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A theoretical analysis is made of the resonance phenomena in the radio-frequency 
probe experiments of Takayama et al. The Boltzmann-Vlasov equation is solved under 
the action of an external rf electric field. The solution gives the resonance peak of the de 
component of the electron current to the probe at the plasma frequency. For a partially 
ionized plasma, the peak-height IJj and the half-width ilah/2 are given by the following 
formulae. 

iJW1f2=2Y. 

For fully ionized plasmas, they are determined· as follows, 

iJj=J· 1 jeV eiJV I (eiJl'_) 
0v 2 'V ICT ,.r 1 ICT , 

In the above expressions, T is the electron temperature, wP is the electron plasma frequency, 
and ,ld is the Debye length. j 0 is an electron current density to the probe when no oscil­
lating field is superposed on it, IJV is the amplitude of the superposed rf voltage, /1 (z) is 
the modified Bessel function of the first order. L is an effective penetration depth of the 
external field. V is the potential difference between the plasma space and the probe, and 
y is the effective collision frequency of the electron with neutral molecules. 

The present theory confirms that the analysis of the resonance peak in the radio-frequency 
pro~e experiments is .an effective method for the plasma diagnosis. 

§ I.. Introduction 

As is well known,Il the electron current density Jo to the Langmuir probe 
IS given by 

( ICT ) 112 
( e V ) jo=ne -- exp ---

27rm JCT 
(1) 

where · JC is the Boltzmann constant, e and m are the charge and the mass of 
the electron, respectively. With Eq. (1) the plasma electron density n and the 
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316 Y. H. Ichikawa and H. Ikegami 

electron temperature T is determined from the j 0 - V characteristic curve. If 
the electron velocity is isotropic, the velocity distribution function is determined 
by 

f( /2eV)=~ V d% . 
,.;· m e2 dV 2 

When the low voltage rf signal av sin (l)t is superposed on the Langmuir probe, 
the second derivative of the electron current characteristic curve to the potential 
difference can be measured as the de current increase .dj, 

(3) 

For the Maxwellian function, the current increase· is given m another form, 

(4) 

where / 0 (z) is the modified Bessel functis:m of the zeroth order. ·It must be 
noted that .dj is independent of the frequency (tJ of the rf signal. 

Takayama and his collaborators2l have shown that Eqs. (3) and {4) are 
valid as far as the frequency is less than a certain critical frequency. Their 
typical experimental results are shown in Fig. 1. 
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Fig. 1. Experimental curves for a plasma in the mercury discharge tube with a diameter 
of 30 em. The parameters are T=0.17 ev and n=1.94X106 cm-3. The half-width is 
determined and the electron collision frequency " is given by Eq. (26). The value 
v=l.5-2 Me is consistent with that estimated by atomic theory. 
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The characteristic curves in Fig. 1 consist of the following three frequency 
ranges: The first range where the electron current keeps a constant value 
independent of the frequency, the second range where a resonance peak appears, 
and the third' range where the superposed rf voltage has no effect on the de 
current to the probe. 

The first range is in accord with Eq. (4) and the temperature of the elec­
tron can be determined. The resonance peak in the second range appears at 
the electron plasma frequency. The electron density determined by the reso­
nance frequency coincides with that obtained by the Langmuir probe. 

Now, our paper aims to give a theory of the resonance in the second 
frequency range. Our theory is confirmed by a series of recent experiments,Sl 
in which it is shown that the resonance increase of the de current to the probe 
occurs also when the rf voltage is applied not to the probe, but to the pair of 
electrodes in a plasma. The mechanism of a beam-plasma interaction discussed 
by Takayama et aJ.2l may be unable to explain the fact. 

§ 2. Model of the resonance probe 

Since what we are concerned with is the resonance phenomena at the elec­
tron plasma frequency, it is apparent that the collective interaction between 
electrons has an essential effect. As for the effects of the rf voltage superposed 
on the probe, one may set up several models. When the probe potential is 
negative, positive ions are attracted and form a sheath around it. The oscilla­
tion of the probe potential may induce charge fluctuations, as the electrons flow 
in and out of the sheath. Takayama and his collaborators have considered that 
such electrons may be accelerate-d by the oscillating electric field and they will 
be injected into the plasma as a beam. The electron beam will excite the plasma 
oscillation. They have assumed that the resonance excitation of the oscillation 
may . occur when the frequency of the rf voltage is just equal to the plasma 
frequency. Bohm4l has discussed a possible operation of the acceleration mecha­
nism in a transition region between the sheath and the plasma. If such a 
mechanism of the beam-plasma interaction as considered by Takayama and his 
collaborators were essential in the resonance phenomena, the characteristics of 
the resonance peak would depend on the details of the acceleration mechanism. 

Our new model will be figured as follows : When the rf voltage is super­
posed on the probe, the external electric field will be shielded out within a 
certain distance from the probe surface. In the equilibrium state, the distance 
is the Debye length, while in a steady state, it will be the Langmuir's sheath 
depth. For the case of the oscillating electric field, it may be called a pene­
tration depth. The rf voltage is shared across the distance in the following way. 

When the frequency is lower than the electron plasma frequency, the electric 
field will be shielded out within the sheath. This is the reason why the first 
range in Fig. 1 exists, or why Eq. (4) can be successfully applied to the ex-
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periments. The shielding is caused by the accumulation of electrons induced 
at the surface of the probe by the external electric field and they share the de 
current increase. In higher frequency ranges, only a small portion of the electric 
field is shielded in the sheath, as the sheath depth is not large enough to 
shield it out, and the external electric field will stretch into the plasma 
region, inducing the electric charge fluctuations. Near the plasma frequency 
the fluctuation becomes maximum and produces greatest electron flow, which 
is . called the resonance. 'For a much higher frequency range, a very small 
portion of the electric field is shielded in the sheath where the dielectric con­
stant is nearly equal to unity, and the electrons which jump into the probe 
experience so many periods of the rf field during it across the effective penetra­
tion depth of the field. This means that on the average the electrons behave 
as if they were in a static electric field and the flow of electrons results in no 
de current and the third frequency range will be realized. The same situation 
occurs3l when the probe is at the space potential, where no sheath is formed 
around the probe. 

§ 3. Formulation of the problem 

Let us consider the plane probe. When the rf voltage of av sin Wnt is 
superposed on the probe, the charge fluctuation induced by variation of the 
probe potential can be regarded as an oscillating electric double layer with a 
thickness of effective penetration depth L. Hence, it acts as an external electric 
field of the following form, 

Eext (x, t) =- av D(x)sin Wot, 
L 

+«> 

D(x) =-!___ f 
'lC J 

(5·a) 

(5· b) 

Here, we consider the one-dimensional problem for convenience. Our pro­
blem is to find the induced charge fluctuation in a plasma by the external electric 
field defined by Eqs. (5 ·a) and (5 ·b). 

The Boltzmann-Vlasov equation with the external field in a linearized form 
is given by 

a a e a e a a 
--f+v--f+- E~fo= --Eext-fo+-f[coll' 
at ax m av m av . at 

(6) 

a~E=4rreffdv, (7) 

where f(x, v, t) is a fluctuation of the electron distribution function from the 
unperturbed function f 0 (v), and E(x, t) in Eq. (6) is the self-consistent electric 
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field determined by Eq. (7). 
We shall look for the solution of Eqs. (6) and (7) in the following form, 

f(x, v, t) = J f(k, v, w) eiCkx-.,tJ dkdw, 

E(x, t) = JE(k, w)ei(kx-.,tldkdw. 

(8) 

(9) 

The collision term in the right hand side of Eq. (6) may be replaced by -!If, 
where 11 is an effective collision frequency. Then, Eqs. (6) and (7) are rewritten 
as 

i(w-kv+ill)f(k, v, lu) =--~-{E(k, w) +E.,e(k, w)}}fo , 
m av (10) 

ikE (k, w) = 4rref(k, w) , (11) 

where 

f(k, w) = \f(k, v, w) dv. (12) 
" 

Substituting Eq. (11) in Eq. (10) and integrating the resultant expression over 
the velocity v, we get 

f(k ) _ i f a fo/ov d e E (k ) 
' lV - - V~ ext ' lV ' 

c(k, w) (u-kv+ill m 
(13) 

where 

8 (k, w) = 1 + 4rre2 _!_ \__~[ojov ----;--dv. 
m k J lu- kv + til (14) 

Substitution of Eq. (10) back to Eq. (11) gives the expression for the Fourier 
transform of the electric field of the plasma waves induced by the external 
oscillating field, 

E (k, (I)) = { 1 1} Eext (k, lU) · 
c(k, w) 

(15) 

With Eqs. (10) and (15) the induced fluctuation of the electron distribution 
function is given by 

j(k, v, w) = -i ofo/ov 1 ____!_E.,e(k, w). (16) 
w-kv+iv c(k, w) m 

Thus the final result for the induced fluctuation of the electron distribution 
function is 

' 
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The electron current density to the probe is obtained by .the following equation : 

"' 
j= <)ev{fo('v) +f(O, V; t) }dv)time averag" (18) 

q, (t) 

where 

{ 2e } 112 
(j) (t) = m (V + av sin Wot) . (19) 

The second term in the brackets of the integration in Eq. (18) gives the reso­
nance increase of the de current to the probe. 

§ 4. Structure of the resonance peak 

Let us now investigate in greater detail the structure of the resonance m­
crease oJ the electron current to the probe. 

The dielectric constant of the plasma. given by Eq. (14) can be expressed 
approximately in the following form, in the limit of long wavelength, 

c(k, w) =1- (w(k) ) 2+i(w(k) ) 2 ~(v+rL), 
(I) (t) (I) 

Where rL is the LandaU damping COefficient, 

and 

where v/= (3tcT./m) and kd=2rr/~. 

For a partially ionized plasma, as \1~0, we have 

Im 1 
c(k,w) 

(20) 

(21) 

(22), 

(23) 

In Eq. (17), we may disregard kv in comparison with wP and neglect r} in 
comparison with ttJ/. Then, neglecting the dispersion effect due to the thermal 
motion of electrons, we get 
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where w0 is the frequency of the external electric field and lJ is given by 

tanlJ=~ 
si ' 

where cr tmd ci are the real and imaginary part of the dielectric constant of 
plasma respectively. If we substitute Eq. (24) in Eq, (18) and neglect !J2 in 
comparison with ctJ02, the current density to the probe is given as follows, 

· . r ( eaV) ;= }o .Lo tcT 

(25) 

The second term in the right-hand side of Eq. (25) gives the resonance 
increase of the current d~nsity at ctJ0 = wP. The half-width of the peak are de­
termined by the collision frequency as follows, 

(26) 

while the peak height is given by 

a·=·~~ ;DjeV( eav) 1 (eav) . 
'J 10V2 21J L tcT tcT 1 tcT 

(27) 

The above result that the half-width is determined solely by the collision fre­
quency suggests that the resonance probe is useful not only for the measurement 
of the plasma density, but also for the measurement of the collision frequency IJ. 

For a fully ionized collision-free plasma, we may take IJ~O. In the limit 
of the long wavelength, rL becomes zero, and we use the following expression 
in place of Eq. (23), 

1 Im =;-ca (cr(k, ctJ)) 
c (k, w) 

= "ltJ(k) {a(w-w(k)) +a(w+w(k))}. 
2 

(28) 

If the thermal motion of electrons are disregarded completely as before, the 
shape of the resonance peak becomes a (w- ctJp). Hence, for the fully ionized 
collision-free plasma, it is important to take into account the dispersion effect of 
the thermal motion. Then, we get 

sin V lwo2-wP21· L 

f(O, v, t) = __ e~_TV_, ~~=;==v=T~-=-- _E._ fo(v)sin ctJot, 
~ Vlw02 -wp2I·L VT 

(29) 
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and the electron current density to the probe 

sinVlwo2_lup2J·L 

. . I. (eO'V ) . 1 -~7=v=r~--:---je V eO'V ! 1 (etcO'VT ) . ;=;o o tcT +Jo;/-2 -
v vjw02 -(op2 J·L let'- tcT 

(30) 

In this case also, the de current has its resonance increase at w0 = wP. The 
half-width of the resonance peak L1w112 is, however, given by 

while the peak height becomes independent of L and IS given by 

a·=. 1_ jeV eO'V I (eO'V) . 
'J 101/2 tcT tcT 1 tcT 

(31) 

(32) 

For the fully ionized plasma, however, .we should take into account the 
electron-ion and electron-electron correlation effects. They determine the effective 
collision frequency of the order of IOwP v (e2/ tc'[) 3n. Therefore, even in the fully 
ionized plasma, the resonance increase of the de electron current to the probe 
may be determined by Eq. (25) with JJ. ·IOwpv(~/tcT) 3n, not by Eq. (30). 

§ 5. Discussion 

It has been discussed by Takayama and his collaborators2> that the resonance 
probe method is a powerful technique of measurements of the plasma density, 
no matter how high concentration the plasma has. The present theory has 
shown explicitly that the half-width of resonance peak is determin_ed solely by 
the collision frequency. Therefore, now it has become clear that the resonance 
probe method is also useful for direct measurements of the collision frequency. 

The present theory can successfully explain the experiments2J,SJ of the reso­
nance probe. It will be most interesting to study experimentally the' behavior 
of the ac electron current to the probe. Can it be alive when the de current. 
increase is decreased ? Our theory answers, " Yes ". 

As to the dependence of the effective penetration depth L on the frequency, 
quantitative discussion will need more experimental knowledge. 

In conclusion the authors consider that it is their pleasant duty to thank 
Prof. S. Kojima and Prof. K. Takayama for suggesting the problem and the 
discussion of the results. Thanks are also due to Prof. S. Nakajima and Dr. 
M. Sumi for their critical discussions in the course of the present investigation. 
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