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THE THEORY OF RECTIFIED DIFFUSION OF MASS INTO GAS BUBBLES 

by 

Din- Yu Hsieh* and Milton S. Plesset 

California Institute of Technology, Pasadena, California 

Abstract 

The problem considered is the behavior of a gas bubble in a liquid 

saturated with dissolved gas when oscillating pressures are imposed on 

the system. This situation is encountered in experiments on cavitation 

and in the propagation of sonic and ultrasonic waves in liquids. Since gas 

diffuses into the bubble during the expansion half- cycle in which the pres­

sure drops below its mean value, and diffuses out of the bubble during the 

compression half-cycle in which the pressure rises above its mean value, 

there is no net transfer of mass into or out of the bubble in first order. 

There is, however, in second order a net inflow of gas into the bubble 

which is called rectified diffusion. The equations which determine the 

system include the equation of state of the gas in the bubble, the equation 

of motion for the bubble boundary in the liquid, and the equation for the 

diffusion of dissolved gas in the liquid. In the solution presented here, the 

acoustic approximation is made; that is, the amplitude of the pressure 

oscillation is taken to be small. It is also assumed that the gas in the 

bubble remains isothermal throughout the oscillations; this assumption is 

valid provided the oscillation frequency is not too high. Under these con­

ditions one finds for the mean rate of gas flow into the bubble the expression 

(dm/dt) = (81T/3)DC R (AP/P )
2 

00 0 0 

where D is the diffusivity of the dissolved gas in the liquid, c 
00 

is the 

equilibrium dissolved gas concentration for the mean ambient pressure P 
0

, 

R is the mean radius of the bubble, and .1. P is the amplitude of the 
0 

acoustic pressure oscillations. It may be remarked that the most impor-

tant contribution to the rectification effect comes from the convection 

contribution to the diffusion process. 

*International Nickel Co., Inc. Fellow 
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Introduction 

When a gas bubble in a liquid saturated with dissolved gas is subject 

to an oscillating pressure field, a net flow of gas into the bubble over any 

complete cycle of oscillation is to be expected. An intuitive physical ex­

planation is as follows. When the pressure rises above its mean value, the 

gas bubble is compressed and at the same time the concentration of dis­

solved gas in the liquid is below the equilibrium value appropriate for the 

increased pressure. This situation results in an outflow of gas from the 

bubble. On the other hand, by a corresponding argument, gas flows into 

the bubble from the liquid in its neighborhood during the expansion half-

cycle. Because of the difference in surface area of the bubble between these 

two half-cycles, there will be a net gas flow into the bubble over a complete 

cycle. While the effect appears obvious from this intuitive argument, a quan-

titative analysis is not quite simple. First of all, the analytic difficulties 

are closely associated with the complicated dynamic problem which deter­

mines the motion of the . bubble wall in terms of the applied pressure and 

other relevant parameters of the bubble. Secondly, even when the motion 

of the bubble wall is given, one still has to treat a nonlinear diffusion prob­

lem which involves conditions specified on some moving boundary. Since 

the dynamic behavior and the diffusion process are coupled, there is an 

even greater degree of complexity in the analysis. 

The net inflow of gas which has just been described has been called 

11 rectification of mass 11
• An approximate treatment of the effect has been 

given by Blake .
1 

Blake estimated the effect by a quasi- static solution of 

the diffusion problem which included only the effect of the area change of 

the bubble as described in the intuitive argument just given. The present 

paper gives a complete analysis based on a linearization procedure. The 

convection effects in the diffusion process are included in the present treat­

ment, and it is found that these convection effects are of the greatest impor­

tance in determining the net result, 

It will be shown that the radius of a bubble grows slowly due to 

rectification, and becomes asymptotically proportional to t
1 I 2 . On the 

basis of this result, one might expect that in a liquid saturated with dis­

solved gas a bubble in an oscillating pressure field would grow indefinitely. 

1 

F. G. Blake, Technical Memorandum No. 12, Acoustics Research Lab., 
Harvard University ( 1949). 



2 

Such indefinite growth is not observed, and the question therefore is raised 

regarding the stability of the spherical shape of an oscillating bubble. A 

brief discussion of this stability question is given in the last section of this 

paper which shows that there is an upper stability limit for the gas bubble o 

Formulation of the Problem 

For the case of present interest for which the effect of diffusion is 

of primary concern, the dynamic problem can be by-passed if one prescribes 

the oscillating pressure inside the gas bubble rather than the pressure in 

the liquid at infinity. This procedure is indeed not so arbitrary as might 

appear for, when the steady state is attained, the pressure inside the bubble 

behaves in the linearized approximation in essentially the same manner as 

the external applied pressure except for a phase difference and an unimpor­

tant modification of amplitude.* 

The pressure within the gas bubble will be taken to be uniform through­

out the interior and will be denoted by P(t). P(t) is prescribed in the 

following manner 

P(t) = P (1 + ~sinwt), 
0 

(I) 

where it is assumed that E c:::c::: 1 so that the linearization procedure may be 

carried out. It is also assumed that the gas inside the bubble behaves iso­

thermally during expansion and compression. It follows that 

R(t) = R (1 + o sinwt) + O(o
2

) , 
0 

( 2) 

where 

-3 0 = € 

R is the radius of the bubble at time t, 

corresponding to P 0 

. 0 

and R is the equilibrium radius 
0 

A more general assumption regarding the thermodynamic behavior 

of the bubble leads to a phase difference between (P - P ) and (R- R ) • 
0 0 

This possibility is not considered since no essentially new feature is intro-

duced by this complication. 

* The dynamic problem is considered in detail by the authors elsewhere. 
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The amount of gas flowing into the bubble in a time interval 6t is 

~t 

dt 1 D 'il C · d S 

s 

where C is the concentration of gas dissolved in the liquid, D is the coef­

ficient of diffusion, and the integration is over the surface S of the bubble 

wall. When the problem possesses spherical symmetry, as in the present 

case, this expression simplifies to 

t +At 

I 
0 

dt 41T D R 
2 

( ~) _ 
t r-R 

0 

The concentration C is a solution of the diffusion equation 

ac + q • \J c = . n \12 c , 
at 

( 3) 

with appropriate initial and boundary conditions. In Eq. ( 3) q is the flow -
velocity of the liquid. For an irrotational flow field in the liquid it is known 

that 

(4) 

. 
with R:::; dR/dt. 

The boundary conditions are specified in the following way. The 

amount of gas dissolved in the liquid does not change with time at a large 

distance from the bubble, that is, C- C , a constant, as r-oo. The 
00 

dissolved concentration in the liquid at the bubble wall is determined in 

accordance with Henry's Law which says that the concentration of dissolved 

gas at constant temperature is proportional to the pressure; it follows that 

at r = R, C = a P (R) where a is a constant characteristic of the liquid-

gas combination. Also, since C = C everywhere when there is no dis-
oo 

turbance in the equilibrium situation, one has a P = C The formulation 
0 00 

of the boundary conditions for the solution of Eq. ( 3) is, thus, 

C = C , as 
00 

C = C (1 + E sin wt), at r = R. 
00 

(5) 

( 6) 



The initial condition is spedfied as follows: 
• 

C (r, t) = C , for 
00 

t =:: 0 , and for all r • 

4 

(7) 

Since one is interested in the steady state solution, only the aeymp­

totic solution for large t need be found. 

Solution of the Problem 

One may define Q(r, t) as 

Q(r,t) = C(r,t)- C • 
00 

The problem is then reduced to the solution of the equation 

2 
L(Q) = a (r

2
Q) _ .!..: a(r Q) 

ar J..J at 
g(Q) ' 

with the conditions 

~(r,O) = Q(oo,t) = 0 

and 

(8) 

(9) 

(10) 

A scheme of successive approximations in powers of the small 

parameter e can be developed, and the leading term that contributes to 

the rectification of mass will be evaluated explicitly here. Thls leading 
2 

term is of order € • The successive approximations may be carried out 

in two steps. First, one solves the following problem: 

with 

and 

= -3bC sinwt. 
00 

(11) 

(12) 

(13) 

With this solution as the first approximation for g(Q), one then carries out 

the next step of successive approximations by solving the equation 

(14) 

with 
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(15) 

and 

(16) 

When g
1 

and g
2 

have been obtained in this way, then g = g
1 

+ g
2 

will be 

the solution to the desired order of accuracy. It may be pointed out that 

to obtain a solution accurate in second order in E. {or o) the bubble boun­

dary is specified with sufficient accuracy as 

R(t) = R (1 + o sinwt) • 
0 

To obtain solutions to orders higher than e. 
2 

requires that the expression 

for R(t) be corrected to the appropriate degree of accuracy. It is easy 

to see that this scheme of successive approximation, although workable in 

principle for higher order solutions 1 becomes quite complicated. 

The asymptotic solution of Eqs. (11) 1 (12), and (13) for large t is 

to the order of E 
2 

(c£. Appendix I) : 

3 R C o { - ( r- R )\f w/ 2D 
9 1(r,t) = - ~ 00 

e 
0 

sin [wt- (r-R
0

)\fw/2D J 

+~ [(l+R \}w/2D) Erfc(r-Ro) -(l+R Vw/2D) e-(r-Ro)\Jw/
2
Dcos(2wt-(r-R >-VwfD 

0 I[4Dt 0 0 

-(r-R >-v;:;lD J} 3/2 
+ R

0 
\} w/ 2D e 

0 
sin (zwt- (r-R

0
)-v;:;7D) + O(t- ) • (1 7) 

For the calculation of the rectification of mass, it is not necessary 

to evaluate 9
2 

explicitly since the rate of gas flow into the bubble is deter­

mined by ( o92/ a r) -R. This quantity may be found by use of Eq. (17) for 
r- 2 

large t 1 up to the order €. , to be (c£. Appendix II) 

(
ag 2 ) = 
ar r=R 

00 

io ~ g 1 (r) dr+ o(;-fu) + S, (18) 

0 

where S consists of sinusoidal terms which do not contribute to the net flow 

of gas into the bubble over a complete cycle in the order of € 
2

• The 

gl (r) is given by 
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+ -;z 1,f.,/ ZD cos [ (r-R
0
)1/w/2D]} 

( 19) 

The integral which occurs in Eq. (18) is not readily evaluated in the 

general case. However, for the case that R
0
ljw/2D ;;:;:.c::. I, i.e., when 

the diffusion length \[Di";;; is small compared with the bubble radius*, one 

can obtain an asymptotic expression. In this way, one finds (c£. Appendix 

III) 

3 + 0(&. ) 

From Eq. (17) one obtains (cf. Appendix I) 

(20) 

(21) 

where S' contains only sinusoidal terms which will not contribute to recti­

fication up to order £ 
2 

• 

The rate of gas flow into the bubble is 

* 0 -5 2/ The value of D for air in water at 20 Cis approximately 2x 10 em sec. 
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which by application of Eqs. (20) and (21) becomes, to the order of € 
2

, 

J = 24 1r D C R o 
2 

[ 1 + 0 ( l ) + 0 ( . ~ ) ] + S + 0 ( o 
2

) • 
00 0 R

0 
-J w! 2D t~ 1 

c.. 

(22) 

Thus, the leading term for the average rate of flow of gas into the bubble is 

J = 241TD C R 02 . 
00 0 

Since 

1 
p -P 

0 
~ max 0 

= - 3-- 3 p 
0 

one may also write 

J 

2 

=~1rDC R (~p) 
3 00 0 p 

0 

(23) 

1 ~p 
= - 3 p-

0 

(24) 

Thus, when the ratio of the pressure amplitude .6P to the mean pressure 

P is sufficiently small, the bubble growth by rectification is determined 
0 

by this leading term. 

The mass of gas inside the bubble is 

4 3 
m = -1Tp R 

3 g 0 
(25) 

The mean density of the gas, Pg, remains essentially unchanged during 

the slow growth so that 

dm 2 
= 41Tp R 

Cit g 0 

dR 
0 

at (26) 

On the other hand, the rate of increase of mass in the bubble by rectification 

is 

dm = J = 81T DC E2R 
Cit 3 00 0 

(27) 

so that Eqs. (26) and (27) give 



It follows that 

dR 
0 

Cit = 

DC ~ 2 
2 00 

3 p R 
g 0 

R 2 = R~ + 4 
0 1 3 

8 

(28) 

t (29} 

if one sets R = R. at t = 0. Equation (29} may be written alternatively in 
0 1 

the form 

R = 2 (DCoo r ~ (t + t } 1/2 ( 30) 
0 3p 0 

g 

where 

3p 

t :~ r t = ~ 
0 DC 

00 

A measure of the rectification growth rate is the time 't' required 

for a bubble to double its size. From Eq. (29}, one obtains for this time 

9R
2 

-r = o Pg 

4C D ~ 2 

00 

Some numerical values for the case of air in water at 20°C and 1 atm 

pressure are given in Table I. 

Stability of a Spherical Gas Bubble in an Oscillating Pressure Field 

The result of the calculation of mass rectification indicates that a 

spherical gas bubble in a liquid with an oscillating pressure field grows in­

definitely. Such a behavior is not observed experimentally so that the 

question naturally arises concerning the stability of the spherical bubble in 

an oscillating pressure field. The general relations which determine the 

stability of this spherical flow have been discussed elsewhere
2 

and have 

2 
M.S. Plesset, J. Appl. Phys., 25, 96 (1954}. 



TABLE I 

Time Required for Air Bubbles in Water at 20°C, 1 atm, 

to Double in Size by Mass Rectification . 

9 

Initial Radius Relative Pressure Amplitude Doubling Time 

R.(cm) 
p - p -r: (sec) 

€ = max 0 
1 p 

0 

10-l 0.25 1. 1 X 10 
6 

10-l 0.10 6. 7 X 10 
6 

10-l 0.01 6. 7 X 10 
8 

lo- 2 
0.25 1.1x10 

4 

10- 2 
0.10 6. 7 X 10 

4 

10- 2 
0.01 6. 7 X 10 

6 

10- 3 
o. 25 1.1x10 

2 

10- 3 
0.10 6. 7 X 10 

2 

10- 3 
0.01 6. 7 X 10 

4 
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3 
been applied to the specific case of the growth and collapse of vapor bubbles. 

The treatment given here will apply the basic relations derived in Refs. 2 

and 3 to the problem of the oscillating gas bubble. 

It is apparent that so far as the effect of the rectification of mass is 

concerned, the growth of a gas bubble is very slow. Therefore, the 

stability considerations may be applied to the case in which the mean radius 

of the bubble remains essentially constant in time. 

Let the bubble boundary be distorted from a spherical surface of 

radius R to a surface with radius vector of magnitude r
5 

• Then one may 

write 

= R + L: 
n 

a y 
n n 

(31) 

where Y is a spherical harmonic of degree 
n 

n and the a 1 s are functions 
n 

of the time to be determined. The growth or decay of a (t) from a small 
n 

initial value determines whether the spherical shape is unstable or stable. 

When a linearized perturbation procedure under the assumption that 

I an (t) I << R(t) 

is applied to the case of two immiscible, incompressible, inviscid fluids 

separated by a spherical interface, one finds
2 

that the a 's are independent 
n 

of each other and that they satisfy the following differential equation: 

0 . 

The function A in Eq. ( 32) is given by 

A= 
[ n(n-1) p 2 - (n+l)(n+2) pi] d

2
R/dt

2
- (n-I)n(n+I)(n+2) rr/R

2 

[n p2 + (n+I) PI] R 

( 32) 

( 33) 

where pi is the density of the fluid inside the sphere, p
2 

is the density 

of the fluid outside the sphere, and cr is the surface tension constant. 

3 
M.S. Plesset and T.P. Mitchell, Quart. Appl. Math., 8, 4I9 (I956) 
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Although the stability of the spherical shape for a small distortion may be 

i nferred from the decay of a (t) with time, strictly speaking the instability 
n 

i nferred from a growth of a (t) with time is a reasonable conjecture rather 
n 

than a necessary consequence because of the linearization process. 

For the case of a gas bubble, the gas density p
1 

may be neglected 

in comparison with the liquid density p 
2

• Then A becomes 

(n-1) d
2

R cr 
A= ~ d;Z - (n-l)(n+l)(n+2) ~ 

where p = p 
2 

is the liquid density. If one writes 

b = R
213 

a 
n n 

then Eq. ( 32) is transformed into 

+ G(t) b = 0 , 
n 

where 

G = (n-l)(n+l)(n+2) ~ - ~ 
n pR 3 4Rc. (

dR)
2 

_ (n+ 1/2) d
2

R 

dt R citY . 

( 34) 

(35) 

( 36) 

( 37) 

The radius of the undisturbed bubble is determined as a function of 

time by the familiar equation 

R 4 + ~ ( dR)2 = 
dt 2 dt 

1 (P.- p - ~) 
p 1 CX)n_ 

(38) 

where P. is the pressure inside the bubble, and P is the pressure at a 
1 . (X) 

distance from the bubble which in the present case may be expressed as 

P = P ( 1 + €. sin w t) • 
(X) 0 

(39) 

When ~ is small compared with unity, a linearized calculation gives the 

following solution for R: 

R = R
0 

[ 1 + o sin (wt + 0) J (40) 



whe re o is of the same order of magnitude as t:. and ~ is a constant 

phase shift, which for convenience may be put equal to zero. Then G(t) 

may be expressed as 

G(t) = (n-l)(n+l)(n+2) ~ 3 [ 1 - 3 o sinwt + 0(&
2

) J 
p 0 

2 
cos wt 

12 

With this expression for G(t), the differential equation (36) can be recog­

nized as belonging to the kind of equations known as Hill's equation. With 

o << 1 one may retain the leading terms in the expression for G(t) which 

then takes the form 

G(t) = a+ f3 sinwt , (42) 

whe r e 

a= (n-l)(n+l)(n+2) cr + 0(&
2

) , 
~ p 0 

(43) 

and 

(44) 

Equation ( 36) is then just the Mathieu equation. 

The stability theory of solutions of the Mathieu equation is well 

known. 
4 

Relations between the parameters n, a-, p, 6, w, and R may be 
I 0 

obtained to determine the region of stability or instability of the solutions. 

More specifically, one may determine the critical valu~ .of R which is 
0 

the transition value between stability and instability for given values of 

cr-. p, o and w. Without going into the details of determining the exact 

stability conditions, one may indicate how the critical radius is determined 

with the aid of the stability chart for the Mathieu equation. 
4 

The solution 

is essentially unstable if G < 0. In applyl.ng this criterion to Eq. (43) one 

4 
See, for example, N. W. McLachlan, "Theory and Applications of 

Mathieu Functions", Clarendon Press, Oxford (1947). 
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must keep in mind that the values of n of interest do not include n = 1 since 

this value of n corresponds not to a distortion of the spherical shape but 

to a translation of the entire bubble. 

One may see from the behavior of a and (3, or from examination 

of the stability chart, that the greater n the greater is the limit of stability. 

Therefore, for the determination of the critical radius, it is sufficient to 

consider the case n = 2 only. In this case Eq. {42) becomes 

1 2 o- ( 5 2 36 () ) . G{t) = ----::3 + o 2 w - --
3 

s1n wt • 
pR pR 

0 0 

{45) 

An order of magnitude criterion of stability is thus 

5 2 ow . 
2 

{46) 

From Eq. (46), one gets 

1/3 

(R ) 
0 

cr 

~ ( 24cr ) 

5 p ow2 
{47) 

The solution is stable only if the mean radius R is less than (R0 ) • 
o cr 

This general result may be illustrated by considering the particular 

case of an air bubble in water. One then has <T = 7 3. 5 dyne/ em and 

I 3 -2 4/ p = 1 gm em • If one now takes the example of o = 10 and w = 10 sec, 

then 

-1 
,-.,.; 10 em • 

This value is very reasonable in view of the experimental observations with 

sonic and ultrasonic pressure oscillations in water. If the critical radius 

were found to be appreciably larger than this value, the process of rectifi­

cation would lead to the eventual formation of large air bubbles in water 

subject to pressure oscillations. Experimental observations do not show 

the appearance of such large bubbles. 
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Appendix I 

To solve 

(I 1) 

with 

(I 2) 

and 

Q 
1 

( R(t), t) = - 3 C 
00 

o sin w t , (I 3) 

2 
up to O(o ) , we note that 

(-
agl) + = Q

1
(R ,t) + (R-R) 

o o ar r=R 
0 

or 

= - 3 C o sin w t - R o sin w t ( a g l ) -
oo o ar r=R 

. . . . .. (I 4) 

0 

We may ignore the remaining terms, since they are of the order of o 3 • 

Now let us solve first the equation 

with 

and 

Denote 

az 
= D -:--z (r Q) 

ar 

Q (r, 0) = Q (oo, t) = 0 , 
0 0 

Q (R , t) = - 3 C o sin wt • 
0 0 00 

00 

v 
0 

( r; s) = ;[ { r Q 
0

} = J r Q 
0 

( r, t) e- s t dt 

0 

Then the transformed equation and conditions become 

(I 5) 

(I 6) 

(I 7) 

(I 8) 



with 

and 

Thus 

d
2

v 
0 s 

d7 
= -v 

D 0 

lim 
v 

0 
0 = 

r-oo r 

v (R ;s) = -3 R C 6 
0 0 0 00 

v(r; s) = 
3R C wo 

0 00 

2 2 
s +w 

' 

w 

2+ 2 s w 

Using the inversion formula, we obtain 

1 
c+i oo 

f. 

- (r-R )-y;,Tri 
3R C woe 

0 

rQ(r,t)= 
0 - 2 1T i 

C-1 00 

Thus for large t, we have 

0 00 

s 

st 
e ds • 

Q(r,t)--
o 

3R C 6 
0 00 

r 

- ( r- R ) I) w/ 2D [ ~ fw ] -3/2 
e 

0 
sin wt- (r- R

0
) VTn + O('t ) 

and 

+ - - cos wt- (r-R ) - + O(t ) • 11/fn [ 1/fu J} -3/2 
r 2D o 2D 

-3/2 
Neglecting terms of the order of t , we thus have 

Now g
1 

will be solved by putting in (4) {a go ) in place of 
ar r=R 

0 

15 

(I 9) 

(I 1 0) 

(I 11) 

(I 12) 

(I 1 3) 

(I 14) 

(I 15) 
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Then 

R
0 

g 1 (R
0

, t) = -3 R
0 

C
00 

6 {sin wt+ 6 [ ( 1 + R
0 
v;;) sin 

2
wt+ -i' "'f*, sin 2 wt J} 

(I 16) 

it is easy to see that 

(I 1 7) 

where 

v 1 (R0 ; s) = -3R0 C006 {.z: wz + ~ [ ( 1 +R0 \1%) (! - sz+s
4

,,z ) 

(I 18) 

Thus we obtain from the inversion formula asymptotically for large t : 

3 R C 6 { -(r-R )Vw/ 2D 
g 1 (r, t) = - ~ 00 

e 
0 

sin [ wt- (r-R
0

) 1{ib J 

[( ·1 ( r-R ) ( ) -(r-R )v; 
+ ~ 1 + R

0 
~ Erfc ~ - 1 + R

0 
~ e 

0 
cos [ 2wt-(r-R

0
) y; J 

(I 19) 

Now 

( ~) = (~ 
ar r=R ar 

(I 20) 

From (19), we have 



ar 

+ .!.. 1~ cos [wt- (r-R ) ,[Jjf_J} 
r Vm o Vm 

-(r-R P.fw/2D 
0 

e 

17 

(I 21) 

where S denotes those sinusoidal terms which will not contribute to the 

rectification up to the second order. 

Also 

sin [wt- (r-R
0

) ffn] 

(I 22) 

Thus from (20), since R- R = R o sin wt, we have 
0 0 

I aol) = 3ROC o[ { :!-z + -
1 ,[E.) sinwt + -

1 ,/E.. cos wt] 
~ a r r =R 

00 
\ R R V 2D R V 2D 

0 0 0 

+ 3R C o2
[(1+R ,~) ( 

1 
+ 

1 
+ 

2 
sin

2wt:) + s] 
. 

0 00 0 V 2D 2 R Z 2 R .... r:;;:J)t R2 
o oV".....," o 

+ O(f 
312

) + O(o 
3

) • (I 23) 
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Appendix II 

We want to solve the following equation: 

a2 
1 a ---z (r o

2
) --a (r o2) = g (r,t) , (ll 1) 

ar D t 

R2R aol 2 
where g(r, t) = "'I5r ""dr to the order of o • From the result in 

Appendix I, since R =oR w cos wt we have 
0 

g(r,t) = 
3 R C w o - r-R V"ID 1 1 · 4 2 . ( )1~ { 

0
D co e 

0 [-z+ _,fEE.]sin[wt-(r-R )1f!E] 
r r r V 2D 0 V 2D 

+.!.., ~ cos [wt- (r-R ) , fE]} cos wt + O(o 
3
) • 

r Vm 0 v 2D 
(II Z) 

The initial and boundary conditions, up to the same order, are 

and 

Apply Laplace Transformation, and let 0 = j[ o
2
{, also put 

h(r;s) = j{g(r,t)} 

then it may be verified that : 

0 (r; s) = -

,[8 r ,{8 
1 l/f[ -(r-Ro) VI> 1 (x-Ro) VI> 

"""'"'::" - e h(x; s) e dx 
c.r s 

R 
0 

- (r-R )1 fS 
o VTI 

- e 

co ,,rs 
- (x-R V'D' 1 h(x; s) e 

0 dx] 
Ro 

(II 3) 

(II 4) 

(II 5) 

(II 6) 



Hence 

~ = - 4¥¥ [ (-7 1 fi) -(r-Ro) ~ lr (x-Ro) ~ 
- - - e h(x; s) e 

r D 
R 

0 

Thus 

( 

1 1 ~) (r-Ro) ~ Joo -(x-Ro) Vn 
+ - --z +- - e h(x; s) e 

r r D 
r 

00 

L 
0 

00 ,{8 

1 
-(x-Ro) VD 

h(x; s) e 

R 
0 

-(x-R 0 )~ 
h(x; s) e dx • 

dx 

dx 

Now let us rewrite the expression of g(r, t) in (2). Then we have 

g(r, t) = 3R:C00 [ -z'n)s2{[l 7 + 7\1%) cos(r-R0 lv'fn 
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(II 7) 

(II 8) 

+ ~ 1 [§[_ sin ( r- R 
0

) , ~ J sin 2 w t + [ {- ~ - ~ 1 ~ ) s in(r- R 
0

) , @"_ 
r Vw Vw r r Vm Vm 

+ 1 1/Tr --z 2D r 

(II 9) 

From (8) it is fairly obvious that excluding those terms which at 

most contribute to the rectification of the order of O(& 
3

) and O(t-
3

/
2

) the 

relevant term in g(r, t) is just 

4 w 2 -(r-Ro) 
1 %[( 1 1 1 /J£) 

g1 (r) = 3 Ro coo f-zn) 0 e vw - ~- ;z Vw sin (r-Ro) Vfo 

+_I 1~ cos (r-R ) ,~] 
r2 Vm o Vm (II 1 0) 



As h
1 

(r; s) = 1 f g
1 

(r)} = ! g
1 
(r), it follows that 

( 
ao 2) 1 
ar r=R = 71fT 

0 

c+ioo 

j ds [- *" 
c-i oo 

st 
e 
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+T 

(II 11) 

where T denotes irrelevant terms. As we are only interested in the 

- (x- Ro) 'sTf5 
behavior of the solution for large t, we thus expand e .J 

61 
u in 

ascending powers of s 
1 I 2 , and obtain: 

( ao2) - 1 [ 
ar - - 1{ 

r=R o 
0 

Since 

therefore 

00 

j g
1 

(x) dx -

R 
0 

00 

1 

j x g 
1 

(x) dx = 0 ; 

R 
0 

and this leads to the result that 

00 

j (x-R
0

) g
1 

(x) dx] + O(f 
312

) 

R 
0 

00 

( ao 2) 1 ( R ) j 312 ar = - 1{ 1 + 0 
g l (x) dx + O(t- ) • 

r=R
0 

o j1TDt R 
0 

(II 12) 

(II 1 3) 

We may observe that 

we have 

( ao 2) . -- o( r 2) • H t th· d u ence, up o ts or er 
ar r=Ro 

( 
ao 2) ,.., (ao 2) = __ 1 

ar r=R = ar r=R Ro 
0 

R oo 

( 
0 ) f -3/2 1 + g

1 
(x) dx + O(t ) , 

)1TDt R 
0 

(II 14) 



where 

sin (r-R ) (W 
o Jm 

+ ~ ~ cos(r-R ) ~] dr • 
rG j ZD 0 j ZD 
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(II 15) 



Appendix III 

To evaluate the integral 

00 

f [(-~ 
R r 

0 

-lz ~) sin(r-R ) ~ 
r J 2D 0 J 2D 

1 f¥n· Hn] -(r-R ) ~ + ~ ~ ' cos (r-R ) ~ e 
0 

r"' 2D o 2D 

let us note that 

d [ 1 -(r-Ro) } -ID Jfu ] 
dr -z e sin ( r- R ) ~ 

r 0 2D 

= [ (- 7 -~) sin ( r- R 0 ) j ;D 

d r , 

1 -(r-R· ) }ru 
= -

3 
e 

0 
D sin ( r- R ) r.J;£ + i 

1 r ojm 

where i
1 

is the integrand in I
1 

• From (2), we may thus write 

oo 1 -(r-Ro) ~ 
I 

1 
= J 3 e sin ( r- R ) ~ d r • 

r 0 
} 2D 

R 
0 

After changing variables, we have 

1 

(x+ R ) 
3 

0 

= Irn [! 
0 

1 

(x+ R ) 3 
0 

sin ~ xdx , 
j 2D 

e- )w/2D (x-ix) dx 1 
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(III 1) 

(III 2) 

(III 3) 

(III 4) 



23 

r-> -i tr/4 
Now let y = .J ~ e x = ( 1- i) x , then apply Cauchy r s Theorem to trans-

form the integral along the real axis of the new coordinate system, and we 

then obtain 

[ 

i tr/4 

I 1 = Im ej2 j 
0 

00 

(III 5) 

For the case that R }w/2D >> 1, we may apply Watson's 
0 

Lemma, and get 

= 
1 

2R
2 

0 

3 i1T/4 
- -e 

fi 
+ 0 (- 1 3/2) , 

R 5 ( w) om . 

(III 6) 
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