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Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. 

II. Higher Frequency Range 

M. A. BIOT* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Shell Development Company, RCA Building, New York, New York 

(Received September 1, 195.5) 

The theory of propagation of stress waves in a porous elastic solid developed in Part I for the low-frequency 

range is extended to higher frequencies. The breakdown of Poiseuille flow beyond the critical frequency 

is discussed for pores of flat and circular shapes. As in Part I the emphasis of the treatment is on cases where 

fluid and solids are of comparable densities. Dispersion curves for phase and group velocities along with 

attenuation factors are plotted DWSUS frequency for the rotational and the two dilational waves and for six 

numerical combinations of the characteristic parameters of the porous systems. Asymptotic behavior at 

high frequency is also discussed. 

1. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 
PREVIOUS paper’ dealing with the subject of 

propagation of elastic waves in a fluid saturated 

porous solid was restricted to the low-frequency range. 

By this it was meant a frequency range between zero 

and a certain value beyond which the assumption of 

Poiseuille flow broke down. The purpose of this paper 

is to extend the theory to the full frequency range 

without the limitation of the foregoing assumption. 

There remains however an upper bound for the fre- 

quency, namely, that at which the wavelength becomes 

of the order of the pore size. Such a case must, of 

course, be treated by a different method. 

A theoretical study of the breakdown of Poiseuille 

flow is presented in Sets. 2 and 3, by considering the 

flow of a viscous fluid under an oscillatory pressure 

gradient either between parallel walls or in a circular 

tube. The case of the circular tube was originally treated 

by Kirkhoff. This study yields a complex viscosity 

correction factor function of the frequency through 

the dimensionless ratio fife where fc is a characteristic 

frequency of the material. The case of flow between 

parallel walls and that of the circular tube indicate that 

the effect of pore cross-sectional shape is well repre- 

sented by taking the same function of the frequency for 

the viscosity correction and simply changing the fre- 

quency scale. As in Part I we are primarily concerned 

with applications to liquids and we have neglected the 

thermoelastic effects. 

Application of these results to fluid friction in a 

porous material is discussed in Sec. 4 and a “structural 

factor” is introduced which represents the effect of 

sinuosity and shape of the pores. 

The propagation of rotational waves is discussed in 

Sec. 5. Four numerical combinations of parameters are 

considered. Group velocity, phase velocity, and attenua- 

tion are plotted for these four cases as a function of the 

frequency ratio f/fc. There is only one type of rotational 

wave. The influence of the structural factor is also 

* Consultant. 
1 M. A. Biot, J. Acoust. Sot. Am. 28, 168 (19.56), preceding 

paper. 

In applications to wave propagation in such ma- 

terials as clay, silts, or muds, one should note that the 

rotational wave is determined entirely by the shearing 

rigidity of the solid. Since the latter may be smaI1, the 

rotational waves may, in this case, propagate with a 

velocity which is considerably lower than that of the 

dilatational waves of first and second kind. 
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evaluated by calculating phase velocity and attenua- 

tion for a typical case. 

The propagation of dilatational waves is discussed in 

Sec. 6. Group velocity, phase velocity, and attenuation 

curves are plotted for six numerical combinations of the 

parameters. There are two types of such waves, desig- 

nated as waves of the first and second kind. The latter are 

characterized by high attenuation. An interesting plot 

is that of the attenuation per cycle. Both the rotational 

waves and the waves of the first kind exhibit a maxi- 

mum value of this attenuation in a range of f/f0 near 

unity. In this range the inertia and viscous forces are of 

the same order. 

As discussed in Part I when the dynamic compati- 

bility condition is satisfied dr nearly satisfied (zE1) 

the wave of the first kind has a very small attenuation. 

This is shown by cases 2 and 5. The other two waves, 

however, retain much higher attenuation. In such a case 

only one type of wave may be observed unless special 

attention is given to the others. Another aspect of this 

phenomenon will be exhibited when a dilatational wave 

is reflected at a surface of discontinuity. The reflected 

energy is split up into three types of waves, two of which 

may be unobserved because of their high attenuation. 

The phenomenon then appears as the propagation of a 

single-type body wave with small attenuation in the 

body and a high absorption at the reflection surface. 

Certain assumptions upon which the present theory is 

based, such as perfect elasticity of the solid, limitations 

on the nonuniformity of pore size, and the neglection of 

thermal effects will determine the categories of materials 

and frequency ranges for which it is applicable. It 

should, however, be of value beyond its strict applica- 

bility by indicating orders of magnitudes or qualitative 

trends. 
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2. OSCILLATORY FRICTION FORCE IN A 

TWO-DIMENSIONAL DUCT 

We are interested in the motion of a fluid in a two- 

dimensional duct, i.e., a space limited by two parallel- 

plane boundaries when these boundaries are subject 

to an oscillatory motion and when an oscillatory pres- 

sure gradient acts at the same time on the fluid. 

We consider only the two-dimensional motion and 

neglect all pressure gradients and velocity components 

normal to the boundaries. The x-direction is parallel to 

the boundaries and the y-axis is normal to it with the 

boundaries represented by y= fa. The x-component 

of the velocity of the boundary is ti and that of the fluid 

0 (Fig. 1). The latter component has a distribution 

along y which is to be determined. 

The equation of motion of the fluid in the x-direction 

is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ap a77 

Pf o= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-&+p--, 

w 

(2.1) 

where p is the viscosity, pf the mass density of the fluid, 

and p the pressure. Introducing the relative velocity 

of the fluid, 

lJ1= ~-Ii 
we write, 

ap awl 
pfljl= -~-pfii+p- 

ay ’ 
We may consider 

ap 
xp, = -G-pfti 

to be equivalent to an external volume 

(2.3) b ecomes 
awl 

~1=x+v- 
aY2 

V=dPf. 

(2.2) 

(2.3) 

(2.4) 

force and F,q. 

(2.5) 

Assuming that all quantities are sinusoidal functions 

of time with a factor eicrt, and rewriting Eq. (2.5) with- 

out this factor we have 

a?Ui 
v--kYu~= -x. 

dY2 
(2.6) 

The general solution to this equation is In this expression we have a nondimensional variable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X ia * 
ul=--+C cash 

iol 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (2.7) 
V 

FIG. 1. Two-di- 

mensional flow be- 

tween parallel walls. 

BIOT 

with the condition that the function be symmetric in y. 

The constant C is determined by the condition UI=O 

at the wall, i.e., for y= far 

C=-x 
1 

iol 
(2.8) 

cash 1 
The velocity distribution is 

1_ coshC(idv)bY1 

’ cosh[ (ior/v)faJ 
(2.9) 

For use in the general theory, we shall need both the 

average velocity of the fluid through the cross section 

and the friction force at the wall. The average velocity 

UI(A"V) is given by 

1_ coshC(dvPyl 

cosh[ (k/v)%zJ 
dy. (2.10) 

Hence, 

Uii*j=$( l-i(i)’ tanh[ (f)‘ui]]. (2.11) 

The friction stress at the wall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y = -al) is 

~=~~],.i=~(~)’ tanh[ (:)*ui]. (2.12) 

In applying these results we need the expression for 

the total friction force 27 excited by the fluid on the 

wall, per unit average velocity of the fluid relative to 

the wall, i.e., we must calculate the ratio 

27 2P 
-=-- 

Ul(A” ) a1 

1 

ui(:)‘tanh[ (F)“ul] 

-i(i)’ tanh[ (:)‘ul] 

. . (2.13) 

and we write 

Kl=&(+)*, (2.14) 

27 2/.& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi’K1 tanh(&) 
-=- 

U 
(2.15) 

l(Av) al 

I-‘ tanh(itl) 
it  

Let us examine the limiting case when the frequency 

tends to zero, i.e., for ~ 1-4 . We have 

27/ ul(Av) = WUI. (2.16) 
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This corresponds to Poiseuille flow. In this case the 

velocity profile for Ur if parabolic. If we put 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FI(K) =; 

it1 tUlh (i*Kl) 

(2.17) 
1 

l-- tanh(&) 
Kli 

we  have FI (0) = 1, and we write 

27 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-=%F~(KI), 

u 

(2.18) 

l(Av) al 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF~(KI) is a complex quantity which is equal to 

unity for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK~=O and represents the deviation from 

Poiseuille friction as the frequency increases. There is a 

difference of phase between the velocity and the friction 

force. For large values of the frequency, i.e., KI- ~CO, 

I .5 

FIG. 2. Frequency 4 WI) 
correction functions I .o 

t-t-5 

/I 
I I 

for the viscosity 
in two-dimensional 
flow. 

Fi,(K,) 
I I 

we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 2 
4 ‘(1 

6 6 IO 

, (2.19) 

therefore, the friction force at large frequencies and for 

constant velocity increases like the square root of the 

frequency and is 45 degrees out of phase with the ve- 

locity. Everything happens as if the static viscosity 

coefficient p were replaced by a dynamic value. 

@I. (2.20) 

We separate the real and imaginary part of F~(KI) 

as follows : 

F1(K1)=Frl(~S+Fil(K3. (2.21) 

The values of FQ(K~) and FII(KI) are plotted in Fig. 2. 

It is seen that in accordance with Eq. (2.19) these curves 

become asymptotically parallel to straight lines of 

slope ~1/3ti=O.234 ~1 for large values of KI. 

3. OSCILLATORY FRICTION FORCE IN A 

THREE-DIMENSIONAL DUCT 

We shall now solve the same problem as in Sec. 2 

except that instead of a two-dimensional motion be- 

FIG. 3. Three-dimensional flow in a circular duct. 

tween two plane boundaries we now consider a straight 

duct of circular cross section, (Fig. 3) of radius a. 

As in the foregoing, we consider the components of the 

motion and the pressure gradient along the direction x 

of the axis. In this case Eq. (2.1) is replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

aP 
pp!7= ---+/.l0”0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ax 
(3.1) 

where V2 is the Laplacian operator. We assume that 

6 is independent of x, and that the flow is axially 

symmetric so that the operator is 

Putting 

a2 la 
v2,-+- ---. 

&‘J r dr 

8P 
--&-pjii=xp, 

(3.2) 

(3.3) 

as before, and introducing the relative velocity U1 

=o--2i of the fluid with respect to the wall, we may 

write for Eq. (3.1) 

V 
( 

lYlJ1 1 au, au, 
7+;: -7=-X. 

) 
(3.4) 

All quantities being sinusoidal functions of time contain 

a factor eec. By rewriting Eq. (3.4) without this factor, 

we find 
au1 1 au1 iff 
---&+; ~--u,= -5 (3.5) 

V V 

This is a Bessel’s differential equation for UI. The 

general solution of this equation, which is finite at 

r=O, is 

(3.6) 

where C is a constant and 

J~(diz) = berz+i beiz (3.7) 

with Kelvin functions of the first kind and zero order. 

Introducing the boundary condition UI= 0 for r= a 

ZXJl 
-...-._=1- 

&+’ 
(3.8) 

X 
Joi - a 

[( V > I 
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Again, here we need the average velocity for the cross 

section. The average velocity U~(A~V) is given by 

2 a 
u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl(Av)=- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ulrdr (3.9) 
a2 0 

or 
iol~l(Av) 2 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

-=l_-_ 

X K2Jo(i%) 0 
Jo(i%)@C; (3.10) 

with 
a! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 

K=U - . 

0 V 

(3.11) 

The value of the integral in expression (3.10) is known. 

We have2 

c n/o(i3~)~d4=K(bei’K-iber’K). (3.12) 

Hence, 
JO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

iolul(Av) 2 ber’r+ibei’r 
- .._- - -=I-_ 

X iK benc+ibeiK 

(3.13) 

In these expressions 
d 

ber’z = dzberZ 

d 
bei’.z=~beiz. 

We also evaluate the friction between the fluid and the 

wall. The stress 7 at the wall is 

The total friction force is 27rar, and the ratio of this 

force to the average velocity is 

with 

2?rUr ~ / .&KT(K) 

-= 

u 
l(‘“) &(K) 

iK 

ber’K+iber’r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T(K) = 

beric+ibeic * 

(3.15) 

(3.16) 

This formula is anologous to Eq. (2.15) where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(K) 

plays the role of 2/i tanh(diKJ. We now consider the 

limiting Vah of eXpresshI (3.13) for K-+0, i.e., for 

very low frequency. We have 

ber&-ibeiti=JO(idiK) = l-+z---&K4+. . . 

’ K3 
ber'tcj-ibei'n= 5 -G-f. . . . 

(3.17) 

‘N. W. McLachlan, Bessel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjwzctions for Engineers (Clarendon 
Press, Oxford, England, 1934), p. 12.5. 

Hence, in the limiting case ~-8, 

I-AT(K)<, 
iK 

and 
2?rar 

--+87+. (3.18) 
u r(Av) 

This expression checks with that obtained from 

Poiseuille flow. Again here we introduce a function 

1 KT(K) 

F(K)=4  

(3.19) 

I-IT 
iK 

such that F(0) = 1, and write 

2?rar 
- = 87@ (K) . (3.20) 

U l(Av) 

The function F(K) measures the deviation from Poiseuille 

flow friction as a function of the frequency parameter 

K. For large values of K, i.e., at high frequency the asym- 

ptotic values are 

bew+ibeirc +-&exp[K($i)-fl 

ber’rc+ibei’r 

Hence, 

- -k---&T) exp[q+--z] 

1+i 

T(+--_, 
-\/z 

and 

. (3.23) 

(3.21) 

(3.22) 

As in the two-dimensional case it is found that the 

friction at high frequency and for constant velocity 

is proportional to the square root of the frequency and 

is 4.5 degrees out of phase with the velocity. Every- 

thing happens as if the static viscosity coefficient JJ 

were replaced by a dynamic complex value. 

#(K). (3.24) 

We put 

F(~)=pr(K$fiFi(K). (3.25) 

The real and imaginary parts of this function are 

plotted in Fig. 4. For large value of K the curve becomes 

parallel to the straight lines. ~/4a=O.1771(. 

4. CALCULATION OF THE OSCILLATORY FRICTION 
FORCE IN A POROUS MATERIAL 

In applying the results of the previous section to a 

porous material, we introduce the assumption that the 

variation of friction with frequency follows the same 

laws as found in the foregoing for the tube of uniform 
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cross section. It is also assumed that the pore size is 

fairly uniform. More will be said on this assumption 

later. We have considered two extreme cases, that of a 

duct limited by two planes and that of a circular duct. 

These cases correspond to extreme shapes in the cross 

section of the pores, i.e., whether they are close to very 

flat ellipses or to circles. In order to discuss this shape 

factor, let us consider the expression for the friction 

force as introduced in the previous paper. The friction 

force per unit volume of bulk material in the x-direction 

was expressed as 

(4.1) 

This is the force exerted by the fluid on the solid in the 

direction of motion. The x-component of the average 

fluid velocity being aU,/at and the velocity of the solid 

au,/at. The quantity a/at (U,- us) plays the same role 

as the relative average velocity l_Jr(AV) considered in the 

two previous sections. The coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb is, therefore, 

the ratio of the total friction force to the average fluid 

velocity and may be expected to be multiplied by a 

frequency correction factor as in similar expressions 

(2.18) and (3.20) previously calculated. Hence, we 

write for the friction force 

or 

(4.2) 

bF(K)$(U,-%), (4.3) 

where b is the coefficient for Poiseuille flow. Expression 

(4.2) corresponds to the case where the pore cross 

sections are more like narrow slits while Eq. (4.3) 

corresponds to the case where they are circular. 

We shall now proceed to compare the two expressions 

(4.2) and (4.3) thereby evaluating the effect of pore 

shape on the frequency dependence of the friction. If 

we look at the plots of the functions Fl(K1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(K) we  

notice that their shapes are very similar. A further 

check reveals that if we simply take K1 and K to be 

proportional, and if we take the scale such that the 

asymptotic directions become identical, i.e., by putting 

Kl K 

3vZ 4v2 
(4.4) 

the pair of curves FP+~(K~). F&(K~) become practically 

indistinguishable from Fr(K), Fi(K) when the latter are 

plotted as function of KI. We  may write with a good 

approximation 

Frl (K&‘F$ (4/3)~1] 

(4.5) 
F~I(K&XF~[(~/ ~)KI]. 

This means that when the pores have the shape of 

narrow slits its frequency dependence function may be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 4. Frequency 
correction functions 
for the viscosity 
in three-dimensional 
flow. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 2 4 6 6 
K 

taken the same as for circular pores with a radius 

a= 4/3al. 

This is also equivalent to saying that in the extreme 

case of slits and circular pores the effect of the frequency 

on the function is the same except for a change in scale 

of the frequency parameter. It is natural to assume that 

if this is true for the extreme case it is also true for 

intermediate shapes. A universal complex function F(K) 

may, therefore, be adopted to represent this frequency 

effect with a nondimensional parameter, 

ff 1 
K=a -  0 , 

V 
(4.6) 

and where a is a_ length which is characteristic of both 

the size of the pores and their geometry. In the case of 

circular pores a is equal to the radius while in the case 

of slits of opening 2al, the characteristic size is as we 

have seen, 

a= (4/3)al. (4.7) 

In the present treatment we shall assume that all 

pores have the same characteristic size a or equivalently 

that the frequency correction is practically the same for 

all pores. This would naturally not be true in a material 

where pore size is distributed over a very wide range. A 

redistribution of friction would then occur between 

pores as the frequency varies with a corresponding re- 

distribution in the velocity pattern. However, the as- 

sumption of a single characteristic pore size should be 

applicable to a wide variety of actual materials. The 

case of widely different pore sizes will have to be con- 

sidered in a more general theory. 

As regards the question of the choice of the size 

parameter a, the best way of course is to choose it in 

such a way that the dispersion and attentuation curves 

fit the experimental data. 

In reference 1 the frequency f appeared through a 

nondimensional parameter j/fC. This introduces a 

characteristic frequency. 

(4.8) 
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It now remains to relate the present parameter K with 

the nondimensional variable j/jc. We notice first that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K~ may be put in the same form, 

,A 
fc 

(4.9) 

with a characteristic frequency 

j:=-&. (4.10) 

The problem is, therefore, to compare jJ with jc. Now 

j0 is determined by the low-frequency or steady-state 

friction which is characterized by the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb. It 

will, therefore, depend not only on the pore characteris- 

tic “radius” a but also on the sinuosity and shape of the 

pores. In order to evaluate jc we must, therefore, intro- 

duce some assumption regarding these geometric factors. 

We first consider the case where the pores are parallel 

tubes of radius a in the direction of flow. To evaluate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb 

we remember that it is the total friction force between 

the fluid and the solid per unit volume of bulk material 

and per unit average relative velocity in the steady- 

state flow, i.e., at zero frequency. From Eq. (3.18) the 

total friction at K=O per tube and per unit length is 

2?rar=%rpUr. (4.11) 

In order to obtain the value per unit cross section of the 

tube we divide this expression by na2 

27 8p 
u 

-=7 l(Av). a 
(4.12) 

Since the fluid cross section occupies a fraction /? 

(porosity) of the cross section of the bulk material the 

friction per unit bulk volume is 

27P G/3 
_=- u l(Av). 

a2 a 

On the other hand, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PPf =Pz, 

(the fluid mass density=pf). Hence, 

(4.13) 

(4.14) 

(4.15) 

Comparing with Eq. (4.10)) we derive the relation 

between jc and j0 

fc=g.fc’, (4.16) 

and with jc instead of jc’ the expression for ~~ is 

f 
g=g- 

fc’ 
(4.17) 

and the frequency correction function may be written 

sj a 

F(K)=F 7 K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>I . c 

(4.18) 

If, instead of assuming the pores to be made out of 

parallel tubes of diameter a, we take into account their 

sin~osily, we must multiply the expression for b by a 

factor ,$ which is greater than unity and takes this effect 

into account. Then, we write 

The characteristic frequency is then 

in which case 

f 
K2=&-. 

fc 

The frequency correction function is 

F(K)=F + 

i 

[( >I . 
c 

(4.20) 

(4.21) 

(4.22) 

If we consider slit-like pores instead of circular pores 

we go back to relation (2.16) which gives the total 

friction between the fluid and the solid at zero fre- 

quency. We derive the friction per unit area of the fluid 

by dividing Eq. (2.16) by 2ar, and we find 

7 3P 
-=- l(Av). u 

al aI2 

(4.23) 

By an argument similar to the case of the circular tube, 

the value of b is found to be 

&!!f!. 
aI2 

(4.24) 

If the pores are not parallel but sinuous, we must 

multiply the expression by a factor E and write 

3PPup4 
b=-. 

aI2 
(4.25) 

Now, it was derived by Eq. (4.7)) that the value of a 

to be introduced in K was a=4/3ar, hence, for this case 

(4.26) 
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jc=+. 

where prrpl~p~~ are mass density parameters for the solid 

(4.27) 
the fluid and their inertia coupling, and o and Q repre- 

sent the rotations of solid and fluid. The rigidity of the 

solid is represented by the modulus N. 

16 f We consider a plane rotational wave 

K2=-i+--. 

3 fc 

(4.28) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O=CI exp[;(Zx+cut)] 

The frequency correction function is then O=C2 exp[;(Zz+&)]. 
(5.2) 

(4.29) 
Substitution of these expressions into Eq. (5.1) leads to 

a characteristic equation 

We see, therefore, that various geometric factors such 

as sinuosity and cross-section shape enter into the func- 

tion F by a factor multiplying f/fc. In general, we may 

write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, (4.30) 

where 6 is a factor dependent on the geometry of the 

pores. With a sinuosity factor [(4> l), the expression 

for 6 varies from 

6 = (8s) *, (4.31) 

for circular pores, to 

(4.32) 

for slit-like pores. This factor 6 is referred to hereafter 

as the “structural factor.” 

The best value of 6 should be determined, of course, 

by the experimental data itself, i.e., it should furnish 

the best fit for dispersion and attenuation data. 

In the following numerical work we shall, however, 

choose arbitrarily a value which is taken to represent an 

average. We put 

6=2/8. (4.33) 

For a value of the sinuosity factor satisfying the 

inequality 

1 <f<,j, (4.34) 

the value 6=2/s is between the value (4.31) and (4.32) 

for the circular and slit-like pores. 

5. PROPAGATION OF ROTATIONAL WAVES 

The rotational waves are governed by the same equa- 

tions as in the low-frequency range provided the viscos- 

ity is replaced by its effective value function of the fre- 

quency. This amounts to replacing the resistance 

coefficient b by bF(K). With this substitution, Eq. (7.2) 

of reference 1 for the rotational waves become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NF 
-= E,-iEi. 

pa2 
(5.3) 

We have introduced the mass density of the bulk 

material as, 

We put 

P=P11+2Pl2+P22. 

PI1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y11=- 

P 

(5.4) 

Pl2 

y12=- 

P 

(5.5) 

P22 

722=--, 

P 

and hence, we have 

Y11+2Y12+y22= 1. (5.6) 

The characteristic frequency is 

fc=4= b . 
27rP2 2nP(Yl2+Y22) 

Also, 

(5.8) 

Then the real and imaginary parts in expression (5.3) 

may be written 

E 

r 

= (YllY22--Y12)2(Y22+ EZ)+Y22E2+ Q2+ Q2 

(Y22+e2)2+Q2 

(5.10) 

~(p~~~+p~.n)+bF(.)$(o- P) =NV2a Ei= 
Q(Y12+Y22)2 

(Y22+E2)2+E12 

(5.11) 

;(pI2~+P22Q) - bF(K);(o- Q) =o, 

(5.1) 

In deriving these values use was made of the identity 

(5.6). The case of Poiseuille 5ow friction law considered 



186 M. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 4 6 6 IO 

in reference 1 is found by putting 

z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

El= (YnfY$ 
f 

ez=O. 

FIG. 5. Phase ve- 
locity 21, of rota- 
tional waves. 

(5.12) 

(5.13) 

In order to derive the phase velocity and attenuation 

we proceed as before. We put 

,!=I,+&. (5.14) 

The phase velocity is then 

VT=-. 

,r., 

We introduce the reference velocity 

N + 
Vr= - . 

0 P 

(5.15) 

(5.16) 

This is the velocity of rotational waves when the fluid 

and the solids are displaced together with no relative 

velocity. By using expression (5.3) we find 

VT a 
-= 
V,. [(E:+ Ei2)f+ E,-J$’ 

(5.17) 

This is a function of j/ je with the parameters 7ir and 

6. We have plotted these phase velocity dispersion 

curves using an average value S=@ for the structural 

factor. Four cases have been considered for the dynamic 

parameter yii corresponding to cases marked one to four 

in Table I. 

The curves for v,/VZ have been plotted in Fig. 5 for 

these four cases as functions of j/ jC. 

BIOT 

The behavior of the function for small value of the 

frequency was discussed in reference 1. The limiting 

value of v,/V, for j+O is unity. At high frequency 

(j/ jC+ 00 ). The limiting values are 

(5.18) 

fc + 
El= e2=3(m+Yzz) - -4 0 (5.19) 

f 

Er= (~~~~zz--~n~)/yzz 

E,=l (Y1zf-d fi 

z 2 

“+ 

Y2z2 0 f * 

Hence, the limiting value of v,/V at high 

This may also be written 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
vu,= 1. 

(5.20) 

(5.21) 

frequency is 

(5.22) 

(5.23) 

A value which coincides with Eq. (5.2) of reference 1 

for the velocity in a porous medium containing a fluid 

with no viscosity. At large frequency we may neglect 

the influence of the viscosity on the velocity. All velocity 

dispersion curves for v,./V, start at value unity for j=O 

and tend toward the asymptotic value Eq. (5.22) for 

large frequencies. 

In order to evaluate the attenuation of these waves, 

we introduce the length 
4 

(5.24) 

This length represents the distance through which the 

wave amplitude is attenuated by a factor l/e. We also 

introduce a reference length 

(5.25) 

TABLE I. 

Case fJ,I m* ~12 Yll Y** 71% e* m 

1 0.610 0.305 0.043 0.500 0.500 0.812 1.674 
2 0.610 0.305 0.043 0.666 0.333 8 0.984 1.203 
3 0.610 0.305 0.043 0.800 0.200 0650 1.339 
4 0.610 0.305 0.043 0.650 0.650 

-Ok0 

5 0.500 0.500 0 0.500 0.500 b 
0'909 
1:000 

2 399 
1:oOO 

6 0.740 0.185 0.037 0.500 0.500 0 0.672 2.736 
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:=;;(E,+\/E.‘+E,‘). (5.26) 

C 

PTl(li/lr) 

.6 

This expression L/x, is a nondimensional representa- 

tion of the attenuation factor 1 li 1 such that the wave 

amplitude as a function of the distance x is proportional 

to exp[ - 1 I;] x]. It is plotted as a function of f/ fC in 

Fig. 6 for cases 1 to 4 of Table I. According to expression 

(7.17) in reference 1 the attenuation coefficient L,./x, 

tends to zero like (f/ fJ2. For large values of the 

frequency, using the asymptotic value Eqs. (5.20), 

(5.21) we find 

The attenuation coefficient is proportional to d/f. It 

will be noted that the increase of the attenuation factor 

with frequency is due to the increase of the apparent 

viscosity with frequency, i.e., the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(K) is not 

constant but becomes proportional to K. If we had 

assumed the Poiseuille law to be valid at very high 

frequency, we would have found that the attentuation 

factors tend toward a constant value instead of in- 

creasing. 

We shall also consider another quite significant 

quantity, namely, the attenuation coefficient per cycle 

instead of per unit distance. This quantity is 2a 1 li/ / 

1 Z,1 . Per cycle, the wave amplitudes is multiplied by 

We find 

e - 2*lzil/ lz*I~ (5.28) 

2!!!= 
2aEj 

alZ,l E,+(E,2+&+ 

(5.29) 

This quantity is plotted in Fig. 7 for cases 1 to 4 of 

Table I. It is seen that the attenuation per cycle is zero 

at zero frequency, goes through a maximum, and tends 

to zero again at high frequency. The value near f = 0 is 

(5.30) 

FIG. 6. Attenua- 
tion coefficient of 
rotational waves. 

0 2 4 6 6 IO 
f/k 

FIG. 7. Attenua- 
tion per cycle of 
rotational waves. 

.4 

.2 

2 4 6 8 IO 

f/fc 

while for large f it becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IJil T 

2?r-_---=-- 
(Ylz+Y22y fc b 

IL1 2 Y22(Yll”/22--Y122) J . 0 
(5.31) 

It vanishes lie l/ df. Finally, it remains to investigate 

the group velocity of the rotational waves. This group 

velocity is given by 

Now, 

da 

v0’= djl,l’ 
(5.32) 

(5.33) 

(5.34) 

Introducing the reference velocity V,, this may be 

written 

Irr d f V, 
-=- _- 

%r [ 1 d J fc VT . 
(5.35) 

0 fc 

The nondimensional group velocity variable vBr/Vr may 

be calculated from the foregoing dispersion curve v,/V, 

by taking derivatives with respect to f/f=. This was 

done analytically by using the formulas derived above 

for v,/V,. In so doing, it is noted that the derivative of 

T(K) [see Eq. (3.16)] which appears in these expressions 

may be written as follows if we take into account the 

properties of the Bessel functions. 

With Jo =Jo (il~), we  write 

. 1 dJo 
(5.36) 
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Since we have the identity 

FIG. 8. Group ve- 
locity us, of rota- 
tional waves. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

we  derive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d2Jo 1 dJo 

yg+- 
--iJ,,=O, 

K dK 

(5.37) 

dT 
z= -T’-  AT+i. (5.38) 

K 

The group velocity curves in the nondimensional 

form v&f+ have been plotted in Fig. 8 for cases 1 to 4 

of Table I. 

All foregoing cases have been computed for a value of 

the structural factor 6 = 48 considered to be an average 

value. In an extreme case of slit-like pores and a sinuos- 

ity factor E= 1, we would have 6= (16/3)* [see Eq. 

(4.32)]. In order to investigate the effect of the struc- 

tural factor on the dispersion and attenuation of rota- 

tional waves, cases 1 to 4 of Table I were computed 

with the value 6= (16/3)* and compared with the 

curves for S=d/s. Velocity curves v,/V, and attenua- 

tion curves L,./x, are plotted in Figs. 9 and 10 for 

both values of 6. Comparison of the curves shows that 

the structural factor 6 is not a very significant param- 

eter. 

FIG. 9. Phase ve- 
locity w, of rota- 
tional waves for two 
values of the struc- 
tural factor 6. 

6. PROPAGATION OF DILATATIONAL WAVES 

Propagation of dilatational waves in the low-fre- 

quency range are governed by Eqs. (7.1) of reference 1. 

To extend them to the full-frequency range we proceed 

as for rotational waves by multiplying the resistance 

coefficient by the frequency correction factor F(K). 

These equations become 

v2(~e+Qr)=~(pi,e+plz3+bF(x)$(e-r) 

~(~~+Rr)=~(p~z~+p,,r)--F(~)$(e--r). 

(6.1) 

In these equations PQR represent elastic coefficients e 

and E are the divergence of the solid and fluid displace- 

ments. A solution of the type 

e=Cr exp[;(Zx+cut)] 

E=CZ exp[i(Zx+ot)] 
(6.2) 

” 

:a 

10 - 

J 
FIG. 10. Attenua- 

tion coefficient of 
rotational waves for 
two values of the 
structural factor 6. 

0 2 4 6 8 IO 
f/fc 

leads to a characteristic equation for I”/2 which may 

be written 

+ (~m--~~z)lf~F(~) (z- 1) = 0, (6.3) 

CUP 

where 

P R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 
u11=- cT22=- u12=- 

H H H 

H=P+R+2Q 

12 
.z=-vo2 

d 

I .“” 

0 2 4 
f/fc 

6 6 IO 

J+H. 
P 
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The velocity VC already introduced in reference 1 

represents the velocity of a dilatational wave when the 

relative motion between fluid and solid is prevented. If 

we put b=O, i.e., in the absence of friction, Eq. (6.3) 

has two positive roots 
FIG. 11. Phase ve- 

VI 
VC 

I. 16 

z1= Ve2/V1 .22= VC/V?, (6.4) 

where V1 and VZ are the velocities of the purely elastic 

waves. Equation (6.3) may also be written 

(z-z~)(z-Zz)+iM(z- l)=O, (6.5) 
with 

El+& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m1u22-f f 122 

(6.6) 

locity VI of dila- 
tational waves of 
the first kind. 

namely, 

The quantities cl and ~2 are functions of the frequency 

ratio j/jC and (y12fy2.J as defined by Eqs. (5.8) 

and (5.9). 

VI= v1 

VII’ v’2. 
(6.10) 

In the numerical discussion which follows curves have 

been plotted as function of j/j0 for values of cij and 

yij given in Table I, and for a value 6 =2/8 of the 

structural parameter. 

We now compute the complex z-roots of Eq. (6.5) 

and denote the roots by ZI and 211. We then evaluate 

The nondimensional phase velocities VI/V’, and VI&~, 

for the waves of the first and second kind are plotted in 

Figs. 11 and 12, for the six cases of Table I. 

We now call our attention to the attenuation of these 

waves. Again we introduce distances XI and XII for which 

the wave amplitude is multiplied by l/e. With a char- 

acteristic distance defined as, 

2/zrr= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&I + IIIi. 

(6.7) 

One of the roots tends to unity for M= ~0, the other 

tends to infinity. We denote by ZI the root which tends 

to unity. The phase velocities are given by 

the attenuation of each wave is given by 

VI 1 
_- 

v,- I aI1 

(6.8) 

VII 1 
-=-- 

VC I&l’ 

These quantities may be plotted as function of j/jC. 

The velocity VI tends to V, for zero frequency and corre- 

sponds to a wave of the first kind. The velocity VII goes 

to zero as 2/j and corresponds to a wave of the second 

kind. The behavior of the waves in the vicinity of zero 

frequency was discussed in detail in reference 1. The 

wave of the first kind is one in which the fluid and the 

solid tend to move in phase. The dispersion of these 

waves in the vicinity of zero frequency is small. The 

wave of the second kind is one for which the solid and 

‘the fluid tend to move in opposite phase. In the vicinity 

of zero frequency it behaves like a diffusion process. 

These expressions are plotted in Figs. 13 and 14 as 

function of j/ jC for the six cases of Table I. We have 

already investigated the behavior of these curves at 

small frequencies in the previous paper. It was found 

that for the waves of the first kind the attenuation 

factor varies like j2 while for the waves of the second 

kind it varies like dj. 

If we consider now the case of large frequency the 

roots zr and ZII tend towards 

zr=z1 

(6.9) 
zrI=z2. 

FIG. 12. Phase ve- 
locity VII of dilata- 
tional waves of the 
second kind. 

Hence, the phase velocities VI and VII tend toward the 

velocities found in case the fluid has no viscosity, 

189 

(6.11) 

(6.12) 
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FIG. 13. Attenua- 

tion coefficient of 

dilatational waves of 

the Crst kind. 

Let us now investigate the asymptotic value of the 

attenuation for large f. This amounts to calculating the 

roots of Eq. (6.5) for small values of M. We find 

iM 21-l 
(z#= (zl)+-- - 

2(21), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZl--22 

(6.13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
iM 22-l 

(my= (z2p+- -. 

2(zz)‘z1-z2 

We derive the expression for (3%~ and &I with the 

asymptotic approximations 

(6.14) 

We find the attenuations for large j, 

L (Y12+Y22) (1 - 21) f + 

~=4(~ll~22-ri,,2)(zl)~(za-z1) x 0 

(6.15) 

. ’ LC h2+Y22)(z2- 1) f 1 

crI=4(~11~22--~r22)(z2)+(Z2-z$ x ’ 0 

FIG. 14. Attenua- 

tion coefficient of 

dilatational waves of 

the second kind. 

FIG. 15. Attenua- 

tion per cycle of 

dilatational waves of 

the first kind. 

We see that the attenuations increase like l/f at large 

frequency. 

As in the case of the rotational waves we also evaluate 

the attenuation per cycle. We have 

T/C 
(z#=-(z7T+zil) = @rlf Iri 

a! 

VC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Zrr)t=-(Lrr+lirr) = @rr+ Irri. 

a 

(6.16) 

The attenuation per cycle for each wave is 

(6.17) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2Tl+4rrl _2 I lrrl -_ ?r_- 

I Lrr I I @III 

for the waves of the first and second kind, respectively. 

These values are plotted as functions of f/f0 (with 

S=@) for the six cases of Table I in Figs. 1.5 and 16. 

In the vicinity of f=O, putting 5_1=zl-l, p2=z2-1, 

O 2 4flfc6 
8 IO 

FIG. 16. Attenua- 

tion per cycle of 

dilatational waves of 

the second kind. 
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FIG. 17. Group ve- 

locity vOz of dilata- 
tional waves of the 
first kind. 

1.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

I.08 

LO4 

1.00 
0 2 4 

f/fc 
6 8 IO 

we have for the wave of the first kind: 

with 

i 
(ZI)t= aI+TIi= lf$-1[2- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M 
(6.18) 

1 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ff11u22-u122 j 

G ,4= 

_. 

712+722 fc’  

(6.19) 

and for the wave of the second kind: 

(zII)*= aII+z-IIi= (-i)”  

712+-Y22 f + 
- 

m1(722-u122 fc 

) . (6.20) 

The attenuation per cycle near j=O is for the waves of 

the first and second kind, respectively. 

2*lli’l (UllU22--Ul22) j 

-= 7cJ2 

IJrIl y12+722 z 

2Tlw 

(6.21) 

-=2?r. 
I LII I 

The first one vanishes as j near j=O and the second 

goes to a constant 21r. The latter case as we have seen 

corresponds to diffusion waves. Asymptotic values of 

the attenuation per cycle at large frequencies are de- 

rived from the asymptotic expressions (6.13). For 

FIG. 18. Group ve- 
locity vprr of dilata- 
tional waves of the 
second kind. 

.6 

0 2 
4 f/fc 6 

8 IO 

(zI)* and (RI)*, we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lliI[ r (Y12+Y22) (l-21) fc + 

2aI=i (u11u22-u~22)2~(22-2*) f 0 

2?r I LII I ,r (Y12+Y22) (z2- 1) fc ,* 

(6.22) 

-=- 

0 
- . 

I Zrrrl 2 (611u22-u122)22(22-z1) j 

We conclude that for waves of both kinds the attenua- 

tion per cycle vanishes as l/d/f. The attenuation per 

cycle for the waves of the first kind, therefore, goes 

through a maximum as seen also from Fig. 15. 

It remains to evaluate the group velocity of the two 

dilatational waves. Proceeding as for the rotational 

waves in the previous section, we write for thegroup 

velocity 0~1 and vsrr of the waves of first and second kind 

vc d j _=- - 
VQI d f 

0 
[ fc 

fc 
vc d f 
-=- - 

WI 
(jl  je 

0 

[ 

fc 

VC 
- 

VI 1 

(6.23) 
Vie 
- 

WI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI- 

The nondimensional group velocity variables v,l/V, and 

vgn/Ve are plotted in Figs. 17 and 18 for the six cases of 

Table I. 
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