
REPORT 1351

FOREWORD

During the early part of World War II, some of the helicopter designed for military use were

observed during ground teats to exhibit a violent oscillatory rotor instabili@ which endangered the
safety of the aircraft. This instability was at first attributed to rotor-blade flutter, but a careful

analysis indicated it to be caused by a hitherto unknown phenomenon in vrhich the rotational

energy of the rotor was converted into oscillatory energy of the blades. This phenomenon was
usually critical when the helicopter was operating on or near the ground and, hence, NW called
ground resonance. An oscillatory instability of such magnitude as resulted horn this phenomenon

would generate forces that could quickly destroy a helicopter. The research efforts of the ATational

Advisory Committee for Aeronautics were therefore enlisted to investigate the difhulties introduced

by this phenomenon. During the interval between 1942 and 1947, a theory of the self-excited

instability of hinged rotor blades was worked out by Robert P. Coleman and Arnold M. Feingold

at the Langley Aeronautical Laboratory. This theory defined the important parameters and pro-

vided design information which made it possible to eliminate this type of instability. These results
were originally released by the NACA in three separate papem, as follows:

(1) NACA Advance Restricted Report 3G29, 1943 (Wartime Report L-308) entitled “Theory
of Self-Excited Mechanical Oscillations of Hinged Rotor Blades,” by Rober~ P. Coleman.

(2) NACA Advance Restricted Report 3113, 1943 (Wartime Report L-312) entitled “Theory
of Mechanical OsciUations of Rotors With Two Hinged Blades,” by Arnold M.

Feingold.
(3) NACA Technical Note 11S4, 1947, entitled “Theory of Ground Vibrations of a Two-

Blade Helicopter Rotor on Anisotropic Flexible Supports,” by Robert P. Coleman
and Arnold M. Feingold.

These three reports have been recognized to contain the fundamental reference material on the
subject of rotor mechmictd instability but were for some time out of primt. As a result of demands
for this type of information, they were combined into a single volume and reissued with appropriate

corrections as hTACA Technical hTote 3s44. The combined volume (reissued here as an ATACA
Report) consists of three chapters representing the three aforementioned papers in consecutive
order.

Inasmuch as the authors of these papers are no longer with the NACA, the task of checking
these papers and incorporating such corrections as seemed proper was undertaken by George W.
Brooks, Vibration and Flutter Branch, Dynamic Loads Division, of the Langley Aeronautical

Laboratory. Mr. Brooks also prepared an appendix to chapter HI, which deals
equations of motion for a two-blade rotor and includes the effects of damping.

with the general
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THEORY OF SELF-EXCtTED MECHANICAL OSCILLATIONS OF HELICOPTER ROTORS WTllI

HINGED BLADES ‘

By ROBDETP. COLEMANand ARNOLDM. I?HINQOLD

CHAPTER I /

THEORY OF SELF-EXCITED MECHANICAL OSCILLATIONS OF HINGED ROTOR BLADES

By ROBFIBTP. COMIMMJ

SUMMARY

Vibration of rotay-win~ aircrafi may ck?ive their energy

from. the roi!uiionof i)k rotor rather thunfrom the air forctx.

A theoreticalanalyds of the rnbratiuneh desajbed and methods

for its application are mp.kined herein.

The tlwoy includes the e$ecti of uneqwu.?si5i&23s of the

pylon for deflections in di$erent directions and the e#ect of
dampi~ in the hinges and in the p@n. Both the derivatiw

of th characteristics@ion and the methad8of appkkz.tion

of the theo~ are given. Iia particular, the theory predici%the
so-called “odd freqi.ency’~ 8eJf+xcm”tedspeed range w well as

t]u shaft critkai? 8peed. Churi%are presented from which
the 8haft crii!kal and the 8elf-ez&%d inxtuh?iti.a can be pre-

dicted for a great variety of ca+w. The @W.ence of each

phy~’cal parameter upon the instubi?iiies has been obtained.
TJwcompressive treai?nentapplies i% a TotoTthat hm any

numbw of bti greater than -two. Only a brief dhu.wion
and thefornud.afor 8huft criiicd 8peed are givenfor i%? one-

or two-bluderotor.

The use of compla mzria.blesin conjunction with *ange’8
equu&n8 has beenfound very conventi for the treatment of

vibrationsof rotuting &y8temi?.

INTRODUCTION

A rotary-wing aircraft that has hinged blades will, under
certain conditions, be subject to vibrations which derive
their energy from the rotation of the rotor instead of from
the air forces. The term “ground resonance” usually refem
to vibrations of this type. Although such vibrations have
apparently c.auaed accidenta in some rotary-wing aircraft
and have impaired the flying qualities of others, very little
attention haa been given this problem in the Marature. A
theoretical analysis has therefore been undertaken, and
the purpose of the present chapbr is to present the theory
and to describe the application of the theory to rotary-
wing aircraft.

Gener~ vibration theory and its application to allied
problems as well as to the particular problem of. rotor

vibration are discussed in references 1 to 4. A good general
background for the present problem is provided in the chap-
ters on rotating machinery and on self-excited vibrations
in reference 1. Referanccs 2 and 3 treat in more abstract
fashion the topics of rotation and damping. A discussion

of the varie@ of modes of vibration that exist in rotors
and a number of frequency formulas obtained by considering
separately each degree of freedom are given in reference 4.

This discussion does not, Jiowevar, lead to a prediction of

self-excited modes of vibration.
Experience has shown that two types of mechanical

vibration may occur in rotors. The vibration frequency of
the pylon is equal to the rotational speed in one type and
ia unequal in the other. The first type is sometimes called
the even-frequency vibration or the one-to-one fiequaucy,
and the second type, the odd frequency. The one-to-one
frequency vibration resembles the phenomenon occurring
at a critioal speed of the shaft of rotating machinery and
will consequently be referred to in this chapter as a shaft
critical vibration. The odd-frequency vibration is properly
called a self-excited vibration.

A derivation of the characteristic equation for the whirling
speeds of a three-blade rotor has been given by Wagner of
the Kellett Autcgiro Corporation. By considering ordy the
case of a pylon having equal stifFnessin all directions of
deflection, Wagner h- shortened the analyti by considering
directly the equilibrium of forces and moments under condi-
tions of steady circular whirling. Some examples of the
dependence of whirling speed upon rotational speed are
given, and the formula for the shaft critical speed is obtained.

In the present chapter, the theory also includes the effects
o< damping in the hinges and in the hub and the effects of
different stiflnassesof pylon deflection in different directions.
The method of analysis, particularly the use of cemplex

1f3uww&9NAOATerlmhlA’ote3S44byRoW P.C&mBUandAmQldM.Feb@& 1957.
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variables in the equations of motion, is explained in some
detail and all the previous results are shown to be a special
case of the more general problem treated here.

SYMBOLS

radial position of vertical hinge

B.–B,
ABj=T

C, cl,... c,

c,

c.

D
.F

I

11, . . 16

j, k

elements of the characteristic determinant
(see eq. (31))

distance from vertical hinge to center of mass
of blade

damping force per unit velocity of pylon

(

B.+BV

)
&placement 11~~

coefficient defined in equation (35)
coefficient defined in equation (34)
arbitrary constants
coefficient defined in equation (35)
coe5cient dt%ned in equation (34)
time-derivative operator, dldt

dissipation function
moment of inertia of blade about hinge,

coefficients defied in expressions (37)
indices and subscripts used with hinge co-

ordinates (eq. (14))

K
(

KZ+KV
spring constant K= ~

)
KZ–EVAK,-———

2

( )

m=+ mv
m effective mass of pylon my z .

m.b blade mass

M

AM

n

r

RI,...RG

8

t

T

T,

Tk

total @ective “mass of blades and pylon,
mf +n.m.b

mass added at hub for vibration test
total number of blades
radius of gyration of blade about its center of

mas9
coe5cients defined in expressions (37)
stitlnessratio, Kv/K=

time
kinetic energy
kinetic energy of rotation of blade about its

center of mass
kinetic energy of translational motion of

kth blade

1FOR AERONAIJTTCS

kinetic energy of pylon

potentkd energy
displacements
values of x and y when t=O

complex tiplacement, x+iy
complex conjugate of z, x—iy
angle between blades, 2xln
angular displacements of blades
value of & when t= O
variables representing hinge deflections when

equations are expressed in fixed coordinate
system

variables representing hinge deflections wlmn
equations are expressed in rotding coordi-
nate system

)k=fi (&. in applicatioris

A,=% KB

(
— in applications

I IU,2 )

n~b
mass ratio,

ml+nmb

expressions defined in equation (3)
angular velocity of rotor (the dimensionless

ratio u/u, is called a in applications)
angular whirling velocity measured in rotating

coordinate system. (used in nondimensional
form in applicdioti)

angular w%iding velocity measured in fixed
coordinate system (used in nondimensional
form in applications)

reference frequency, ~~M~

fixed coordinate system
rotating coordinate system
hinge deflection
component directions in fixed coordinate

system
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APPROACH TO THE VIBRATION PROBLEM

STARILITYANDINSTABILITY

If rLvibrator were attached to a rota-craft, several modes

of vibration could be excited at any rotor speed. Only the
modes that me likely to be excited during operation of the

aircraft, however, are important.
In the present discussion, it is convenient to classify the

modes of vibration according to the circumstances required
for their excitation. The different types of vibration are
identified analytically by the nature of the roots of the

characteristic equation. A hinged rotor may encounter
three types of vibration which, for convenience, are herein
designated ordinary, self excited, and shaft critical. At zero

or slow rotational speeds, an external force is required to
“excite vibration. The friction always present in such systems
crmses the vibration to be damped out when the force is

removed. Modes of vibration requiring an external applied

force to maintain them will be called ordinary vibrations.
The mathematically idealized case of zero damping will also

be considered an ordinary vibration when it is understood to
be an approximation to a system actually damped. Self-

excited modes of vibration are those with negative damping
and are recognized analytically by the fact that a root of the

characteristic equation is a complex number which has a

negative imaginary part. A slight disturbance will tend to
increase with time instead of damping out.

When a rotating system is not perfectly balanced, the
centrifugal force of the unbalanced massmay excite vibratiom
that have peak amplitudes at certain rotational speeds.

Vibration excited by unbalance and in resonance with the
rotation will be called shaft “criticalvibration. This type

occurs at the rotational speed at which the spring stiilness
of the pylon is neutralized by the centrifugal force. In the
analysis, the shaft critical vibration is recognized in rotating

coordinates as a zero frequency and in tied coordinates as a
frequency equal to the rotational speed. The critical speeds

of a rotating shaft are a common example of this class.
The purpose of a theory of rotor vibration is mainly to

predict the occurrence of and, if possible,. to show how to
avoid seti-excited and shaft critical vibrations.

CHOICEOFDEGREESOFFREEDOM

Of the large number of degrees of ileedom of a hinged
rotor, the important ones for the present problem have

been found to be hinge deflection of the blades in the plane
of rotation and horizontal deflections of the pylon. Other
degrees of freedom, such as the flapping hinge motion of the
blades, the bending or torsion of the blades, and the torsion
of the drive shaft, are considered unimportant in the problem
of self-excited oscillations. Some motions, such as landing-
gear deflection, that produce lateral deflection at the top
of the pylon may, however, be important.

PHYSICALPARAMETERS

The theoretical results given latpr provide a means of
predicting the natural frequencies and, in particular, the
critical speeds and unstable speed ranges in terms of certain
physical parameters, such as mass, sti@ess, and length.

The successful application of the theory depends upon the
dei%rmination of the proper values of these physical pa-
rametem for the aircraft or model being studied.

The important parameters to be determined are:

a
b

mb

I-

Kfl

radial position of vertical hinge

distance from vertical hinge to center of mass of
blade

mass of blade @’legibility of the blade structure
may have to be taken into account by the use of

an effective value of mb different from the actual

blade mass. The effective blade mass can be
taken as the value required to make the theory
predict the correct pylon natural frequency when

the rotor has a zero or very S1OWrotational

spee&)
moment of inertia of blade about hinge,

/&

spring constant of self-centering springs, which can

- be determined by a force te;t & fr;rn the hinge
frequency with the hub rigidly supported

m., m, eifective mm of pylon for deflections in z- and
y-directions

Z, K, effective stiihess of pylon

The ‘effective mass of the pylon is the value of a concen-
trated mass that would have the samekinetic energy espressed

in terms of the deflections at the hub as the actual pylon
and hub if it were placed at the rotor hub in the plane of
rotation. The effective, stiflness of the pylon is the stiilness
of a spring that, if placed at the hub in the plane of rotation,
would have the same potential energy in terms of deflections
at the hub as the actual pylon. Equivalent definitions are

that, if a simple spring and mass mere imagined to be sub-
stituted at the hub in the plane of rotation for the pylon

and hub, the natural fiequenW and the change of natural
frequency with added mass would be the same as for the
actual pylon.

An experimental method of measuring the effective mass
m. and stiffness K. of the pylon is to replace the rotor by
an approximately equal, rigid, concentrated mass AM at the
hub and to measure the natural fkequency for two or more
values of this added mass. The quantities are then related
by the equation

I -r.

d
Js=

~==
mz+fi.lf

or

E measured values of I/a.z are plotted against added mass
AM and a straight line is drawn through the points, the
intercept and the slope of the line will determine the effective
values of K. and %.

For the parameters a and b, the actual geometric lengths
should be used unless the flexibility of the hinge offset arm a
is comparable in magnitude with the hinge spring stiffness.
In this case, it is recommended that an effective value of a
be guessed and that b be determined by subtraction from the
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correct geometric value of a+h.
The damping parameters may be defined by the form of a

dissipation function F. The function .

n—1
2F=B319+B,y,9+k~B flbk9

is equal to the rate of &lpation of energy by damping.
The pnmmetem 1?. and B, thus measure the damping force
per unit veloci@ referred to linear displacement of the top
of the pylon and B~ is the damping torque per unit angular
velocity at a blade hinge. If the damping force per unit
velocity is not a constant, effective valuea should be used
that will represent the sane dissipation of energy per cycle
as actually occurs with a reasonable amplitude of vibration.
The amplitude of free vibration in a single degree of freedom
is given in terms of B., Bv, and B~ by

B
r~= W$

Pt=l%ot+’
The damping parameters are probably the most diflicult

ones to measure accmatsly. In practice, it is advisable to
make calculations for a given case, first on the bnsis of no
darnping and then with the use of the estimated values of the
damping parameters.

MATHEMATICAL DEVELOPMENTS

~OD OFANALYSIS

The derivation of the characteristic equation that is used
as the basis for predicting the unstable oscillations of a rotor
is presented in this section. Readers interested solely in
applications can omit this section and proceed immediately
to the section entitled ‘Method of Applying Theory.”

The method of analysis treats the equations of motion for
small displacements from the equilibrium condition with
stendy rotation. A proper choice of coordinates leads to
equations with constant coefhcients. The solutions are
exponential or trigonometric functions.

The mathematical manipulations involved in treating the
motions of a mnss in a plane of rotation are facilitated by the
use of a complex vwriable. The typical disturbed motion
obtained by solving the equations of motion is an elliptic
whirling motion, which is represented in terms of a complex
variable z=z+iy. At any instant, z represiints the dis-
placement of the pylon from its equilibrium position. An

expression such as

Z=cebjt

represents whirling~f the pylon in a circle of radius c with
angular veloci~ Qr The sign of Uf determines the sense of
the rotation. Two rotations in opposite sense with the same
radius are equivalent to a vibratory motion in a straight line
rmd are given as follows:

z=c(etif$+e-h~~

=2C Cos(oft

Two opposite rotations of different radii are equivalent to
whirling in an ellip$e. A complex value of Qf represents
whirling in a spiral, which may be either a damped or a self-
excited motion depending upon the sign of the imaginary
pmt. A sdf-excited motion exists when the imaginary part
of u, is negative, and the magnitude of z increnseswith tinm.

The displacementsmay be referred to a fixed or to a rotd-
ing coordinate system. .If Zf and z= are thd displacements
with respect to a fixed and to a rotating reference system,
respectively,

z~=z~eti~

—Cefwatza—

then

Zf= cef(tia+u)t

A whirling speed U=with respect to the rotating coordinates
thus corresponds to a whirling speed Uf=uc+ u with respect
to the tied coordinates. A shaft critical vibration corre-
sponds to u== O in the rotating coordinate system or to
COPUin the tied coordinate system.

EXAMPLEOFROTOItWITHLOCXEDHIN(3M

An example that involves a partiil use of complex variabloa
is given on page 253 of reference 2. The problem given
there of a mass particle moving on the inner surface of n
rotating spherical bowl is mathematically equivalent to the
disturbed motion of a flywheel and shrift’or of a rotor with
locked hinges. The equations of motion obtained in real
form in rotating coordinate

are combined in the single equation

(1)

(2)

where
#

Z==x=+’iy=

is the complex position vector in the rotating coordinate sys-
tem. The complete solution, if small damping is nssumed, is

The path of the motion is represented by rotations of a com-
plex vector in a plane.

The use of a complex variable has thus cut in half the num-
ber of equations to be handled and has yielded a solution
from which the geometric path of the motion may ensily be
reconstructed. The advantage of the z-notation is not fully
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rerdized, however, unless it is used horn the very beginning
of the problem. The close similarity of this problem to the
rotor-vibration problem makes it worthwhile to show the
full application of the z-notation to the preceding example.

The complex variable z=at any instant determines the posi-
tion of the mass particle relative to the rotating coordinate

system. If the position in a fixed coordinate system is
denoted by z,,

21= z~e~’ (4)

and z= cm be treated as a generalized coordinate in the

Lagrangian equations of motion. The kinetic- and potential-
energy expressions can be immediately written as

A dissipation function for damping that depends upon motion
relative to the rotating system can be written

The equations of motion are now obtained by considering

z= rmdZ=as generalized coordinates in the Lagrangian equa-
tions. Substitution in the equation

thus yields the equation previously given

‘.+@h+2)’@+(:-”’) za=0

The same method can be used to obtain the equations of

motion in the fixed coordinate system. In this c~qe,

The equation of motion in terms of Zf becomes

and the solution for small values of damping is

zJ= C,e-w-7&f)’+i- +&aK+a’-’~=’(,,
This solution shows that the motion consists of two “circular
vibrations in opposite directions and, moreover, that for

a>l~ the first term represents unstable motion; that is,
the vibration has negative damping.

This example illustrates a shaft critical speed for ti=~i

and a self-excited instability for u>~~ A discussion of
the physical picture of this instability due to damping is given
on page 293 of reference 1.

The effect of damping in a nonrotating part of the system

can be included in the analysis merely by adding to the
previous dissipation function the term

The equation of motion then becomes

M&EB,2fiBa(iri.(ozf) +Kz/=0 (8)

The solution for small values of damping becomes

.F.,,[+%’-iiw=l’+

The motion is m-w unstable above the speed

‘=$X1+3 (lo)

ImiGEDROTOR

Inclusion of the effect of hinge motion in the plane of
rotation increases the number of degrees of freedom and the
number of equations of motion. For example, three hinged
blades and two directions of pylon deflection give five

degrees of freedom to be considered. If special linear com-
binations of the hinge deflections flz are used as generalized

coordinates, no more thzw four degrees of fkeedom need be
considered simultaneously. The use of complex variables

reduces these four equations to two equations.
Appropriate variables in the rotating system for a three-

bladd rotor tire

(11)

These variables and their complex conjugates satisfy the
relations

The variables ~,, by virtue of their meaning, are referred to
a rotating coordinate system. The special linear combina-
tions of the Pkdenoted by 0, are also referred to n rotating

.
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coordinate system. The appropriate variables to represent
the hinge deflections when fixed coordinates are used are
defined by

~k=@&~~ (12)

and ~kis the complex conjugate of ~t.

Geometrically, 01or ~, is the complw vector representing
the displacement due to hinge deflection of the center of
mass of all the blades, just as z represents the position of the
shaft due to pylon deflection. It wiUbe shown Iater that in
equations of motion, 01is coupled with z and 00is an inde-
pendent principal coordinate. Equations (11) -when solved

for Po, i%, and A become

eo+el+e2=biJ3*

Oo+O1e-f”+t?wk=Z@,

00+c91ek+f&-&=bi/32
i

Then, in a mode involving 0,,

00=0

(?*=—31

po=sin u=t

191=9ill(w=t–a)

p,=sin (@at+a) 1 (13)

Equations (13) show that in the O,-mode, the blades are
undergoing sinusoidal vibrations 120° out of phase with one
another in a manner analogous to three-phase electrical

currents.

General formulas for any number of blades are

(14)

DERIVATIONOFEQUATIONSOFMOTION

The equations of motion and the characteristic equation
of whirling speeds are herein derived for the general case of
three or more equal blades on a pylon that may have dif-
ferent stiflness properties in d.i.tferentdirections of deflection.
The effects of damping in the blade hinges and in the pylon
are included. The equations are ii-et formulated in a non--
rotating reference system. The required modifications
are then given for the case of isotropic support sti5ess.

The corresponding equations referred to tho rotating co-
ordinates me then obtained.

Let the position of the center of mass of the lcth blade bo
represented by the complex quantity ZZ in the piano of
rotation. (See fig. I-l.) Let the bending deflection of
the pylon be represented by Zf in a nonrotat”mg coordinate
system and let Pt be the hinge deflection of the kth blade.

Then

z~=z~+ (a+&#~)ei(a~fi~) (M)

The compla~ velocity is

it= 2,+ [ti~~”~+ti(a+bew~)]e{(a~ho (16)

Because only smaU displacements are being considered, tho

exponential factors containing SEcan be espanded and only
the terms that lead to quadratic terms for the kinetic-
energy expression need be considered.

Some terms can be ignored either because they crmcol ‘
after summation for all the blades or because the corres-
ponding derivative eqmasions in the Lagrangian equations
vanish. The substitution

leads to the following expression for the kinetic energy of

translational motion of the kth blade:

Tk=~mti$t (17)

where

Z&=2~;f+;fbi(fik+i@3Jei (at+‘~)+

~~(—Z@(&i@.)e -: bt+.t)+ /@k9-~ab~b2

<

\=,

‘\
\ \

mb

m

“d
I
/

/

%

FIWJIIEI–1.-Simplitied mechanicalsystem representingrotor,

.
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The kinetic energy of rotation about the center of mass of
the blade is

The effective mass of the pylon maybe different in the Zr and
in the y<iections. Allowance for this possibili~ is made

by writing the kinetic energy of the pylon as

(19)

where

m=+mv
m,= ~

mz—rnv
Amf= ~

The total kinetic energy is the sum of the expressions for
the separate kinetic energies.

The pylon spring constant may diifer in the Zr and in the
y#rections and, consequently, the potential energy can

be wqnw.ssedas

The effect of damping will be expressed with the aid of a
duipation function. If damping exists in the pylon, in the

rotating shaft, and in the hinges, this function becomes

The sum of the various energy expressions for all the
blades, expressed in terms of the variables z~and t~ in the
nonrotating coordinates, becomes

J

The Lagrangian equations of motion are

d a“

(?

——
dt &~

–g.&$:+$:=o

}

(23)
d hT

()z%
–$Fag$;=o

and similar expressions for the other variables. The equa-

(24)

where ~~ refers to the f-variables other than- ~1 and fn_l.

The complex conjugates of these equations are also obtained
but give no additional information. Each complex equation
is, of course, equivalent to two real equations. It is noticed
that the ii.rst two equations contain only the variables Zf,

=f, and ~1and that the third equation represents n–2 equa-
tions, ench containing one independent principal coordinate
f?t. The physical meaning of this partial separation of
variables is that a blade motion represented by ~1involves
a motion of the common center of maw of the blades and,

thus, a coupling effect with the pylon. Blade motions in
which the common center of mass does not move are repre-

sented by ~0, . . . ~a. For three blades, the only such
mode is the one corresponding to ~0. In this mode, all the
blades move in phase; the motion is always damped and
does not lead to instability.

The equations of motion of a one- or two-blade rotor are
somewhat different from equations (24). The difference is
connected with the circumstance that a rotor of three or
more equal blades has no preferred direction in its plane;
whereas, a one- or two-blade rotor has different dynamic
properties in directions along and normal to the blades.
Only a brief statement and the fi,al equation for shaft
critical speed will be given for the one- or two-blade rotor.

The equations of motion involving ZJand ~1can be written
more compactly by use of the notation

d d%

‘-Z “D

and the substitutions
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Then

or, briefly,

/l,,(D)zf +AA,,(~)~r+~,,(~)~I=O

J.’&(ll)z, +&@)rl=o }

‘rHE cHARAcrEFus TICEQUATION

The general form of solution of equations (26) is an elliptic w%iding motion that can be represented-by

(25)

I (26)

(27)

Special cases of this motion include whirling ti a circle (G= CL=O) md hear vibration (CI=CL, G= 04). Substi-
tution of equations (27) in equation (26) gives

[A,l(hf)C,+til, (tif)T2+AM(hf)C3]ebF+[A11(–Gf) C2+ti11(-Gf)Gl+A12(-G~)Cde-Gfl=0

[A,,(idf) C1+An(tif)C3]ef”F+ [A2,(-hf)C2+An(-~f)@-GF=o
}

(28)

In ordex for equations (27) to be a solution of equations
(26), equations (28) must be satisfied for each value of t.

The coeilicient of each time factor efi~ or e-ia~ must there-
fore sepmately vanish. Because each braoketed expression

represents a complex quanti~ that vanisk, its complex
conjugate also must vanish. The condition for a solution

can therefore be expressed by the vmishing of the first
bracketed terms and the complex conjugatw of the second
bracketed terms. Hence,

A1,(@) Cl+AAn@~+Au(iaJ G =0

Aj,(iu,) C, +A.(iaf) Cy =0

}

(29)
LcL (’ifd,)cl+zll (iq)a +Zl,(icd,)a,=o

Zzl(iuf)u, +-z@(ic!l,)zf4=o

where X11(iq) is the complex conjugate of AH(—@) and is
obtained from All (&Jf) by changing b to —h without
changing {up The characteristic equation giving the rol&

tional sp@s is the determinant of the cceflicients of Cl, CL
C3, and Cz equated to zero. With the second and third

columns interchanged for symmetry, the determinant
becomes

The wpanded form of this determinant is

(A,,A.–AuAm) (~,,~.–~dm) –AA,,A&i&&=O (31)

where

K,
An=-@+iqA~+ Z%(CV–U)+m

Am,
AAn=AZ.=——

AK,
~ CO?+~WAb+~
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A12A21=ZJZI= E U1’=AW14

(7
2 l+p

An=— (u,—@+iX&-a) +a2Al+Az

X,,=– (uf+u)2+z%(ti~+u)+NA,+A,

The roots u~of this equation are the characteristic
speeds of the rotor.

I!’or the case of isotropic supports,

A&=o

tdlirling

and the equations of motion are satiziied by equations (27)

with Ca= 04=0.

The characteristic equation is then simply

A1lAa–ABA,l=O (32)

In a rotating coordinate system, the complex coordinate are
z=and 01,where

z~ z~eb’

f,=e,e~’

Then
Dz,= (llz=+tiz=)e*’

D~l=@Ol+i.w%)eti’

If the whirling speed in rotating coordinates is represented
by w.,

Za= C1e&J

el=@f@.t

The characteristic equation is then obtained by substituting

Uc+fd for c+

An(ua+4Ad~.+4 –4JLz(ua+u)A21(aa+ u)=0 (33)

The characteristic equation can thus be stated in terms of a

whirling speed in either the iixed or the rotating coordinate
system.

METHOD OF APPLYING TEEORY

APPLICATION NEGLECTINGDAMMNG

In plotting curves for use in applications of the theory, it

is convenient to consider one of the pylon bending fke-

quenciea a,=JKJ. as a referance frequency and to refer
all other frequencies as well as the rotatiomd speed mto the
referenca frequency as unit. The number of independent

parameter is thus reduced by 1. All quantities in equa-

tions (31) to (33) are then expressed nondimensionally.
The natural whirling speeds and the three types of vibra-

tion-ordinary, self excited, and shaft criti~~ now be
predicted from a study of the roots of equation (31) in
which UJis considered a function of o for fied values of the
other parameter.

The cam of no damping will be considered &at. Beeause
equation (31) with damping terms omitted is of the fourth
degree in a? and of only the second degree in a?, it maybe
solved conveniently by first choosing
solving the equation for ~. Similar

values of Uf and then
indirect methods can

be used with equations (32) and (33). Speciil methods to
be used when damping is ficluded will be discussed later.

The meaning of equations (31) to (33) will be illustrated
by examplea The real part of of will be plotted against ~

for selected values of the paranieters Al, A*,As, and g. The
simplest case is that in which the mass of the blades is so
small that any force on the pylon due to blade motions is
negligible. The pylon motions are then independent of the
blade motions. This case is obtained by putting AS=O.

The characteristic equation (31), (32), or (33) then factors
into expressions yielding straight lines and hyperbolas.

An example of a rotor with particular values of the param-
eters is plotted as longdash lines in iigure I–2. The hori-
zontal straight lines correspond to pylon bending and the
slanting hyperbolas correspond to hinge deflection. Each
curve represents the trend of one of the red roots W. As
As increases slightly horn zero, the greatest changes in the

curves occur in the vicinity of the intersections of the
straight lines with the hyperbolas. Here each branch
breaks away horn the intersection and rejoins the other
branch. At a gap, such as C in figure I-2, the ntiber of
real roots of the frequency equation is reduced by I-2.
The mking~oota are Compl= conjugate numbers, and one

of them must have a negative imaginary part, which implies
a self-excited vibration.

Ckmsiderthe interpretation of figure I–2 as a is gradually
increased from zero. At zero rotational speed, the values

of of are the natural frequencies that could be excited as
ordinary vibration by applied vibrating force. I?ositive and
negative values occur in pairs of equal magnitude and cor-
respond to linear vibration modes represented in complex
notation as

z,=c(ea#+e-hF)

As Q increases from zero, the positive and negative values
of af no longer are equal in magnitude. The normal modes
are therefore whirling motions with angular velocities equal

to the plotted values of W.
The shaft critical speed is the rotational speed at which

~~u and hence is given by the point A where a 45° line

3 /“! /
/ /’

/’
/

2 / /

/ / /
/ /

/
/

I
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/

/
/ ./

“f o // /
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/
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FIcmm I-2.—The effect of coupling betweenpylon and hinge motions.
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through the origin intersects the u~urve. This speed cor-

responds to the peak for vibrations &cited by unbalance ir

the rotating sjmtem. As w increasea above the shaft critical

speed, the modes of whirling are stable until, for the case o~

no damping, the value of Ufbecomes complex at the value o~

u at which a verticil line is tangent to the plotted curve.

This point B is the beginning of the self-excited range. At

the point D, the motion again becomes stable. The real

part of u, is plotted in the region C as a short-dash line.
The complex roots in the region C have been dmlated and
plotted in figure I-3.

The point E, at which UJ=O, is-of some interest. At this
speed, a vibration of the blades could be excited by a steady
force (uf=O, w== —~), such as the force of gravity if the

plane of the rotor is not horizontal.

Because the most important information to be obtained

from the ikequency equation is the critical value of ~ for the

shaft critical and self-excited vibrations, a set of charts that

gives this information for a large variety of vahw of the

physical parameters has been prepared. These charts are

given in figures I-4 to I-6, which correspond to values of

stif7nee.sratio KYJK.=s of 1, w, and O,respectively. The use

of the charts is illustrated by a numerical example. Suppose

the values of the parameters for a certain rotor are AI=0.07,

At=0.22, Aa=O.l, 8=1, and w,=155 cycles per minute. A

straight line, such as AB in figure 1+, is first drawn to repre-

sent the function 2AI+A2. This line intersects contours

Aa=O.l at d=O.77 for the shaft critical point and 2=1.6

and 4.85 for the b%-g and for the end of the self-excited

range, respectively. With a reference frequency of 155

cycles per minute, these values correspond to actual rota-

tional speeds of 136, 196, and 342 rpm.

All poesible values of Al, A,, and & are thus covered by

suitably changing the straight line &B. The general effect

of the stiffness ratio s is not large; any case can therefore be

estimated with a fair degree of accuracy by use of figures 1+

to I-6. . . .
POSSIEIWITOFAVOIDINGOCCURRENCEOFVIBRATION

Figures 1-4 to I-6 can aIso be used for the inverse problem
of finding the values of the parameters that are required to
obtain given values of critical rotational speed. These
figures show that to eliminate entirely the self-excited in-
stabili~ requires that Al be equaI to or greater than 1.

.4

C-=f@f= @f P~
.2 1.5

$.? o -_, 2–- -–- -

-.2 — — — —

-.4
0 .2 .4 .6 .s 1.0 ‘ L2 1.4

Fad

llemm I-3.—The comple.. frequenoy in the anstable mnge for
A,= O.07,At=0.22, &=O.1, and 8=1.

w2A,+~

I?IQUFGII-4.-StabilMy ohartfor s= 1.

The shaft critical instability oan be entirely eliminated only

with a value of Al in & small range near 4 a~d with s= co or

s= O. These vahw of Al cl.iiler radically from present

designs in which a typical value is O.O7.

The satisfactory requirement of keeping the instabilities

outside the operating range of rotational speed is found by

Erst picking a reasonable value of the pylon frequency

mxx to ti the scale unit for u and by then observing the
wmbinations of Al and Al that can be usecl to avoid tho

xitical &-cOnto~.

EFFECTOFDAMPING

The effeot of damping has been included in equation (31)
hrough the parametem Xr, Akf, & and JP. A method of

amputation similar to that used in flutter theory appeam

?referable to attempting to solve the equation directly for ti~.

l!he beginning and the end of an unstable range can be found

)y the following method: At a limit point botmeen a stable

md an unstable speed range, the value of Uf is real. Equa-

ion (31) is first separated into reil and imaginary parts with

01 considered real. Each part is considered a functional

wlation between ~f and w and is plotted for a given set of

mlues of the parameters. The intersections of the real and

he imagimuy equations give the rotor speeds and frequencies

xmresponding to the beginning and the end of the unstablo
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FIGUREI-5.-Stability obart fors= w.

ranges. In the computations, it is preferable to choose

values of Uf and to solve the equations for the corresponding

values of Q.

The explicit form for computation in the simplest case of

isotropic supports, with damping in the #ylon and in the

hinges but not in the rotating shaft (A== O), is obtained from

equation (32) rearranged m follows:

I’or the real equation

Where

and

For the imaginary equation -

#–2B@+ C1=O
G20L$l17-0&19

(34)

.

(35)

50

4.0

/

3.0

$

1.0

where

and

/ o

/
/

.1

/ /

/ /

/
/

/

I

I

-F--- Slmfl critkalspeeds

.5

— -

.4 .6 .8 LO L2 1.4 I
u2A,+A2

hwm I-citability dart for s=O.

;

“=-&k(-”f’+%)+(-”f’+AJl

The real and imaginary equations for the most general ewe
of equation (31) oan be written, respectively, as follows:

X$(l—AJ’WE+ [Rl(l —AJ2+A?l&]Wi+ (RJ&IJ..+XS&-

R6)&+R,G–1,1,–R4+ &’w;=0 (36)

[L(l-&)2+A?Ll&t (E113+E311+~:12 –Is)d+RI12+

RJ,–1,=0 (37)

where .

“=w(-”f’+E)(-”f’+E)-

“(~%+~)(~%+~)
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+$(-”’’+2)+=%+9
Iz=2(–wf2+AJwJ~

R, =—2(1—A,) (—@+ A2)-4@+X#

13=–2(1–AJW&HW,M

I,=24#A3[-(1-AJCdf(kf+U –2k.f4

Emmples of calculated cases with damping are shown in
iigures I-7 to I-9. The presen~ of small mnounts of damp-
ing in both the pylon and the hinge degrees of freedom does
not greatly change the predictions that would be made from

‘+

o Lo 20 30
w

FIGUREI-7.—ITot of real and “umgimry equationsfor a typioal case.
s=l; A1=O.07; A2=0.22; and &= O.198.

2.0

1,0

‘f

o 1.0 20 3.0

Fmvrm I-8.-P1ot of real and imminaw eauations for ease of .s= m.
A1=O.07, Al=O.2~, an: A“=O.198.

2.0

‘f

I.0

0 10 2.0 30
(LI

FIGUREI-9.—Effeot of damping for We of s-1, AI=0.07, Al= 0,22,
and A3=0.198.

the equations with no damping. The plot of the real equa-
tion is practically the same as the plot obtainecl whm damp-
ing is neglected. The intersections of the curves of the
imaginary and the real equations with any reasonable value
of &/Ap are near the points that would be considered the
link of the unstable range if damping were neglected.
Increasing the amount of damping decreaseathe gap between
the limits of stabili~ until the unstable range is finally
dim.i.nated. An approximate solution for the amount of
damping required to eliminate the sslf-mcited instability is
obtained by requiring that the damping be at least large
enough to make the curve of the real equation pass through
the point where ap 1 and o is the value given by the equa-
tion

The values required in the case of g = m have been computed
and plotted in figure 1–10. The elimination of $elf-mcited

vibration by damping thus loolm promising and merits
further study with reference to specific application.

20FR=R=F7
I.5 - i

I.0 ‘

LrAi3
Al :-

A3
\ o

-.1

.$

0 .1- .2 .3 .4 .5 ,6
A2

I?mmm I-lO.—Damping required to eliminate self-exoited oscillation
for a=w.
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LIMITATIONS AND FURTHER DEVELOPMENTS OF THE
THEORY

POLARSYMMETRY

An important idea in the rotor vibration theory is the
concept of polar symmetry. This concept implies the ab-

sence of a preferred direction in the plane of the rotor. A
rotor of three or more equal blades has polar symmetry. A
rotor of two blades or one with unequal centering springs
does not have polar symmetry. A pylon for which &=KY,

13.=Bv, and m.=znr has polar symmetq. The possibility
of solving the rotor vibration problem in terms of exponential
or trigonometric functions depends upon the existence of
polar symmetry in the rotating parts or in the nonrotating
parts or in both. The general case of no polar symmetry

would lead to Mathieu functions or something similar.

TWOBLADRS

A brief comparison between the two-blade and the general
case is presented herein. Polar symmehy of the pylon is aa-

sumed. The shaft critical speed is obtained by substituting
u.= Oin the characteristic equation as expressed in a rotating
coordinate system. I?or one or two ‘bladea, the equation

obtained is

1.2 I

~?yd: ~ . /
x

x 2

I.0 A 3 I
x

❑ 4
I

o 6

{ ‘

.

.8 A

x

.6 I
x

.4

,x

.2

0 .2 .4 .6 .8 1.0

*

lhGurm I-12.—Experimental critioal speedson small models.

The fit bracketed factor gives the beginning of a-self-ex-

cited range and the second factor gives the end of the range.
Equation (38) can be compared with the following equation

for the shaft oritioal speed of a rotor with three or more equal

blades and polar symmetg:

(39)

A usef@ chart based on equation (39) is given in figure 1-11;

some experimental results of tests of a simple model are

given in @e 1-12. These tests demonstrate the essential

ditbrence between the two-blade and the general case.

LANGLHY AERONAUTICALLABORATORY,

NATIONAL ADVISORY Co~ D FOR AERONATJTIC8,

LANGLEY FmLD, VA., August 24, 1966.
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CHAPTER II

THEORY OF MECHANICAL OSCILLATIONS OF ROTORS

By ARNOLD

SUMMARY

Th.5 nwchanieal stability of a rotor hurnng two vertically

hinged bladm mounted upon symmetrical swppoti, that h,
of equal sti.nem and muss in all horizontal directiorw, ti

invedigated and reported hi-tin. The frequency equation is
den”vedand shows the exi>tence, in general, of two rangm of
rotutwna-1speech at which in8tabiJtiyoccurs. The lower region

of in8tubiiity ?k bounded by two shu. critid speeds. At rotor
speed8 within this region, 8e&xck?d divergence of the TOtOT

ties plate anabgous to the indu.bility ezhibiki by a rotuting

sha> thai is elliptiuzt in cros8 section. W&in the second

iutubi.hly range, the rotor sydem undergom seif-excii.edos&-
twns. Chart8 are pre8entd giviqg the bmmdury points of
bothirwta.bilityregiorwfor a largevarietyof valuesof tlwphysical
parameters. The e~ect of dumping ia also inclwded in the
a.na.ly8i8.

INTRODUCTION

In chapter I, Coleman gives an analytical study of thb
mechanical stability of a rotor having three or more verti-
cally hinged blades, mounted on flexible supports. It was
shown that, in addition to the usual shaft “critical speeds,
self-excited vibrations occurred over a range of rotational
speeds. Experiments with rotary-wing aircraft have con-
firmed the soundness of the analysis.

The present chapter is an investigation of the stability
of the two-blade rotor mounted on symmetrical supports.
As will be shown later, the results differ from those for a
ttiee-blade rotor. The reason for the different behavior

lies in the inherent asymmetry of a rotor with only two
blades. Motion of the center of mass of the blades of a
two-blade rotor with respe@ to the rotor hub, due to small
hinge deflections of the blades, must be normal to the line
of the blades. This restraint, which does not appear in a
rotor of three or more blades, results in the rotor system
having different dynamic properties along and normal to
the line of the blades. Therefore, with supports that have
equal stiffness and mass in all directions attached to a two-
blade rotor, two principal vibration axes of the rotor hub
can still be distinguished. No preferred vibration axes ean

be distinguished for a three-blade rotor mo-imted on sym-
metrical supports. This distinction shows up physically in

the shape of the vibration modes. Whereas a three-bhide
rotor whirls in a circle, a two blade rotor whirls in an
ellipse, of which the principil axea are along and normal to
the line of the rotor blades.

A two-blade rotor oan be expected to show, in addition
to some features of a three-blade rotor, some of the charac-
teristics’of a rotating shaft that is elliptical in cross section.

2s2 ., -

M. I?INNQOLD

Such a shaft,

WITH TWO HINGED BLADES

mounted on symmetrical bearings, is known

to have two critical speeds, which correspond t; each of the

two principal stifln~ea. (See, for examplo, ref. 1.) For

all rotational speeds between the critical speeds, the shaft is

unstable and diverges. It will be shown that an mactly

similar phenomenon exists for a two-blade rotor. ‘l’he

existence of this, region of instability for a two-blade rotor is

predicted in chapter .1, in which the formula for the shaft

critical speeds bounding this instability range is given, In

addition to this region of instability, a second range of

instabili~ analogous to that exhibited by a three-blnde

rotor is also present. /

Only the case of symmetrical supports is analyzed in tho

present report. In the case of asymmetric supports, the

equations of motion are linear ditTerential equations that

are diflicult to solve because the coefficients vary periodi-

cally with the time (Mathieu type). Similar equations am

obtained in the problem of a rotating elliptical shaf t mounted

on asymmetric bearings. (See ref. 1.)

SYMBOLS

a

b

B

B~

D

F

I

K

Kp

m

mb
M

r

s

t

T

Tl, T,

T.

v

% Y

radial position of vertical hinge
distance from vertical hinge to center of mass of

blade
damping force per unit velocity of rotor-hub

displacement
damping force per unit angular velocity of blade

displacement about hinge
timGderivative operator, d/dt

dissipation function

moment of inertia of blade about hinge,

()
?7@ 1+$

spring constant of rotor-hub displacement
spring constant of blade self-centering spring
effective mass of pylon
effective mass of rotor blade
total effective mass of blades and pylon, m+2mb
radius of gyration of blade about its center of mass

arbitiary parameki

time

kinetic energy

kinetic energies of rotor blades

kinetic energy of rotor hub

potentiaI energy

displacements of rotor hub in rotating coordimk

system
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rotating coordinate axes
fixed coordinate axes
values of x and y when t= O

displacement of&t rotor blade in ikxedcoordinate

system
displacement of second rotor blade in fixed co-

ordinate system
angular displacements of blades about their hinges

~o=b(pl+l%)
2

#131-132)
—

2

L910value of 191when t=O

A,= a ~

()
b I+&

&
A2=77

w angular velocity of rotor (the dimensionless ratio u/w, is
called a in applications)

u~ natural frequency of rotor system observed in rotating

coordinate system (used in nondimensional form in
applications)

Uf natural frequency of rotor system in tied coordinate
system (nondimensional in applications)

w, reference frequency, ~~

MATHEMATICAL ANALYSIS

Four degrees of freedom of the system are considered—

horizontal deflection of the rotor hub in the x- and y-direc-

tions, and hinge deflections 13 and h of the blades in the

horizontal plane of the rotor hub. The rotor is assumed

to rotate at a constant velocity u.
Deflection of the rotor hub maybe due either to the bend-

ing of a flexible pylon or to a rocking of the rotor craft upon
its landing gear. Ground-resonance vibrations usually in-

volve landing-gear flexibility. The mathematical treatment

is the same in both cases, but the values of several of the
physical parameters will depend upon which mode is being
investigated. In this chapter, the terms “rotor supports”
and “pylon” will be used interchangeably to denote the

nonrotating structure coupled with the rotor bhides.”
The mathematical treatment herein d.iflem horn that in

chapt~ 1, in Which are used the complex notation ~d the

notion of %hirling speeds,” that is, directional frequencies

resulting from the use of complex numbers. Although the

method of chapter I is valuable for systems, such as the

three-blade rotor on symmetrical supports, which have cir-

cular modes of vibration, it offers little advantage for the

present problem, in which the rotor performs elliptical mo-

tion. Rectangular coordinates aticordingly are used in the

present report and frequencies are used instead of whirling

speeds. In comparing the results of the present report With

those of chapter 1, care should be taken to distinguish be-

tween ~equencies and whirling speeds. Whirling speeds

have directional significance; whereas frequencies are essen-

tially positive quantities and do not give any immediate

information concerning the direction of whirl of the vibration.

The equations of motion are setup in a coordinate system

rotating at the velocity w. Let the deflection of the rotor

hub be represented by z and y in rotating coordinates. (See

fig. II-1 ~ which the intersection of the coordinate axes

represents the undisturbed position of the rotor hub.) The

disturbed positions of the two blades in iixed coordinates are

q=(z+a+b cm &) cos ut-(y+b sin L?,)sin d

?/I= (y+b s~ I%)~s ~+(z+a+b COS&) SiUd

and

G= (-a-b cos I%) COSd— (y-b sin I%) sin d

y,= (y-b sin @J cos d+ (z–a—b cos &) sin cot

The kinetic energies of the two rotor blades are

and

T,=;7?l,[&+j,’+#(co+&~

The kinetic energy of the pylon is

T,=~m [+’+j’+~’(d~’)–ti(?y-~)]

FIGURE11-1.-SimpMed mechanicalsystem representingrotor.
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Because only small displacements from the equilibrium

position are considered, the trigonometric expressions con-

ttig I?Iand & maybe expanded as power series and only

the terms that lead to quadratic terms in the energy expres-

sions need be retained. Thus

sin /31=/91

COsb,=l-g

and

New variables introduced to replace 131and /% are

O.=:(I%+PJ

where 01represents the shift, due to hinge motion, of the cen-

ter of mass of the two blades with respect to the rotor hub.

The introduction of & and 01results in a partial decoupling

of the equations of motion.

The total kinetic energy of the system is

T= T,+ T,+T.

Only the quadratic terms will be retained in the kinetic-
energy exprtion, because the terms of lower degree vanish
in the Lagrange equations of motion. Then

(92@@l+2&-2@l+ 1+~ (eo’+e?)-ma ;(OO*+O1*)I
The potential energy of the system is

V=;qa%-y’)+: 0%’+/32’)

=;K(Z+9+S(e,’+ep)

Two types of damping of the rotor system tie assumed to

existc (1) damping in the rotor supports, which is propor-

tional to veloci@ displacements of the rotor hub in q, fkecl

coordinate system, and (’2) damping in the blado hinges.

The &lpation function ~ then becomes

where B is the damping force per unit velocity of rotor-hub

displacement and BBis the damping force per unit velocity

of a rotor-blade displacement about the blado hinge.

The Lagrange equation of motion for the variable z is

da

r’)–—–g+g-g’o
dt &

The use of similar expressions for y, %, and 191letid to
following equations of motion:

the

(1)

[( )
‘p D+%+;%Dx+ 1+$ D+@

1
CL?01+(D%@/=o

(2).-

where

Equation (4) can be solved independently of the others
because it is an equation in only one variable O., Equation
(4), which also waa obtained in the study of the three-blade
rotor (chapter I), represents blade motion with the bladea
moving in phase, uncoupled -@h pylon motion. Motion in
this mode is damped and-does not lead to instability.

Asiuming solutions of the forin

and substituting these solutions in equations (1) to (3) gives
the characteristic or frequency equation

—w=~— co~+’ilcoa+1 4&wa 2c.0wa-ixw

2WW= — COU2+@Wa+Ag+A1Ws —w=~—d

2wwa—iAw –2A3(wJ+w3 — W=’—d+ixaa+l

where the nondimensional parameters As= ‘b

M(l+~
&= a ~ . .

()
b l+F B

“MT,

=0 (6)
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have been introduced, and the rotatiomd v~locity u and the

frequency .= have also been made nondimemiorird by using

co~=m as reference frequency.

The frequency U=generally is a complex number, of which

tbe real part is the frequency of the vibration and the

imaginary part determines the rate of damping of the vibra-

tion. If the imaginary part of a= is negative, the vibration

increases in amplitude with time and the rotor is unstable.

DISCUSSION OF FREQUENCY EQUATION

CME OFZERODAMPING

If the damping parameters } and Ap are neglected, the

frequency equation (6) may be expanded to

2A~(u2+u=J– 1) +[4&u=z- ((3+ ‘

c0=2-l)q[-2A3(cJ+ @a2+l)+c0a9-A2-A@q=o (7)

rvhem w= is the natural frequency of the rotor system in a

coordinate system rotating with the rotor. (Although equa-

tion (7) is a cubic equation in both d and U=z,rectangular

hyperbolas of the form U2=UZ+S, where s is. an arbitrary

parameter, intersect equation (7) at only two vahm of &.

l?or purposes of computation, therefore, equation (7) can be

reduced to a quadratic equation in Wsby replacing u=’ with
.

J+%)

The solutions for zero damping (eq. (5)) represent motion

of the pylon in an ellipse expressed relative to the rotating

coordinate axes. In iixed coordinates, the pylon would

move in an ellipse processing at the velocity CO.Th.is motion

can be resolved into simultaneous circukw motion at the

two frequencies Ia+tial and la— UJ, in which the vertical

lines indicate that the quantity inside is to be considered

positive. If the pylon is subjected to a harmonic force

in the fi~ed coordinate system of frequency Qf, resonance

will occur at each of the frequencies

@f=l@*@.1

The frequency w, will be referred to as the natural frequency

of the rotor system in fixed coordinates.

The graph of the frequency equation (7) for a typical

set of values of the parameters is given in figure II-2 in

rotating coordinates and in figure II-3 in tied coordinates.

For zero coupling between the blades and rotor hub—that

is, when As equals zero-equation (7) factora into straight

lines and a hyperbola, which are shown as longdash lines

in figures II-2 and D–3. The straight lima represent hub

motion and the hyperbola represents blade motion. A

small increase in & results in a breaking away of the curves

at their intersections to form two self-excited regions. It

is interesting to compare figure II-3 tith figure II-4, which

is the graph of the natural frequencies of a three-blade

rotor having the same values of Al, Az, and As.

The shaft critical speeds, or natural frequencies that

would be in resonance with an unbalance in the rotor system,

are found by putting U==O in equation (7). Mgure II-2

shows two such speeds, at points A and B (shown also in

fig. II-3), that bound a region in which U=is a pure imaginary

number. If tic is a complex root of the characteristic

w

FIGURE~-2.—Natum1 frequencies of a two-blade rotor in rotating
coordinates for cam of A1=O.05,Ai=O.20, and &= O.IO,

— R@ns of rnstabitity
&B Shaftuitlodspeeds
C,D Liajts of sec&d instability

E,F &&ses excited by cmstont

w

FIGUREII-3.-Natural &quenui~ of a two-blade rator in tied aoor-
dinateefor we of A1=0.06, A,-O.20, and &= O.IO.

equation, the complex conjugate of u= will also be a root and

one of the two roots will have a negative imaginary part

implying inatabili@. The rotor system will thus be un-

stable for all rotational speeda between the two shaft critical

speeds. Because co= is a pure imaginary number in this

region, the frequency of the resultant self-excited vibration

is zero in a iotating coordinate syatem~ to the ahaft

critical speeds-and will appear as a self-excited divergence

of the rotor.

The equation of the shaft critical speeda is

[(1–@(A2+A1@ –2A,@4](1–@ =o (8)

The first factor gives the lower shaft critical speed. The
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I
—Regumof instability

A ~ft titiCdS!JSKh I
C,D :.:: of ix%my

E F&.jmse excited by cmstont ‘

2-

‘f

o I 2 3 4

FmuEE II-4.-Natural fiequencieaof a threblade rotor in tied coor-
dinatesfor case of A1=O.05,A,=020, and As= O.1O.

second factor, which depends on only the reference frequency,
marks the end of the range of instability and is the second
shaft critical speed. Formula (8) and an experimental
verification of it are given in chapter I. A convenient
graph of equation (8) is given in figure II-5. It will be
noticed that it is impossible to remove the two shaft critical
speeds or the instability region between them by any possible
change of the parameters Al, Az, or As; that is, without the
introduction of damping, self-excited vibrations will always
occur below the rotational speed o,.

Instability also occurs in a range of rotational speeds
greater than 0,. This range is shown in iiguies 13-2 and
II-3 as the region bounded by the points C and D and is
similar in origin to the self-excited region exhibited by the
three-blade rotor. In this region, the roots of the frequency

equation are complex and self-excited vibrations will take
place. Unlike the three-blade rotor, however, the rotor
hub will be seen from a stationary position to be simultane-
ously executing self-excited vibrations at two different
frequencies. Physically, of course, the rotor is moving in

an ellipseat the frequency U=while processing at the velocity
w.

A chart showing the lower and upper limits of this in-

stabihty region for a wide choice of values for the parameters,

Al, AZ) and AS is given in figure II-6. The chart is used

by drawing a straight line that represents the function

(1 –4&) Waplotted against A,w’+A,. The intersections of

this straight line with the proper Afiurve.s give the desired

values of u. The shortdaah line on the chart illustrates the

method for the pmametera of figure II-2.

The position of the instability region is very sensitive

to the valuea of A,. (See fig. II-7.) As A, increaaea, the

region of instability occurs at greater rotational speeds and

moves to infinity for A*=$ —A,). For valuea of &

w

FIGUEEII-5.-Shaft critical speeds.

greater than ~(1 —A,)—that is, when the total effective mass

of the rotor bladea is greater than the effective mma of

the rotor supports-the self-excited region does not appear,

At certain rotational speeds, WJ=O. At such speeds

resonance may be excited by a steady force, constant in

direction, acting on the pylon or blades-for example,

gravity acting on a tilted rotor. The two-blade rotor has

two such speeds, shown as points E and 1? in figures II-2

and II-3. The mathematical condition for such points is

that w,=O or w=*=~ in equation (7). The equation giving

the rotational speeds at which this condition may occur is

(A,~+A,)(4~–1)–&[ti2 (A-16 A,)-1]=0 (9)

Equation (9) is plotted in figure II-8, which is used similarly

to figure II-6. If A,=O, then point E occum at u=O. If

A_sa~(l —Al), as pointed out in reference 2, then point F

occurs at w= CD.

EFFECTOFDAMPING

The effect of damping will be determined in the sanmman-
ner as for the three-blade rotor in chapter I. When the
damping parameters x and Apare retained, equation (6) in
expanded form can be separated into powers of u=having real
and imaginary coefficients. The terms of equation (6) with
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o @MI@ of rnsfoNW rem fm A3= 0.10

0 Sodory of Instability regkn for A==0.15
4

3

%

2

I

o I 2 3
U

.

c
/--------

A3
——. . 0

=
5 6

FmuRB 11-7.—Effed of coupllng parameter & for we of Al= 0.05

and Ax= O.20.

real coefficients are

2A,(u’+uu’-l) +[4&0a2– @+u$-1)’][-2A,(r3+a# +l) +

Ua2–A2–AlU~+As(–u~+A,+AIU’) (rAI’-U=’)–2h&w~(d–

U=g+l) (10)
(J~(yjo7_(3&~o

0

2.0

1.6

1.2

(#

.8

.4

0 .1 .2 .3 .4 .5 .6 .7 .8

hl.2+~

IWUEB 11-8.-Rotational epeede at which viiration could be escited

by steady foroe.

The terms with ima.gimmycoefficients am

{
~b% 2$ [(~—u.i+l) (Alu2+A’—w2) +A3 (2d—2&=1—

%91 +@4+@a4+ l—2’dWa2-2@a2-2 d-A2 (fJ=2-@2)

}

(11)

At a boundary between stability and instability, u= is real.

Such points are the intersections of the equations formed by

setting expressions (10) and (11) separately equal to zero

and plotting them on the same coordinate axes. Figure II-9
shows a calculated case of damping. The haginary equa-

tion is plotted for several values of the ratio of the damping

parameters kmp, with Aaassumed to be negliible. It is seen

that, for large values of A/AP, the boundaries of the higher

range of instability are not far different from the boundaries

found by neglecting damping. smw VdUW of ~firthat @

when most of the damping is concentrated in the blade

0 .* ofintio~W w“m for A/+g= I

n _ of instability region for )Jjg = m

—— lrno@ary equotiom
Reel equation

I 2 3
w 4

FmurmH-9.-Plot of real and im@nary equations for me of A1=0.05,

At=0.20, 4=0.10, and X~=O.
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l&ver

For small-amountsof damping, the plot of’the reaJequation
is practically the same aa when damping is neglected. By
introducing su.flicient damping, however, the higher insta-
bility region may be eliminated. (See fig. H–10.) The two

shaft critical speeds and the instability region between them
can also be removed by putting enough damping into the
rotor supports, although a hxrge amount of damping is
required.

BRIEFDIWXIPTIONOFVIBRA~ONMOD=

If damping is neglected, the shape of the free vibration

modes can be found from the equations of motion (eqs. (1)

to (4)) and the form of the solution (eq. (5)). The rotor
hub generally moves in an elliptical path in rotating coordi-
nates although, at certain speeds, the motion may become
circular or linear. At zero rotational speed, two of the three
modes involve hub motion normal to the line of the blades,
with concomitant blade motion. In the third mode, tie
blades do not move about their hinges and the rotor hub
moves in a straight line parallel to the line of the blades at a
frequency equal to u,.

At the first ahaft critical speed, the rotor hub divergea in a
direction normal to the line of the blades; whereas, at the

2 /
/

%

I

- —— ~mw-
— Realequotiorts

o I 2 3 4
w

FxmraB11-10.—Plotof real and imaginaryequationsfor caseof
AI= O.06,Az=O.!M,4=0.10, and A=AB.

second shaft critical speed, the hub dhrges parallel to the

blades.

The forced responses of the system to a vibrator attached

to the pylon can also easily be determined and show that

those responses lying closest to the lines UJ’= 1 am tho

strongest. When the coupling parameter Aa is zero, no

response occurs along the lines u~=12ti & 11. This last con-

clusion is, of course, necessary if the theory is to give the

correct results for the degenerate case of ma.dess rotor

blades.

CONCLUSIONS

The mechanical stability of a rotor having two vertically

h~ed blades mounted upon symmetrical supports has been

investigated and reported in this chapter. This investigation

indicated that the main featurea of such a rotor system may

be summarized as follows:

1. The vibration modes are generally elliptical, as opposod

to circular for the three-blade rotor. The ellipse precesses

at a speed u as observed from a fixed position; the result is

six resonant or natural frequencies in a tied coordinate

system for a given rotor speed as against four natural fre-

quencies for the three-blade rcvior.

2. The asymmefry of the two-blade-rotor system gives

rise to a range of rotor speeds in which self-excited divergence

of the rotor occurs. This instability region is bounded by

two shaft critical speeds. A three-blade rotor, in contrast,

has only one shaft critical speed with no associated instability

region.

3. The two-blade rotor has a second region of rotational

speeds at which self-excited vibrations occur.

LANGLEY AERONAUTICALLABOMTORY,

NATIONAL ADVISORY COM~TEB FOR AERONAUTICS,

LANGLEY FIELD, VA., Jdy %?’,1966.
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CHAPTERm

TJ3EORY OF GROUND VIBRATIONS OF A TWO-BLADE HELICOPTER ROTOR ON ANISOTROPIC FLEXIBLE

SUPPORTS (REVISED)

BY ROBERTP. COLEMAN

suMMARY

An exteninkn of preview work on the theory of 8elf-excited

mechanical osci.lla$ti of hinged rotor bti h been made.
Previou.dy publixhd papers cow thi?cu$es of three or more

rotor blades on tiic mppo~ (such w ikmiing gear) hawing

eitlwr equul or unequu.1swpport 8ti@s8 in dij$eren-tdiwctw~
and the case of one- or two-blude rotors on supports hawing

eg~ 8tij%%8 in d horizontal directions. The mtiting case

of one or two bti on une@ WLpport-shas been tr@.

The mathematicaltreutmentoj thti me ti conmiiaably more
complicated tin the other cams becmwe of th occurrence of

diferentid equations with periodic we-. The chmw.c-

teri.~ticfreguem”~ are obtuinedfrom an injimile-ord.erdeter-

minant, Recurrence reti and convergencefactors are wed

in jindi~ the rooti of h in$nii% d.a%rminan$.

The results show the akt.ence of ranges of rota%m.alspeed at
which in8tabi.tityoccur8 (changed 8omewhui in posi$wn and

extent) similar to t.h08epo8ses8ed by the two-blade Tohw on
equal support%. In addition, the imim%nwof an in$nit.e num-

ber of instubi.li.tyra~m which occurredd low rotor speeds and

which did not occur in h cas~ previously treatedk 8hown.

Simpbjicatiorw occur in ttk analyti for tlw special crewsof
in$nitt? and zero sti#na8 in one of b am%. % me of in-

jhnle 8ti#ness in one aml b also of speeial intenxt becauseit ti
mathematically equivalent to a counterrotating rotor system
A design churt for jhding the positht of the prinoipd df-

excitea%nshzbilitymnge for the me of in$nitt?support sti$w8
in cwedirection ti includedfor the conventi of dwi9ner8. It

h expected that dw@em wiL?be able to obtain 8u_y ac-

curate information by c&riw only the casm of injinite and

zero support sti~kam along one direction togetherw“th the caw

treaa%dpretily. \

INTRODUCTION

It is known that rotating-wing aircraft may experience

violent vibrations while the rotor is turning and the aircxaft

is On the ground. It has been found that these vibrations

can be explained Without considering aerodynamic effects

and th~t they are due to mechanical coupling between hori-

zontal hub displacements and blade oscillations in the plane

of rotation. A theoretical analysis of this vibration problem

is given in chapters I and II. Chapter I deals with rotors

having three or more equal blades on general supports and

chapter II deals with two-blade rotors on supports having

the same stiflncss in all directions.

Although in actual two-blade rotary-wing aircraft, the

stitlness of the supports along the longitudinal direction is

certainly different ilom the lateral stiffness, the equality of

and ARNOLDM. ~lNQOID

the st&nesaes was assumed in chapter H because it permitted

the mathematical simpli&ation of dealii With dtierential

equations having constant coefficients and it was believed

that a theory employing such an assumption would be sti-

cient to indicate the nature of the most violent types of

ground instabili@.

The present chapter gives a theoretical investigation of the

general case of a two-blade rotor mounted upon supports of

unequal stiffness along the two station~y principal axes.

It thus generalize the problem of chapter II, and rounds out

the studies of ground resonance begun in chapter I. As was

shown in chapter IT., a two-blade rotor possesses different

dynamic properties along and normal to the line of the blades.

Equations of motion with constant coefficients for the prob-

lem treated in chapter II could be obtained by using a

coordinate system rotating with the rotor. This procedure

succeeded because the supports were assumed isotropic (equal

stiflnes9 in all directions). When the supports are aniso-

tropic, however, it is impossible to avoid the appearance of

periodic coeilicients in the equations of motion.

The present method of solving the dtierential equations

of motion fo~o-ivs closely the process employed in reference 1

for a vibration problem in two degrees of freedom. The

form of solution is expressed by an exponential factoi times

a complex I?ourier series. Substitution of the formal solu-

tion into the equations of motion yields an infinite set of

algebraic equations and an infinite-order determinant for the

determination of the Fourier coefficients and the character-

istic frequencies. The subsequent analysis is concerned with

methods of finding the roots of the infinite determinant.

Although the present chapter did not origimdly include

the effects of damping on rotor instabili@, hfi. George W.

Brooks has prepared appendix B to indicate how effects of

damping may be included in the analyses.

It is expected that designers will be able to obtain sufE-

ciently accurate information by considering only the cases

of in.iinite or zero support stiifnew along one direction

together with the cases of chapters I and II. In order to

avoid the neceasi~ for extensive calculations, a design chart

is included giving the location of the principal self-excited-

instability range for the case of iniinite support stiffness in

one direction.

DERIVATION OF THE EQUATIONS OF MOTION

The symbols used in this chapter are defined in appenb A.

The equations of motion are obtained from Ikg_range’s

equations and from the expressions for kinetic and potential

289
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energy. Four degre of freedom of the rotor system am

considered: components of deflection of the rotor hub in the

plane of rotation, and hinge deflections of the two rotor

blades about their vertical hinges. All motions are thus

assumed to occur in the plane of the rotor. The rotor is

assumed to rotate at a constant angg veloci~ u. The

analysis can be applied to rotors without hinges by assuming

an effective spring stiflh- and hinge position to represent

the elastic deflection of the blade.

The pertinent physical parameters are:

a
b

mb

m
r

K=, KV

radial position of vertical hinge

distance from vertical hinge to center of mass of

blade

masa of rotor blade

effective mas9 of rotor supports

radius of gyration of blade about center of mass

spring constants of the rotor supports along the X-

and ~-directions, respectively

Kfl spring constant of Linge self-centering spring

Let the origin of the X, Y-coordinate system be placed at

the undisturbed position of the rotor hub. At time t equal

to O, the line through the blade hinges and rotor hub is

assumed parallel to the X-axis. After a time interval t,

let the rotor hub deflection be z and hinge deflections be /3,

and & respectively, where z is the complex position coor-

dinate measured in a coordinate system rotating with the

rotor. (See @. III-1.) Then the positions of the centem

of mass of the two blades, as measured in fixed coordinate,

will be, respectively,

21= (z+a+be*l)e&t

}“

(1)
~=(z—a—&iA)e~~

The kinetic energy of the rotor system T can be writ ten as

j m(i +imz) (ZLi.fR) (2)

r

b

\\

x

a mb

Fmmm 111-1.-Simplified mechanicalsystemrepresentingrotor.

The Iirst term in equation (2) represents the kinetic energy
of the rotor blades, including the energy due to rotation, and
the second term is the contribution of the rotor hub.

Upon expanding equation (1) into power series in & and

A (onlY Smd deflections from equilibrium being considered)
and substituting into equation (2), there is obtained

(ZP+P) (&+fi2’)–abtd’@fl’+&’)
1

(3)

where only the terms that are quadratic in the variables have

been retained, and ill represents the total mass of the rotor

system.

The potential energy of the system V is given by

where K is the average stiffness and AK is a measure of the

diilerence of the two principal stiffnesses; that is,

K=Ku;Kz

~=KV–&

2

b in chapters I and II, simpliiieations in the analysis are
introdumd by replacing the hinge variables ~1and ~z by the
following new variables:

O.=;0%+/%)

In terms of these new variables the exqmessions(3) and (4)
become, respectively,

(z+zkz) (ti,+dl)+(l+;) (eo’+e,’)–; 0’ (%’+0?)]

(5)

and

AK
v=: Zz+ @o’+e,’)-– 4 (z2e2f”f+22e-ti”’) (6)

By use of the Lagrangian form of the equations of motion

da

r’)Tt3z
–I?z+?!g=o

the following equations of motion for the rotor system are
finally obtained:

io+(&A1+AJOo=O (7)

(D+ti)’z+i4D+b) %~#Mz–~KZe-21”t=o (8)
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(D–h)%–ip(D–ti)’O,@MZ-~Kze’’”’=O (9)

()(D+zkI)’z-(D-&4 %+2i 1+$ @+ A,&+ A,)19,=0 (10)

where the no tntion

d

‘=%

has been used, and the following combinations of the original

parameters have been introduced:

2m~~=—
M

E!quatiom (7) to (10) do not include damping terms.

The general equations for the damped case are derived in
appendix B and it is shown that both the case for no damping
and anisotropic supports, which is treated in the present

chapter, and the case for damping and isotropic supports,
which was treated in chapter II, are readily obtained as
special cases of the generrdized equations by neglecting
appropriate terms.

Equation (7) can be solved independently of the others
since it is an equation in 00alone. The equivalent equation
appeared also in chapters I and H., and its solution repre-
sents in-phase motion of the black with no resultant reaction
(&cept torsion) at the rotor hub. This motion will not be
further considered in this chapter.

The problem is thus resolved into the solution of the three
simultaneous equations (8) to (10). It will be noted that
the terms with periodic coefhcients in equations (8) and (9)

disuppear if ~=0, that is, if K,=L. Equations (8) and

(9) are thus reduced to the problem treated in chapter Il.

FORM OF SOLUTION OF EQUATIONS OF MOTION

The equations of motion (eqs. (8) to (10)) are similar in
mathematical properties to Mathieu’s equation, which
occurs in the analysis of vibrating systems of one degree of
freedom with variable elasticity. (See ref. 2.) A general-
ized form of Mathieu’s equation was solved analytically by
Hill. (See ref. 3, pp. 413-417.) An extension of Hill’s
method has been applied in reference 1 to a problem involv-
ing two degrees of freedom, and a further dev+opment of
the method of reference 1 is followed in the present paper.

Equations (8) to (10) constitute a system of linear dHer-
ential equations with periodic coefficients. Three second-
order ‘equations possess six linearly independent solutions
that, according to the Floquet theory (ref. 3, p. 412), are of

the form of an exponential factor times a periodic function

of time. Particular solutions are of the form

z=efw+(t) +e–G@ (t)

Z= J@”’ Q(t)+e-mJF(t)

1

(11)

&=e-’oJR(t) +e–m&72(t)

w-here u is known as the characteristic exponent, and ~(t),

Q(t), and l?(t) are periodic functions of period T/U.

Since’ ~(t), Q(t), and l?(t) are periodic functions of t, they

can be represented by complex Fourier series, and equations

(12)

Equations (11) and (12) sh& that, when the rotor system
is stable and U=is red, the motion not only is not simple
harmonic as was the case in chapters I and II, but, in general,
is not even periodic. The motion can be said to consist
of a fundamental frequency a=plus “harmonics” of frequency
ua+2ik where 1 is any integer. From equations (12) it is
seen that the value of U=is not uniquely determinate, since
a=+21u also satisfies equations (12). (The imaginary part
of u= is definite, however.) It can be shown furthermore
that, corresponding to each value of m., —U. is also a SOIU-

tion. Only those three values of w. for which the real parts

lie between O and co need therefore be considered. These

Yahm will be referred to hereinafter as the three “principal”

vahle9 of u=. These values of w=differing from the principal

value by 21w, or having opposite sign, will be referred to as

“harmonics” of the corrmponding principal value.

Since z has been deiine~ as a position coordinate in a

rotating frame of reference, the values of W=can be inter-

preted as the natural frequencies of the rotor system in

rotating coordinates.

SOLUTION OF EQUATIONS OF MOTION

DE1’Z~~TAL EQUATION

If the formal solution (eqs. (12)) is combined with the

equationa of motion (eqs. (8) to (10)), and-the coefficients

of each exponential time factor is separately equated to zero,

an infiuite set of homogeneous equations is obtained. These

equations can be separated into two independent sets. Each

equation of one set is the conjugate of an equation of the

other set, and only one set need be considered. Thus

p; [Wa+ (21+1) W]f0,=0
(13)
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{
g– [ril=+ (21–l)U]’

}
Bz–$4J.1+Pi[@=+ (21–l)W (?,=0 (14)

()
–[a.+(21+l)u]’A, +[co.+(21-l)@~*+2i 1-$ [–(a.+21ti)’+ANo’+AJ 01=0 (16)

where 1 talces on all integral values from — ~ to UI.

In order that the values of A,, B,, and C, not equal zero, the determinant of the coefficients of A,, B,, and CZmust be
zero. This determinantal equation is

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

where

.
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0
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0

0
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.
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.
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.
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. . .

. . .
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. . .

. . .

. . .
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=A(wJ=O (10)

AQM

al’2=rGGP

~,= H/M

‘ (%+W)2

K/M
ag,,=-1 :

(W=+f.o)’

a&= As

()
Ua+u ~

%9= —ua+2u

“8= –1+ (:.$:$:

()

wa+3f.Ll2
6,4= —

wa+2u

a4,3= AS

K/M

a44=–1+(oJa+3w)2

The determinant has been somewhat simplified by multi-
plying and dividing the rows and columns by various
quantities, and the parameter A, hsa been substituted for

its equivalent P12
1+ (T/b)l.

Let this in.tinite detemninant be A(w.). The problem
consists in solving the equation A(u.) = O for its roots W.
These roots will be tite in number, consisting of the three
principsl values of w. plus all their harmonica. The VldU~
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of uJWM, as a function of w/mM, axe seen to depend
only on the values of the three nondimensional parameters,

— and Aa and the stiffness-ratio parameter AK/E.
‘“ K:>

A determinant of iniinite order has meaning only insofax
as it is defined as the limit of a determinant of iinite order.
Define An(tiJ as the determinant of order 6n-3 formed
from a square array of A(aJ centered on the term

‘l&+A9 This tenh, which originally was associated–l+=

with COin equation (15), will be referred to hereinafter
as the “origin” of the irdinite determinant A(ua). The

choice of this term as center of A(wJ is purely arbitrary, and
it was selected solely for reasons of symmetry.

Thus
A(w)=$Z& An((qJ (17)

The limiting values of the roots of the equation

A=(o=)=O

as n becomes infinite will be the values of the roots of the

equation

A(u~=O

The method of calculating the roots of A(QJ =0, by suc-
cessively calculating the roots of AJuJ = Ofor larger values

of n, is entirely too tedious Instead, the method reference 1

will be followed. This method involves the calculation of the
value of A(uJ for several speciiied values of ti~. The roots
of A(a=)= O can then be obtained horn a trigonometric
equation involving the roots and the calculated values of
A(u@).

AUXILIARY DRTERMINANT9ANDRECURRENCERELATIONSFOR
CALCULATINGA(mJ

Before the trigonometric equation is derived, it is con-

vmient to have a systematic numerical procedure for de-

termining the value of A(QJ. As n becomes inii.nite, the

terms of A.(~J extend to infinity both above and below the

origii. By expanding A,(aJ in terms of the elements of

the column containing the origin, it can be expressed in

terms of auxiliary determinants that extend to infini~ in

only one direction. Recurrence relations can then be ob-

tained that give the value of these auxiliary determinants.

The auxiliary determinants are minors of A=(uJ and are
defined as follows:

C%(WJ determinant of order 3n–2 consisting of the terms
below and to the right of the origin; that is, de-
terminant having first row and column beginning

K/M

‘ith ‘mm –l+(@a+@

D%(~J determinant of order 3n–3 formed from C=(w.) by

omitting last row and column

17.(aJ determinant of order 3n–4 formed from D=(aJ by
omitting lsst row and column

.L.(wJ determinant of order 3n–3 formed from Cm(ti=).by
omitting &t row and column

JZn(tiJ detehninant of order 3n–4 formed from LJQJ by
omitting last row and column

NJwJ determinant of order 3n—5 formed from .Lln(Q.)by

omitting last row and column

The following three dete%nants will &o be needed:

@n(wJ determinant of order 3n–4 formed horn Ln(~J by

omitting il.rst row and column

IZJCOJ determinant of order 3n–5 formed from (3a(aJ by
omitting last row and column

I.(uJ determinant of order 3n–6 formed horn H.(u=) by

omitting last row and column

Determinants similar to the foregoing can be formed in

the same manner from the upper half of A.(uJ. Denote

these determinants by the subscript –n instead of n. It is

seen, however, that their values can be obtained from the

values of the determinants already daflned from the lower

half of A.(u=), by merely replacing a= with –a= (for example,

C-.(aa) = Cn(–us)) .

Expanding An(tiJ in terms of the tkments of the column

containing the origin gives

The auxiliary determinants C=(aJ, D=(oJ, and -E.(co=)
satisfy the following recurrence relations (obtained by ex-
panding each in terms of the elements of its last row):

(19)

The determinants L.(~.), M.(u.), and lVJti.) and also the system a~(ua, D=(wJ, and lm(wJ satisfy the same recurreime
relations as Cfi(ua),DZ(COJ,and E%(wJ, respectively.

The values of these nine determinant can be found from the recurrence relatio~ (eqs; (19)) and the following
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initial values, obtained directly from equation (16):

c,(fJJ=-1 -*2

By use of the initial conditions (eqs. (20)), the recurrence
relations (eqs. (19)), and equation (18), the value of Am(aJ
can be calculated. The value of A(aJ will then be the
limiting value of A.(wJ as n becomw infinite.

THEBZHAVIOllOF&(rnJFORLARGEVALm OFu

So far it has been tacitly assumed that the determinant

A(uJ, as defined in equations (16) and (17), is convergent,

and further, that it remains a function of ~= in the limit as n

becomes i.rdinite; that is, it is not identkdly equal to zero,

independent of the value of w*. It will now be shown that

the function AZ(WJ does become zero in the limit, independent

of co=, but that when AJQJ is divided by an appropriate

function of n, a new function ~n(mJ mill be obtained which

will be convergent and remain an unambiguous function of

a= in the limit. -

The derivation of the appropriate function by which to

divide A.(uJ evidently depends upon the behavior of Am(coJ

as n becomes very large. & n becomes infinite, the recur-

rence relations (eqs. (19)) become

Cn=–Dn–A&n (21a)

Dn=–En–A@n-l (21b)

En= – C._l (21C)

with identical equations for Ln, U., and iV=and for ~n, H%,

and In. Equations (21) are readily solvable since they

constitute a system of difkrence equations with constant

cmfiicients. They are satisfied by solutions of the form

Q*= W* (22a)

tvhere COis some arbitrary constant and k is a constant to be

determined. From equations (21c) and (21b), respectively,

E.= — (_&-1 (22b)

and

D== C&w’—AzCJF1

=-CJ(l-AJka-’ (XC)

Comb- equations (22a), (22b), and (22c) With equation

(21a) and dividing through by @n-’ gives

Thus, by use of equation (18), it is seen that for large values

of n, An(mJvaries aaF=. Since by definition Asmust have a
value between Oand 1/2, W must lie between Oand 1. Thus,
in the limit,

lim AB(uJ=O
n+.

independent of u~.

Consider the function

The equation F.(uJ =0 will obviously have the same roots

for co= as does AS(WJ=O. The function Fn(qJ has the
advantage, however, as is seen horn the preceding discussion,

of remaining an unambiguous function of O=in the limit as n

becomes infinite. Deii.ni this limit as

A&)

‘w IPn
(24)

The primary problem can now be redefined as the problom
of determiningg the roots, iniinite in number and consisting of

~al, ~ai>and UaJad d their harmonk, of the equation

. #((A).)=0 (26)

EVALUATIONOFROOTSOFEQUATION(Z@

The following trigonometric expression for l’(us) will now

be derived:

_gHs+a-sW91 (26)

‘k ‘in’(%)cos’(%-)
The function F(uJ is seen from equation (24) and equation

(16) to be periodic of period 2w, h have roots+ (W., A28U),

+ (u=,+%@), and + (U%+ %J) Where 8 is any integer, to

hava second-order poles at u.= +’2w, and to have fourth-

order poles at w==+ (8+1)0. Liouville’s function theorom

states that a function of a complex variable (in this case,

UJ that is analytic everpvhere in the complox plane, in-
cluding the region at infinity, must be n constant. It will
be shown that F(coJ is fhite at Wty (except if u. proceeds
to iniinity along the real axis). If the poles along the red
axis could be eliminated by forming a suitable function of
F(co.), without at the same time introducing new poles, then

that function, by Liouville’s theorem, must bo a constant,

Such a function of F(u.), which is analytic everywhere in
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the complex plane, is

““’Jsh2(3cw’(%9°,,,,
‘(”’=jl[’~’r%)-”~’(%)l

where wallUU3,and aaaare the three principal values of u=.

The function J(atJ is therefore a constant. The value of

J(uJ found by making w=approach infinity along the imagi-
nary axis is

J(w.) =F( m)

where I’(m) is the value of I’(wJ, as w=becomes infinite.

The value of F( OJ) can be found by letting oa~ co in A.(wJ

und then letting na OJ. l?rom the form of Am(co) it follows

that

A.(rn)=~Z,(@)=-C9~(rn)

The recurrence relations deiining C.(m) are the same as
equations (21). The expressions D. and E, may be elimi-

nated from equations (21), and, therefore, C%may be given
as follows:

Cm=– (1–2AJC.-,

The initial conditions (eqs. (20)) reduce to Cl= – 1, horn
which it follows immediately that

A.( m)=— (1 —2AJ2n-1

from equation (23). Therefore

(28)

Thus equations (27) and (28) lead to the evaluation of
equation (26).

After equation (26) has been obtained, the problem of de-
termining W=lw=%,and W=amay be considered theoretically

complete inasmuch as equation (26) is really an identi~ in
uU. Suppose that w=is assigned any speci6c value in equation
(26) and F(wJ is computed to a certain degree of accuracy.

If these computations are made for two more valuea of w.,

all different, equation (26) will have yielded three equations
in the three urdmowna W=l,w =,, md W%. These equations

can then be solved for the principal values of u=. Any
degree of accuracy may be achieved by carrying out the

computations for F(wa) to a sufficiently large value of n.
The foregoing proced~e can be systematized by rewriting

equation (26) as

‘ ‘(3=&[s+-ti’(al

‘kF(wJsw2)@’s4(%(29)

A convenient choice for the three arbitrary values of w= is

w== O, a, and uJ2. The explicit definitions of K(O), ~(l),
and K(l/2) then become

~(”)=-sh’(%)ti’(%)ti’(%) ~

[ (31[1-
K(l)=l–sin’

‘i’(%91[1-4%91

‘b’(%m-stie)l

(30)

The equations for evaluating K(O), K(l), and K(l/2) are

[
K(O)= lim kF(wJ Sinz

%-Yl G9C0’’(%)I

[
K(l)= lim kF(~ sin~

U.*

1

(3cm’(%)] ’31)

[
~(1/2) =Ul~ kF(wJ ‘id

(%9’0s’(%)1
Carrying out the limiting operations indicated in equations
(31) and using the auxiliary determinants C=(wa), Dn(w.),
and so forth, give

K(0) =lim
{

#[(A,&+ A,)o.’(0)–2A~~n(O) C.(0)]

n+m —#(1—2AJ9”-1 }

[

.4 $&$ ~ny-w)

K(l)=lim
n+ m 16(1 —2AS)fi-2 1

{
[ 1 =G)”*(7)-A’P*(7) ’*G)+’’Z6)”.(7)I

_l+4(Alwj+A2) Q

K(l/2)=lim
n+- —8(1—2AJ~n-1

1

I (32)

where the quantities in brackets are conveniently represented by K(0) ~, K(1) =, and ~(1/2)., respectively. The quantities

K( ). are used in numerical computations as approximations to the functions K( ).
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formulas (32) for K(O), K(l), and K(l/2) converge

With increasing n. The convergence can be speeded

up greatly by making use of the concept of convergence fac-
tors used in reference 1. A convergence factor for K( )= is

a function of n approaching the limit 1 as n beoomes infl.nite,

which, when multiplied by K( )., gives an expression which

converges rapidly -with increasing values of n to the values of

K( ). The details of the derivation of an appropriate con-

vergence factor for K(O). will be found in appendix C. Con-

vergence factors for K(1). and lZ(l/2)n are derived in a simi-

lar fashion. The resultant expressions are

[1

T@
K(O). Si.112~

K(0) =lim

–II 1-$’
W. $Q II-1

4 j=l ()

H

4-TQK(l)m COS=~

K(1) = tim

(
‘+” “fi’ l– Q’

-1 )(2j–1)’

where

(33)

/

2g(l–A3)+A1d+A2+2A#9

Q= &(l–2A,)

I?or a given value of n, the quantities in brackets are found

to be better approximations to the respective values of K( )

than K( ). alone.
The method of obtaining the values of u= may be sum-

marized as follows. By use of the initial conditions (eqs.
(20)) and the recurrence rdations (eqs. (19)), the values of
the determinants C.(O), L(O), Gs(—a), C.(a/2), C=(—u/2),
Ln(cO/2),and Ls(—cO/2)can be computed for increasing values
of n. With the substitution of these valuw into equations
(33) and with the use of equations (32), approximate values
of K(0), K(1), and K(l/2) can be computed. The process
appears to be rapidly convergent with n, especially for
large values of co~~. The values of ~~,,u~, and tim-
then be found from equations (31), the debitions of K(0),

X(l), and @l/2).

CONDITIONS FOR STAEIIJTY

From equation (13) the condition for stabili@ of the sys-
tem is seen to be that all three values of CO=must be real
numbers. If any one of them is complex or pure imaginary,
then one of the terms in the solution (eqs. (11)) will increase
indefinitely with the time, the motion therefore being unsta-

1)
ble. This condition implies that the expressions‘sin ‘& ,

‘in’(%)’ andsh’(%)
all are real positive numbers 1S

than or equal to 1. The conditions for stability can be e..-
pressed dire@ly in terms of K(0), K(l), and ~(1/2) by mwms

of their definitions (eqs. (30)). The three equations (30) am

formally equivalent to a single cubic equation

d+w+cx+d=o .

the roots Zl, a, and ~ of which are sin*
(%?)sin’(%).

and so forth, and the coefficients 13,c, and
functions of K(O), K(1), and K(l/2) where

2b=4K(0)+4K(l)-8K(+)-3

d ‘of whiih &

()2c=-6K(0)-2K(1)+8K ; +1

d=K(0)

After some manipulations involving the Descarks tie of
signs, the necessary and sticient conditions for stability aro
found to be

OS–K(0)S1 .

0 SK(l) s 1

–1 s8K(l/2) s 1 ‘

}

(34)

A=18hcd–41)3d+bW-4c’- 27# k O

The quanti~ A is the disoriminant of the cubic equation.

SPECIAL CASES OF GENERAL THEORY

Three special cases of the general theory are of interest.
These eases are the oases for which one of the principal
stiffnesaea Kg is rwpectively zero, equal, or infinite in
magnitude in comparison with the second principaI stifhmss

K.
CASE OF~P&

The case of KV=K. has been treated in chapter H. If
KV=K., equations (8) to (10) reduce to the equations of
chapter IX In, this speckd case, the motion of the rotor
system becomes simple harmonic, since all the coefficients
Al, Bl, and Cl in equations (12) are identically zero except

Ao, B,, and d,.
CASEOi?X,-O

The special limiting ease of KV=O is of interest in the caso

of a pylon of which the stiffness is negligible along ono

principal direction with interest centered on the frequencies

involving the other principal stifhws. In the case of KV= O,

the function K(l) as given by equations (32) becomes

identically zero. This result is also evident from the original

definition of K(1) as given in equation (28), because ono of

the vsks of U=, say u%, is of necessity equal to *u. (It

will be rec~ed that O= is tha frequency as measured in

rotating coordinate. In tied coordinates it Would bo

zero.)
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It is possible to give much simpler stabili@ criterions for
this case because there are only two K-functions, K(O) and

K(l/2), and two vah.waof u=,u=, and u%, to be determined.

The new K-functions may be defined as follows:

‘l=sh’(%)s~’f+)=-~(”)

}~~=co’’t%)cos’@)=l+*(Oi-q;)‘3’)
In terms of K, and K,, the criterions for stabfi-ty become

Given the values

can be determined

OSKISI (36a)

0SK2SI (36b]

m-1--&sl (36c]

of KI and Kz, the values of Waland ~%

from equations (35). A graDh of the

relation in equations (36) is-given in ‘iig&e ~~2 “by means

of which the real values of Ualand u% can be read off directly

once.El and Kg axe known. “

A graph showing the variation of KI and Ka with K~M,
z

for the typical parameters AI=O.l, A,=O, &=O.1, “&d

Kr=O, is shown in figure III-3. By use of figure III-2 the

vrdues of u~l and Wdacan be obtained. These values are

shown in figure III-4 plotted against w/~~M. Calcula-

tions are carried down to ==0.5. The general behavior
4KLM

below this speed is disc~ed”in the section entitled “~enersl

Behavior of Rotor System as a Function of Rotor Speed.”

CASE OF K,= m

The formulas for the limiting case of Kg= ~ cannot be

obtained conveniently from the general theory. Instead of
carrying out the limiting process, it appears preferable tQ
begin by treating the problem as one of only three degrees of

K2

,6

.5

.4

.3

.2

J

o J .2 .3 .4 .5 .6 .7 .8 S
K,

Fr@uRa III-2.—Chart for obtaining prinoipal value of U. from valuea

of K1 and K1. KV=O or Kv= co.

25
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K2

.10

.05

g

K,

FIGURE 111-2 .-Gmph of K, and Kz as funotions of rotor speed o for

A,=O.1, Az=O, &=O.1, and Kg=O.
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&

.8

.4

0

Fmum 111—4.-Principal values .of ~c plotted against rotor speed u
for case of AI=O.l, AZ=O,&=O.1, and Kg=O.

freedom (two hingedeflection coordinates and one hub-

position coordinate z) and by developing the theory along

lines similar to those used for the general treatment. In

this way a system of two simultaneous equations with

periodic coeiikients is obtained, with the variables 81 and x.

These equations are solved in a reamer similar to that for

the general case, the treatment being simpler, however, since

the solution has only two principal values of a=.

The details of the solution of the equations of motion,

together With the.final formulas for the K-functions, includ-

ing convergence factors, are given in appendix D. It is

found that the same KI and KS occur as for KU=O. The

criterions for stability are exactly the same as those for
KV=O, the conditions of equations (36). I?igure III-2 can

also be used to determine the values of u= from the values of

KI and K2.

A graph giving the variation of KI and K. with —
&~M ‘0’

the parameter AI=O.l, AZ=O, &=O.1, and KV= ~ is

shown in figure III-6. In figure III-6 the values of

w%14K7M and w%14KJM are shown plotted against

w/~~M.
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FIQUEE111-5 .4raph of Xl and K, as funutions of the rotor speed m
for A1=O.l, A,=O, &=O.1, and ~r= CO.
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FIGIJZZIH-O.-Principal values of tia plotted againat rotor speed u

for case of A1=O.l, A2=0, A3=0.1, and Ku= m.

DISCUSSION OF RRSULTS

TYPZS OFINSTABILITY

Instability may occur as a rwult of the violation-of any
one of the stability criterions of equations (34). Violation
of each condition is associated with a difFerenttype of in-
stability, which would show up diilerently in the motion of
the rotor system. Experience with compuhtions indicates,
however, that the criterions of most practical importance for

helicopter are

A~O

–K(0) >0

K(l) ~0

Similarlyj the importmt criterions in the limiting cases of
KV=O and K,= m are

3E+G51

K,ZO

K,zo

If the condition AZ O or (&+@~ 1) is viohtod, the

other conditions being satisfied, then wcl nnd u% will be com-

plex conjugate, and the rotor system will executa self-

excited vibrations at frequencies, in general, incommensurate

with the rotor speed. (Higher harmonics will also be pre-

sent.) This type of instabtlty will be referred to herein-

after as a “self-excited vibration.”

E the stability condition –K(0) >0 (or KI a O) alone is
violated, then one of the values of u= will be a pure imaginary

number. Physically, the rotor system will execute self-

mcited vibrations having a basic frequency, as seen in rotnh

ing coordinates, of zero. This behavior is similar to the

ordinary criticalapeed behavior of a shaft. l?requenciea at

higher harmonics 2nw will also be present. This typo of
instability will be referred to as a ‘(self-excited whirling.”

The third stability condition K(1) z O cannot be violatod
since K(1) as given by equation (32) cannot be negative.
However, K(1) can be exactly equal to zero. (A similar
statement applies to KZ.) At such a point, where the rotor

system is on the borderline between stability and instability,

one of the VSJU= of W=will be equal to &u. In fi..ed coordi-

nates this result means that the rotor system will have a

natural frequency equal to zero. The rotor system will,

therefore, be in resonance With a steady force-a force of

zero frequency. The amplitude of the zero-frequency term

fim the hub motion k such a situation can be shown to be

zero, but thg blades will oscillate. Also, higher harmonic

terms, notably the term of frequency 2W (in nonrotding

coordinates), will show up in the hub motion. This type

vibration, which is a resonance phenomenon and not a self-

excited vibration, will be called a “steady-force resonance”

vibration.
,

Each of the vibrations describedaelf-excited vibrations,

self-excited whirling, and a steady-force resonance vibra-

tion-appeared in the discussion of the two-blade rotor on

equal supports (chapter II); however, there the motions

were simple harmonic, no higher harmonics being present.

GENERALB~AVIOROFROTORSYSTEMASAFUNCI’ION OF ROTOR SPEED

The approximate location of the instability regions can
easily be found by examining the limiting case of A3=0,
that is, the case of zero coupling between the blade tmd hub
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motions. For simplicity, the discussion is also restricted to
the case of free hinges (AZ=O) and Kp= co. The K1 and

(37)

Eliminating the rotor speed a from equations (37) gives

which considered as an equation in the variablw K1 and Kz

represents a straight-line segment (one of the lines in fig.

III-2) terminated by the KI and Kx axtH. The segment can

be shown to be tangent to the curve X-l-&=1. As u

decreases, the representative point mov= up and down the

line segment, performing an infinite number of such oscill-

ations as w approaches zero. Whenever KI=O, the point is

at a self-excited-whirling speed. The corresponding speed is

wheres represents any positive integer. Thus a self-excited
whirling will occur when the rotor speed is approximately
equal to I, ~, jf, ~, and so forth of the natural fi~uency

of the hub ~~~ Similarly it can be shown that there

will be a steady-force resonance vibration whenever the rotor

speed is oppro.xinmtely equal to %, %, %, and so forth

of tho hub natural frequency ~Kz. Finally self-excited
vibrations w-illoccur at rotor speeds approximately equal to

Figure 111-7

quency plotted

.-

‘=2S+1-A

shows the general pattern of response fie-
aguiust rotor speed for a small value of the

mass-ratio parameter As. Along the horizontal parts of the

curves, blade motion predominates over pylon motion.

Pylon motion predominates along the slanting parts.

Although the foregoing discussion was developed for the

case of Kv= OJ,itisbelieved to apply equally well to the
case of I<V=O and also to the general case of Ku #K% if the

rotor hub is considered to have two natural frequencies

d~and ~~, each frequency having associated with

it an infinite set of instability ranges located at approximately

the speeds given.

COMPARISON OF REZJULTSFOR DIFFERENT VALUli3 OF K,/K.

l?igures 1114 rmd III-6 give the principil values of

u~%- plotted against the rotor speed u/4KJM for
KV=O and KV=W, respectively, both calculated for the

FIGURE111-7.—Typioal pattern of response frequenoks against rotor
speed u for a small value of the mass-ratioparameterAs.

same set of parameters AL Az, and &. The calculations

have been carried down to —=0.4. The similarity
4K+M

between the two curves is stxiking. So far as the calcula-

tions have been carried, each system shows the presence of

one self-excited-vibration instability range, one self-excited-

v%irling instability range, and one steady-force resonance

speed A. If the calculations were carried to lower values
of CO,further instability ranges and steady-force resonance
speeds would appear.

For comparison, the response frequencies of a two-blade
rotor on equal supports (K&=KJ for the same set of param-

eter is shown in figure III-S. The frequencies were calcu-

lated from the formula in chapter II.. Down to —–~&i–o.5,

this chart is very similar to figures 1114 and fi-6. In
addition it shows one range of rotational speed at which

self-excited-vibration instability occurs, one range of rota-

tional speed at which selhxcited-whirling instability occurs,

and one range of rotational speed at which a steady-force

resonance speed occurs. Figure Il&8 d.iileM principally

from the figures for K, #K= in that it show-s no further

instability ranges at low values of a.
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FIGURE111-8.-Response frequemies of a two-blade rotor on sym-
metrio supports for AI=O.l, Ai=O, &=O.1, and Kti=K=.

In chapters I and H charts me presented giving the loca-
tion of the self-excited-vibration instabiMy range for various
values of the parametera Al, A2,and As. A similsx chart for
the cnse of a two-blade rotor with KV= w is given in figure

III-9. In using the chart, a straight line is drawn repre-

(0’
senting the variation of —

KJM ‘ith ‘he ‘iCtion ‘:;+MA’”

The intersections of this line with the appropriate & curves
give the beginning and end points of the instability range.
The dashed line in figure HI-9 indicates the stability rangea
for the parameters of figure IU-6.

Some observations concerning the relative location and
extent’ of the various instability ranges in figures III-4,
III-O, and DI-8 appear to be applicable to a wide range of
values of the parameters Al, A2, and A3. Thus the self-ex-
cited-vibration instability range in the case of KZ=K= (fig.

I’D-8) is wider (and henc6 ~the vibration probably more
severe) than the corresponding ranges in the cams of KV= O

and .Zr= OJ. (See figs. IH4 and III-6.) Also, this in-
stability range occurs at lQwer rotor speeds in the case of

K.= - than it does in the casea of KU=K= and KU=O.

The self-excited-whirling instability range is considerably
narrower for KV= w than it is for the KV=K= case, and it is

still narrower in the Kw= O case.

In the general case of K, #KZ the location and extent of

the instability ranges can be found fairly accurately by

considering the problem as the superpoaition of two problems,

one of finding the sign.i.iicant rotor speeds referred to

~~~ as reference frequency with K. assumed infinite and
the other of iiml.ing the significant rotor speeds referred to

~M m referenm frequency with K= assumed zero.
With the foregoing discussion as a guide, sufhiently accurate
design information can be obtained without extensive cal-
culations for each value of KVjK= encountered in practice.

EPJ?ECCOFDAMPING

Although the effect of damping has not been examined

mathematically, because complications would be introduced

8

JZEEEA

K=,...

r

‘ //
v

/
v I I I I I I I I 1 I 1 I

o .2 .4 .6 .8 1.0 1.2

AIW’+A2

~/M

FIGURE III-9.-Chart giving position of the maiu instability range for
K== ID.

in the analysis, several inferences from the damping investi-
gations~in chaptem I and H can probably be safely applied
to the rotor-system studiqs in the present report. The

numerous instability ranges occurring at low rotor speeds,

which are very narrow and represent a mild type of insta-

bility, are probably completely eliminated by the presence

of a slight amount of damping in the rotor system. The

primary self-excited-vibration instabili~ range can probably

be narrowed and eliminated by introducing sullicient damp-

ing into both the rotor supports and the blade hinges.

APPLICATION TO DUAL ROTORS

It is easily shown that the analysis for the case of KY= co
appliea also to the case of a cmukerrotating rotor system
consisting of two equal two-blade rotors revolving at equal
speeds and acting equally upon the same flexible member.
The rotors may be on the same shaft or on different shofts
so long as the nonrotating flexible member is the same for
both rotors. The supports, moreover, may have unequal
stiffnws in the X- anii in the Y-directions, provided that the
unreflected blade positions make equal angleswith u principal
Stifhm axis.

The proof consists in showing that the energy expressions
for the dual-rotating system can be sepaxated into two inde-
pendent sets of terins, each of which is of the same form as
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for n single rotor with K.= ~. The result~g equations of
motion will thus also be the same.

The separation is

ablea

accomplished by introducing new vari-

and

%=; (&w,+eI*,>

where the subscripts pos and neg refer to the o’s deiined for
the rotor turning in the positive direction and for the rotor

turning in the opposite direction, respectively. The energy

(38)

H

where M is the total mass of the system (M=m.+4mb). ~

I?rom equations (38) itisseen that &is coupled only with z

and q is coupled only with ~. Equations (38) yield’ equa-

tions of motion of the same form as equations (D2) and (D3).

The stability properties for the dual-rotating case are thus

exactly the same as in the case of Kr= ~ for the singl6-

rotrding two-blade rotor. In particular, figure III-9 can be

used to fid the location of the primary self-excited-vibration

inetbbility range. The value of A, for the dual-rotating

2m~
rotor is deil.ned as As=

()

rather than

(m+4mJ 1-$

ns for the single-rotating rotor. All
‘3=(m+2m~~l@

other parameters are the same for both cases..

The quantity & sin wtcm be interpreted physically as the

z-component of the displacement of the center of gravity of

the blades due to hinge deflections. The quantity ~1 cm d

is the corresponding y-component. The separation of the

vrmiablcs means, physically, that the motion of the system

& be separated into two independent mod~, each of which

involves linear motion of the supports along one of the

principal stiffness axes.

Similarly, the stability of counterrotating rotor systems of
six or more equal blades can be determined from the results
of chapter I with Kr= co.

CONCLUSIONS

The following conclusions are indicated by the results of
an investigation of the problem of vibration of a two-blade
helicopter rotor on supports that have difFerentstiffnesses

along the two principal stifTnwsaxes:
.1. Many speed ranges are found in which self-moited

oscillations can occur. These oscillations are of two types—
self-excited vibration and self-excited whirling. There are

also many speeds at which steady-force-resonfim vibration

may occur.

2. A stabiLity chart -which shows the self-excited vibration,

self-excited w-hir~o, and steady-force resonance speeds of

the highest rotor speed for each support natural frequency

for a two-blade rotor on anisotropic supports is similar in

appehme to a. stabfity chart for a two-blade rotor on

isotropic supports. However, for the same rotor parameters,

the instability regions are changed somewhat in position and

extent.

3. Mild self-emiteddirling speed ranges exist at rotor

speeds approximately ~, ~, j-f, and so forth of each

support natural frequency. Steady-force resonance speeds

exist at approximately ~, %, ~, and so forth of each

support frequency. Self-excited vibrations also occur at

certain low rotor speeds. All these mild instability ranges

are probably eliminated by the presence of moderate amounts .

of damping in the system.

4. A familiarity with typical results of limiting cases of the

supportqming constants K,= OJ, KY=K., and Kg= O

should enable a designer to avoid extensive calculations of

cases of unequal support stiflness. In the general case of

unequal support stiffness, the location and extent of the

instability ranges can be found fairly accurately by con-

sidering the problem as the superposition of two problems,

one of finding significant rotor speeds referred to one support

frequency -J~M as reference frequency with K, assumed

infinite and the other of finding the significant rotor speeds

referred to the other support frequency j~M as reference

frequency with K, assumed zero.

5. The analysis of a four-blade counterrotating rotor

system in -ivhich the rotors cross along the principal stiffness

axes of the rotor supports leads to the same equations as

those considered for the special case of KV= ~, and the

stabili~ properties are given by the investigation of that

special case.

LANGLEY AEEONAUZTC~ LABORATORY,

lNAmomAL ADVISORY Commrma FOE AERONA~cs,

LANGLEY I?IBLD, VA., August 2?1,1966.
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a

%0, ti, 1, and so forth

Al, Bl, Cl

b

Cm(aJ, 17a(uJ, and so forth

D

F(cOa)=lim F.(u=)
n+co

J’+J . *

j, n, 8

J(wa)

K(o), K(l), K(l/2)

K,, K,

K=, K,

E

APPENDIX A

SYMBOLS

radial position of vertical hinge

elements of determinant defined

in equation (16)

Fourier coefficients in equations

(12)

compl~ conjugates of AZ, Bl,

and Cl, respectively

distance from vertical hinge to

center of mass of blade

minors of the determinate An(w=)

timederivative operator, $

integers
function of ~(ua)

equation (27)

function of tiJ~
equation (29)

deiined by

defined in

functions defined by equations

(30)

functions defined by equations

(35)

sp~g constants of the rotor

supports along the X- and ~-

directions, respectively

average stiilnes of rotor sup-

K,+KZ
ports, ~

KS

P(t),Q(t),R(t)

F(t), q(t), z(t)

r

t

T

spring constant of blade s&lf-

centering spring

eflective mass of rotor supports

mass of rotor blade

total mass of two-blade rotor

system, m+ 2m~

periodic functions defined in

equations (11)

complex conjugates of ~(t), Q(t),

and R(t), respectively

constant defined in equations

(33) ‘

radius of gyration of blade about

canter of mass

time

kinetic energy

v
z, ‘#

%Yr

x, Y

z

z
&, h

A

A(w=)

An(o=)

00=: (A+w

b
el=~ (#h-l%)

A3= P

(?
2 Hp

potential energy
deflection of rotor hub mmsumd

in fixed X, Y-coordinate sys-
tem

deflection of rotor hub measured
in rotating X, Y-coordinate
system

fied rectangular coordinate
axes taken parallel to tho prin-
cipal stifFnes9directions of the
rotor hub

complex position coordinate of
the rotor hub in rectangular

coordinate system rotating
with angular velocity, z,+;v,

complex conjugate of 2, x#~,
angularhinge deflections of rotor

blades, respectively
discriminant of cubic equation

Y+bti+cx+d=o

dettwminant of infinite order
defied by equation (16)

determinant of order 6n–3
formed from A(UJ

blade variables for counterro-
tating rotor

2mb
mass ratio, —

M
constant angular velocity of

rotor
characteristic exponent or nat-

ural frequency of rotor sys-
tem as viewed in coordinates
rotating at angular velocity o

principle values of U.
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APPENDIX B

THE GENERAL EQUATIONS OF MOTION FOR TWO-BLADE ROTORS

By GEOBQEIW. BROOES

GENERAL CA23E

The present chapter, although it generalizes the theory

of ground vibrations of two-blade rotors by treating the case

of anisotropic supports, does not consider the eflects of damp-

ing. Chapter H treated the case of isotropic supports or

equal pylon stiifness in all horizontal directions and included

damping. The more general case is one which involves the

trerkment of the two-blade rotor with anisotropic supports

and damping. The equations of motion for this case, derived

in the complex coordinate notation of the present report, are

given in this appendix.

The equations for the kinetic and potential energies of the

rotor system are ‘given by equations (5) and (6) of chapter

m as follows:

[
T=: (Z+kz) (;–i@z) +%3, (;–i@z) (iii–dl) –

(~+~z) (ti,+~,) +(1+~) (Joz+e,~)–; &(oos+o,z)]

@l)

AK
v=: %+$- (L9,’+e,’)——~ (z2e*i”’+2e-sf@’) (B2)

Two types of damping of the rotor system are assumed
to exist: (1) damping in the rotor supports which is propor-
tional to the translational velocity of the rotor hub and (2)
damping of the rotation of the blades about the drag hinges.
The damping dissipation function is then

F=; [22+&zz+ti (ZZ-Z2)]+: (eo’+e,’) (B3)

where B is the damping force per unit velocity of rotor-

hub displacements and llP is the damping torque per unit

angular velocity of blade motion about the drag hinge.

By using the Lagrnngian form of the equations of motion

(w

and using as variables O., E, z, and 01, respectively, the fol-

lowing equations of motion for the rotor system are obtained:

(~’+llAP+U’A,+A,) 00=0 (B5)

(336)

[ 1-+: Z&’+ (D–W+A(Z%)+M z–i@-iLO)’el=o

(B7)

()
(D+z@-(D-ti)2E+2i 1+ (lY+~+A,co’+AJO,=O

(B8)

where hvo additional combinations of parameters have been

introduced, namely,

and

8PECLU CASR-ZERO DAMPING

If damping is neglected, hfl=A=O and the equations of

motion, (335) to (B8), reduce to

(D’+&A,+A,)OO=O (B9)

[ 1
—* Ze’f”’+@-i@#M z—i/@-i@el=o (ml)

r’)(D+ti)’z-(D-ti) %+2i lb, (D’+ Al&+ A,)Ol=O

(2312)

which are the equations of motion (eqs. (7) to (10)) for the

case treated in the present chapter.

SPECIALCME OF ISOTROPIC SUPPORTS

If K==KV, then AK=O and equations (B5) to (B8) reduce

to

(D’+llA8+RA,+AJ00=0 (B13)

[ 7@+i&+A(D+@+~ z+ip(D+@’e,=o (B14)

[ 7
(D+’+ A(D+)+M ?i+@--@28,=0 (Bib)

(’7(D-+. i4%-(D-@%+2i l% (D+%+ &w’+&)L%=o

(B16)

Equation 0313) involves only the in-phase motion of the
blades, can be solved separately, and will not be further
considered here. If z and Z axe expressed in the equivalent

notations z+iy and z—iy, respectively, and equations (B14)

and (B15) are added together, equation (1) of chapter II is
obtained. Equation (2) of chapter II is obtained by direct
substitution and equation (3) is obtained by subtraction of
equation (B15) from equation (B14). Thus the equations
of motion for the case treated in chapter H as well as for the
case treated in the present report are shown to be special
cases of the general equations of motion, equations (B5) to

(B8), for a rotor mounted on anisotropic supports with hub
and blade-hinge damping.
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APPENDIX c

DERIVA~ON OF THE CONVERGENCE FACTOR FOR K(0)

A convergence factor for K(O) is found by fiding-a simpler
function (7. that changes with n in nearly the same way as
K(O) n. Then, if Q denotes Zinz G., the expression

w-

G*

for n given value of n is a better approximation to K(0) than

is K(0). alone. A suitable form for Q. is found from a study

of the behavior of K(O) n for large values of n.

The behavior of K(O). is studied by fit observing the

behavior of C.(O) and L.(O) for large values of n and then

inferring the behavior of K(0). from the appropriaim rdation

of equations (32). In the discussion of equations (22) it was

shown that, as n becomes infinite, the ratio Cn+JC.

approaches the value k (eq. (22a)). A closer approximation

to the value of this ratio can be written as

where ~ and Q are constants to be determined.

Equations (19) become, for CO.=0,

[ 1 ()
= ‘1%(o)KIM D=(o) –& 2n

c.+,(o) = –1+ ~2n+ ~),d

[
D,+,(0)= –l+A;;’)&

1
E.(0)–A3

()
* ‘c.(o)

En+l(o)=[–l+#&] C.(O)

(c 1)

(U2)

Wherethe second term in the equation for E,(u4 in equations

(19) has been neglected as being of higher order in powers of l/n than the terms retained. Eliminating E(O) and D(O)
from the equations (C2) results in

0.+,(0) _

0.(0) [
-1+(2y;2d][-1 :A;;;$][-l+

(273LI-A’{FH[-1 ‘ (J&h]+

Upon expanding this e.xprsion

(w[-l+@z%J}

into powers of I/n and retaining terms up to and including those in l/rig

.-

(&(o) 1 1
2& A@WA2

—= —l+2As~ -
c%(o) &

+2A3 ~-l
( )1

Comparing equation (C3) with equation (Cl) results in
P=o

2g(l—A3)+A1w~+A2 +2A8@~

G!=
\ C02(1-2A$

similarly

-“’h%
Therefore, from equations .(92)

K(0)s~,= ~_Q_ ‘

K(o)= () 4n2

Hence, an approximate value of K(0) can be obtained from

. K(0) ~K(0)%+, K(0).+, K(0)m+,— . . .
K(o)n K(o). K(On+I Wln+q

The right-hand side of equation (C%), which is seen to be of the form (7/67., is a convergence factor.

factor is the one used in equations (33).
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(C3)

(C4)

This convergence



APPENDIX D

MATHEMATICAL ANALYSIS

In terms of the vmiables O.,01,and z, the expressions for
the kinetic and potential energy are

@x2+mb[( )1+; (eo~+i,~)–

The three equations of motion are
I

t70+(cd2A1+AJ30=0 (Dl)

fi+~~-p~ (h sin @=0 (D2)

1
-7 isinIJt+#l+(&A1+Ag)91=0 (D3)

l+p

FOR THE CASE OF Ku=.

Equation (D 1) is identiea.1 with equation (7). Equations

(D2) ~d (D3) constitute a system of two linear second-order
difkrentid equations with periodic coefficients.

Equations (IX!) and (lX) are satisfied by solutions of the

form

m
z= ~ Alef(oc+k)t

1=–-

}

(D4)

01=l=~mB1+lef[”@+~+l)”~

where 1 takes on all odd integral values and AZ and .BZ+l

are constants to be determined along with the two principal
VfdUOS of u= (@al and o%). The constants Al and Bwl in

equations (D4) are, of course, d.i.ilerent from those in equa-

tions 112).

Combining equations (D4) with equations (D2) and (D3)

and setting the coefficients of the various exponential time

factors equal to zero give

The deterrninantal equation is then equal to

. . .

. . .

. . .

. . .

. . .

. . .

. . .

a_3,_3

a-z,_3

o

0

0

0

0

.

.

.

.

a_3,_2

a-2,_2

a_l,-2

,0

0

0

0

.

.

0

a-a, _l

a_,,_l

ao,_l

o

0

0

.

.

.

.

.

0 0

0 0

a_l, o 0

au,o ao,1

%,0 % I

o %?,1

0’0

.

.

. .

.

.

-0

0

0

0

aL2

%2

%2

.

.

.

0

0

0

0

0

a-z,a

%8

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

=A(u.)=0
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vrhere

K~M

a-3’-*= –1+(@a–3c0)’

As ‘
(z_3.-2=7j-

()

~a_3a 2
a_2,.3= —

W.–b

a._2,-2=-1+ “A1+A’
(W=–2W)’

()

Co=-kl ~
a-%-l= —

Wa— ‘2a

Aa
a._l,_l=-j-

a_l,–l=—l i
K@

(W.–w)’

As
a_l,o=~

()

ma—w
2

ao,_l= —
~a
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A3
a’l,l)=—

2

K@
al,1=

–l+(@a+@

AZ
al,g=—

2

( )
~1= %+w2

W=+2W

KJM
%3 ‘–1+-

~AI~A2 ~ be t&m as the origin of theThe term –1 : w=,

determinant.
Define A8(w.Jas the determinant of order %-l formed by

taking a square array horn A(wJ centered on the origin. Then

A(wJ= lim A.(wJ
n+ w

Define auxihary determinants horn A.(wJ as follovm:
C.(WJ determinant of order 2n–1 consisting of the terms to

the right of and below the origin term
Zlm(Wa) determinant of order 2*2 obtained from C%(WJby

omitting its last row and column
JI.(u=) determinant of order 2n–2 obtained from C=(u=)by

omitting its first row-and column
iVa(aJ determinant of order 2n-3 obtained from D.(wJ by

omitting its fiat row and column
The determinants C’S(WJand .Da(wJ satisfy the following

recurrence relations:

C.(WJ=
{

Km

}–1+[w=+(2n–l)w]’ ‘n(d–

[

Aa w=+ (2n—l)w

TT w=+ (2?&--2)fJ
c=_,(wJ

1

(D5)

{
D. (W.J = – 1+ ~%fi;n+_J;)@12

}

c“-,(wa)–

[

A’ w.+ (2n—3)ti

TZ_ w=+(2n-2)w
Dn-,(w.... J

The recurrence relations (eqs. (D6) ) are also satisfied by
LI.(co=) and N=(w.), with M and IV replacing C and D,
respectively. The initial values are

KZI’Mc,(wa=–l+(@a+@)*

[
D,(coJ= l–

KJM

1[(%+4’ ‘-HRH(S9

N2(wJ=-l+&&’$

[

_dAl+A,

1[%(WJ= 1 ((0=+23)’
,_&&2]_$&J$y

Expanding A%(wJ in terms of the elements of the column
containing the origin gives

( )
~A’:A’ C=(–WJcn(wJ–A%(wJ= –1+

$[~~~~(W~M.(-W~-~~~ C.(-WJMn(U~]
.

As n becomes infinite, or as W=becomes infinite, the recur-

rence relations (eqs. @’5) ) approach

C==–D.–~ C._,

‘3 D._,D.=– Cx_,–T

Equations (D6) are satisfied by a solution of the form

D*=-c(k+$)’’-’]

(D6)

(D7)

where k satisfies the equation

h9-(1-AJk~=O (D8)

The larger root of equation (D8) w-illbe denoted by k and
the smaller root by kl. Although the complete solution of
equation (D6) is of the form

for large values of n the term in kl becomes negligible com-
pared with the term in k.

With the same values for k, ikfnand N. will have solutions
similar to those of equations (D7). Thus as n becomes
Wte A.(w=) will vary as the quantity W“.

Deiine the function

The function F(w=) is periodic in w= of period 2u, has roots



THEORY OF SELF-EXCITED MXKHA.NICAL OSCILLATIONS OF HELICOPTER ROTO13SWITH HINGED BLADES 307

+ (ual+ 2SU), + (to%~28@), and second+rder poles at (u=+sti) for all integral values of ~. Furthermore, 3’(u=) approaches

the limit
E=lim F(co~=z;m F=( ~)

m.+- *.

m w=becomes infinite in a direction other than along the real axis.
Form the function

()
s~% Z%

‘(uJ=F(”J[ti’(~)-sh’(%)lih’(~)-’n’(%)l

(D9)

The function J(~J is an analytic function of co=everywhere. Hence, by Liouville’s theorem, t7(u,J is a constant. By
letting 0=++ ~ along the imaginary axis, it is seen that ~(ua) = –4E.

Substituting –4E for ~(ua) into equation (D9) results in

Introducing K functions detied similarly to those used
for the case KV=O gives

“=s’’(%)s%=9

“a=cos’(%)as’m
(D1O)

.

Carrying out the limit processes indicated in equations @lO)
gives

Kl=lim Kh
n+.

=lim
[

#(&A,+A~ (?n2(0)–A&W%(0)Nn(O)

n+. –4W’2.(0) 1
K2=lim K%

n+.

Finally, upon introducing appropriate convergence factors,

the following quantities needed in equations (36) are ob-

tained:

{p

()
.

K%COS2 ‘:

KZ=lim
n+m

[
; l–

j-l J(2j–1)2
.

Where

K7R,_~+”’Al+As+w2(l+k1–k)
—

&(k–kJ
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