq. (28), the first equality comes from Eq. (18) and the second equality from 

the definition 

r,(r) = (b,*(r) +b,(r) )/v-'211)/. 

ef<i:o(T)·u is defined by 

e'""'(T)•u=eHoT efa:o·ue-Ho•=exp ( Po'- (po-u)') e'"'o· .. , (29) 
2mo 

where p0 is the momentum conjugate to the coordinate x0• It is shown, ac

cording to Eqs. (28) and (29), that 

h~(kn 1 n 2 n 8 ; ru) =exp{ (P- (k=t=u) 2) (r-u)/2m0} exp( -)Ju2/211) 

X (n1nsnsl TI exp ( =t=iv'~ u,b, * e" .. /V211) exp( ± iv'~ u,b,e-• .. jv'211) 
• 

X TI exp ( ± iv'~ u,,b, e""j-./211) exp( =t=i-./~ u,, b,,e-""/v-'211) J'nin,n3 ). ,, 
(30) 

If we are concerned only with the phenomena at low temperatures, ·it is suf

ficient to carry out the evaluation of Eq.(30) in the case of n1=n,=n3 =0. In 

such a case, we have 

h~(kn1nana; ru)n,.=ns-na-o=exp { (k 2 - (k±u)') (r-u)/2mo} 

Xexp( -)Ju2/211) :E TI ()Ju.2)'• exp(-lll,(r-u))/l,! (211)'•, 
t..,•o ' 

(31a) 

h~(k, n1 +1, n2 n8 ; ru)..,__,.._,.8 _ 0 =exp { (k 2 - (k±u) 2) (T-u)/2m0 } exp( -)Ju2/211) 

X[)Jui/J2 f:: n ()Ju,')'·e-•(l,-l){T-<T)/2!Jl,! 
,,-o • 
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528 Y. Osaka 

"' + L; (l1 + 1)2 (~) z, +lo+la(u,YI1 (uy)2t2 (u.)2l8 

Z, =0, Z.=O,ls=O 

xe-•(l,+lo+ls)(•-.-);(t1+1)! l2! la! (211) 11+!o+Ls]. (31b) 

According to Eqs. (23), (27), (28), (29), (31a) and (31b), Eq. (15a) is rewrit

ten, in the case of n1=n2=n3 =0, as 

Tr (e-<ll+it>H j.,eimj.,) 

= :E e-k•IIJ2moe2{k.,2/mo2+V'lqe-:l.•j2} + :E e-Tc•lli2moe2k:c2/mo2 
k k 

}. . 
X [ ~ C,,2 (e11 -1) - 1 {J d-r 1 du(e<ll-•+.-> B .. t(-r-a") +e<•-.. > B .. ;;(-r-u)) 

0 0 

11-;>. • 

+ 1 d-r 1 du(e<ll-•+--> B .. t(-r-u) +e<•-.-> B .. J.(-r-u))} 

0 0 

:1. • 

+ ~ D .. 2 (e"'11 -1) - 1 {J d-r 1 du(e"'<ll-•+--> But(-r-u) +e"'<•-.-> B .. J.(-r-u)) 

0 0 

11-:1. • 

+ 1 d-r 1 du(e"'<P-•+.-> B .. t(-r-u) +e"'<•-.-> B .. J.(-r-u))} J 

0 0 

:1. • 

X [ ~ C,.2(e11 -1) - 1 U d-rJ du(e<ll-•+--> B .. t(-r-u) +e<•-.-> Bul.(-r-u)) 

0 0 

1'-:1. • 

+ 1 d-r J du(e<II-•+-->C .. t(-r-u) +e<•-.->c •• J.(-r-u))} 

0 0 

:1. r 

+ ~ D .. 2 (e"'ll-1)-1 {J d-r 1 du(e"'<P-•+.-> B .. k(-r-u) +e*-.-> B .. l.:(-r-u)) 

0 0 

11-:1. • 

+ 1 d-rJdu(e"'<II-•+-->C .. t.(-r-u)+e"'<•-.. >c .. J.(-r-u))}J 

0 0 

11-:1. :1. 

x[ ~C .. 2 (e11 -1)-1 { J d-rJdu(e<II-•+-->B .. t.(-r, u)+e<•-.->B .. J.(-r, u))} 

0 0 

11-:1. :1. 

+ ~D • ._2 (e"'11 -1)-1 { 1 d-rJdu(e"'<P-•+-->B .. k(-r, u)+e"'<•-.->.B .. J.(-r, u))}] 
0 0 
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Theory of Polaron Mobility 529 

11-'1>. ). 

X [ ~ C,./(e11 -1) -1 { J dr J dCT(e<.8-T+O") c.,; (r, CT) +e<•-.. ) c .. ;;.(r, CT))} 

0 0 

/1-'1>. ). 

+ ~D,/(e .. .e-1)-1{ J drJdCT{e.,<P-•+.-lC .. t(r, CT~+e.,<•- .. JC.,;;(r, CT))}], 

0 0 

where, 

co 

X E f .. (l1l2la) e-•(l,+lo+ls)(•-.. ), 
Z,, Z,,la=O 

B,J.(r, d) =exp { (k 2- (k=F u) 2) (r-CT)/2m0} exp( -7ju2/2JJ) 

(32a) 

(32b) 

X ( f: fuCZ1l2la) e-•(l,+lo+lsl•) ( t f .. (l/ l/ la') e•<l•'+!•'+ls'l .. ), (32c) 
llt~,l 8 =0 l 1 1,~1,l 8 1=0 

C.,~ (r-eT) =exp { (P- (k =F u) 2) (r-CT)/2m0} exp( -7ju2/2JJ) 

X {C7Ju,//2JJ) t fuCZ1l2la) e-•<I,+Zo+Zs-IH•-.. >+ t g~(lrl 2 l 3 ) e-•<t,+Z.+Zs><•-.. >}, 
_ . z.:.., ~' l8=0 l1 , l'l, 18 ,.,.0 

C.,Hr, CT) =exp{ (k2- (k=Fu) 2) (r-CT)/2m0} exp( -7ju2/2JJ) 

X ( t f.,(lrl2ls)e-•<t,+I,+Zs>•) {C7Ju,//2JJ) 
!,, !,, 18=0 

and 

(32d) 

(32e) 

fu (l1Ms) '= (7J/2JJ) Z,+Zo+!s (u,)2t, (uy)2!o (u.)21•/lr! l2! ls!' (32 f) 

g .. (lrl2ls) = (7J/2JJ) t,+lo:z• (u,Y1' (u11 ) 21" (u.) 218 CZ1 + 1) 2/ (l1 + 1) ! l2! ls!. (32g) 

The second and third term in the right-hand of Eq. (32a) are simplified by 

using Eqs, (A·2·1), (A·2·2) and (A·2·3), and is proportional tot. The fourth 

and fifth term become a constant quantities independent of t for a large time 

t, as will be shown in Appendix II, and can be omitted. 

According to the discussion mentioned just above, we can obtain 

Tr(e-<P+itlHj,eiHtj.,) = t.: e-k2.8/2moe2[ (1-[t[/r(k, O))k.,2/mo2 

+V!C7Jet.t{1+it(JE(k, 1)-JE(k, 0))-[t[(l/r(k, 0)+1/r(k, 1))/2}] 

= ~ e-k2.8/2moe2[e-<1tll•<k,o))/ m02 

+~ ei(•+dE(k,l)-JE(k,O))t e-(lti/2)(1/T(k,O)+l/T(k,l)) J' (33a) 
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530 Y. Osaka 

+efia.-;(1, JJ;ltMs))+ :E Du 2 e-u:>.~ 12 "fu(Ztl 2 la)(e"fi-1)- 1 

'u}1 12 la 

(33b) 

where we have used the notation Ek=k2/2m0 and the abbreviations are 

(33c) 

and 

L1E(k, 0) = :E C./e-uo~ 12 "fuUtMa) (efi-1)-1 (p.;(l, IJ; ltMs) +efip.-;(1, IJ; ltMs) ), 
ul1l2ls 

(33d) 

where the abbreviations are 

(33e) 

1/2n-r(k, 1) = I: C./e-u•q 12 "(7Ju 31 2 /2JJ)j~(l 1 M 3 ) (efi-1)-1 (a.;(l, JJ; lil2ls) 
tt.ltl2la 

+efia,;(l, IJ; ld2la)) + :E Du2e-u•q12"(7)U:n2/2JJ)fu(Ztl2la) 
u71 12 l8 

I 

X (a.;(w, JJ; ltl2 l3) +e"fla,;(w, JJ; ltl2la)) + I: Cu2 e-,.'q12"g .. (ftl2 la) 
u11 l, Ia 

(33£) 

(33g) 

The terms including Du of r(k, 0) and r(k, 1) are shown to be zero, by taking 

into account that Du2 contains a a-function a(u) (see Eq. (25)) and JJ:;-fw. We 

retain these terms, however, in order to make it easy to get insight into a re

lation between the energy shift and the collision time. 

It is noted that LJE(k, 0) and r(k, 0) correspond to the energy shift and 

the collision time of the state jk, n1 =n2=n3 =0), respectively, and LJE(k, 1) and 

r(k, 1) the energy shift and the collision time of the state jk, nt=1, n2=n8=0) 

respectively. The energy shift LJE(k, 0) at k=O near 0°K is given, after some 

mathematical manipulations, by 
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Theory of Polaron Mobility 531 

"' 
.LJE(k=O, 0) =- ~ C .. 2 f exp[-u 2 {~(1-e-•t)/2li+t/2m 0 } Je-t dt 

0 

00 

- ~ D .. 2 f exp[-u2 {~(1-e-•t)/2li+t/2m 0 } ]e-"' dt, 

0 

00 

= -alijv:lr w {j dre-T/V r-(1 + (li2-w2 ) (1-e "7 )/liair)} +(3C/liw). 

0 

(34) 

The energy of the ground state determined by the trial action is (3/2) (!i-w), 

which has been calculated by Feynman.3l Therefore, the self-energy of the 

polaron state at 0°K is (3/2) (!i-w) +LIE(k=O, 0). This result agrees with that 

obtained by Feynman, that is, the approximation in our calculation of mobility 

may be considered to correspond to that which gives Feynman's result for the 

:self-energy at 0°K. 

Further, LIE(k=O, 1) near 0°K is given by 

"' 
.LJE(k=O, 1) =- ~ C .. 2 f (1 + (~u, 2 /li)) exp [ -u2 {~ (1-e-•t) /2li+t/2m0} Je-<•+~>t dt 

0 

"' 
- ~D,.. 2 J (1+(~u, 2 /li))exp[-u 2 {~(1-e-•t)/2li+t/2m 0 }]e-<•+<»ltdt. (35) 

0 

Explicit calculation of Eq. (35) is not necessary, because the contribution to 

the mobility at very low temperature from the term including LIE(k=O, 1) is 

neglected as we shall mention below. 

We can calculate conductivity using Eqs. (1), (2) and Eq. (33) in the 

. same way as the derivation of Eq. (14). Near 0°K, we are interested in the 

collision time for the state k=O. If we put r(k=O, 0) =r-0 and r(k=O, 1) =<1> 

we get 

1/<o=2V moa/(e~-1), 

1/ri= (2V m 0 aj(e~-1)) (1+2(~m 0 ) 2 /5li 2 ). (36) 

Using Eqs. (1), (33a) and (36), we get the mobility p. near 0°K given by 

p.= (P.o exp(mo~/li)/m~ 12 ) + CPv /C~ e/2) 

X (1/<I+l/<o)/2{(li+LIE(1, 0)-LIE(O, 0)) 2 +(1/<1+1/r-0) 2/4}, (37) 

where p.0 is the mobility given by Eq. (14). The second term in the right

hand side of Eq. (37) can be neglected compared with the first term at very 

low temperatures. Therefore, we get 

(38) 
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532 Y. Osaka 

§ 4. Discussion 

We compare the ·polaron mobility at 0°K obtained in the proceding sec

tion with those obtained by Shultz4> and by Morita5> which are shown .in Fig. 1. 

Their results are given over a wide range of the magnitude of coupling con

stant. The present result is numerically given in Table I. 

The treatment used by Shultz is as 

follows. He considers the " extended 

Hamiltonian" which gives the same energy

shift as that obtained by Feynman at k=O. 

He says that the use of this Hamiltonian 

in a time-dependent formalism with the 

appropriate boundary conditions gives the 

same results as the evaluation of the path

integration in all orders of the difference 

between true action and trial action. He 

calcuJates the self-energy for all k to the 

first a,pproximation of the damping theory, 

using this "extended" Hamiltonian. Then, 

he calculates the polaron mobility, using 

this self-energy as the unperturbed energy 

of the polaron and treating the interaction 

between electron and phonons as the 

perturbation determining polaron mobility. 

It seeJ?S rather difficult, however, to give 

the concrete justification of Shultz' treatment 

using the damping theory. The equivalence 

of the path-integration and his "extended" 

3 

2 

0 3 5 7 9 
a 

Fig. 1. Theoretical. Value of Polaron 

mobility. 

Hamiltonian is not verified in all the orders of the difference between true ac

tion and trial action. Therefore, the approximation contained in his result of 
the polaron mobility is not evident. 

As was mentioned before, the approximation used in the present calcula

tion for the polaron mobility at 0°K gives the same self-energy as that obtained 

Table I 

ll 

3 3.4 2.55 1.78 0.530 

5 4.02 2.13 3.56 0.282 

7 5.81 1.60 13.2 0.170 

9 9.85 1.28 59.2 0.808 

11 15.5 1.15 181. 45.5 

Parameters at 0°K 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

5
/4

/5
1
7
/1

8
7
3
3
0
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Theory of Polaron Molnlity 533 

by Feynman. Our result of the collision time (33b) includes the absorption 

and emission of phonons followed by the excitation of the internal state of the 

polaron at a finite temperature. Our result is similar to Morita's result up to 

a=7, if the effective mass is put to unity in his formulation. According to 

the present result, the mobility of the polaron increases steeply at a large coup

ling constant even though the increase is slower than the result obtained by 

Shultz where the increase begins already at a smaller coupling constant. This 

increase is expected because when the coupling becomes strong the wave length 

of phonons, which contribute effectively to the polaron scattering, decreases 

more steeply than the localization length of the polaron, so that the polaron 

becomes insensitive to the scattering by phonons. This effective ·wave length 

is proportional to 1/ a 2 and the localization length of the polaron to 1/ a, 

as Shultz already suggested. This fact is based on the assumption that the 

polaron mobility is determined by the scattering of the polaron which is ac

companied with phonon cloud. It has to be noted, however, that the polaron 

mobility related to the electronic current is determined by the scattering of 

the electronic part of the polaron. There will remain some problem in the 

behaviour of the mobility for a large coupling constant. 

At finite temperatures, the deviation from (er> -1) of the temperature de

pendence of the mobility comes from the temperature dependence of the varia

tional parameters v and w, that is, the temperature change of the polaron state. 

Moreover, other mechanisms for the scattering, for example, the internal exci

tation and the spontaneous emission of phonons that occur only at finite tem

peratures, change the temperature dependence of the mobility. Also the second 

term in the rightchand side of Eq. (37), which is neglected at very low tem

perature, has a contribution to the mobility at finite temperature. 

The author wishes to express his thanks to Prof. A. Morita and Prof. 

C. Horie for their valuable discussions. This study was financed by the Scien

tific Research Fund of the Ministry of Education. 

Appendix I 

In this appendix, we shall prove the following two equations : 

( ef=So<X'J+i.,·X'<TJ-X'< .. JJJ~ (x'(t) . X2(u)) 
J 'X1(0) 

= ~) dqe-uE'in¢?,*(X1q)¢m0(X2 q) (mle'"·X<Tle-t .. ·X< .. li~), 

( e:so<X'J+i .. ·X<TJJ ~ (x' (t) . X2(u)) 
J . X1(0) 

=lim I; f dqe-uE'in¢?,*(X1q)c/Jm0(X2 q)(mlei"·X<Tle-i"·X< .. lim), 
Q'~O m J 

(A·1·1) 

(A·1·2) 
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534 Y. Osako 

where the action So corresponds to Hamiltonian H 0 and the operator ei.,·X<•l is 

defined by e•Hoeim·Xe-•Ho. At first, we shall derive Eq. (A ·1·1). 

From the meaning of path-integration, we can see that 

}e8o<X'>(an X'(t)/at 11 )t~o~ (x'(t) : i:~~D = ~} dqe-~ 

X cf/!m* (Xlq)¢'m0 (X2 q) (m\ [ Ho[ Ho .. { Ho, X} .. ]] \m), 
L--n---l 

where lfm0 (X, q) is the eigenfunction of Hamiltonian H 0.. Using this equation, 

we can derive Eq. (A ·1·1) as follows : 

r eCSo(XI)Hm·(XI(•)-XI(.-))]C'!'\ (x'· X2(u.))- re[So(XI)+iO>•(XI(T-<T)-Xl(O))C'!'\ (x'. X2(u)) 
J ..v . X1(0) - J ~) . X1(0) ' 

= i: r eSo<X')[ an ei .. ·X'<•-.-)]- e-iO>oXI(O) (r-a-)n ·~ (x'. X2(u)) 
n~oJ a(r-a-)n .-.-=o n! . X1(0) ' 

= ~ 0 ~} dqe-uE'i,.¢0,.*(Xlq)l/Jm0 (X2 q) 

X [ an (mle<•-.-)Hoei"Xe-<•-.-)Hoe-i"'XIm)] (r-a-)n 
a(r-a-) 11 ·-.-~0 n! 

= ~} dqe-uE'i,.¢0,.*(~ 1 q)lf'mo(X 2 q) (m[e•Hoeim·Xe-•Hoe.-Hoe-im·Xe-.-Holm). 

Noting that e<;.,.x<OJl=exp[im ["'a(t)X(t)dtJ and the boundary condition 

X'(O) =X1, we can see that 

r eCSo(Xl)+iro·X<·lJ~ (x': X2(u)) =lim r eCSo(XI)+imo(X(•)-X(.-))]~ (x': X2(u)). 
J X1(0) .. ~o J X1(0) 

(A·1·3) 

This equation is also simply derived by using the superpositiOn of action. We 

can derive Eq. (A·1·2) in the same way as the derivation of Eq. (A·1·1) by 

using Eq. (A·1·3). 

Using Eqs. (A ·1 ·1) and (A ·1· 2), we can easily derive the average values 

..of Eq. (9). For example, we get 

< eiO>•(XII (•)-XI 1(.-))) x. x,; ~ = { I: e-k• ~/2+ik.·(X.-X,) ( k I eim·X(•) e-im•X(.-) I k)} 
k. 
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Theory of Polaron Mobility 535 

In the same way as the derivation of Eqs. (A ·1·1) and (A ·1· 2), we 

obtain Eq. (26). Applying Eq. (26) to the case of ~eak interaction, we simply 

get Eq. (11). 

Appendix II 

At first we shall derive the formulae (A· 2 ·1) : 

/3+it -it 

~ F((J)) [ J ds(/d+it-s)e-t<•>•+ J ds( -it-s)e-t<•>•]=2n-t ~ F((J))a(f((J))). 

0 0 

(A·2·1) 

We obtain, after some elementary integrations, 

/3+ it 

:E F((J)) f ds(/d+it-s)e-t<•>•= :E F((J))[-("---/d_+_i_,_t)_-1 -· _' J 
.. J .. f( (J')) r ( (J')) · 

0 

We are interested in the asymptotic form of the above equation for a large 

time t. Since exp (-if( (J')) t) oscillates rapidly in time, the term including this 

factor remains finite near the region in which f((J)) nearly equals zero. There

fore we can put f((J))/d~O in the numerical factor of the term including 

exp (--: if((J')) t) of this equation., Therefore, it holds 

/3+it 

J [ (/d+it) 1-e-if<.,>e J 
~ F((J')) ds(/d+it-s)e-f<.,>•= ~ f((J)) + p((J)) F((J)) 

0 

= :E[-i _ (t+ sinf((J))t) + (1-cosf((J))t)]F((J)) + :E _fd_F((J)) . 
., f((J)) f((J)) PC(J)) .. f((J)) 

(A·2·2) 

Further, we get 

-it 

~ F((J)) J ( -it-s)e-f< .. >• ds 

0 

= :E [--i -{t+ sinf((J))t} + (1-cosf((J))t) JF((J)). 
., f((J)) f((J)) f 2 ((J)) 

(A·2·3) 

From the above equations, we obtain 

/3+it -it 

~ F((J)) [ J ds(/d+it-s)e~t< .. >•+ J ds( -it-s)e-f<•>•] 

0 0 

= :E _fd_p((J)) + 2 :E F((J))[1-cosf((J))t] . 
., f((J)) ., [f((J))]2 

If we employ the procedure that is the same as that used in the theory of 
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ordinary time dependent perturbation, to the term including 1-cosf(m)t, this 

equation is transformed into 

L:; {1F(m) +2m L:; F(m) iJ(f(m)). 
.. f(m) '" 

For a large time t, we obtain 

ll+it -•t 
~ F(m)[ J ds({1+it-s)e-1<"'''+ J ds( -it-s)e-1<"''"]=2m ~ F(m) iJ(f(m)). 

0 0 

(A·2·1) 

The last two terms in Eq. (11) appearing in § 2 have the following form: 

fl+it -it 

~ F ( m) J e-h< .. l•• ds1 J e-t.< .. l•• ds2. 

0 0 

After elementary integrations, we get 

t t t 

X J eif•<"l• dz + ~ e-Pft< .. J F( m) J e-•t.<.,l•• dzt J e•t.<.,l•· dz2. 

0 0 0 

For a large time t, the right-hand side of this equation tends to 

L:; iF(m)' ( 1-f1 (m)p) [niJ(f2(m)) +iP/f2(m)] 
.. ft(m) 

+ L:; F(m )e-.Bh<wl [niJ(ft (m)) + iP/ft (m)] [ niJ(f2(m)) +iP /f2(m)]. .. 
These terms can .be neglected with comparison to the terms which are propor

tional to t, for a large time t. 
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