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A theoretical study is made on the rotational excitation~ in solid fcc ortho-hydrogen below 

T>... The effective Hamiltonian which is quadratic in the rotational excitation operators of each 

molecule is set up by the method analogous to the Holstein-Primakoff theory of spin waves. 

The dispersion relation and the energy spectrum of the rotational excitation mode are obtained 

by the perturbational calculation. The expectation value of the angular momentum of each 

molecule generally vanishes in each energy ei1~enstate and the excited states can approximately 

be described in terms of quasi-particles for librational excitation which may be called librons. 

At OOK libron has a minimum excitation energy of about 10kn and band width of about 5kn. 

The thermodynamic quantities such as free energy are numerically calculated using the state 

density, and the phase transition is estimated to be of first order and T>.. =:::4.2°K. 

§ 1. lntroductio11 

Solid hydrogen has a specific-heat anomaly at high ortho-hydrogen concentra­

tions (>60%) .1) Corresponding to this anomaly there is a change in the shape 

of the nuclear magnetic resonance absorption. 2> It has been pointed out that 

this anomaly may be associated with a rotational order-disorder transition of 

ortho-molecules. 3> The rotational constant of H 2 is 86°K, and is sufficiently 

higher than the melting temperature l3°K, so that the rotational state of ortho­

hydrogen in the solid may always be considered to be in the subspace J = 1. 

In this subspace Nakamura4> has shown that the electric quadrupole-quadrupole 

interaction between ortho-molecules is the most importan,t contribution to the 

energy of ordering. Thus, the ordered orientation of molecules in solid ortho­

hydrogen would be in the lowest state of the quadrupole-quadrupole interaction 

between the molecules. 

For a face-centered cubic structure (fcc) this lowest state was obtained 

classically by Nagai and Nakamura5> (N-N model), generalizing Luttinger and 

Tisza's method. For a hexagonal close-packed structure (hcp) Danielian°> pro­

posed an ordered configuration of molecules using the Hartree approximation 

under the assumption that the quantization axis of angular momentum of each 

*) The early report of this study has been published in Prog. Theor. Phys. 36 (1966), 1310. 
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768 S. Homma~ K. Okada and H. Matsuda 

molecule is parallel to the hexagonal axis. Although the energy of the ground 

state obtained by Danielian is somewhat lower than that of the configuration 

assumed in the previous works/) the assumption of the parallel quantization axis 

can hardly be justified. On the other hand, Felsteiner81 has shown by extending 

Nagai and Nakamura's classical calculation that the energy of the lowest state is lower 

in fcc than hcp, confirming the ordered orientations of molecules in fcc proposed 

by the previous authors. This result suggests that molecules in pure solid ortho­

hydrogen at 0°K will prefer to form fcc rather than hcp. Experimental observa­

tions of infrared absorption spectrum9
) and X-ray photographs10

) seem to support 

the above suggestion. 

According to such classical calculation for the lowest state in fcc, there are 

four distinct sublattices in each of which the quadrupoles are aligned along a 

different body diagonal of the cubic unit cell. Quantum-mechanically the classical 

lowest state can be interpreted as the ground state of the Hartree approximation 

in which each sublattice has its own quantization axis (Z-axis) of the angular 

momentum along the different body diagonal of the cubic unit cell and each 

molecule in the sublattice is in the state Jz = 0. · 

In this paper we discuss low-lying rotational excited states in fcc taking 

the above state as a first approximation for the lowest ordered state. Here, we 

are primarily concerned with the rotational states, so that we consider the model 

in which the center of gravity of each molecule is held fixed at the rigid fcc 

lattice point. The present problem is similar to the spin-wave theory of anti­

ferromagnetism, because the lattice has a sublattice structure and the ground 

state in the Hartree approximation is the ordered state but not the exact ground 

state of the system. An important difference is that the approximate ground 

state is here described by Jz = 0 instead of Jz = ± J as in the usual spm wave 

theory. 

In § 2 we derive the effective Hamiltonian Herr for discussing such low­

lying excited states corresponding to the Holstein-Primakoff theory of spin waves. 

Although one might be able to diagonalize Herr by extending the Bogoliubov 

transformation as in the case of the spin wave theory, it seems rather complex 

because of the presence of the four sublattices. Therefore, as a first step toward 

. the complete solution we obtain in § 3 the excited states using a perturbation 

theory. Then, the excited state is analogous to a rotational exciton state obtained 

by Van Kranendonk in solid para-hydrogen. 11
) We calculate dispersion relation 

and state density of the excitation modes. 

After discussing in § 4 the nature of the excited states thus obtained, in 

§ 5 we calculate thermodynamic quantities based on these excited states. The 

last section § 6 is devoted to discussion. In the Appendix we show that the 

ground state obtained by Danielian in hcp not only has a higher energy than 

that recently obtained by Miyagi and Nakamura12
) but also is unstable for ex­

citations, so that the Danielian model cannot be considered to be valid. 
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Theory of Rotational Excitations in Solid Ortho-Hydrogen 769 

§ 2. The effective Ha:miltonian for low-lying 

rotational excited states 

The quadrupole interaction energy between the two ortho-hydrogens labelled 

as i and j with quadrupole moment fJ.Q can be written in the subspace J = 1 as 

vij = (8/25) (3e
2
/}.Q

2
/ 4r

5
)fi.f' 

hJ = (3J'}i- 2) (3J'}i- 2) 

- { (JziJ+i +J+iJzi) (JzJJ-J +J_.JJzi) + c.c.} 

+ _!_ (J!iJ'!...J + c.c.), 
4 

(2 ·1) 

(2 ·2) 

where the x, y, and z axes are so chosen that the z-axis is parallel to the line 

connecting the two molecules separated by a distance r. 

The Hamiltonian of the system is given by 

(2·3) 

where ~ denotes the summation over all pairs of nearest neighbor molecules 
<i,j> 

and we use (8/25) (3 e2
fJ.Q

2 j 4r5
) as a unit of energy. This approximation is fairly 

good because the ground state energy per molecule in this approximation is 

4.12 kn whereas that of the N-N model is 4.65 kn. 12
> The kinetic energy being 

a constant of motion in the subspace J = 1, we can neglect it in the H. To 

get the effective Hamiltonian Herr for the N-N model we rewrite the components 

of angular momentum operators of each molecule in Eq. (2 · 2) in terms of the 

angular momentum operators of molecules whose components are written in their 

respective sublattice coordinate systems. 

We introduce the following three coordinate systems : 

1) The crystal coordinate system whose axesare parallel to the cubic axes 

of the crystal. 

2) The sublattice coordinate system in which Z-axis is parallel to the 

quantization axis of the sublattice. The N-N model is composed of four sublat­

tices in each of which the quantization axis is along the different body diagonal 

of the cubic unit cell. 

3) The bond coordinate system in which z-axis is parallel to the line con­

necting the nearest neighbor molecules (i) and (j) which belong to the sublat­

tice (a) and ((3), respectively. The quantity hJ given by (2 · 2) is written in 

terms of the components of angular momentum operators defined in the bond 

coordinate system. In the N-N model we have twelve different bond coordinate 

systems. 

We denote the components of .angular momentum operators in these three 

coordinate systems by the components of the column vector Jc, Js<a>, and Jb<l) 

respectively; where subscript c, s, and b mean crystal, sublattice and bond, 
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770 S. Homma, K. Okada and H. Matsuda 
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Theory of Rotational Excitations in Solid Ortho-Hydrogen 771 

Table III. 

l 1 2 3 1 4 ---~- s 
6 l 7 8 9 ~-- 10 1 11 12 

··------------··-------~~----·~-------------------·-

I 

I 

i 

I 

I I I I I I III III II II II II 
j II II III III IV IV IV IV IV IV III III 

superscript (a) is the label of sublattice, and (l) represents one of the different 

twelve bond systems. 

The transformation equations between these vectors lc, JsCa) and Jf}) are 

J~l) = nm lc ' 

hence 

(2 ·4) 

We tabulate the transformation matrices s<a) and BCl) appropriate to the N-N 

model in Tables I and II, and give in Table III the combination of the sublattice 

(a) and ({3) connected by the bond (/). 

·Associating two kinds of boson annihilation operators xi and X-i to each 

molecule (here, the i-th molecule), we can write in the subspace J = 1 that 

(2·5) 

The state Jzi = 0 is represented by 100) or the vacuum state of the boson 

field, whereas the states Jzi = ± 1 correspond to l10)=xi +I 00), and I 01) . x~il 00), 

respectively. The feature of our operator is that the matrix element (n' m' IJI nm) 

calculated by using Eq. (2·5) for lnm)=l10), IOO) or 101) not only coincides 

with the exact matrix elements of J between the corresponding states but also 

is non-zero only when ln'm') is 110), IOO) or 101). This shows the fact that 

the operator given by Eq. (2·5) leaves the space spahned by 110), IOO) and 

101) invariant. 

If the Hartree approximation such that Jzi == 0 for all i in the ground state 

is a good one, we may say that bosons are not very much excited at low tem­

peratures. We, then, linearize the right-hand side of J+ and J_ given by Eq. · 

(2 ·5) as 

J+i = v'2 (xi++ x_i), 

· J -i = v'2{xi + x~i). 
(2 ~ 6) 

This approximation is fairly good so long· as we consider one elementary ex­

citation because both sides of Eq. (2 · 6) give the same matrix elements between 
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772 S. Homma~ K. Okada and H. Matsuda 

the excited states (i.e., Yr 1 (Qi) or jOl), 110)) and the vacuum state (i.e. Y1°(Qi) 

or IOO)). 

Substituting Eq. (2 · 6) and Jzi =xi+ xi- x~ix-i into each component of the 

angular momentum operator J~tX) and using Eq. (2 · 4), (2 · 3) and Table III, we 

get Herr in terms of the boson operator. In this procedure we make rearrangement 

in each term in order to set the creation operators to the left of the annihila­

tion operators and neglect terms higher than the quadratic, because it is supposed 

that the number of bosons is small in the low temperature regwn: 

Hefr=- (76/3)N+19:L: L: (x:tX(i)x.a(i)) 
tX,i •=±1 

+ ~<H>[ {.fz(~) (xa(i) -x~a(i)) (x13 (j) -x~ 13 (j)) +c.c.} (2·7) 

+ {Uz ( ~) (xa (i) - X~a (i)) (x13 + (j) - x_ 13 (j)) +c. c.}], 

where a ((3) represents each sublattice and i (j) represents a lattice point of 

sublattice a ((3). Each sublattice contains N molecules so that the system. 1s 

Table IV. fz (~) , 9t (~) 

f3 l fx144 
I 

gX144 

I II 1 56+ 6v3 i 40+10v3 i 

2 56+ 6v3 i 40-101/'3 i 

III 3 -19-311/'3 i 15-251/'3 i 

4 -19-31v'3 i -35-15v3 i 

IV 5 -37+25v3 i -35+15v'3 i 

6 -37+25v3 i - 5+25v3 i 

II I 1 56+ 6v3 i 40-101/'3 i 

2 56+ 6v3 i 40+10v'3 i 

III 11 -56- 6v3 i 5+25v3 i 

12 -56- 6v3 i 35+15v'3 i 

IV 9 -56- 6v3 i 5-25v'3 i 

10 -56- 6v 3 i 35-151/'3 i 

III I 3 -19-31v3 i 15+251/'3 i 

4 -19-311/'3 i -35+15v'3 i 

II 11 -56- 6v3 i 5-25v3 i 

12 -56- 6v'3 i 35-15v'3 i 

IV 7 -56- 6v3 i 5+25v'3 i 

8 -56- 6v3 i 35+15v'3 i 

IV I 5 -37+251/'3 i -35-15v'3 i 

6 -37+25v3 £ - 5-25v3 £ 

II 9 -56- 6v'3 i 5+25v'3 i 

10 -56- 6v3 i 35+15v'3 i 

III 7 -56- 6v3 i 5-25v3 i 

8 -56- 6v3 i 35-15v'3 i 
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Theory of Rotational Excitations in Solid Ortho-Hydrogen 773 

composed of 4N molecules. The coeffieients J, GO and Ut GD are constants which 

depend on a and {3 and the vector rt connecting the nearest neighbor lattice points 

(a, i) and (/3, j). We give these coefficients in Table IV. 

The first and second terms on the right-hand side in Eq. (2 · 7) represent 

respectively the ground state energy and excitation energy in the Hartree ap­

proximation. The last term represents the effect of correlations. Since in the 

first approximation (Hartree approximation) the system is in the vacuum state 

of the boson field, the linear term of Herr in the boson operator identically 

vanishes as it should. 

We define the rotation wave variables Xa + (k) and X-}:_a (k) of the a-th sub­

lattice (a= I, II, III, IV) by 

X-}:_a(k) =N- 1
1

2 L: exp(-ik·Ri)x-}:_a(j). 
jES(ct) 

(2·8) 

Here Rj is the position vector of the j-th molecule, S (a) 1s the set of N 

molecules belonging to the a-th sublatt:ice so that the summation is taken over 

all the molecules of the a-th sublattice. 

Thus, Herr can be written as 

Herr=- (76/3)N"+ L: H(k), 
k 

H(k) =19~ x:ct(k)X~a(k) + t,;C {Fk(~) (Xa(k)Xfl( -k) 

+X-}:_a(k)X-}:_fl( -k) -X-}:_a(k)Xfl(k) -Xa(k)X-}:_fl(k)) +c.c.} 

+ {Gk ( ~) (X a (k) Xfl + (k) +X-}:_ a (k) X_fl (k)- Xa (k) X_p (- k) 

-X-}:_a(k)Xfl+( -k)) +c.c.} ], 

(2·9) 

(2 ·10) 

(2 ·11) 

If we could diagonalize this Hamiltonian, the correlation effect and the spectrum 

of the excitation energy would be obtained analytically. This diagonalization, 

however, is difficult because it accompanies the unitary transformation of eight 

variables. 

Therefore, treating the off-diagonal terms in Eq. (2 ·10) as a perturbation, 

we numerically calculate the dispersion relation and the energy spectrum of the 

exCitation mode by the first order perturbation and the correlation energy in the 

ground energy by the second order perturbation. 
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77 4 S. Homma, K. Okada and H. Matsuda 

§ 3. The dispersion relation and state density 

of the rotational excitation modes 

--The correlation effect--

We first calculate the correlation energy in the ground state by the second­

order perturbation calculation. 

The second-order correlation L1E2 is given dy 

(3·1) 

where 10) represents the ground state, In) the excited state and H' is the off­

diagonal terms of Herr in Eq. (2 · 9). Only the double creation terms such as 

Xa + (k) X~ 13 (k) contribute to the perturbation given by Eq. (3 ·1). 

Thus we get 

L1E2=- ~ ~ 1 [IF~;; (a) 1

2 x 2 + IG~;; (a) 1

2 x 2] 
k a, f3 38 (3 (3 

= -0.62N 

= -0.1 kn/molecule 

The ground energy of the N-N model in the Hartree approximation IS given 

by a constant term in Eq. (2 · 7). Denoting it -by E 0 , .we find 

L1 E2/ Eo =- ~- . 
41 

This fact means that the correlation effect on the ground energy is rather small. 

We, next, calculate the dispersion relation and state density of the rotational 

excitation modes. If we make one molecule in the crystal excite from IOO) to 

110) or 101), this excitation can be passed on from one site to the other by the 

transfer type term such as Xa + (i) x_ 13 (j) of the off-diagonal terms in Eq. (2 · 7). 

The degeneracy of excited states in the Hartree approximation can be lifted by 

the first order perturbation taking this process into account. 

The dispersion relation and state density of such rotational excitation modes 

are obtained by seeking f·he roots of the secular equation whose matrix element 

is such as <X"'a' (k) IH(lc) IX:a (k) )=h~~a' (k), where the ket means the vacuum 

state in boson field. There are some symmetry relations in h~~a' (k). 

i) 

ii) 

iii) 

h~~a' (k) = h~';;, (k), 

h"'a' (k) = h~"'a'* (k) 
va -va ' 

We give the explicit form of h~~a' (k) in Table V. 

(3·2) 

(3·3) 

(3·4) 

Figures 1a) and 1 b) show the dispersion curves for the (1, 1, 1) and (0, 0, 1) 
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Theory of Rotational Excitations in Solid Ortho-1-Iydrogen 775 

Table V. h~~a' (k). 

+I +II +III 

+II 
40A+ 

+i 1ovs A-

-II 
-56A+ 

-i6v3'A+ 
-------- ------------------------- -------------------- -----~---------

+III 

-III 

-20B++15B-
-i (2oB+-sB-)v-:r 

19B+ 

+i31vs B+ 

20C+-1sC-

+i (20C+ +5C-)v3 

56C+ 

+i6vsc+ 
----1----------------------------------------

15.35 

+IV 

-IV 

-2oC+-1sC-

+iC2oC+-sc-)v3 

37C+ 

-i25vsc+ 

20B+-15B­
-i(20B+ +5B-)v3 

56B+ 

+i6vsB+ 

20A+-15A+ 

+iC2oA++sA-)v3 

56A+ 

+i6vsA+ 
---------'------~------'------------------'---- ------------

a a 
A+ =4 cos v~ ku cos:;:/~- kz, A 

. ak. ak 
-:=-·smy;~=- y sm v2 z 

B . ak. ak 
- = -4 sm V'-2--=- :JJ sm v-2- y 

C . ak. ak 
- = -4 sm .:;/~ ~.-u sm y;j' z 

15.35-
(001) 

( I II) 

fold 

-- 2 fold 
-·-:I fold 

--: 2 fold 

12.35 0 

ks 

7T 

nr 

12.35 0 

ks 

.// 

----- / ------- ,/ ·-·-·-. / -- .. --- .. ~ 
/' ·---

/' ·-----. 
. /· ------

/ -· 
~·~~ .. --·-·--·-------

Figs. 1a) and lb). The dispersion relation of libron along (111) and (001) directions in 

k-space. Unit of energy is the Boltzmann constant. 
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776 S. Homma~ K. Okada and H. Matsuda 

12.35~-"' 0 ~--__:::,.,.;:--------1 B 

12.05f---.....oc::::::::::::---

ks 

Fig. lc). The libron energy 

versus fJ. kx=O and kz=k 

X cos fJ and ky=k sin fJ 

k=~IT~-
v2a 

Density of states 

Fig. 2. The state density of librons obtained- by the 

root sampling method. 

directions obtained by using a computer. From 

Fig. 1 it is obvious that the correlation effect 

is important for the excited states because 

the band width of the excitation spectrum 

amounts to about 5 kB. (The excitation energy 

in Hartree approximation is 12.35 kB which is 

the coefficient of the diagonal term ~X;fX(k)Xva(k) in Eq. (2·10).) There is 
ct," 

an energy gap of order 10 kB between the ground state and the excited states 

even at k = 0 where kB is the Boltzmann constant. This fact is in contrast to 

the case of ferromagnetic magnon where an energy gap is zero at k = 0 so long 

as we treat the Hamiltonian including only exchange interaction. This is to 

be expected, since the potential energy varies under the uniform rotation of 

molecules so that our Hamiltonian has an anisotropy. 

Figure 2 shows the state density of the excitation modes obtained by the 

root sampling method from the dispersion relation calculated for 1000 different 

k-values. 

§ 4. The nature of the rotational excitations 

Moriya and Mochizuki13> suggested in the discussion of nuclear magnetic 

relaxation in solid hydrogen that the state of solid H 2 at very low temperatures 

may be described by ' rotation wave ' picture.*> The excited states derived in 

the preceding section certainly correspond to the ' rotation wave ' in the sense 

that the excitation has a wave-like character and the excitation is of rotational 

degrees of freedom of molecules. However, the term 'rotation wave' is some­

what misleading since the expectation value of the angular momentum of each 

*) Frenkel14> had pointed out that the rotational part of the classical heat motion in dipolar 

crystals can be described as a superposition of "rotation-oscillation" waves, which are quite analo­

gous to the optical waves in the case of an ionic crystal lattice. 
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Theory of Rotational Excitations in Solid Ortlw-Hydrogen 777 

molecule generally vanishes not only in the ground state but in the excited 

states as shown below. 

According to the result of the preceding section the creation operator of 

the excitation of the r-th excitation mode with wave ve~tor k can be written as 

B+ (k, r) = ~ C7 :va (k) Xj~ (k), (4 ·1) 
v, ct 

where C7 ;va (k) is the element of the unitary matrix which approximately dia­

gonalizes H(k).*) Using Eqs. (2·8) and (2·5) we find for the molecule z 

belonging to the sublattice a that 

<B (k, r) IJzi IB+ (k, r) >=ICy, +a (k) 1
2 
·-ICy;-a (k) 1

2
, 

<B(k, r) IJxdB+ (k, r)) =<B(k, r) IJYiiB+ (k, r)) =0. 
(4·2) 

By virtue of the relation (3 · 3) the matrix {h~~a:' (k)} can be expressed in 

the form 

(
A B) 

ii(k) = ' ' 

B* A* 
(4·3) 

where A= At and B = ii are 4 X 4 matrices. The superscript *, t, and r-../ denote 

complex conjugate, Hermitian conjugate, and transpose, respectively. Let (:) 

be the r-th eigenvector of the above matrix belonging to the eigenvalue 'A, where 

C't:t (k) 

C7 ;2 (k) 
u= V= 

C'l;3 (k) 

C't:4 (k) 

Then, we have the equations 

Au+B'Iv=J..u, 

B*u+A*v=J..v. 

C7 ;-t (k) 

C7 :-2(k) 

C't;-s(k) 

C't:-4(k) 

(4·4) 

(4·5) 

(4. 5') 

From the definition we find that except for lk:vl = lkyl = lkzl = (1/a) (rr/ -/2), 

DetB=FO in general. (4·6) 

Then, from ( 4 · 5) we get 

v=B- 1
(}. -A)u. 

Substituting this 1n ( 4 · 5') we obtain 

u=B*-1 (J..-A*)B- 1 (J..-A)u. 

(4·7) 

(4·8) 

*) c'l; va: is the element of the unitary matrix which diagonalizes the operator obtained from 

H(k) by deleting the terms corresponding to double creation and double annihilation of bosons. 
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778 S. Homma, K. Okada and H. Matsuda 

Similarly we obtain 

v*=B*- 1 (A-A*)B- 1 (A-A)v*. (4. 8') 

Equations ( 4 · 8) and ( 4 · 8') shows that both u and v* are eigenvectors belonging 

to the eigenvalue 1 of the same matrix. 

As shown in Fig. 1c), A is generally a non-degenerate eigenvalue of ii(k). 

Therefore, u and v* are the non-degenerate eigenvector of B* - 1 (A- A*) B- 1 (A- A), 

so that 

v* =cu, (4·9) 

where c IS a constant. Substituting (4·9) in (4·5) and (4·5') we get 

from which 

Au+c*Bu* =Au, 

Bu*+cAu=cAu, 

(4·10) 

(4·10') 

( 4 ·11) 

By virtue of ( 4 · 6), we have lc I= 1. Using ( 4 ·11), from ( 4 · 2) we find that 

(B (k, r) IJIB+ (k, r)) = o. (4 ·12) 

Thus each molecule librates rather than rotates. For the sake of simplicity 

and clarity of terminology, henceforth we call the elementary quantum of ex­

citation obtained in the previous section 'libron' in association with libration. 

Then B+ (k, r) is a libron creation operator. As shown in Fig. 1 the minimum 

excitation energy of libron is about 10 kB and is rather higher than the energy 

corresponding to the observed order-disorder transition temperature T>.,, which 

is less than 4°KB. This indicates that librons can hardly be thermally excited 

in· pure ortho-H2 solid well below TA. 

On the other hand, the order-disorder transition temperature may be con­

sidered to be the temperature where the number of librons is of the order of 

the number of molecules. ·We see in the next section whether these situations 

can be reconciled. 

§ 5. Evaluation of thermodynamic quantities 

In this section, we numerically calculate the thermodynamic quantities such 

as free energy F 1·ot, entropy Srat, and specific heat Crot as a function of T and 

estimate T"A by using the state density of Fig. 2. Subscript "rot" means that these 

quantities arise from the effect of the rotational degree of freedom of each 

molecule. 

We must be careful when we use the state density of Fig. 2 because it is 

applicable only when the number of librons is much smaller than the number 

of molecules in the system. We note that above TA no long-range orientational 
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Theory of Rotational Excitations in Solid Ortho-Hydrogen 779 

order exists, so that there must be no excitation energy due to long-range order 

for rotational excitations. Therefore, as a simplest approximation for the tem­

perature effect on the excitation energy one may assume that the excitation energy 

ca (T) of the a-th libron at temperature T as 

(5·1) 

where ca0 is the a-th excitation energy at 0°K and x(T) Is an order parameter 

defined by 

_ n(T) 
x(T) -1- -4ii~' (5·2) 

where 4N is the total number of molecules in the system and n (T) Is an average 

number of mole~ules which are in excited states at temperature T. 

Librons obey Bose statistics, so that 

n(T) =I:;(exp(~ca(T)) -1)-1
• 

<X 

We use Eqs. (5·1) and (5·3) in (5·2), then 

where 

x=1-_1_~_ I:; (exp(8a0/knT*) -1)-1, 
4N .x 

T=xT*. 

(5·3) 

(5·4) 

(5·5} 

Thus we can calculate numerically the order parameter x and "true tem­

perature T" as a function of "reduced temperature T*" on the basis of Eq. 

(5 · 4) and state density given by Fig. 2. 

We give in Figs. 3 and 4 the relation of "x versus T* -l" and " T versus 

T* ". The thermodynamic quantities such as Frot which are calculated as a 

X 

1.0 

0.715 

0.5 

0 

Fig. 3. The relation between the order para­

meter x and reduced tempeature T*. 

T 

4· 

3· 

/ 
· 2 3 4 5 T* 

Fig. 4. The relation between the true temperature 

T and reduced temperature T*. 
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Got. 

cal /mol 

Fig. 5. Free energy Frot below T"ll.. 

cal I deg ·mol 

2 5 T 

Fig. 7. Specific heat Cv below T"ll.. 

caL/deg. mol. 

2 

2 3 

Fig. 6. Entropy Srut below T"ll.. 

4 

r----
1 
I 
I 
I 
I 

T 

function of T* by using the partition func­

tion Zrot= ll.(1-exp( -ea0/kBT*))- 1 are 
<X 

transformed to the function of T by using 

Eq. (5·5). We give these quantities in 

Figs. 5-7 as a function of T. 

In Fig. 3 the gradient of the line 

which connects the origin and the point on 

the curve represents T. This fact indicates 

that the maximum gradient, that is, the 

tangent drawn from the origin is T),. We 

find that 

(5·6) 

So long as one neglects the short-range 

order effect, the phase transition is found 

to be of the first order from Fig. 3, hence 

the entropy gap is estimated as 

JS=R In 3-S(T),) 

= 2.1 Joule/Mol. (5·7) 

From the experiment by Ahlers and Orttung1
> the entropy gap at T"" = 1.6°K 

is found to be about 1.6Joule/Mol at 73.1% ortho-hydrogen. This fact indicates 

that our estimate (5 · 7) is a fairly good one. 

§ 6. Discussion 

We have studied the rotational excitations of pure solid fcc ortho-hydrogen 

on the rigid lattice and nearest neighbor quadrupole-quadrupole interaction 
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Theory of Rotational Excitations in Solid Ortho-I-Iydrogen 781 

model, the Hamiltonian of which is given by II in (2 · 3). First we have set 

up the effective Hamiltonian Herr which is considered to be a good approxima­

tion at sufficiently low temperatures. Then using the first-order perturbation 

calculation we have approximately diagonalized Herr and obtained the dispersion 

relation and state density of the excitation mode. One may as well apply the 

first-order perturbation directly to H; one can easily show that the result is 

identical with ours. The reason why we have bipassed through 1-Ierr is that in 

principle it can be diagonalized by extending the Bogoliubov transformation and 

it seems to be convenient to improve the approximation in analogy with the 

spin wave theory. Since the correction coming from the second-order perturba­

tion is found small the result of the first-order calculation will be significant. 

We have discussed the nature of the quasi-particle called libron thus obtained. 

However, we have not calculated the life time of libron, so that the question 

whether libron can truly be a good quasi-particle is still an open problem. 

According to our calculation at 0°K libron has a minimum excitation energy of 

about 10 kB, so that it can hardly be thermally excited sufficiently below Tx.. 

Simple self-consistent calculation in § 5 shows that when one increases the 

temperature until just below Tx. which is estimated to be about 4.2°K then librons 

become cooperatively excited. Although our simple estimate of such a tempera­

ture effect seems to agree with experiment qualitatively further refinements of 

the theory would be necessary. 

On the other hand, at present there is no available experimental data on 

the solid H 2 with high ortho-molecule concentration, say above 85% at very 

low temperatures to compare quantitatively with our theory. Further investiga­

tions of the excitation in solid H 2 at very low temperatures are to be hoped both 

theoretically and experimentally. 

The authors are indebted to Professor T. Yamamoto for suggesting this 

problem, and to Professor T. Matsubara, Professor K. Tomita and Professor T. 

Murao for stimulating discussions. 

Appendix 

--Instability of the Danielian model--

Danielian6> showed that in hcp-lattice if one takes the quantization axis of 

the angular momentum of each molecule (Z-axis) parallel to the c-axis of the 

crystal and assumes that each molecule is either in the state Jz = 0 (state A) or 

Jz = ± 1 (state B), the configuration shown in Fig. 8 has the lowest energy of, 

the nearest neighbor quadrupole-quadrupole interaction. 

In the above Hartree approximation the interaction energy of nearest neighbor 

pairs is tabulated in Table VI. This table indicates that the total interaction 

energy between neighboring layers vanishes either in the configuration (a) or 

(b) of Fig. 9. Therefore, the energy of the ground state is the sum of energies 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

8
/4

/7
6
7
/1

8
7
8
5
1
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



782 S. Homma~ K. Okada and H. Matsuda 

8-8-A-8 
/A\/8\/8\/A\ 
8-A-8-8-A 
\/8\/A\/8\/ 

. 8-8-A-8 
/A\/8\/8\/A\ 
8-A-8-8-A 
\/8\IA\/s\/ 
B-8-A-B 

Fig. 8. The ground-state superlattice structure 

of A(J z=O) and B(J z= ±1) ortho-hydrogen 

molecules on a hcp lattice proposed by 

Danielian.6) The letters A or Bat the centers 

of the triangles represent two other triangular 

layers l one above and the other beneath the 

triangular layer shown. Each one of the 

three layers has an identical configurational 

pattern. 

A B 

\I B-/8\-A 
A B 

Fig. 10. The ground-state coplanar pattern 

with B-molecule at the center. 

(a) (b) 

Fig. 9. The two possible ground-state 

tetrahedral configurations of· A and B 

molecules. 

9 4 ---------{----------------

0 --------------

47 
12 

-i --------- -----t ~ 

Fig. 11. The ground state energy per 

molecule (broken line) and the energy 

of an excited molecule (solid line). 

The energy of single molecular excita­

tion is the difference . of the two ener­

gies. This excitation energy can be 

-13/24 due to the correlation effect, 

showing the instability of the Denielian 

model. 

Table VI. The interaction energy of nearest neighbor pairs. in the unit 

(8/25) (3e2p.Q2/4r5) 

A-A 

A-B 

B-B 

I 
in the same layer 

3/2 

-3/4 

3/8 

between neigh boring layers 

-13/18 

13/36 

-13/72 

of the coplanar patterns in Fig. 10. The energy per pattern or per molecule 

is -9/8 independently of the configuration of neighboring layers. If a central 

molecule is excited from B to A then the energy changes from - 9/8 to 9/4. 

This single excitation can migrate from site to site. The transfer energy per 

bond is calculated from (2·3) and (2·2) to be 3/4 in the same layer, and 5/12 

between layers. Since there are 3 transferable bonds in the same layer and 4 

transferable bonds between layers for the excitation. Therefore, the band width 

of excitation amounts to 
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As shown in Fig. 11, the lower band edge is lower than the ground state energy 

per molecule. This shows that the Danielian model is unstable for excitations. 
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