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Theory of Q control in atomic force microscopy
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We discuss the performance of an atomic force microscope ~AFM! operated in the amplitude

modulation mode under a self-excitation signal, known as quality factor control (Q control!. By

using the point-mass description of the AFM, we provide a complete description of Q control in

tapping mode AFM. The theoretical simulations show three major results: ~i! the steady-state motion

of the system contains contributions from homogeneous and particular components, ~ii! the active

response of the microcantilever can be increased or decreased depending on the phase shift of the

self-excitation with respect to the instantaneous deflexion, and ~iii! in general, Q enhancement

reduces the maximum force exerted for the tip on the sample surface. © 2003 American Institute

of Physics. @DOI: 10.1063/1.1584790#

Amplitude modulation ~tapping mode! atomic force mi-

croscopy ~AM-AFM! is characterized in many situations of

interest by the coexistence of two oscillations states: a low-

amplitude state usually dominated by attractive forces, and a

high-amplitude state dominated by repulsive forces.1 Be-

cause in the high-amplitude state there is tip–surface me-

chanical contact, a major surface deformation can be

expected.2 To avoid this problem, Anczykowski and co-

workers suggested that an effective increase of the quality

factor (Q) of the microcantilever could favor the oscillation

in the noncontact state.3 To accomplish this the cantilever

signal is amplified, phase shifted by 90°, and then fed back

to the standard AM-AFM excitation force. An electronic

modification of the effective Q has also been applied to in-

crease the speed of AM-AFM imaging.4 On the other hand,

the hydrodynamic damping with the medium reduces the Q

by about two orders of magnitude, which gives values of 1–5

while operating in liquids.5 Low Q values imply a slower

response of the variations of the tip-to-surface forces, which

in turn imply a global slower response of the system. To

improve AM-AFM imaging in liquids, Q control has also

been applied.6–8 However, experimental results remain con-

troversial concerning the usefulness of Q enhancement.9

The controversy about Q control can be attributed partly

to the poor theoretical understanding of how it works. This

can be traced back to the fact that all previous analyses have

made two major and unproven hypotheses: ~i! a steady-state

solution with no contributions from the transients that led ~ii!

to the use of an approximate equation to describe AM-AFM

under Q control. In this letter, we solve the equation of a

point-mass cantilever under an external excitation force, a

tip–surface interaction, and a self-excitation gain without

any approximation on the phase lag between self-excitation

and the instantaneous deflexion of the microcantilever, with

no hypothesis about the final solution. We demonstrate that a

self-excitation with a phase lag of 90° with respect to the

instantaneous deflexion maximizes the Q enhancement. We

also demonstrate that estimations of the effective Q based on

approximative solutions tend to overestimate the Q enhance-

ment.

The general equation of a point-mass cantilever in AM-

AFM with a self-excitation gain and in absence of tip–

surface forces is as follows:
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where z is the tip–cantilever’s deflexion, v0 is the angular

free resonance frequency, F0 is the driving force, G is the

gain factor of the self-excitation, f is the phase shift between

the self-excitation and the instantaneous deflexion, m

5k/v0
2, and k is the force constant of the cantilever. The

general solution of Eq. ~1! can be expressed by z(t)5zh(t)

1zp(t), where zh(t) is the solution of the homogeneous

equation and zp(t) is a particular solution of Eq. ~1!, which

takes the form

zp~ t !5A~v ,G ,f !cos@vt2w~v ,G ,f !# ~2!

In previous works3,4,6,7 the contribution of zh(t) to the

steady-state solution has been neglected. Furthermore, only a

self-excitation of f590° was considered, which makes the

self-excitation term proportional to the cantilever’s velocity

and allows us to estimate the effective Q from
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First, we perform a comparison between the numerical

solution of the general Eq. ~1! and the particular solution

given by Eq. ~2!. To illustrate the active response of the

microcantilever, we describe first the particular solution of

Eq. ~1!. In this case, the amplitude can be expressed analyti-

cally:

A~v ,G ,f !

5

F0 /m

AS v0
2
2v2

1

kG cos f

m
D

2

1S vv0

Q
2

kG sin f

m
D

2
.

~4!a!Electronic mail: rgarcia@imm.cnm.csic.es

APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 26 30 JUNE 2003

48210003-6951/2003/82(26)/4821/3/$20.00 © 2003 American Institute of Physics
Downloaded 14 May 2010 to 161.111.235.252. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



This expression shows that in addition to the dependence on

v, v0 , and Q , the amplitude also depends on G and f. By

comparison with the Lorenztian of a forced oscillator with

damping, it can be deduced that the self-excitation modifies

both the resonance frequency and the effective Q . Phase

shifts between 0° and 90° and 270° and 360° displace the

new resonance frequency to higher values with respect to

resonance frequency of the non-self-excited system (v08

.v0) while other phase shifts decrease the resonance fre-

quency @Fig. 1~a!#. At f590° and 270°, there are no modi-

fications of the resonance frequency, v085v0. On the other

hand, Qeff is increased by applying a phase shift between 0°

and 180° @Fig. 1~b!#.
Equation ~4! shows that f590° is the optimum phase

shift for the self-excitation because it does not modify the

resonance frequency of the non-self-excited system, and at

the same time it maximizes the effective Q . The tendency

described in Fig. 1 is reproduced by the general solution

z(t)5zh1zp . In what follows, the calculations are per-

formed for f590°.

The effect of G on the amplitude curves at f590° and

at constant driving force is shown in Fig. 2. The curve of the

non-self-excited system, with a maximum of about 10 nm,

appears as a straight line at the scale of the figure. Increasing

G increases the oscillation amplitude, shifts the resonance

frequency to higher values, and narrows the amplitude

curves. The amplitude at resonance can be increased by two

orders of magnitude with respect to the initial system, while

the resonance frequency changes by a small factor ~0.3%!.
An increase of G from 0 to 0.198 produces an increase of

Qeff of about two orders of magnitude ~from 5 to 403!. These

results were obtained by numerically solving Eq. ~1! with a

fourth Runge–Kutta algorithm. Equation ~1! was integrated

over a large number of periods (;5000) until a steady-state

solution was reached. Qeff was determined by adjusting the

resonance curve to the Lorenztian form of a forced oscillator

with damping.10

The effect of gain in the Q is sensitive to the solutions of

Eq. ~1! considered, either general or particular. In Fig. 3, the

effective Q is plotted as a function of G for the z(t)5zh

1zp and zp(t) solutions, respectively. At relatively low G ,

there are hardly any differences. However, for higher G , the

particular solution overestimates by a factor close to 10 the

enhancement of the Q . The above behavior is unequivocally

related to the presence of a non-negligible homogeneous

term in the general solution and questions the numerical rel-

evance of previous analyses.3,6,7 Those effects are even more

pronounced when the self-excitation is approximated by a

term proportional to the velocity: Gz(t2 p/2v)5

2v21G@ ż(t)# . Then,
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The general solution of this equation is
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Equation ~8! shows an unstable behavior whenever

v

v0
^S 12

Q

Qeff
D ; ~9!

FIG. 1. Map of the qualitative changes of the resonance frequency ~a! and Q

~b! of the self-excited microcantilever system.

FIG. 2. Amplitude of the general solution vs frequency for different values

of the self-excitation gain. The curves have been obtained for a F052 nN,

k51 N/m, v0/2p520 kHz, and Q55. The inset shows the resonance curve

of the non-self-excited system.

FIG. 3. Dependence of Qeff as a function of G . Solid and open symbols

correspond to the general and particular solutions of Eq. ~1! respectively;

f590°.
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for example, for moderate Q enhancements, such as Qeff

510Q , the system will diverge for v50.9v0 . All of these

equations emphasize the relevance of homogeneous contri-

bution to describe the dynamic response of the system.

To study the effect of the self-excitation in the presence

of tip–surface forces, we have modeled the AFM interface

following the approximations given in Ref. 11. The result of

the simulations show that the slope of amplitude curve de-

creases with decreasing the tip–surface separation. However,

the slope of the amplitude curve is substantially larger for the

self-excited system which, in principle, implies a higher sen-

sitivity to tip–surface variations. The measurement of the

maximum force offers a good argument in favor of the use of

Q enhancement because, for identical tip–surface separa-

tions, the self-excited system experiences a reduction of the

force by a factor of 5 to 6. The same result is obtained if the

average force is calculated instead. The simulations are in

agreement with the expression of the average force as a func-

tion of the set point (Asp) and free amplitude (A0), that can

be deduced by applying energy considerations and the virial

theorem to the tip motion:1,12

^F ts&5

k

Qeff

@A0
2
2Asp

2 #1/2. ~10!

In short, we have presented a complete description of the

active response of the microcantilever in amplitude modula-

tion AFM under a self-excitation force. Our description

shows that the homogeneous component of the solution does

influence the steady-state oscillation and as a consequence,

its omission leads to inaccurate or wrong quantitative results.

The self-excitation force may speed up or slow down the

dynamic response of the system depending on the phase shift

between the self-excitation and the instantaneous deflexion.

Finally, we have demonstrated that an enhanced quality fac-

tor minimizes tip–surface forces during tapping mode opera-

tion.
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