
Logic and Logical Philosophy
Volume 18 (2009), 313–332

DOI: 10.12775/LLP.2009.016

Krzysztof Wójtowicz

THEORY OF QUANTUM COMPUTATION

AND PHILOSOPHY OF MATHEMATICS

Part I

Abstract. The aim of this paper is to present some basic notions of
the theory of quantum computing and to compare them with the basic
notions of the classical theory of computation. I am convinced, that
the results of quantum computation theory (QCT) are not only interest-
ing in themselves, but also should be taken into account in discussions
concerning the nature of mathematical knowledge.

The philosophical discussion will however be postponed to another
paper. QCT seems not to be well-known among philosophers (at least
not to the degree it deserves), so the aim of this paper is to provide the
necessary technical preliminaries presented in a way accessible to the
general philosophical audience.

Keywords: quantum algorithm, Shor’s algorithm, quantum computation
theory, Deutsch’s algorithm, philosophy of mathematics

1. Classical computations

1.1. What is a computation?

The notion of computation is a very general and broad one. In the most
general sense, any task, which requires some kind of problem-solving
can be viewed as performing some computation. In this most general
sense, we could speak of a computation when parking a car, playing
tennis, looking for our keys etc. But such a notion of computation would

Received December 4, 2009
© 2010 by Nicolaus Copernicus University ISSN: 1425-3305

http://dx.doi.org/10.12775/LLP.2009.016

314 Krzysztof Wójtowicz

be much too general and vague to allow for a fruitful analysis. Other
examples (which are intuitively more computational in nature) are e.g.
finding the shortest route from one place to another, computing the area
of a land or calculating our tax. In every of these cases there is an input,
a process of “computation” and an output. But the general questions
“what does it mean to compute?” or “what are the common features
of the computational processes?” do not have an obvious answer. It
is intuitively quite clear, that we would not consider choosing the best
holiday offer to be a computation—at least not in the strict sense. So
what are the criteria for being a computational process?

We will not go into the philosophical discussion concerning the no-
tion of computation, assuming in particular the Church-Turing thesis
as a working hypothesis. What is more important for us is the observa-
tion, that every time we perform a computational task (i.e. we compute),
we apply to some physical resources (i.e. to make use of an appropriate
physical system). The evolution of that system corresponds to the de-
sired output. A straightforward example of such a system is of course
any PC.1 But there may be also other devices, which help us in solving
problems, and the question arises, which of them be called computational
devices and whether the processes performed by these devices correspond
to our intuitive notion of computation. A nice example of such a pro-
cess is given by Aharonov in [Aharonov 1998]. The famous Spanish
architect, Gaudi used a system of ropes while designing the la sagrada

familia (holy family church) in Barcelona. The plan was very compli-
cated, as there where many towers and arcs between them emerging in
unexpected places. It was not possible to solve the system of equations
which described the equilibrium of the system—but Gaudi simply took
ropes corresponding to each of the arcs, tied them together, and tied the
system to the ceiling, obtaining the mirror image of the projected church.
The solution was “computed” by gravity! The question arises: was that
really a computation—and was that system of ropes really a computing
device . . . ?

The formal notion of computation should be sufficiently general to
cover a substantial part of our computational tasks. Of course, the par-
ticular algorithms designed to solve particular computational problems
differ, but it is reasonable to expect, that they should all be incorporated

1In many cases this physical system is our brain.

Theory of quantum computation . . . 315

within one single model. This model should cover all possible computa-
tional task (and consequently—there should be one universal computing
device, suitable to perform all these tasks).2

Since the seminal works of Turing there is such a general formal model
of computation available—i.e. the Turing machine model.3 The impor-
tant feature of the Turing machine model is that there exists a universal
Turing machine—i.e. a machine U , which can simulate the instruction
table of any Turing machine M (on any given input). Intuitively, that
means, that our universal machine U is presented with the input consist-
ing of the instruction table of the machine M , and the input for M . U
is able to look up in the instruction table for M what has to be done at
any step, and simulates the behavior of M.4 That means, that all com-
putational tasks can be performed on the universal Turing machine,5 so
it fulfills our desire of having one general model of computation.

The Turing machine model has natural motivations, and according
to the Church-Turing thesis, it is the adequate formal counterpart of the

2After all, it would be rather awkward, if we had to build different machines for
different computing tasks (to put it very crude: one machine for performing arithmeti-
cal operations, another one for finding the shortest route on a map, and still another
for checking whether a certain formula is a tautology of the propositional calculus).

3A Turing machine consists of an unbounded tape (divided into cells), a head which
scans the symbol from the tape (and is also capable of writing new symbols onto the
tape) and a transition function. At any moment of the computation, the Turing
machine occupies one of a finite number of possible internal states. Two states of the
machines are distinguished: the initial state and the terminal state (if the machine
enters the terminal state, it means of course, that the computation terminates, and
the tape contains the desired solution). At the beginning of the computation, an input
(a finite string of symbols) is presented on the tape. The computation proceeds as
follows: given the internal state, and the content of the cell on the tape (scanned by
the head), the transition function determines: (1) the symbol that will be written on
the tape; (2) the internal state the Turing machine goes into; (3) the displacement of
the head on the tape (it can move left, right, or do nothing). The number of symbols
which can occur on the tape is always fixed (and finite). But as we can always simulate
the functioning of such a Turing machine on a machine which uses only two symbols
(0 and 1), therefore—without loss of generality—we can consider only such machines
(and in this paper we will assume, that symbols on the tape are just 0 and 1).

4Of course, this would not be very convenient—if we design algorithms, we always
have in mind the particular problem in question. But such a simulation is possible
(with an at most polynomial slowdown).

5Of course, programming such an universal Turing machine would be rather te-
dious, but it is—in principle—possible.

316 Krzysztof Wójtowicz

informal, intuitive notion of computability. The answer to the question
“what does it mean to compute?” is therefore “it means to perform
operations which can be performed (simulated) on a Turing machine”.
Of course, as it involves both a mathematical notion, and an informal
notion, the Church-Turing thesis cannot be proved, but can only be
argued for. One of the arguments in favor of the Church-Turing thesis
rests on the fact, that various formal models of computation have been
proposed (recursive functions, λ-calculus etc.), and all of them turned
out to be equivalent to the Turing machine model.

In this paper we will restrict our attention to the classical model
of computation—in particular I will not even touch upon the subject
of hypercomputability. In last years, the notion of hypercomputabil-
ity, supertasks etc. has attracted some attention of computer scientists
and philosophers6. I short, a hypercomputer is a device, which can per-
form non-algorithmic computational tasks (i.e. it can yield solutions to
problems, which cannot be solved by a Turing machine). The question
whether there are non-algorithmic processes in nature (and whether such
processes could be harnessed to solve non-algorithmic problems) remains
open; some authors claim, that such processes do in fact exist, some con-
sider them to be merely a theoretical possibility.7 Even if there are no
physical hypercomputers, one important conclusion has to be drawn from
these considerations: computation cannot be viewed only as an abstract,
theoretical notion, and our understanding of it should at least take into
account the (theoretical and practical) physical limitations.

However, it should be stressed, that quantum computers are not
hypercomputers—they cannot solve classically unsolvable problems, but
in some cases they can be much quicker (and this would be their advan-
tage, if quantum computers would in fact be built).

1.2. Decidable problems

The first distinction, that has to be made is between algorithmically
solvable (computable, decidable) and unsolvable problems. A decidable
problem is a problem, for which a Turing machine (intuitively—an algo-

6For supertasks cf. e.g. Laraudagoitia 1996], for recent discussion on hypercompu-
tation e.g. [Davis 2006], [Stannett 2006].

7For discussion cf. e.g. [Pitovsky 1990], [Hogarth 1994].

Theory of quantum computation . . . 317

rithm) can be defined which solves the problem: given the input (which
represents the problem in a formally suitable way), the Turing machine
yields the solution of this problem. Some simple examples of decidable
problems are: (a) checking whether n = k + l; (b) checking whether
n is a prime number; (c) checking whether two graphs are isomorphic;
(d) finding the shortest route on a map between two towns A and B;
(e) checking whether a formula of the propositional calculus is satisfi-
able; etc. There are lots of number-theoretic and combinatorial (e.g.
graph-theoretic) problems which are decidable. But of course there are
also non-decidable problems (for which no general algorithms exists); the
most famous of them is the halting problem.8

In this paper we are interested in decidable problems only. The gen-
eral notion of decidability abstracts form practical limitations (i.e. limi-
tations of time, space and other physical resources). But it is quite clear,
that we have an intuitive notion of the computational difficulty of the
problem. Everybody knows, that it is easier to multiply two numbers
(say 37 and 47), that to factor a given number (say 1739) into primes:
we have to perform much more computational steps in order to factor a
number that to multiply two numbers.

This intuitive notion of difficulty has a formal counterpart—the no-
tion of computational complexity. This notion enables us to classify
computational tasks according to their difficulty.9 Notice, that we mean
computational not conceptual complexity. The algorithm for checking,
whether α is a tautology of the propositional calculus is conceptually
very simple. But this method requires exponentially many computa-
tional steps.10

8We can describe any Turing machine in a binary code, so we can also present this
description M to another machine U as input data. In particular, we can present the
description M and the initial data x to the Turing machine U and ask the question,
whether M will stop when presented with x as input. It turns out, that such a general
decision algorithm (which would yield the answer for every possible M and x) does
not exist.

9Here we are interested in the complexity in time only; we do not consider the
space limitations.

10For n variables, the corresponding matrix has the size 2n. For n = 10, we have
to check up 1024 cases, for n = 20 the number increases to 1048576. As the increase
is exponential, so it is impossible to solve the problem in a computationally tractable
way e.g. for n = 300. Our lives are too short, and our universe is too small to perform
this task.

318 Krzysztof Wójtowicz

The satisfaction problem SAT for propositional calculus (i.e. the
problem of checking, whether a valuation v which makes the formula
α true exists) is a nice example of a computationally difficult problem.
The only known algorithm for solving SAT needs an exponential time
to solve it, as we have to take into account all the 2n valuations. SAT
is therefore an example of a hard (computationally difficult) problem.
We will call a problem tractable, if it can be solved in polynomial time,
while intractable problems are those which can only be solved in an ex-
ponential time. That leads us to an important notion of two classes of
computational problems. The class P (for Polynomial) is the class that
contains all the computational decision problems that can be solved by a
deterministic Turing machine in polynomial time. So the P-class contains
tractable problems. The class NP (for Non-deterministic Polynomial)
contains all those computational decision problems whose proposed so-
lution can be verified by a deterministic Turing machine at polynomial
cost. In short: you can find a solution to a P-problem in a polynomial
time, but in the case of a NP-problem you can check in polynomial time,
that the proposed solution in fact is a solution.11 But where does the ‘N’
(for ‘Non-deterministic’) come from? It is because we can also consider
non-deterministic Turing machines—i.e. machines, which have a slight
different transition function, which allows them to choose freely between
many possibilities at any step. The cost of the solution is defined as the
shortest computational path—i.e. we allow our Turing machine to make
clever guesses.12

An important subclass of NP-problems consists of the NP-complete
problems. This class has a very important property: either all NP-
complete problems are tractable, or none of them is.13 This is because all
the problems in this class are polynomially reducible to each other: if we
find a polynomial solution to one of these problem, then we will be able

11A simple example may illuminate the point: it is easy to verify, that the prime
factors of 851 are 23 and 37—provided, we are given these numbers in advance. So if
you guess thus solution, you need only a polynomial time to check it up.

12The number 851 from the last footnote can be factored non-deterministically
within a polynomial time: our Turing machine chooses the shortest part, leading
to the desired result.

13Observe, that NP is defined as the class of problems, for which a polynomial
verification exists. The possibility, that a polynomial solution algorithm exists remains
open (even if it may not seem very probable).

Theory of quantum computation . . . 319

to reformulate this algorithm to polynomial algorithms for all the other
NP-complete problems. And any NP-problem reduces (polynomially) to
any of the NP-complete problems.14

SAT is an NP-problem: there is a non-deterministic polynomial algo-
rithm solving it. This is quite obvious: you just guess the correct answer
(i.e. a valuation satisfying the formula α) and check within a polyno-
mial time, that this answer is in fact the correct one. Moreover, SAT
is also NP-complete: any other problem in the class NP is polynomially
reducible to SAT. That means, that if we find a polynomial algorithm
for solving SAT, we will also have polynomial algorithms for solving all
the other problems from the class NP. That means in particular, that
finding an effective, computationally tractable algorithm for solving the
SAT problem would be of great importance for a whole class of prob-
lems. However, it does not seem very probable that such a solution can
be found.15

But the practical intractability of computational problems can be
advantageous. For example, the fact, that factoring natural numbers into
primes is computationally difficult lies at the heart of many contemporary
cryptographic protocols. But there is a quantum algorithm which solves
the factoring problem within a polynomial time. If quantum computers
existed, the RSA cryptographic protocol could be cracked quite easily.

Why is such an increase in speed possible? This is because in QCT we
make use of some special features of the quantum world. In the classical
model (Turing machine) we only transform 0-1 sequences in a mechanical
way, not appealing to the laws of quantum mechanics.16 We do not need
quantum mechanics in order to explain, how the 0-1 strings of bits evolve
within the Turing machine (or the classical computer). Things are quite
different in the case of quantum algorithms.

14Cf. e.g. [Garey, Johnson 1979], [Hopcroft, Ullman 1979].
15If there is a polynomial solution to the SAT problem, then P = NP. The question,

whether P = NP is in open problem—probably the most famous open problem in
theoretical computer science.

16A Turing machine could be made of wood or steel and powered by horses or by
steam, as no quantum phenomena are in use.

320 Krzysztof Wójtowicz

2. Computations in the quantum world

2.1. Elementary notions of QCT

From the classical point of view, the basic unit of information is a bit,
which is either 0 or 1. A full description of the state of the bit is therefore
given by a single number: 0 or 1.

In QCT, the basic unit of information is a qubit—the quantum coun-
terpart of the bit. Qubits are much more complicated than bits, they can-
not be described by the Boolean values 0 and 1, as they can occupy more
states. The classical Boolean values have their counterparts—two distin-
guished (basic) states of the qubit, usually denoted by |0〉 and |1〉. But
qubits can be also in a superposition of |0〉 and |1〉—i.e. they are (speak-
ing in informal terms) somehow in both states at the same time. Such a
superposition is described by the expression a0|0〉 + a1|1〉, where the co-
efficients a0 and a1 are two complex numbers such that |a0|2 + |a1|2 = 1.
From the formal point of view, a qubit is a vector of length 1 in a two-
dimensional complex Hilbert space.17 A physical realization of a qubit
is e.g. a photon (there are numerous other examples), but in this paper
we are not interested in the “hardware”, but rather in the theoretical
foundations of QCT.18

The classical computation consists of computational steps, transform-
ing the initial 0-1-sequence of bits.19 We just put the initial date on the
tape of the Turing machine, and start the process. After a finite num-
ber of steps (provided the machine indeed halts, but here we restrict
our attention only to such cases) the machine enters the terminal state,
and the tape contains the solution. Of course, at any moment of the
computation, the tape contains a certain finite 0-1 string.

17Readers who are not familiar with the concept of the Hilbert space can just think
of the qubits as of certain combinations of two basic objects.

18The fact, that the coeffictients are complex numbers makes the situation somehow
peculiar (from our classical point of view)—we can perfectly imagine mixing up e.g.
two different colors in proportions 73% and 27%, but we cannot mix them up in
proportions (1 + i)/2 and (1 − i)/2. How could we mix up portions of information
with complex coefficients? It does not make any sense from the classical point of
view, as the Turing machine transforms only strings of classical bits, and not their
superposition.

19Remember, that we can encode any alphabet by 0-1 strings, so we can assume,
that we are interested in 0-1 strings only.

Theory of quantum computation . . . 321

The technical details are not of primary importance here and will
often be omitted. What is really interesting is how a quantum computa-
tion enables us to make use of the very special features of the quantum
world.

2.2. Quantum register. Entanglement

In QCT we consider not only single qubits, but also strings of qubits—
quantum registers. Such registers have some quite special properties,
which have no counterpart in the classical world. Quantum algorithms
make use of these properties, and this makes them (at least in some cases)
extremely powerful in comparison with the available classical algorithms.

A single qubit has the form a0|0〉+a1|1〉—i.e. we need 2 complex num-
bers to describe its state. How many complex parameters are needed to
describe the state of a quantum register—e.g. a system of 10 photons?
Consider first a system of 10 points on the plane, and imagine that we
are interested in the positions of the points only. For each of the points,
we need two parameters (x, y) in order to describe its position, so 20
parameters are sufficient to provide a complete description of the system
of 10 points. This is quite obvious: every point has a position on its own,
independent of the other points, and in order to describe the position of a
single point we do not have to worry about the other points (why should
we?). Therefore, one might be tempted to think, that we also need 20 pa-
rameters in order to describe the quantum system of 10 qubits (photons).
But in the quantum world things are not always so simple: it can happen,
that the qubits constituting the quantum register do not have a state on
their own. That means, that the register of 10 qubits is in a certain state
as a whole, but it does not make sense to speak of the states of the indi-
vidual qubits. In such cases we speak of quantum entanglement (a notion,
which will be defined in a more precise way later). Because of that fact,
the description of the quantum system is much more complicated than a
person trying to apply intuitions from classical physics might expect. The
dimension of the system increases exponentially with the increase of the
number of qubits: in the general case, the description of the quantum reg-
ister consisting of n qubits requires 2n parameters (as this is the dimen-
sion of the Hilbert space needed to provide the description).20 Of course,
we could not even dream of writing down such a description for n = 100.

20In order to describe the state of the quantum register of 10 qubits we need in the
general case 210 = 1024 parameters, not just 20. In other words, the dimension of the

322 Krzysztof Wójtowicz

This is very different from the case of classical bits of information.
To understand the underlying mechanism, consider the example of two
qubits treated as one single quantum system. The states of the qubits
are a0|0〉 + a1|1〉 and b0|0〉 + b1|1〉 correspondingly. The state of the
quantum register can be written as a product (a tensor product) of these
two states:

(a0|0〉 + a1|1〉) ⊗ (b0|0〉 + b1|1〉)

(we will omit the symbol ⊗). If we treat this as an algebraic expression
and perform the multiplication, we obtain:

a0b0|0〉|0〉 + a0b1|0〉|1〉 + a1b0|1〉|0〉 + a1b1|1〉|1〉

To simplify the notation, we will write |00〉 instead of |0〉|0〉; |01〉
instead of |0〉|1〉 etc. The result is:

a0b0|00〉 + a0b1|01〉 + a1b0|10〉 + a1b1|11〉.

The vectors |00〉, |01〉, |10〉, |11〉 form a basis for the 2-qubit quantum
register. The vector a0b0|00〉 + a0b1|01〉 + a1b0|10〉 + a1b1|11〉 describes
the state of the 2-qubit register, such that the first qubit is in the state
a0|0〉 + a1|1〉, and the second in the state b0|0〉 + b1|1〉. In general, the
state of any two-qubit register can be described as: c00|00〉 + c01|01〉 +
c10|10〉 + c11|11〉 (where c00, c01, c10, c11 are complex numbers satisfying
the condition |c00|2 + |c01|2 + |c00|2 + |c11|2 = 1).

Of course, the state a0b0|00〉+a0b1|01〉+a1b0|10〉+a1b1|11〉 is simply
a product of two states: (a0|0〉 + a1|1〉)(b0|0〉 + b1|1〉). But not every
state of the 2-qubit register can be represented as a tensor product: in
most cases, the vector c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 does not allow
for such a factorization.21 In such cases we say, that the two qubits
are entangled. The presence of entanglement is a very special feature of
quantum systems and has no classical counterpart.22

Hilbert space describing the system of 10 qubits is 210 = 1024 (from the formal point
of view, this Hilbert space is the tensor product of the spaces corresponding to the
qubits forming the register).

21This is only possible, when the system of equations: c00 = x0y0, c01 = x0y1,
c10 = x1y0, c11 = x1y1, |x0|2 + |x1|2 = 1, |y0|2 + |y1|2 = 1 has a solution in complex
numbers.

22A simple example of a two-qubit entangled register is 1/
√

2(|00〉 + |11〉).

Theory of quantum computation . . . 323

For three (and more) qubits, the situation is analogous: consider the
system consisting of three qubits: a0|0〉+a1|1〉, b0|0〉+b1|1〉, c0|0〉+c1|1〉.
Again, we multiply them just like algebraic equations, obtaining the
product, which can be written down (using the obvious abbreviations,
e.g. |010〉 instead of |0〉|1〉|0〉 etc.) as:

a0b0c0|000〉 + a0b0c1|001〉 + a0b1c0|010〉 + a0b1c1|011〉 +

a1b0c0|100〉 + a1b0c1|101〉 + a1b1c0|110〉 + a1b1c1|111〉.
The eight vectors |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉

form a base of a 3-qubit register, and in the general case, the state of
such a register can be presented as:

a000|000〉 + a001|001〉 + a010|010〉 + a011|011〉 +

a100|100〉 + a101|101〉 + a110|110〉 + a111|111〉
If such an expression cannot be presented as a tensor product of three

qubits a0|0〉 + a1|1〉, b0|0〉 + b1|1〉, c0|0〉 + c1|1〉 we are again confronted
with quantum entanglement: the qubits forming the register do not have
a state on their own.23 In the general case of an entangled n-qubit
register, we need 2n components in order to describe the state of this
register (the dimension of the corresponding Hilbert space is 2n).24 That
shows in particular, that the computer simulation of the evolution of
a quantum system in an efficient way is not possible: to describe the
evolution of a system of n qubits, we would have to store (and describe
the evolution of) 2n values at once. Of course, this is not possible in the
case of e.g. 300 qubits.

2.3. Quantum gates

We can view a classical computation as a action of a Boolean network
on initial data.25 Such a circuit consists of Boolean gates, and each gate

23An example of a three-qubit entangled register is 1/
√

2(|000〉 + |111〉).
24If we can present the state of the n-qubit register as a tensor product we need 2n

coefficients only. But in the general (entangled) case we need 2n coefficients.
25A Boolean network is simply a directed graph, with nodes which are associated

with Boolean functions (i.e. functions f : {0, 1}n → {0, 1}m). Every gate transforms
the input (which is a string of n bits) into an output (a string of m bits). Given a
string of bits as input, such a circuit transforms it into another string. This model is
(in a suitable sense) equivalent to the Turing machine model, and for the purpose of
introducing quantum computations it is much more convenient.

324 Krzysztof Wójtowicz

transforms the initial string of bits into an output (which is another
string of bits). The quantum counterpart of such a Boolean gate is a
quantum gate, which acts either on one qubit or on a quantum register.
The action of a quantum gate on a qubit can be described as:

V : a0|0〉 + a1|1〉 → b0|0〉 + b1|1〉,

where a0|0〉 + a1|1〉 is the input (the initial state of the qubit), and
b0|0〉 + b1|1〉 is the output, i.e. the final state of the qubit (remember,
that a0, a1, b0, b1 are complex coefficients). In the general case a quantum
gate transforms an n-qubit register, giving another register as an output.

A quantum computation consists of a sequence of such transitions,
performed on a quantum register. These quantum gates manipulate the
information stored in the qubit, or in the quantum register (the system
of qubits). From the mathematical point of view, quantum gates are
linear unitary operations, i.e. they preserve the norm of the quantum
state (but these technical details are not important here).26

Every quantum gate is a linear operator on the appropriate Hilbert
space (the dimension of this space is 2n, where n is the size of the reg-
ister). Due to the linearity of the operator, it is sufficient to define the
action of the operator on the basic states |0〉 and |1〉 of the particular
qubits.27 A simple example is the Hadamard gate H, which acts in the
following way:

|0〉 → 1/
√

2(|0〉 + |1〉),
|1〉 → 1/

√
2(|0〉 − |1〉).28

A straightforward computation shows, that H2 = Id.

26A quantum gate acting on one qubit is a unitary matrix of dimension 2. A general
quantum gate acting on n qubits is an unitary matrix of dimension 2n. If U is such
a gate, then U∗U = Id (identity), where U∗ is the adjont of U (obtained from U by
transposing the matrix and complex-conjugating it). These technical details are not
so important here, but it should be mentioned, that quantum gates are reversible: for
any quantum gate U there is another quantum gate V , which inverts U .

27If V is such an operator, the linearity of V means simply, that V (a0|0〉 + a1|1〉) =
a0V |0〉 + a1V |1〉.

28In this paper we abstract from the physical details, but—for the sake of
illustration—notice, that the Hadamard gate describes a photon passing through an
interferometer. A simple description can be found e.g. in [Deutsch et al 2000].

Theory of quantum computation . . . 325

Now consider the following thought experiment, which will give us
some insight into the peculiarities of the quantum world and of quantum
computation. Imagine a random device, which—independently of the
input (which is 0 or 1) gives us as output 0 or 1 with the same probability
½ (e.g. a fair coin toss). If such an operation is performed twice (i.e. we
simply concatenate two such devices M) it is quite obvious, that the
output will likewise be random: we just feed the first device with the
input 0 or 1, perform the random operation, observe the output, pass the
output to the second device, perform the second random operation and
observe the output. Of course the second output is random, regardless
of the first outcome.

This is how the classical coin works. However, in the quantum world,
strange things happen: we can set up a random operation U, with the
strange property, that performing it twice gives us a deterministic out-
come. This is of course very counterintuitive, as our intuitions are mod-
eled by the classical (i.e. macroscopic) world. A classical coin like this
does not exist. But the “quantum coin” acts in the following way:

U(0) = 0 or 1 with probability ½,

U(1) = 0 or 1 with probability ½.

But(!)

U2(0) = 1 ,

U2(1) = 0 .

From the logical point of view, the operation U2 is the negation. So
U can be viewed as the square root of the negation. In classical logic,
such a logical operation does not exist. But there is a quantum device,
which acts exactly in this way—i.e. it can be (in a sense) viewed as an
experimental realization of

√
NOT.

What is its formal counterpart? Consider the operator U , defined as:

U : |0〉 → ½(1 − i)|0〉 + ½(1 + i)|1〉,
U : |1〉 → ½(1 + i)|0〉 + ½(1 − i)|1〉.

A straightforward computation shows, that UU |0〉 = 1, and UU |1〉 = 0.
U2(p) = ¬p, so U is the square root of the negation.

326 Krzysztof Wójtowicz

But why do we claim, that
√

NOT, acting e.g. on photons is a random
device? There is no sign of randomness in the definition of the opera-
tor U . Indeed, U acts on the vectors in the Hilbert space in a purely
deterministic way. But in order to “extract” the information from the
quantum system we have to perform a measurement. A measurement is
probabilistic in nature, as stated by one of the basic postulates of quan-
tum mechanics (which we remind here in a simplified form, concerning
only qubits):

• If we perform the measurement on a qubit, being in the state
a0|0〉 + a1|1〉, there are two possible outcomes: 0 and 1. The probability
of obtaining the result 0 equals |a0|2, and the probability of obtaining 1
equals |a1|2. After the measurement the state of the quantum system is
projected onto one of the basic states: if the outcome was 0 (resp. 1),
the state after the measurement is projected onto |0〉 (resp. |1〉).29

In particular, we usually cannot learn from the outcome of the mea-
surement, what was the state of the system before the measurement (we
cannot tell whether the state was e.g. ½(1 − i)|0〉 + ½(1 + i)|1〉 or rather
½i|0〉 +

√
¾|1〉). For example, if the outcome of the measurement was

0, the only information about the state of the system before the mea-
surement, is that a0 6= 0. After the measurement the state of the system
collapses to |0〉 (and of course the outcome of the next measurement will
be 0 with probability 1). So (with few exceptions), the act of measure-
ment causes changes in the state of the system.

Let us turn back to
√

NOT. It transforms |0〉 to ½(1 − i)|0〉 + ½(1 +
i)|1〉. If we now perform the measurement, we will obtain 0 or 1 with
equal probabilities ½. That means, that the procedure consisting of:

1. preparing the quantum system in the state |0〉,
2. applying the

√
NOT operation to this system,

3. performing the measurement,

is a purely random procedure, just like tossing a random coin. But if we
do not perform the measurement after the first application of

√
NOT,

29In particular, if the result of the measurement was e.g. 0, than the state is projected
onto |0〉, and the next measurement will yield the result 0 with probability 1. The
coefficients a0 and a1 are called probability amplitudes. This postulate explains the
sense of the condition |a0|2 + |a1|2 = 1—this is to satisfy the additivity axiom in
probability theory.

Theory of quantum computation . . . 327

but apply
√

NOT again, the whole procedure will transform 0 into 1
and 1 into 0 in a deterministic way. This looks strange, but remember,
that we do not perform the measurement after the first application of
the

√
NOT gate, but we transfer the result to the second gate—and the

measurement is performed after the second application of
√

NOT. Of
course, if we measured the state of the system after the first

√
NOT, the

state of the quantum system would collapse (become either |0〉 or |1〉),
so the input of the second gate would be either |0〉 or |1〉, and the second
measurement would yield either 0 or 1 with the same probability.

As was already mentioned before, in the general case the measure-
ment does not give any information about the state of the system before

the measurement. So, if we perform a quantum computation and after-
wards perform the measurement of the system, we usually will not be
able to tell, what was the state of the system before the measurement.
That means, that in the general case during the measurement we lose
the information that was obtained in course of the computation. But in
some interesting cases, some additional information about the evolution
of the system will make it possible to deduce the final state of the system
from the result of the measurement—and in these cases we will be able
to harness quantum mechanics in order to produce effective information
processing procedures.

Two simple examples may illuminate the point:
(a) Consider one qubit, which is known in advance to be in one of

the two states from the computational basis (i.e. it is either |0〉 or |1〉,
but we do not know, which one). Of course, in that case the outcome of
the measurement gives us information about the internal state.

(b) Consider a 2-qubit quantum register, which is known in advance

to be in one of the two states:

Φ0 : 1/
√

2(|00〉 + |01〉),
Φ1 : 1/

√
2(|10〉 + |11〉).

If we perform the measurement on the first qubit, we will obtain
the complete information about the state of the whole register, as we
could obtain 0 only when the state of the register is Φ0 (and analogously,
only Φ1 can result in obtaining 1). That means, that in some cases the
outcome of the measurement allows us to “extract” information about
the state of the system before the measurement. We can make use of this
fact in quantum algorithms, the simplest of which is Deutsch’s algorithm.

328 Krzysztof Wójtowicz

2.4. Examples of quantum algorithms30

Stated in colloquial terms, we have to decide, whether a coin is a genuine
coin or not (in which case it has two tails or two heads). Of course, clas-
sically we have to look at the coin twice. The mathematical counterpart
is as follows: for a given function f : {0, 1} → {0, 1}, we have to find out,
whether the function is constant (f(0) = f(1)—this corresponds to the
fake coin), or whether it is balanced (f(0) 6= f(1)—a genuine coin). How
many function evaluations are necessary in order to find out, whether f
is constant or balanced? Classically—of course two: we have to evaluate
both the values f(0) and f(1), and then compare them. In the quantum
world we can do this in one quantum step.

Consider a quantum “black box” Uf , which acts on a two-qubit reg-
ister in the following way:

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉,

where ⊕ is addition modulo 2 (i.e. 0 ⊕ 0 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1;
1 ⊕ 1 = 0).31 It turns out, that it is possible to find out the value
f(0) ⊕ f(1) applying the procedure Uf only once.32

The Deutsch algorithm proceeds as follows (to simplify matters I will
omit all the coefficients like 1/

√
2, ½ etc.):

1. We prepare two qubits in initial states |0〉 and |0〉 − |1〉, so the
state of the register can be written down as the product |0〉(|0〉−|1〉). We
apply the Hadamard gate to the first qubit, and identity (i.e. do nothing)
to the second qubit:33

H : |0〉(|0〉 − |1〉) → (|0〉 + |1〉)(|0〉 − |1〉)

30We present the simplest possible algorithm here. The interested reader can find
more technical details concerning quantum algorithms e.g. in [Nielsen Chuang 2000],
[Hirvensalo 2001].

31Formally, we apply the identity operator to the first qubit; evaluate f(x) on the
first qubit and add the result modulo 2 to the value of the second qubit.

32If f is balanced, than f(0) ⊕ f(1) = 1, if it is constant, f(0) ⊕ f(1) = 0. So we
do not have to compute the particular values f(0) and f(1) in order to answer the
question. In a sense, we are only using the minimal information available.

33This means, that after this operation the state of the first qubit is |0〉 + |1〉, and
the second |0〉 − |1〉. The operation should formally be written as H ⊗ Id, but we omit
these details.

Theory of quantum computation . . . 329

2. Now we apply the quantum gate Uf . A straightforward computa-
tion shows, that:

Uf : (|0〉 + |1〉)(|0〉 − |1〉) → ((−1)f(0)|0〉 + (−1)f(1)|1〉)(|0〉 − |1〉).

The state of the first qubit is therefore

(−1)f(0)|0〉 + (−1)f(1)|1〉

(the state of the second qubit is |0〉−|1〉, but that is of no further relevance
to our problem). There are two possibilities:

(i) If f(0) = f(1), then the state of the first qubit is either |0〉 + |1〉
(this happens when f(0) = f(1) = 0) or −(|0〉 + |1〉) (this happens when
f(0) = f(1) = 1).

(ii) If f(0) 6= f(1), then the state of the first qubit is either |0〉 − |1〉
or −(|0〉 − |1〉).

Now we apply the Hadamard gate again to the first qubit. The result
is:

• if (i) was the case: |0〉 or −|0〉,
• if (ii) was the case: |1〉 or −|1〉.

If we now perform the measurement on the first qubit, we obtain either
0 or 1, and in this particular case we are able to deduce, whether (i) or
(ii) took place. This is because we knew in advance, that the qubit had
to be in one of four particular states before the final measurement. Ob-
serve, that in this algorithm we evaluated the function f only once. The
measurement is performed after the algorithm terminates—otherwise we
would cause the measured qubit to collapse and therefore destroy the
computation.

The Deutsch algorithm is interesting, but it seems somehow artificial,
and the increase in speed (1 call of the function f instead of 2 calls) is not
very spectacular. But it has an interesting generalization: the Deutsch-
Jozsa algorithm. Here we have a function f : {0, 1}n → {0, 1} (so any
0-1 sequence of the length n is mapped either on 0 or 1). We know in
advance, that f is either constant (all the values of f are 0 or all the
values are 1), or balanced (which means, that f takes as many times
the value 0 as the value 1). In the classical algorithm we have to call

330 Krzysztof Wójtowicz

f approximately 2n−1 times.34 But the Deutsch-Jozsa algorithm solves
this problem in a polynomial time.

2.5. The killer application?

The by far most impressive example of a quantum algorithm is Shor’s
algorithm,35 which can be called one of the cornerstones of quantum
computation theory. Shor’s algorithm shows, how a problem believed to
be hard becomes easy by referring to quantum mechanics.

The algorithm deals with the factorization problem, which belongs
to the class NP: given a solution we can check within a polynomial
time whether it is fact is the desired solution, but factoring a number
into primes is a complicated task (try this with e.g. 1062347—which is
not a very big number). Every known classical algorithm for factoring
requires an exponentially increasing number of steps. This fact is ex-
ploited in cryptographic protocols: the security of these protocols relies
on the assumption, that factoring is intractable. We will not go into
the technical details of Shor’s algorithm—it consists of a classical and a
quantum part. In the classical part we exploit some number-theoretic
results (concerning finding prime factors by determining a period of a
certain function). The problem of factorization reduces to the problem
of finding the period of a certain periodic function. This problem can
be solved efficiently by Shor’s quantum algorithm. In particular, Shor’s
algorithm provides a theoretical possibility of cracking the RSA code,
the security of which rests on the assumption, that factoring is hard.

3. Final remarks

Quantum computers could be very powerful—so why there are none of
them available? Not going into technical details, quantum registers are
extremely fragile. One of the most technical problems is to prevent the
surrounding environment from interacting with the qubit registers. In

34Of course, if the function is balanced and we are lucky, we obtain two different
values in the first two evaluations, but it can also happen, that we obtain 2n−1 times
the same value, and have to make one more evaluation in order to decide, whether f
is constant or balanced.

35It was presented in 1994 ([Shor 1994]) and sparked a tremendous interest even
outside the physics community.

Theory of quantum computation . . . 331

a sense, we have to encapsulate the quantum computer and prevent it
from losing the information in the environment (a decoherence, which
would destroy the computation). That means, that there are formidable
technical problem to be overcome before a quantum computer can be
build.36

But in spite of these practical problems, I think that the area of
quantum computing has a profound impact on our understanding of
some classical philosophical and methodological notions. These issues
will be discussed in the subsequent paper. In particular, I will discuss
the philosophical impact which this theory has on philosophy of math-
ematics, and—in particular—I will examine the thesis, that the best
explanation of the status of mathematical knowledge compatible with
the advances in QCT if offered by the quasi-empiricist stance (which in-
corporates mathematical knowledge into our “web of belief”, including
also scientific knowledge).

Acknowledgments. This paper was supported by the KNF grant N
N101094136.

References

Aharonov, D., 1998, “Quantum computing”, Annual Review of Computational

Physics VI, Singapore: World Scientific. Available on-line: http://arxiv.

org/PS_cache/quant-ph/pdf/9812/9812037v1.pdf

Davis, M., 2006, “Why there is no such discipline as hypercomputation”, Applied

Mathematics and Computation 178, 1: 4-7 (Special Issue on Hypercompu-
tation).

Deutsch D., A. Ekert, and R. Lupacchini, 2000, “Machines, Logic and Quantum
Physics”, The Bulletin of Symbolic Logic 6, 3: 265–283.

Feynman, R.P., 1982, “Simulating physics with computers”, International Jour-

nal of Theoretical Physics 21: 467–488.

Garey, M. R., and D. S. Johnson, 1979, Computers and Intractability. A Guide

to the Theory of NP-completeness, New York, WH Freeman.

Hirvensalo, M., 2001, Quantum Computing, Springer-Verlag.

Hogarth, M., 1994 “Non-Turing computers and non-Turing computability”,
PSA 94, 1: 126–138.

36A presentation of these technical matters can be found in [Stolze, Suter 2004].

http://arxiv.org/PS_cache/quant-ph/pdf/9812/9812037v1.pdf
http://arxiv.org/PS_cache/quant-ph/pdf/9812/9812037v1.pdf

332 Krzysztof Wójtowicz

Hopcroft, J. E., and J.D. Ullman, 1979, Introduction to Automata Theory, Lan-

guages, and Computation, Addison-Wesley.

Laraudogoitia, J. P., 1996, “A beautiful supertask”, Mind 105: 81-83.

Nielsen, M. A., and I. L. Chuang, 2000, Quantum Computation and Quantum

Information, Cambridge University Press.

Pitowsky, I., 1990, “The physical Church thesis and physical computational
complexity”, Iyyun 39: 81–99.

Shor, P., 1994, “Algorithms for quantum computation. Discrete logarithms and
factoring”, pp. 124–134 in: Proc. 35th Annual Symposium on Foundations

of Computer Science.

Stannett, M., 2006, “The case for hypercomputation”, Applied Mathematics and

Computation 178, 1 (Special Issue on Hypercomputation).

Stolze, J., and D. Suter, 2004, Quantum Computing. A Short Course from

Theory to Experiment, Wiley-VCH, Weinheim.

Krzysztof Wójtowicz

Department of Logic
Warsaw University
ul. Krakowskie Przedmieście 3
00-927 Warszawa, Poland
wojtow@uw.edu.pl

	
	
	

	
	
	
	
	
	

	

