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Abstract We analyze the semidefinite programming (SDP) based model and
method for the position estimation problem in sensor network localization and
other Euclidean distance geometry applications. We use SDP duality and inte-
rior-point algorithm theories to prove that the SDP localizes any network or
graph that has unique sensor positions to fit given distance measures. Therefore,
we show, for the first time, that these networks can be localized in polynomial
time. We also give a simple and efficient criterion for checking whether a given
instance of the localization problem has a unique realization in R2 using graph
rigidity theory. Finally, we introduce a notion called strong localizability and
show that the SDP model will identify all strongly localizable sub-networks in
the input network.
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1 Introduction

One of the most studied problems in distance geometry is the Graph Realization
problem, in which one is given a graph G = (V, E) and a set of non-negative
weights {dij : (i, j) ∈ E} on its edges, and the goal is to compute a realization of G
in the Euclidean space Rd for a given dimension d, i.e. to place the vertices of G
in Rd such that the Euclidean distance between every pair of adjacent vertices
vi, vj equals to the prescribed weight dij. This problem and its variants arise from
applications in various areas, such as molecular conformation, dimensionality
reduction, Euclidean ball packing, and more recently, wireless sensor network
localization [3,12,14,21,27,30]. In the sensor networks setting, the vertices of G
correspond to sensors, the edges of G correspond to communication links, and
the weights correspond to distances. Furthermore, the vertices are partitioned
into two sets – one is the anchors, whose exact positions are known (via GPS, for
example); and the other is the sensors, whose positions are unknown. The goal
is to determine the positions of all the sensors. We shall refer to this problem
as the Sensor Network Localization problem. Note that we can view the Sensor
Network Localization problem as a variant of the Graph Realization problem
in which a subset of the vertices are constrained to be in certain positions.

In many sensor networks applications, sensors collect data that are location
dependent. Thus, another related question is whether the given instance has
a unique realization in the required dimension (say, in R2). Indeed, most of
the previous works on the Sensor Network Localization problem fall into two
categories – one deals with computing a realization of a given instance [12,14,
15,21,26–28,30], and the other deals with determining whether a given instance
has a unique realization in Rd using graph rigidity [15,18]. It is interesting to
note that from an algorithmic viewpoint, the two problems above have very
different characteristics. Under certain non-degeneracy assumptions, the ques-
tion of whether a given instance has a unique realization on the plane can be
decided efficiently [22], while the problem of computing a realization on the
plane is NP-complete in general, even if the given instance has a unique real-
ization on the plane [7]. Thus, it is not surprising that all the aforementioned
heuristics for computing a realization of a given instance do not guarantee to
find it in the required dimension. On another front, there have been attempts
to characterize families of graphs that admit polynomial time algorithms for
computing a realization in the required dimension. For instance, Eren et al. [15]
have shown that the family of trilateration graphs has such property. (A graph
is a trilateration graph in dimension d if there exists an ordering of the vertices
1, . . . , d + 1, d + 2, . . . , n such that (i) the first d + 1 vertices form a complete
graph, and (ii) each vertex j > d + 1 has at least d + 1 edges to vertices earlier
in the sequence.) However, the question of whether there exist larger families
of graphs with such property is open.
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1.1 Our contribution

In this paper, we resolve this question by showing that the family of uniquely
localizable graphs also enjoys such a property. Informally, a graph is uniquely
localizable in dimension d if (i) it has a unique realization in Rd, and (ii) it does
not have any realization whose affine span is Rh, where h > d. Specifically, we
present an SDP model that guarantees to find the unique realization in polyno-
mial time when the input graph is uniquely localizable. The proof employs SDP
duality theory and properties of interior-point algorithms for SDP. To the best
of our knowledge, this is the first time such a theoretical guarantee is proven
for a general localization algorithm. Moreover, our results are interesting in
view of the hardness result of Aspnes et al. [7], as they identify a large family
of efficiently realizable graphs. Next, using the theory of graph rigidity, we give
a simple and efficient criterion for checking whether a given instance has a
unique realization on the plane. We remark that this result has been indepen-
dently proven by Eren et al. [15]. However, our approach is different in that we
use techniques from kinematics and these techniques may be of independent
interest. Lastly, we introduce the concept of strong localizability. Informally, a
graph is strongly localizable if it is uniquely localizable and remains so under
slight perturbations. We show that the SDP model will identify all the strongly
localizable subgraphs in the input graph.

We should mention here that the Sensor Network Localization problem (or
its variants) has been studied in various contexts before. However, these ear-
lier works have quite different emphases from ours. For instance, Schoenberg
[29] and Young and Householder [34] have studied the problem in the context
of Euclidean distance matrix characterizations. They have considered the case
where there are no anchors, but all pairwise distances among the sensors are
known. They have shown that the given pairwise distances arise from points in
an d-dimensional (but not (d − 1)-dimensional) Euclidean space if and only if
a certain matrix is positive semidefinite and has rank d. Such a characterization
forms the basis for the classical approach to multidimensional scaling (see, e.g.,
[17,31]), where various algorithms are developed for constructing a configura-
tion of points in Rd (where d is part of the input) such that the induced distance
matrix matches or approximates the given (complete) distance matrix. Later,
Trosset [32,33] has extended classical multidimensional scaling to include the
case where the given distance matrix is incomplete, i.e. some of the pairwise
distances may be missing. He has shown that a realization in the required dimen-
sion exists if and only if the global optimum of a certain optimization problem
is zero, and has provided a numerical procedure for finding such a realization.
However, it is not clear under what conditions would Trosset’s algorithm termi-
nate with a desired realization in polynomial time. On another front, Barvinok
[10] has studied the Sensor Network Localization problem in the context of
quadratic maps and used SDP theory to analyze the possible dimensions of
the realization. In addition, Alfakih et al. [3–5] have related this problem to
the Euclidean Distance Matrix Completion problem and obtained an SDP for-
mulation for the former. Moreover, Alfakih has obtained a characterization of
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rigid graphs in [1] using Euclidean distance matrices and has studied some of
the computational aspects of such characterization in [2] using SDP. However,
these papers mostly address the question of realizability of the input graph, and
the analyses of their SDP models only guarantee that they will find a realiza-
tion whose dimension lies within a certain range. Thus, these models are not
quite suitable for our application. In contrast, our analysis takes advantage of
the presence of anchors and gives a condition which guarantees that our SDP
model will find a realization in the required dimension. We remark that SDP
has also been used to compute and analyze distance geometry problems where
the realization is allowed to have a certain amount of distortion in the distances
[11,24]. Again, these methods can only guarantee to find a realization that lies
in a range of dimensions. Thus, it would be interesting to extend our method
to compute low-distortion realizations in a given dimension. For some related
work in this direction, see, e.g., [8].

1.2 Outline of the paper

The rest of the paper is organized as follows. In Sect. 2, we give a formal defini-
tion of the Sensor Network Localization problem and introduce the notations
that will be used in the paper. In Sect. 3, we provide a formulation of the prob-
lem as an SDP. We remark that the SDP model used here is developed earlier
in a companion paper [12]. In that paper the authors have reported the model’s
superb experimental performance, and the current work is an attempt to pro-
vide theoretical justifications for using that model. Specifically, we analyze the
SDP and discuss its characteristics in Sect. 4. In Sect. 5 we discuss our results in
the context of rigidity theory. In Sect. 6 we introduce the notion of strong localiz-
ability and show how the SDP model can identify strongly localizable subgraphs
in the input graph. In Sect. 7 we compare the different notions introduced in
this paper and demonstrate their differences via examples. In particular, we
show that rigidity in R2, unique localizability, and strong localizability are all
distinct concepts. Lastly, we summarize our results in Sect. 8 and discuss some
possible future directions.

2 Preliminaries

We begin with some notations. The trace of a matrix A is denoted by Trace(A).
We use I and 0 to denote the identity matrix and the matrix of all zeros, respec-
tively, whose dimensions will be clear from the context. The inner product of
two matrices P and Q is denoted by P • Q = Trace(PTQ). The 2-norm of a
vector x, denoted by ‖x‖, is given by

√
x • x. A positive semidefinite matrix X

is denoted by X � 0.
In this paper we study the Sensor Network Localization problem, which is de-

fined as follows. We are given m anchor points a1, . . . , am ∈ Rd whose locations
are known, and n sensor points x1, . . . , xn ∈ Rd whose locations we wish to deter-
mine. Furthermore, we are given the Euclidean distance values d̄kj between ak
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and xj for some k, j, and dij between xi and xj for some i < j. Specifically, let
Na = {(k, j) : d̄kj is specified} and Nx = {(i, j) : i < j, dij is specified}. The Sensor
Network Localization problem is then to find a realization of x1, . . . , xn ∈ Rd

such that:

‖ak − xj‖2 = d̄2
kj ∀(k, j) ∈ Na

‖xi − xj‖2 = d2
ij ∀(i, j) ∈ Nx

(1)

We would like to develop fast algorithms to answer questions like: Does the
network have a realization of xj’s? Is the realization unique? As we shall see in
subsequent sections, these questions can be answered efficiently.

3 Semidefinite programming method

In general, problem (1) is a non-convex optimization problem and difficult
to solve. In fact, most previous approaches adopt global optimization tech-
niques such as nonlinear least square methods, or geometric methods such as
triangularization. An alternate approach, called the semidefinite programming
method, is recently developed in [12] and related earlier work [3,23]. We shall
review this approach below.

Let X = [x1 x2 · · · xn] be the d × n matrix that needs to be determined.
Then, for all (i, j) ∈ Nx, we have:

‖xi − xj‖2 = eT
ij X

TXeij

and for all (k, j) ∈ Na, we have:

‖ak − xj‖2 = (ak; ej)
T[Id; X]T[Id; X](ak; ej)

Here, eij ∈ Rn is the vector with 1 at the ith position, −1 at the jth position
and zero everywhere else; ej ∈ Rn is the vector of all zeros except an −1 at
the jth position; (ak; ej) ∈ Rd+n is the vector of ak on top of ej; and Id is the
d-dimensional identity matrix. Thus, problem (1) becomes: find a symmetric
matrix Y ∈ Rn×n and a matrix X ∈ Rd×n such that:

eT
ij Yeij = d2

ij ∀(i, j) ∈ Nx

(ak; ej)
T

(
Id X

XT Y

)
(ak; ej) = d̄2

kj ∀(k, j) ∈ Na

Y = XTX

The SDP method is to relax the constraint Y = XTX to Y � XTX, where
Y � XTX means that Y − XTX � 0. It is well-known [13] that the condition
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Y � XTX is equivalent to:

Z =
(

Id X
XT Y

)
� 0 (2)

Thus, we can write the relaxed problem as a standard SDP problem, namely,
find a symmetric matrix Z ∈ R(d+n)×(d+n) to:

maximize 0

subject to Z1:d,1:d = Id

(0; eij)(0; eij)
T • Z = d2

ij ∀(i, j) ∈ Nx

(ak; ej)(ak; ej)
T • Z = d̄2

kj ∀(k, j) ∈ Na

Z � 0

(3)

where Z1:d,1:d is the d × d principal submatrix of Z. Note that this formulation
forces any possible feasible solution matrix to have rank at least d.

The dual of the SDP relaxation is given by:

minimize Id • V +
∑

(i,j)∈Nx

yijd2
ij +

∑
(k,j)∈Na

wkjd̄
2
kj

subject to
(

V 0
0 0

)
+

∑
(i,j)∈Nx

yij(0; eij)(0; eij)
T

+
∑

(k,j)∈Na

wkj(ak; ej)(ak; ej)
T � 0

(4)

Note that the dual is always feasible, as V = 0, yij = 0 for all (i, j) ∈ Nx and
wkj = 0 for all (k, j) ∈ Na is a feasible solution.

4 Analysis of the SDP relaxation

We now investigate when will the SDP (3) have an exact relaxation, i.e. when
will the solution matrix Z have rank d. Suppose that problem (3) is feasible.
This occurs when, for instance, d̄kj and dij represent exact distance values for
the positions X̄ = [x̄1 x̄2 · · · x̄n]. Then, the matrix Z̄ = (Id; X̄)T(Id; X̄) is a
feasible solution for (3). Now, since the primal is feasible, the minimal value of
the dual must be 0, i.e. there is no duality gap between the primal and dual.

Let U be the (d + n)-dimensional dual slack matrix, i.e.:

U =
(

V 0
0 0

)
+

∑
(i,j)∈Nx

yij(0; eij)(0; eij)
T +

∑
(k,j)∈Na

wkj(ak; ej)(ak; ej)
T
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Then, from the duality theorem for SDP (see, e.g., [6]), we have:

Theorem 1 Let Z̄ be a feasible solution for (3) and Ū be an optimal slack matrix
of (4). Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;
2. Rank(Z̄) + Rank(Ū) ≤ d + n;
3. Rank(Z̄) ≥ d and Rank(Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 1 If an optimal dual slack matrix has rank n, then every solution of
(3) has rank d. That is, problems (1) and (3) are equivalent and (1) can be solved
as an SDP in polynomial time.

Another technical result is the following:

Proposition 1 If every sensor point is connected, directly or indirectly, to an
anchor point in (1), then any solution to (3) must be bounded, that is, Yjj is
bounded for all j = 1, . . . , n.

Proof If sensor point xj is connected to an anchor point ak, then we have:

‖xj‖2 − 2aT
k xj + ‖ak‖2 ≤ Yjj − 2aT

k xj + ‖ak‖2 = d̄2
kj

so that from the triangle inequality ‖xj‖ in (2) is bounded. Hence, we have:

Yjj ≤ d̄2
kj + 2‖ak‖‖xj‖ − ‖ak‖2

Furthermore, if xi is connected to xj and Yjj is bounded, we have:

Yii − 2
√

YiiYjj + Yjj ≤ Yii − 2Yij + Yjj = d2
ij

so that from the triangle inequality Yii must be also bounded. �	
In general, a primal (dual) max-rank solution is a solution that has the highest

rank among all solutions for primal (3) (dual (4)). It is known [16,19] that var-
ious path-following interior-point algorithms compute the max-rank solutions
for both the primal and dual in polynomial time. This motivates the following
definition.

Definition 1 Problem (1) is uniquely localizable if there is a unique localization
X̄ ∈ Rd×n and there is no xj ∈ Rh, j = 1, . . . , n, where h > d, such that:

‖(ak; 0) − xj‖2 = d̄2
kj ∀(k, j) ∈ Na

‖xi − xj‖2 = d2
ij ∀(i, j) ∈ Nx

xj 
= (x̄j; 0) for some j ∈ {1, . . . , n}
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The latter says that the problem cannot have a non-trivial localization in some
higher dimensional space Rh (i.e. a localization different from the one obtained
by setting xj = (x̄j; 0) for j = 1, . . . , n), where anchor points are augmented to
(ak; 0) ∈ Rh, for k = 1, . . . , m.

We now develop the following theorem:

Theorem 2 Suppose that the network is connected. Then, the following are equiv-
alent:

1. Problem (1) is uniquely localizable.
2. The max-rank solution matrix of (3) has rank d.
3. The solution matrix of (3), represented by (2), satisfies Y = XTX.

Proof The equivalence between 2. and 3. is straightforward.
Now, since any rank d solution of (3) is a solution to (1), from 2. to 1. we

need to prove that if the max-rank solution matrix of (3) has rank d then it is
unique. Suppose not, i.e., (3) has two rank-d feasible solutions:

Z1 =
(

Id X1
XT

1 XT
1 X1

)
and Z2 =

(
Id X2

XT
2 XT

2 X2

)

Then, the matrix Z = αZ1 + βZ2, where α + β = 1 and α, β > 0 is a feasible
solution and its rank must be d, since all feasible solution of (3) has rank at least
d but the max-rank is assumed to be d. Therefore, we have:

Z =
(

Id αX1 + βX2
αXT

1 + βXT
2 αXT

1 X1 + βXT
2 X2

)
=

(
Id B
BT BTB

)

where B = αX1+βX2. It follows that (X1−X2)
T(X1−X2) = 0, or ‖X1−X2‖ = 0,

i.e. Z1 = Z2, which is a contradiction.
Next, we prove the direction from 1. to 2., that is, the rank of a max-rank

solution of (3) is d. Suppose that there is a feasible solution Z of (3) whose rank
is greater than d. Then, we must have Y � XTX and Y 
= XTX. Thus, we have
the decomposition Y − XTX = (X ′)TX ′, where X ′ = [x′

1, . . . , x′
n] ∈ Rr×n and r

is the rank of Y − XTX. Now, consider the point:

x̃j =
(

xj
x′

j

)
∈ Rd+r for j = 1, . . . , n

Then, we have:

‖x̃j‖2 = Yjj, (x̃i)
Tx̃j = Yij ∀i, j
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Moreover, since the network is connected, we conclude from Proposition 1 that
Yii and Yij are bounded for all i, j. Hence, we have:

‖(ak; 0) − x̃j‖2 = d̄2
kj ∀(k, j) ∈ Na

‖x̃i − x̃j‖2 = d2
ij ∀(i, j) ∈ Nx

In other words, x̃j is a localization of problem (1) in Rd+r, which is a contradic-
tion. �	

Theorem 2 establishes, for the first time, that as long as problem (1) is uniquely
localizable, then the realization can be computed in polynomial time by solving
the SDP relaxation. Conversely, if the relaxation solution computed by an inte-
rior-point algorithm (which generates max-rank feasible solutions) has rank d
(and hence Y = XTX), then X is the unique realization of problem (1). More-
over, Theorem 2 implies the existence of a large family of efficiently realizable
graphs, even though the recent result of Aspnes et al. [7] shows that the problem
of computing a realization of the sensors on the plane is NP-complete in general
(this is true even when the instance has a unique solution on the plane).

5 Connections to rigidity theory

In this section we give a simple and efficient criterion for checking whether
a graph G with anchors has a unique realization on the plane using rigidity
theory. The main idea is to augment G to another graph G′ by adding edges
between the anchors in G and check whether G′ is rigid. We remark that the
main theorem of this section, Theorem 3, has been independently proven by
Eren et al. in [15]. However, our proof (in particular, Propositions 2, 3 and 4)
gives a connection between the graphs G and G′ which [15] did not offer.

Before we state our result, we shall briefly review the theory of rigidity. For
a more detailed account, see, e.g., [18,20].

The theory of rigidity concerns with the study of frameworks. A framework is
a pair (G, p), where G is a graph and p : V → Rd is an embedding mapping the
vertices into an Euclidean space. Equivalently, we can view p as an |V|d-dimen-
sional vector assigning coordinates to the vertices. Given a framework (G, p),
we can define the edge function f : R|V|d → R|E| by f (p)ij = ‖pi − pj‖2, where
(i, j) ∈ E. A natural question is then whether there exists another non-congru-
ent realization of the framework (G, p), i.e. whether there exists an q ∈ R|V|d
not congruent to p such that ‖qi − qj‖2 = ‖pi − pj‖2 for all (i, j) ∈ E. By non-
congruence we mean that q is not obtained by applying a rigid motion to p. In
this section, we shall only consider generic embeddings, which means that the
vertex coordinates assigned by the embeddings are algebraically independent
over the rationals. There are several ways in which a framework in R2 can have
non-congruent realizations. We first consider the following.
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Definition 2 A finite flexing of a framework (G, p) is a family of realizations
of G, parametrized by t, such that the location of each vertex is a differentiable
function of t, and ‖pi(t) − pj(t)‖2 = cij for all (i, j) ∈ E.

Now, upon differentiating with respect to t, we have the relation:

(pi − pj)
T(vi − vj) = 0 ∀(i, j) ∈ E (5)

where vi is the instantaneous velocity of vertex i. An assignment of veloci-
ties such that the above relation is satisfied is called an infinitesimal motion of
the framework. We say that the infinitesimal motion is trivial if it is simply a
translation or rotation. Thus, it follows that if a framework has a non-trivial
infinitesimal motion, then the framework has a non-congruent realization. In
this case, we say that the framework is infinitesimally flexible. Otherwise, the
framework is infinitesimally rigid.

Note that the above definition does not restrict the assignment of velocities
besides the requirement that it satisfies (5). Thus, the theory cannot be applied
directly to our setting, since we require certain vertices be anchored. However,
if there is a non-zero assignment that satisfies vi = 0 for all anchored vertex
i, then the framework is clearly not uniquely localizable. In addition, such an
assignment will necessarily preclude translations and rotations when there are
more than one anchors, as such motions do not fix two or more vertices.

The observation in the preceding paragraph gives us a clue on relating unique
localizability and rigidity. We say that G has a fixing infinitesimal motion if it
has an infinitesimal motion that fixes the anchors. Given a graph G, consider
the graph G′ obtained from G by including the edges connecting the anchors.
In other words, if ai, aj are anchors, then (ai, aj) ∈ E(G′). We then have the
following proposition.

Proposition 2 G has no fixing infinitesimal motion iff G′ is infinitesimally rigid.

Proof Suppose that G has an infinitesimal motion M that fixes the anchors.
Then, M would also be an infinitesimal motion for G′. For necessity, sup-
pose that G has no infinitesimal motion that fixes the anchors, but that G′
is not infinitesimally rigid. Then, G′ must have an infinitesimal motion M =
{v(a1), . . . , v(ak), v1, . . . , vn} that assigns some non-zero velocity to an anchor.
However, the subgraph induced by the anchors is complete, and hence rigid.
Thus, M restricted to this subgraph is an infinitesimal isometry [18]. Without loss
of generality, we consider the two cases where this isometry is a translation or a
rotation. For the translation case, v(ai) = v for 1 ≤ i ≤ k. Then, the assignment
M′ = {0, . . . , 0, v1 − v, . . . , vn − v} is an infinitesimal motion of G′ (and hence
of G) that fixes the anchors, which is a contradiction. For the rotation case, we
may assume, by a change of reference frame if necessary, that the center of
rotation is at one of the anchors, say a1. Thus, we have v(a1) = 0. Let ω be the
angular velocity of the rotation, and for sensor xi, define v̄i = ω × ‖xi − a1‖, for
1 ≤ i ≤ n. In other words, v̄i is the velocity of sensor xi if the whole network is
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to rotate around a1 at an angular velocity of ω. Note that v̄i satisfy the following
relations:

(xi − aj)
T(v̄i − v(aj)) = 0 1 ≤ i ≤ n, 1 ≤ j ≤ k (6)

(xi − xj)
T(v̄i − v̄j) = 0 1 ≤ i ≤ j ≤ n (7)

Now, consider the velocity assignment:

M′ = {0, . . . , 0, v1 − v̄1, . . . , vn − v̄n}

We claim that it is an infinitesimal motion of G′ that fixes the anchors. To see
this, it suffices to check that:

(xi − aj)
T((vi − v̄i) − 0) = 0 ∀(i, j) ∈ Na

(xi − xj)
T((vi − v̄i) − (vj − v̄j)) = 0 ∀(i, j) ∈ Nx

The first equation follows since we have:

(xi − aj)
T(vi − v̄i) = (xi − aj)

T((vi − v(aj)) + (v(aj) − v̄i)) = 0

by definition of M and relation (6). The second equation again follows directly
from the definition of M and the relation (7). This again leads to a contradiction.
Therefore, the proof is completed. �	
Next, we consider another way in which a graph can have non-congruent real-
izations. We say that a set of vertices form a mirror if they lie on a line, and
there are no edges crossing this line. Obviously, by reflecting across this mir-
ror, we would have two non-congruent realizations of the graph. We say that a
framework allows a partial reflection if such a mirror exists. Then, we have the
following proposition.

Proposition 3 G allows a partial reflection that fixes the anchors iff G′ allows a
partial reflection.

Proof It suffices to observe that if there is a partial reflection, then all the
anchors will lie on one side of the mirror. �	
As indicated in [20], the above two conditions are still not sufficient to guaran-
tee a unique realization of a graph on the plane. To state the third condition,
we begin with some definition.

Definition 3 A framework F is said to be redundant if the framework F ′ obtained
from F by removing an edge is infinitesimally rigid.

Definition 4 A framework is said to be redundantly rigid if all its edges are
redundant.

We then have the following proposition:
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Proposition 4 Suppose that G has at least four anchors. Then, G has no fixing
infinitesimal motion after the removal of any of its edges iff G′ is redundantly
rigid.

Proof Consider an edge e ∈ E(G). If G has a fixing infinitesimal motion after
the removal of e, then G′ is not redundantly rigid. Conversely, suppose that G
has no fixing infinitesimal motion after the removal of any of its edges. To show
that G′ is redundantly rigid, it suffices to note that the subgraph induced by the
anchors in G′ is rigid, even after the removal of any one of its edges. Thus, if G′
has an infinitesimal motion after the removal of e, we have a contradiction by a
similar argument in Proposition 2. �	
A recent result of Jackson and Jordán [22] shows that infinitesimal rigidity, three-
connectivity and redundant rigidity are necessary and sufficient conditions for
unique realization of a graph in R2. Thus, from the results of Propositions 2, 3
and 4, we obtain the following theorem:

Theorem 3 The graph G with anchors is uniquely realizable in R2 iff the asso-
ciated graph G′ is uniquely realizable in R2.

Corollary 2 In order for the graph G with anchors to be uniquely localizable, it
is necessary that the associated graph G′ is uniquely realizable in R2.

We remark that the unique realizability of G′ in R2 can be checked efficiently,
and we refer the interested readers to [20].

Note that the graph G′ has �(m2) edges, where m is the number of anchors.
An examination of the proofs above would immediately reveal that all we need
is a graph G′ such that the subgraph induced by the anchors is uniquely real-
izable. There exist graphs with only O(m) edges that possess such property.
One example is the trilateration graph defined in [15]. In order to improve
computational efficiency, we should use one of these graphs instead.

6 Strongly localizable problem

Although unique localizability is a useful notion in determining the solvability
of the Sensor Network Localization problem, it is not stable under perturbation.
As we shall see in Sect. 7, there exist networks which are uniquely localizable,
but may no longer be so after small perturbation of the sensor points. This
motivates us to define another notion called strong localizability.

Definition 5 We say problem (1) is strongly localizable if the dual of its SDP
relaxation (4) has an optimal dual slack matrix with rank n.

Note that if a network is strongly localizable, then it is uniquely localizable from
Theorems 1 and 2, since the rank of all feasible solution of the primal is d.

We show how we can construct a rank-n optimal dual slack matrix. First, note
that if U is an optimal dual slack matrix of rank n, then it can be written in the
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form U = (−XT; In)TW(−XT; In) for some positive definite matrix W of rank
n. Now, consider the dual matrix U. It has the form:

U =
(

U11 U12
UT

12 U22

)

where U22 is an n × n matrix. Moreover, it can be decomposed as U22 = A + D,
where Aij = yij if (i, j) ∈ Nx, Aii = −∑

j:(i,j)∈Nx
Aij; and D is a diagonal matrix

where Dii = −∑
(k,i)∈Na

wki. (If there is no (k, i) ∈ Na, then Dii = 0.) Note that
if we impose the constraints yij ≤ 0 and wki ≤ 0, then both A and D are positive
semidefinite. Moreover, we have the following:

Proposition 5 Suppose that the network is connected. Furthermore, suppose that
yij < 0 for all (i, j) ∈ Nx, and that wki < 0 for all (k, i) ∈ Na, with Na 
= ∅. Then,
U22 is positive definite, i.e. it has rank n.

Proof Since A and D are positive semidefinite, we have xTU22x ≥ 0 for all
x ∈ Rn. We now show that there is no x ∈ Rn\{0} such that xTAx = xTDx = 0.
Suppose to the contrary that we have such an x. Then, since D is diagonal, we
have xTDx = ∑n

i=1 Diix2
i = 0. In particular, for Dii > 0, we have xi = 0. Now,

note that:

xTAx = −
∑

(i,j)∈Nx

(xi − xj)
2Aij

Thus, xTAx = 0 implies that xi = xj for all (i, j) ∈ Nx. Since Na 
= ∅, there exists
an i such that Dii > 0, whence xi = 0. Since the network is connected, it follows
that x = 0. �	
Proposition 5 gives us a recipe for putting U into the desired form. First, we set
U22 to be a positive definite matrix. Then, we need to set U12 = −X̄U22, where
X̄ is the matrix containing the true locations of the sensors. We now investigate
when this is possible. Note that the above condition is simply a system of linear
equations. Let Ai be the set of sensors connected to anchor i, and let E be
the number of sensor–sensor edges. Then, the above system has E + ∑

i |Ai|
variables. The number of equations is E+3m, where m is the number of sensors
that are connected to some anchors. Hence, a sufficient condition for solvability
is that the system of equations are linearly independent, and that

∑
i |Ai| ≥ 3m.

In particular, this shows that the trilateration graphs defined in [15] are strongly
localizable.

We now develop the next theorem.

Theorem 4 If a problem (graph) contains a subproblem (subgraph) that is
strongly localizable, then the submatrix solution corresponding to the subprob-
lem in the SDP solution has rank d. That is, the SDP relaxation computes a
solution that localizes all possibly localizable unknown points.
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Proof Let the subproblem have ns unknown points and they are indexed as
1, . . . , ns. Since it is strongly localizable, an optimal dual slack matrix Us of the
SDP relaxation for the subproblem has rank ns. Then, in the dual problem of
the SDP relaxation for the whole problem, we set V and those wkj’s associated
with the subproblem to the optimal slack matrix Us and set all other wkj’s to 0.
Then, the slack matrix:

U =
(

Us 0
0 0

)
� 0

must be optimal for the dual of the (whole-problem) SDP relaxation, and it
is complementary to any primal feasible solution of the (whole-problem) SDP
relaxation:

Z =
(

Zs ∗
∗ ∗

)
� 0 where Zs =

(
Id Xs

XT
s Ys

)

However, we have 0 = Z • U = Zs • Us and Us, Zs � 0. The rank of Us is ns
implies that the rank of Zs is exactly d, i.e. Ys = (Xs)

TXs, so Xs is the unique
realization of the subproblem. �	

7 A comparison of notions

In this section, we will show that the notions of unique localizability, strong
localizability and rigidity in R2 are all distinct.

7.1 Unique localizability 
⇒ strong localizability

We have already remarked earlier that a strongly localizable graph is necessarily
uniquely localizable. However, as we shall see, the converse is not true.

Let G1 be the network shown in Fig. 1(a). The key feature of G1 is that the
sensor x2 lies on the line joining anchors a1 and a3. It is not hard to check that
this network is uniquely localizable. Now, suppose to the contrary that G1 is
strongly localizable. Then, the dual slack matrix U admits the decomposition
U = (−X̄T, I)TW(−X̄T, I). It is easy to verify that:

U12 = (ȳ21a2 + ȳ31a3, ȳ12a1 + ȳ32a3)

U22 =
(−(ȳ21 + ȳ31) − y12 y12

y12 −(ȳ12 + ȳ32) − y12

)

and the form of U requires that U12 = −X̄U22. This is equivalent to the follow-
ing system of equations:
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x1

a1

a2 a3

x2

(a)

x2=(0.6,0.7)

a2=(-1,0)

a1=(0,1.4)

x1=(0,0.5)

a3=(1,0)

(b)

Fig. 1 A comparison of graph notions. a A uniquely localizable, but not strongly localizable net-
work b A rigid network that is not uniquely localizable

(x̄1 − a2)ȳ21 + (x̄1 − a3)ȳ31 = (x̄1 − x̄2)y12 (8)

(x̄2 − a1)ȳ12 + (x̄2 − a3)ȳ32 = −(x̄1 − x̄2)y12 (9)

Since x̄2 lies on the affine space spanned by a1 and a3, Eq. (9) implies that
y12 = 0. However, Eq. (8) would then imply that x̄1 lies on the affine space
spanned by a2 and a3, which is a contradiction. Thus, we conclude that G1 is not
strongly localizable.

7.2 Rigid in R2 
⇒ unique localizability

By definition, a uniquely localizable network is rigid in R2. However, the con-
verse is not true. To see this, let G2 be the network shown in Fig. 1(b).

Note that G2 can be viewed as a perturbed version of G1. It is easy to verfiy
that G2 is rigid. Thus, by Theorem 2, it can fail to be uniquely localizable only if
it has a realization in some higher dimension. Indeed, the above network has an
three-dimensional realization. The idea for constructing such a realization is as
follows. Let us first remove the edge (x1, x2). Then, reflect the subgraph induced
by a1, x2, a3 across the dotted line. Now, consider two spheres, one centered at
a2 and the other centered at a3, both having radius

√
5/2. The intersection of

these spheres is a circle, and we can move x1 along this circle until the distance
between x1 and x2 equals to the prespecified value. Then, we can put the edge
(x1, x2) back and obtain an three-dimensional realization of the network.

More precisely, for the above realization, the reflected version of x2 has coor-

dinates x′
2 =

(
173
370 , 112

185 , 0
)

. Now, let x′
1 =

(
0, 23

64 ,
√

495
64

)
. It is straightforward to

verify that:

‖x1 − a2‖2 = ‖x′
1 − a2‖2 = 5

4



A. Man-Cho So, Y. Ye

x2

a1

a2 a3

x1

(a)

x1

a1

a2 a3

x2

(b)

Fig. 2 Strongly localizable networks

‖x1 − a3‖2 = ‖x′
1 − a3‖2 = 5

4

‖x1 − x2‖2 = ‖x′
1 − x′

2‖2 = 2
5

Hence, we conclude that G2 is not uniquely localizable.
It would be nice to have a characterization on those graphs which are rigid

in the plane but have higher dimensional realizations. However, finding such a
characterization remains a challenging task, as such characterization would nec-
essarily be non–combinatorial, and would depend heavily on the geometry of
the network. For instance, the networks shown in Fig. 2, while having the same
combinatorial property as the one shown in Fig. 1b, are uniquely localizable (in
fact, they are both strongly localizable):

8 Conclusion

In this paper we have studied the Sensor Network Localization problem, which
is a variant of the Graph Realization problem. We have shown for the first time
that the SDP method yields an algorithm that guarantees to find the solution
if the input graph is uniquely localizable. Moreover, we have defined vari-
ous notions of localizability and demonstrated their relationship with classical
rigidity theory. However, this work has still left many interesting open ques-
tions unanswered. First, for those instances that are not uniquely localizable,
it would be interesting to investigate how many anchors are needed and how
should they be placed in order to make the instance uniquely localizable. Sec-
ondly, our SDP model assumes that the input data are noise-free. However,
sensor measurements are often noisy, and it is important to have a model that
can handle noisy data and has good theoretical properties. Thirdly, besides the
distance measurements, there may be extra information available to help us
determine the desired realization. For instance, we may have angle estimates



Theory of SDP for Sensor Network Localization

between a pair of sensors that are within communication range. It would be
desirable to develop a model that incorporates and exploits these information.
For some results in this direction, see, e.g., [9].
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