THEORY OF SPHERICAL AND CYLINDRICAL LANGMUIR PROBES IN A COLLISIONLESS, MAXWELLITAN PLASMA AT REST
by
James G. Laframboise

Manuscript received March 1966

ACKMOWLSDGEMENIS

The author wishes to express his special thanks to Dr. J. H. de Leeuw, whose thoughtful supervision provided continuing guidance for this work.

Thanks for the opporturity to conduct this study are extended to the director and faculty of UTIAS.

I am indebted to the Institute of Computer Science: Jniversity of Toronto, for use of their IBM 7094 computer.

I would like to thank the many fellow students whose discussions contributed a number of valuable ideas to this project. In particuiar, I would like to thank K. A. Graf and A. A. Sonin who provided specific experimental information needed to insure that the results obtained were those of greatest possible value.

Thanks are due to Union Carbide Canada Ltd., who for two years provided assistance with fellowships.

This work was supported by the Defense Research Board of Canada, and by the U.S. Air Force Office of Scientific Research under grants AF-AFOSR-366-63, AF-AFOSR-366-64, and AF-AFOSR-366-65.

SUMMARY

A method has been developed and used to obtain theoretical predictions of the current collected from a collisionless, fully Maxwellian plasma at rest by an electrically conducting Langmuir probe having spherical or cylindrical symmetry. The probe characteristic, or functional relation between current and probe potential, has been determined for both geometries for probe radii up to 100 times the Debye shielding distance of the hotter species of charged particle, for a complete range of ion-to-electron temperature ratios and for probe potentials from -25 to +25 times the thermal energy of the hotter species. Each current collection result is computed to a relative accuracy of 0.002 or better in an average time of approximately two minutes on the IBM 7094.

Maxwellian velocity distributions and finite current collection are assumed for both ions and electrons. The infinite plasma is replaced by an outer boundary at a finite radius, beyond which a power-law potentiai is specified. The resulting nonlinear system of integral equations is solved by an iterative numerical scheme which incorporates an extension of the Bernstein and Rabinowitz method to provide charge densities for ions and electrons. No a priori separation into sheath and quasi-neutral regions is assumed.

Explicit comparison is made between the results for a completely Maxwellian plasma and those for a plasma mono-energetic in attracted particles, as treated by Bernstein and Rabinowitz, Lam, and Chen. It is shown that in certain cases, the mono-energetic plasma does not adequately simulate the Maxwellian plasma.

It is also shown that difficulties encountered by Bernstein and Rabinowitz in computing the ion current for the cylinder in the zero-iontemperature limit are illusory, and that the computations of Chen for this case do not take into account the fact that the ion temperature acts as a singular perturbation.

Computed charge density and potential functions are presented graphically. Computed probe characteristics are presented in graphical and tabular form. A listing is included of the Fortran programs used to obtain these results.

TABLE OF CONTENTS

Page
SYMBOLS vi
I. INIRODUCTION 1
II. S'IATEMENT OF THE PROBLEM 3
III. SCALING PARAMETERS 4
IV. EQUATIONS DESCRIBING THE COLLISIONLESS PLASMA 7
V. SOLUTION SCHEME FOR COWISIONLESS-BOLTZMANN EQUATIONS 8
VI. CALCULATION OF THE CHARGE DENSITIES 10
VII. SPHERICAL PROBE 11
VIII. ANALYSIS OF PARTICIE ORBITS 14
IX. NON-DIMENSIONAL EQUATIONS -- SPHERICAL FROBE 22
X. CYLINDRICAL PROBE 24
XI. NON-DIMENS.IONAL EQUATIONS - CYLINDRICAL PROBE 26
XII. THE LIMIT OF ZERO-TEMPERATURE REPELLED PARTICLES 27
XIII. MONO-ENERGETIC ATTRACTED PARTICLES; THE PLASMA APPROXIMATION 30
XIV. ORBITAL-MOTION-LIMITED COLLECTED CURRENI EXPRESSIONS 39
XV. RESULTS AND DISCUSSION - SPHERICAL PROBE
XVI. RESULIS AND DISCUSSION - CYLINDRICAL PROBE 47
XVII. COMPARISON WITH EXPERIMENTAL WORK AT U.T.I.A.S. 51
XVIII.CONCLUDING RBMARKS 52
REFPRRENCES 54
TABLES $1-6 f$
PIGURRS
APFRNDIX A: Limits on the Validity of the CollisionlessBoltzmann-Vlasov Equation
APFARIX B: Discussion of the Collisionless Boltrmann Equation
APPMIDIX C: Behaviour of the Iterative Solution Method

APPENDIX D: Integration of the Poisson Equation
APPENDIX E: Expressions for Charge Density and Collected Current in the Case of a Maxwellian Velocity Distribution

APPENDIX F: Current Collected by a Probe of Large Radius When Repelled Particles Are at Zero Temperature and Attracted Particles are Maxwellian

APPENDIX G: Power Series Solution of the Allen, Boyd and Reynolds Equation

APPENDIX H: Operation of Computer Programs
APPENDIX I: Computer Program Listing 1

APFENDIX J: Sample Output From Computer Programs
energy
one electronic charge
force on a particle
distribution function; density of particles in position-velocity space
inverse of number of particles in a Debye cube
$=(\sqrt{\pi} / 2)(1-\operatorname{erf}(t)) \exp \left(t^{2}\right)$; function defined in Eq. (E.21)
collected current, for a spherical probe; collected current per unit length for a cylindrical probe
$=I / I_{0}$; nondimensional collected current
nondimensional current defined in Eqs. (13.6)
angular momentum
Boltzmann's constant
mixing function: Section V
particle mass
number density
momentum
charge on a particle
radius
prcbe radius
radius of outer boundary
position vector
temperature
$=\operatorname{Zed}(r)+J^{2} / 2 m r^{2} ;$ effective potential
velocity

- $R_{\mathbf{f}} / \mathbf{r}$ ncndimensional inverse radius
number of electronic charges on a particle
longitudinal cylindrical coordinate

α	velocity variable; Section VII
α	"varies as"
β	= E / kT; nondimensional energy
β^{*}	$=\left(-Z_{-} / \mathrm{Z}_{+}\right)\left(\mathrm{E}_{+} / \mathrm{kT} \mathrm{F}_{-}\right)$; nondimensional energy defined in Eq.(13.7)
θ	cylindrical coordinate
Φ	integral operator; Section V
ϕ	electric potential
ϵ	permittivity of space
λ_{D}	Debye shielding distance; $=\left(\epsilon \mathrm{kT} / \mathrm{q}^{2} \mathrm{~N}_{0}\right)^{1 / 2}$
p	charge density; = ZeN
η	$=\rho / \rho_{\infty} ;$ nondimensional charge density
χ	$=\mathrm{Ze} \Phi / \mathrm{kT}$; nondimensional potential
Ω	$=J^{2} / 2 m R_{p}{ }^{2} \mathrm{kT}$; nondimensional square of probe radius
π_{3}	$=\chi_{p}$; nondimensional probe potential
π_{6}	$=-T_{+} Z_{-} / T_{-} Z_{+} ;$effective temperature ratio
$\pi 7$	$=m_{+} Z_{-} / m_{-} Z_{+}$; effective mass ratio
ξ	$=r / \lambda_{D_{-}}$; nondimensional radius used in Sec. XIII

Subscripts

for positive ions
for electrons
for positive ions, but referred to electron temperature; defined in Eq. (9.10b)
at plasma potential
at infinite radius
at the probe
B

at the outer boundary

concerning locus of extrem of effective potentials
referring to energy of mono-energetic ions or corresponding absorptio:a boundary
net
r

SE
t
T
$H_{2}(A)$ respectively
I_{0}
K_{0}, K_{1}, K_{2}
${ }^{K}$
$P(\mu, \lambda)$
P, Q, R, T
8

3
8
t
t
$\|$
$\mathrm{v}_{\mathrm{r}}<0 \quad$ referring to inbound particles
$v_{r}>0 \quad$ referring to outbound particles
Symbols defined and used in Appendixes only
$A, B, C \quad$ variables used in Appendix E
$a, b, c, d, e, f \quad$ variables used in Appendix G
CE $\quad=0.57721566 \ldots$; Euler's Constant; Eq. (E.53)
$F_{\mathrm{La}}(\mathrm{B}), \mathrm{H}_{\mathrm{l}}(\mu, B)$, functions defined in Eqs. (E.5l), (E.46), and (E.68),
$h(\xi) \quad$ function used in Appendix F
h, i, j, k, m, n integer variables used in Appendices E, F, and G
$K \quad$ constant defined in Eq. (A.7);
variable defined in Eq. (E.55)
for the N'th iteration; Sections V and VI
result for ions less result for electrons
radial
at the sheath edge; Section XIII
transverse
thermal
functions used in Appendix D
zero-order modified Bessel Function of the second kind; E2. (E.61)
two functions defined in Eqs. (E.60) and (E.74)
variables used in Appendix E
distance; Appendix A
radial variable; Appendices D, E.
$=r / \lambda_{D}$; Appendix F
t1me; Appendix A
dumy variable; Appendix F
quantity defined in Bc. (2.84)
x, z
dummy variables; Appendix E
y, Y
functions used in Appendix D
y
nondimensional potential, separate definitions in Appen, F and G

$$
\begin{array}{ll}
b_{o}, t_{c}, t_{d}, S_{S}, S_{d} & \text { quantities used in Appendix } A \\
\xi & \text { dumny variable; Appendices } E, F \\
\alpha_{,} \alpha_{G}, \epsilon_{G}, \theta, \Phi, & \text { quantities used } \\
A, \kappa, T, \lambda, \omega
\end{array}
$$

Ψ
quantity defined in Eq. (A.1)
$\psi_{G}\left(s, s^{\prime}\right)$
two functions defin in Eqs. (E.32) and (E.87)
$\sigma_{1}, \sigma_{2} \quad$ functions used in Appendix F
1
subscript referring to field particles; Appendix A
c, d
subscripts referring to collisions and deflections, respectively; Append A.

A mettod has been developed and used to calculate the electric potential and the space charge density near spherically and cylindrically symmetric electrostatic probes immersed in a hot, rarefied, fully Maxwellian plasma at rest, and thereky to calcuiate the current, collected by such probes from the surrcunding plasma.

An electrostatic or "Jangmuir" probe is a piece of ccnduct,ing material that is inserted into a plasma or a mechanical support which provides electrical connection from the probe to external circuitry (Fig. 1). The probe potential is varied, slcwly enough to eliminate transient effects, over a range that normally includes the plasma potential. The electric current collected by the probe from the plasma is recorded as a function of probe potential. The shape of this curve, known as the "probe characteristic", depends on the composition and the thermodynamic state of the plasma, and is therefore potentially rich in information about the plasma. This fact has enabled the experimenter to use plasma probes as instruments to measure the state parameters of plasmas that exist either in the lakoratory or in nature. Figure 2 shows the general appearance of a Langmuir probe characteristic.

Many éxamples of ionized gases, or plasmas, exist in zature as. weli as in man-made devices. The earth's ionosphere, the material of the sun and stars, and the interplanetary gas are ali naturally occurring plasmas, and Langmuir probes are frequently carried by spacecraft in order to investigate their surroundings.

The local disturbances created in the ionosphere ty the entire spacecraft can often be analysed using theories developed for Iangmuir prokes. since the vehicle itself constitutes a conducting object immersed in a piasma; ir this case there is no external connection to allow current to drain off, and the spacecraft will arrive at an equilibrium or "floating" potential at which j.t coliects no net current (Fig. 2). Man-made devices in which plasmas are produced include experiments in controlled thermonuclear fusion, communication devices used in electrical engineering, electric thrusters for space vehicles, and plasma generators for conversion of chemical into electrical power.

Arother important type of device is the experimental chamber, often called a "piasma tunnel", designed for the study of the properties of the plasma itself. The study of plasmas in these chambers is in many cases of vital importance in obtaining the rasic information necessary before the applications listed above can be carried out. One of the most important types of study carried on in this type of facility has been the development of various methods, including Langmuir probes, for, measurement of state parameters, or "plasma diagnostics". The work described herein has been done as part of a combined activity at UTIAS, one aim of which has been to develop and compare the use of Langmuir probes, microwaves, and electron beams for diagnostic work. Details of some of the experimental work that has been done using UIIAS plasma tunnel facilities, closely related to the theoretical investigation of dangmuir probes reported here, are contained in Sec, XVII, and also in Refs. 1, 2, 3.4, and 19. Specific results obtained here have been used in carrying out experiments described in these reports.

A central problem in the use of plasma probes has been the extraction of the desired values of the thermodynamic state parameters from the information given by experimentally measured probe characteristics. Theoretical work, including that presented here, has centred around the solution of the inverse problem: if one has a plasma of given composition and state, what is the shape of the probe characteristic? Quantitative answers to this question have been obtained as a result of this research, for a range of plasma conditions of broad experimental importance.

A plasma probe which is charged to a potential different from that of the surroundicg plasma, will create an electric field which attracts particles of opposite charge and repels those of like charge. If the probe potential is large enough, very few of the repelled particles will have sufficient kinetic energy to reach the probe surface, and a region adjacent to the probe will contain only attracted particles. The net space charge density thus created in this region will be of opposite sign to the charge on the probe, and will tend to prevent electric fields from penetrating into the plasma. This region of charge imbalance is known as a sheath. Beyond the sheath, the densities of repelled and attracted charge are very nearly equal, and the electric field is relatively weak, though still significant.

Any charge imbalance in an ionized plasma sets up electric fields that tend to limit its extent and neutralize it. It has been shown elsewhere (Ref. 1) that the sheath thickness is always related to a plasma parameter known as the Debye shielding distance, which depends on the temperatures and number densities of the various species of charged particles present. The ratio of probe radius to Debye distance is therefore one of the factors that governs the shape of the potential well that surrounds the probe. Since the flux of attracted particles reaching the probe can be strongly affected by the shape and extent of this well, the ratio of probe radius to Debye length has a strong influence on the collected current. Measurements of collected current will therefore contain information about the Debye lengths of the various species.

A charged particle that comes within the influence of the probe is affected in general not only by the macroscopic electric field surrounding the probe, but also by the scattering effect of encounters with other particles. There exists, however, a class of situations, of great importance in experimental work, in which a particle will, on the average, traverse a distance equal to many probe diameters before being appreciably deflected out of its collisionless trajectory by such events. It is then a good approximation to assume that all particles move only along collisionless trajectories, but their initial velocity distribution far from the probe is the Maxwell equilibrium distribution that normally exists when collisions dominate. It is this class of situations that has been considered here. Limits on the validity of the collisionless approximation are discussed in Sec. III and in Appendix A.

The surface of plasma probe is always at much lower temperature than the plasma. As a result, nearly all electrons that strike it are absorbed, and nearly all ions that strike it combine with electrons from the surface and move off as neutral atoms. These neutrals do not interact with electric fields and, in the collisionless approximation, are in effect removed from the problem.

At large probe potentials the attracted species strike the probe with sufficient kinetic energy to dislodge charged particles from the surface. Those having appropriate charge are repelled into the plasma and show up as a contribution to the measured probe current (Fig. 2). This phenomenon is called secondary emission. Another source of secondary current collection appears when electrons accelerated to high velocities by the field of the probe collide with neutrals and ionize them to produce extra electrons. Plasma probes are normally operated at potentials snall enough to prevent these effects from occurring.

The plasma probes that are used in experimental measurements may have a great variety of shapes. Since the usefulness of such a probe to the experimenter is considerably increased if theoretical predictions of its characteristics are available, the most useful shapes are usually those possessing sufficiently high symmetry that the dynamics of particle motion in the electric fields near the probe are of simplified form. In particular, the cases considered here are those of a sphere or long cylinder in a stationary plasma, or a long cylinder in a plasma flowing parallel to the cylinder axis. In these cases, all particles move in central force fields.

A description of related work on the theoretical prediction of Langmuir probe characteristics is contained in Sec. V, including the pioneering work of Bernstein and Rabinowitz (Refs. 5 and 21) and its extensions by Lam (Refs. 7 and 27) and Chen (Ref. 8), as well as others.

II. STATEMGNT OF THE PROBLEM

In order to define a mathematical model for the plasma, the following assumptions have been made:

1. The plasma consists of two species of charged particles, one positive and one negative. Far from the probe, the net charge density approaches zero. Maxwellian velocity distributions are assumed for both species in a reference frame at rest relative to the probe in the spherical case; at rest or in uniform motion parallel to the probe axis in the aylindrical case. The latter generalization is a trivial one, but it suggests that the calculations for the cylindrical probe may be used to measure the properties of a flowing plasma if the probe axis is parallel to the flow and if the probe is sufficiently long that end effects may be neglected. Cylindrical probes are in fact often used in flowing plasmas because of this analytical advantage (Refs. 1 to 4).

In many experimental situations, thermal contact between the two species is weak enough to allow significant temperature differences to exist between them if one of them acts as an energy source or sink. Therefore, an arbitrary temperature ratio is allowed in the theoretical model.
2. The plasme is assumed to be sufficiently hot and rarefied that near encounters between particles are of vanishing importance in comparison with collective phenomena, and each particle moves undisturbed in a macroscopic electric field determined by the Poisson equation. The conditions under which this approximation is valid are discussed in Sec. III and Appendix A.
3. Annihilation of both species of charged particles is assumed to occur at the probe surface. In the situation being considered, in which binary encounters are ignored, re-emitted neutralized particles do not interact significantly with the plasma. As Berstein and Rabinowitz (Ref. 5) have pointed out, their solution method, an extension of which is used here, is capable in principle of dealing with an arbitrary form of charge emission from the probe surface. This methnd could therefore be used to compute the large potential ends of the probe characteristics if an appropriate model for bombardment-induced secondary charge emission were provided. Such a calculation is beyond the scope of the present work.

* 4. Finite collection by the probe of both ions and electrons is allowed to occur. In combination with the assumption of Maxwellian velocity distributions for both species, this provision permits the entire probe characteristic to be obtained, in contrast with previous treatments (Refs. 5 to 8) which were applicable only to restricted ranges of probe potentials.

5. No magnetic fields are assumed present.
6. A steady state is assumed to exist.
7. All particle velocities are assumed to be much smaller than the speed of light.
8. In order to define a solution scheme, the infinite plasma surrounding the probe is replaced by a surface, concentric with the probe, at a finite radius. A linear relation between the electric potential and its radial derivative is assumed at this boundary, corresponding to a potential which varies as a specified negative power of radius beyond. Charged particles emitted inward from this boundary possess velocity distributions corresponding to particles Maxwellian at infinite radius, but disturbed by the presence of the given power-law potential.
9. Trapped orbits, if any, are assumed to be unpopulated. The conditions required for the existence of these orbits, which are defined as bounded orbits that do not strike the probe, are discussed in Sec. VIII, together with the resulting implications for the usefulness of results calculated on the basis of this assumption.

III. SCALING PARAMETERS

The net current $I_{\text {net }}$ collected from a plasma at rest by a probe of radius R_{p} is a function of the following quantities:

1) The ion and electron temperatures T_{+}and T_{-}. We define reference energies $\mathrm{ET}_{+}=\mathrm{kT} \mathrm{F}_{+}$and $\mathrm{E}_{\mathrm{T}_{-}}=\mathrm{kT}$. where k is Boltzmann's constant.

1i) The ion and electron masses m_{+}and m_{-}.
i11) The ion and electron charges $q_{+}=Z_{+} e$ and $q_{-}=Z_{-} e$ where e is one electronic charge and Z is the number of electronic charges per particle.

$$
\begin{equation*}
N_{\infty_{+}} q_{+}+N_{\infty_{-}} q_{-}=0 \tag{3.1}
\end{equation*}
$$

v) The probe radius R_{p} and probe potential ϕ_{p}, the latter defined relative to the potential of the plasma far from the probe.
vi) The permittivity of space \mathcal{E}.

The complete family of characteristics for either the spherical or the cylindrical probe is therefore a functional relation connecting the 11 quantities $I_{n e t}, E_{T_{+}}, E_{T_{-}}, m_{+}, m_{-}, q_{+}, q_{-}, N_{\infty_{+}}, R_{p}, \phi_{p}$ and \in.

Since each of these quantities is expressible in terms of the four dimensions mass, length, time, and charge, there exist seven linearly independent dimensionless quantities such that the solution of the problem is a relation among them. These quantities may be found by inspection. The proof of the foregoing statements may be found in standard works on dimensional analysis, such as Ref. 9.

The complete set of characteristics for either the spherical or the cylindrical probe is therefore of the form F ($i_{n e t}, \pi, \pi 2, \pi_{3}, \pi_{4}, \pi_{5}, g_{+}$) =0, where these quantities are defined, by inspection, as follows:

$$
i_{\text {net }}=I_{\text {net }} /\left(I_{+}\right)_{0},
$$

where $\left(I_{+}\right)_{0}$ is the current of ions that strikes the probe when it is at plasma potential, i.e., the current due to the random thermal ion motion in the absence of electric fields, which for a spherical probe, is given by:

$$
\left(I_{+}\right)_{0}=Z_{+} e N_{\infty_{+}} R_{p}^{2}\left(8 \pi k I_{+} / m_{+}\right)^{\frac{1}{2}}, \text { and for }
$$

unit length of a cylindrical probe is given by:

$$
\begin{aligned}
\left(I_{+}\right)_{0} & =Z_{+} e N_{\infty_{+}} R_{p}\left(2 \pi k T_{+} / m_{+}\right)^{\frac{1}{2}} ; \\
\pi_{1} & =E_{T_{+}} / E_{T_{-}}=T_{+} / T_{-} ; \\
\pi_{2} & =m_{+} / m_{-} ; \\
\pi_{3} & =Z_{+} \in \Phi_{p} / k T_{+}=x_{p_{+}} ; \\
\pi_{4} & =R_{p}\left(Z_{+}^{2} e^{2} M_{m_{+}} / \in k T_{+}\right)^{\frac{1}{2}}=R_{p} / \lambda_{D_{+}}=\left(r_{+}\right)^{\frac{1}{2}} \\
\pi_{5} & =q_{+} / q_{-}=Z_{+} / Z_{-} ; \\
G_{+} & =M_{\infty_{+}}^{-1}\left(k I_{+} / Z_{+}^{2} e^{2} \mathrm{~K}_{\infty_{+}}\right)^{-3 / 2} ;
\end{aligned}
$$

The quantities $I_{\text {net }}$ and W_{3} may be thought of as the nondimanilopal current and nondimensional probe potential. The symbol $\lambda_{D}=\left(c e^{2} / 2^{2} e^{2}\right.$ am $)$ denotes the

Debye shielding distance of a species of charged particle in the piasma, Therefore π_{4} is the ratio of probe radiur to the ion Debye distance. The value of g_{+}represents the inverse of the numioer of ions in the volume $\lambda_{D}{ }_{+}{ }^{3}$. The quantities γ_{+}and χ_{p} are nondimensional variables used later in the fext, in particular in Set. IX. Their appearance in Eqs. (3.2) constitutes a definition of them.

It has been shown by Rostcker and Rosent.luth (Ref.10) that in the limit as $g \rightarrow 0$ for each species in the plasma, the Liouville equation governing the particle dynamics reduces to a form known as the Vlasov equation, a collisionless-Boltzmanr equation in which the force term is obtained from the solution of the Poissor equation.

The limit $g \rightarrow 0$ is the limit of a hot, rarefied plasma;
$\mathrm{N}_{6} \mathrm{I}^{-3} \rightarrow 0$. It is in this linit that near encounters between charged particles become of negligible importance in comparison with coliective phenomena. For any finite value of g, a particie san, on the average, traverse only a certain distance in the plasma before beirg scattered out of its trajectory by near encounters. This fact. sets an upper limit oa the probe size for which resuits obtainable from the Vlosov equation wili apply in any given case; in other words, it determines a Knudsen numer, or ratic of mean free path to probe dimension, which is a function of R_{P} ! λ_{E} and g (Appendix $A_{\text {; }}$.

By inspection of the equations for the system in their dimensionless form (Sections X and X), it can te shown that the ratic $\pi_{2}=m_{4} y m_{-}$ enters into the computationa scheme oniy when the net current is calculated. This ratio may therefore remain unspesified when the ion and electron currents are computed separately.

It. car also be shown that the parameters $\pi_{1}=T_{1} / T$, and $\pi_{5}=Z_{+} / Z_{\text {. occur only as a quctient, in the equations, except in the equation }}$ for net current. Therefore it. is passible to treat these as one quantity for computational purposes. We accordingly define a new dimensionless parameter as follows:

$$
\begin{equation*}
\pi_{6}: \frac{m}{m_{0}} \frac{n_{0}}{\pi_{4}} \tag{3.3}
\end{equation*}
$$

We therefore have, for either the ion or the eloctro: current in the Vlasov limit:

$$
1=2:, r_{6}, x_{y_{0}}, \quad r_{t} ;
$$

Usuaily, $z_{+}=1$ and $3_{-}=1$, so that π_{6} becomes the ion to electron tempersture ratio $T_{+} / T_{\text {. }}$. For this reason, we will cali π_{f} the "effective temperature ratio", bearing in mind that the results of the calcuiations, which are presented as functions of T_{+} / T_{-}, may be applied to the case of multip+j charged ions ry scaling this quantity.

Since the mass ratic π_{2} may be Left unspecified until net currents are calsuiater, no distinction exists between ions and electrons in formulating a schene for calculating i_{+}or 1_ separately. The nondimensional ion current sollected by a probe wich is, for example, ion attracting, with given ratios of probe potential to ion energy, ion to elestron effective temperature, and probe radius to ion Debye leagth, is equal to the nondimensional electron current, collacted by an electron-attracting probe with the sane ratios
of probe potential to electron energy, electron to ion effective temperature, and probe radius to electron Debye length. It is therefore possible to speak of the "attracted" or the "repelled" species without further identifying them.

Because the roles of ions and electrons can be interchanged in this manner, a complete set of values of $i\left(\pi_{6}, \chi_{p_{+}}, \gamma_{+}\right)$can be used to provide values of both i_{+}and i_{-}, and thereby to obtain the complete set of probe characteristics for a given ion to electron mass ratio. Since the relation between $i_{\text {net }}$ and $\chi_{p_{+}}$(or $\chi_{p_{-}}$) constitutes a probe characteristic, the solution of the problem for either the spherical or the cylindrical probe is a twoparameter family of characteristic curves.

IV. EQUATIONS DESCRIBING THE COLLISIONLESS PLASMA

The system of equations to be solved is as follows (Ref. 5). Let \underline{r} be the position vector in physical space and p be its canonically conjugate momentum vector (Ref. 11). Let $f_{+}(\underline{r}, \underline{p})$ and $\hat{f}_{-}(\underline{r}, \underline{p})$ be the distribution functions in position-momentum space for ions and electrons. Let v be the velocity vector and t be time. Let \underline{F}_{+}and F_{-}be the forces exerted by the electric field on ions and electrons. Then the collisionless-Boltzmann equations for a steady-state situation are:

$$
\begin{align*}
& \frac{D f_{+}}{D t}=\frac{\partial f_{+}}{\partial \underline{r}} \cdot \underline{v}+\frac{\partial f_{+}}{\partial \underline{p}} \cdot \underline{F}=0 \tag{4.1}\\
& \frac{D f_{-}}{D t}=\frac{\partial f_{-}}{\partial \underline{r}} \cdot \underline{v}+\frac{\partial f_{-}}{\partial \underline{p}} \cdot \underline{\mathbf{r}}=0
\end{align*}
$$

The content of these equations is that the distribution functions f_{+}and f_{-}are constant along particle trajectories in a space of canonical coordinates (Appendix B).

The electric forces on the ions and electrons are:

$$
\begin{align*}
& \underline{F}_{+}=-z_{+} e \frac{\partial \phi}{\partial \underline{x}} \tag{4.2}\\
& \underline{F}_{-}=-z_{-} e \frac{\partial \phi}{\partial x}
\end{align*}
$$

Let ρ be the net density of electric charge, and let H_{+}and N_{-} be the number densities of ions and electrons. Then Poisson's equation is:

$$
\begin{equation*}
\nabla^{2} \phi=-\rho / \epsilon \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=e\left(Z_{+} X_{+}+Z_{-} X_{-}\right) \tag{4.4}
\end{equation*}
$$

Finally:

$$
\begin{align*}
& N_{+}(\underline{r})=\int f_{+}(\underline{r}, \underline{v}) d^{3} \underline{v} \\
& N_{-}(\underline{r})=\int f_{-}(\underline{r}, \underline{v}) d^{3} \underline{v} \tag{4.5}
\end{align*}
$$

V. SOLUTION SCHEME FOR COLWISIONLESS-BOLTZMANN EQUATIONS

The most difficult problem in finding a solution scheme for Eqs. (4.1) to (4.5) has been to obtain methods of calculating the number density $\mathbb{H}(\underline{r})$ of the attracted species as $\%$ functional of potential $\phi(\underline{r})$.

In the case of a spherical probe immersed in a stationary plasma, Allen, Boyd, and Reynolds (Ref. 6) simplified the problem by assuming that the attracted particles had no thermal motion and fell radially inward toward the probe under the influence of the electric field. They also simplified the number density calculation for repelled particles by assuming that the probe was at a large enough potential to prevent any of them from reaching it. By means of this assumption and by invoking the continuity equation for the attracted particles, they obtained an ordinary differential. equation which they were able to integrate numerically to give potential as a function of radius for any given value of collected current.

Bernstein and Rabinowitz (Refs. 5, 21) developed a more general scheme capable in principle of finding $N(\underline{r})$ as a functional of $\phi(r)$ for an arbitrary velocity distribution specified far from the probe, under one restriction; namely, that the situation be one possessing sufficiently high symmetry that there exist constants of the particle motion equal in number to the velocity coordinates of the particles. This requirement is satisfied if the particles move in a central force field. They then approximated the velocity distribution for attracted particles by a mono-energetic one in which all such particles far from the probe moved with the same sroed, all directions of motion being equally probable. This assumption, toegether with that of zero collection of repelled particles, al so gave them a differential equation, which they integrated numerically.

Nore recently, Lam (Ref. 7) has carried out an asymptotic analysis on the mono-energetic Bernstein and Rabinowitz differential equation in the limit $R_{p} \gg \lambda_{D}$, and has obtained probe characteristics valid in that limit, in the cases of very large and very small probe potentials. He has also obtained the leading correction term for expressing mono-energetic current collection es a power series in λ_{D} / R_{p} (Ref. 27)

The present treatment, in contrast vith these previous ones, assumes a full poly-energetic, Maxvelilian distribution for the attracted as well as for the repelled species. As a result, the charge density at any given radius can be shown to depend not oniy on the local value of the potential at that radius but on the value of the potential everywhere in the vicinity of the probe (Appendix E). The syatem is herefore not reducible to a differential equation, and a nonlinear system of integral equations results which has been solved numerically on the ImM 7094 digital computer at the University of Toronto. This more general procedure is capable of dealing with the mono-energetic assumption as a special case, and explicit comparison has been made in order to evaluate the errors introduced by this approximation.

The iterative procedure for the numerical solution of the equations is as follows. An initial trial function is assumed for the net charge density. Poisson's equation is integrated to provide the electric potential and its first two radial derivatives, as functions of radius. Using this information, the ion and electron collected currents and charge densities are calculated. The resulting net sharge density function is mixed with the previous net charge density to provide a closer approximation to the solution. This process is repeated until sufficient accuracy is obtained.

The process of calculating the ion and electron charge densities from a given net density and subtracting them to give a new net density defines a non-linear integral operator Φ which acts on the N 'th iterate $\rho_{N}(r)$ to give the next iterate $\rho_{N+7}(r)$. The solution to the system is a function which satisfies $\rho(r)=\Phi \rho(r)$. In general, the sequence of functions generated by the operator Φ diverges by overshooting the true solution and oscillating about i^{t} with increasing amplitude (Appendix C). We therefore define a mixing function $M(r)$ which has the property $0<M(r) \leq 1$ for any r. We then define a new iterative scheme as follows:

$$
\begin{equation*}
\rho_{N+1}(r)=M(r) \Phi \rho_{N}(r)+(1-M(r)) \rho_{N}(r) \tag{5.1}
\end{equation*}
$$

Inspection of this equation shows that if $\rho_{N+1}(r)=\rho_{N}(r)$, then $\rho_{N}(r)=\Phi \rho_{N}(r)$ as required for a correct solution. An optimm form for the function $M(r)$ is found by compatational experiment.

An iterative procedure which resembles in some respects the one developed here, has been developed by Hamza and Richley (Ref. 22) for use in a numerical solution of the Boltzmann-Vlasov equations in almi-electrode, two dimensional ion-thruster geometry. In this procedure, zero charge density is initialiy assumed and the twc-dimensional Laplace equation is solved numerically for the given boundary corditions. A steady, parallel beam of ions is then introduced. By numerically integrating ion trajectories, the reaulting charge density is calculated; the Poisson equation is then solved to find a new potential configuration. If this new potential is then used as basis for another iteration, and the procedure is repeated a numer of times, it is found to diverge; convergence has been obtained by mixing each succeasive potential With the initial potential obtained by solving the Iaplace equation. The mixing function is called a "suppression factor". There is one irportant difference between the procedure used here and that of Ref. 26: no soluticn of the Laplace equation is used here as part of a mixing scheme because meh a potential at, large radil has the wrong dependence on radius (Table 2) and would cause unacceptably large perturbatinne in charge densities.

A numer of approacbes to the problem of obtaining probe characteristics for a completely laxweliian placm have recentiy been piblished. Hal1 (Refs. 23, 24, and 25) has described a numer of steps 1ecdim toward the development of a computation scheme based on an sasund form for the locus of extrem in energy vs angular momentu space (8ec. VIIi); be approrimates the locus of extrema by peir of line segments and then iterates to Alad the best poselble positions for these lines according to criteria which be has derived. Based on this method, he has obtained and graphically diaplayed the firat two terms in an expansion for the ion current collected by a cylindrical probe in mamelilan plasm, valid in the limit of sero ion-to-election temperature ratio (Ref. 25).

Maskalenko (Ref. 26) has formulated the general problem for the cylindrical probe, including expressions for charge density and flux for the Maxwellian case. He then specializes to the limiting case of large $R_{p} / \lambda_{D_{-}}$ and outlines a computation scheme for this limit. At this date he has not yet published any computed results.

Walker (Ref. 28) has formulated the Maxwellian problem for an ionattracting spherical probe at sufficiently large potential to assume negligible electron collection. He has published a single-parameter family of probe characteristics which depend only on R_{p} / λ_{D}. and have apparently been done for an ion-to-electron temperature ratio of 1 , although this point has not been specified. Few details are given concerning the computation scheme, which is said to involve no iterative procedure, but only an inward integration from a set of arbitrarily chosen conditions at some relatively large radius; as in the mono-energetic solutions of Bernstein and Rabinowitz (Refs. 5 and 21) the probe radius is left unspecified. From the point of view of this investigation, it is difficult to see how this can be done without introducing some unspecified approximation, since unlike the mono-energetic case, the charge density at any radius in the Maxwellian case depends on the form of the potential over a continuous range, in general, of both smaller and larger radii (Appendix E). Furthermore, in the Maxwellian case, unlike the mono-energetic case, there is no range of situations in which the specific value of the probe radius can be ignored, because there are always some energy levels in the distribution function for which the probe does not lie "hidden" inside the corresponding absorption radil (Sec. VIII).

Reference 29 contains analytic approximations constructed from the probe characteristics of Ref. 28 by a curve-fitting process.

Preliminary results of the computations described in the present treatment have been reported in Refs. 2 and 20.

VI. CAICULATION OP THE CHARCS DENSITIES

The solution of Eqs. (4.1) uses an extension of the method of Bernstein and Rabinowitz (Ref. 5). In situations possessing sufficiently high symetry, such as those considered bere, all particles move in a central force field, and there exist constants of the motion equal in number to the velocity coordinates of the particles. In this case, the integration over velocity space In Eqs. (4.5) can be transformed into an integration over the ranges of these constants. Velocity coordinates are thus elininated from the problem and particle trajectories need not be calculated explicitiy in order to find it and M. for a given potential function ϕ. The effect of the potential on the particle densities mires itaelf felt in the existence of forbidden regions in the phase space defined by the constants of the totion. In these regions, no particles can exist and the distribution functions vanish. This method is discussed in detail beginning with Sec. VII.

The elinination of explicit trajectory calculations in this manner is of crucial importance in formulating a sheme for calculating charge densities. A situntion possessing less symetry, and therefore requiring such trajectory calculations, for exprple, sphere in a flowing Maxvellian plasm, would involve numerical trajectory computations of such megnitude as to appar probibitive. This is particularly true for an iterative calculation such as this one, in which ϕ itself is only one maber of a sequence of functions on
which have the true solution as their limit, and N_{+}and N_{-}must be determined anew during each iteration.

Furthermore each complete set of iterations defines a solution for only one value of nondirensional probe potential and one value of each nondimensional plasma parameter (Eq. 3.4); in a flowing plasma, the flow velocity itself would require the inclusion of additional parameters to describe a given case.

ViI. SPHERICAL PROBE

The velocity of a particle passing through any point in a spherical coordinate system may be resoived into a radial component v_{r} and two transverse components which specify the projection of the velocity vector in a plane perpendicular to the radius. If we take polar coordinates t and α in this plane, then we obtain for either ion or electron number density, from Eq. (4.5):

$$
\begin{equation*}
N(\underline{r})=\int f(\underline{r}, \underline{v}) d v_{r} d v_{t} v_{t} d \alpha \tag{7.1}
\end{equation*}
$$

For all situations tc. be considered, the distribution functior is isotropic at infinity and all electric fields are radial. Hence f depends on'y on r : v_{r}, and v_{t}, and not on α. We may immediately integrate Eq. (7.1) over a tc ot+ain:

$$
\begin{equation*}
N(r)=\pi \int_{v_{t}=0}^{v_{t}=\infty} \int_{v_{r}=-\infty}^{v_{r}=\infty} \underline{f}\left(r, v_{r}, v_{t}\right) d v_{r} d\left(v_{t}^{2}\right) \tag{?.2}
\end{equation*}
$$

The appropriate constants of the motion are the total energy E and angular momentum J of a charged particle:

$$
\begin{align*}
E & =\operatorname{ze\phi }(r)+\frac{m}{2}\left(v_{r}^{2}+v_{t}^{2}\right) \tag{7.3}\\
J^{2} & =m^{2} r^{2} v_{t}^{2}
\end{align*}
$$

The inverse reiationships are:

$$
\begin{align*}
& \left.v_{r}= \pm[2 / m(B-2 e \hat{H}))-J^{2} / m^{2} r^{2}\right] \tag{7.4}\\
& v_{t}^{2}=J^{2} / r^{2} r^{2}
\end{align*}
$$

The incegration over velocity, space in Eq. (7.2) my now be transformed into an integration over E and J^{2}.

$$
\begin{equation*}
N(r)=\pi \int_{J}^{2}=0=0 \int_{\sqrt{s}=-\infty}^{\sqrt{8}=\infty} f(B, J) \frac{\partial\left(v_{r}, v_{t}^{2}\right)}{\partial\left(E, J^{2}\right)} d E d J^{2} \tag{7.5}
\end{equation*}
$$

The linits on the integration over \mathbf{E} represent the fact that. \mathbf{E} goes from 0 to once for positive values of v_{r} and again for negative values of v_{r}. Theis point is ande clearer by the following discussion.

At a given radius in position space, the integration along v_{r} must be considered separately for iacoming particles ($v_{r}<0$) and outgoing particles ($v_{r}>0$). In any central force field, the incoming and outgoing halves of a particle trajectory are mirror images of each other. Tharefore, in any region of the ($\left.J^{2}, E\right)$ plane in which an outgoing particle may exist, e., which represents a particle trajectary that does not strike the probe, the particle must be counted twice at the radius r, since it appears once inbound and once outbound. Therefore,

$$
f\left(E, J^{2}\right)_{v_{r}}>0=f\left(E, J^{2}\right) v_{v_{r}}<0 \text { and } f=2 f_{v_{r}}<0 .
$$

In any region of (J^{2}, E) space which represents trajectories that strike the probe no outbound particles exist at the radius r. We $t_{\text {d }} e n$
 corresponding to particles which do not reach the radius r because chey have turned back at larger rudii. In thes regions, $f=0$. The integration may therefore be taken over incoming particles only, with $f=\mathrm{Kf}_{\mathrm{v}_{\mathrm{r}}<0}$, where $\mathbb{K}=0$, 1 , or 2 .

We now examine a sequence of particle trajectories which correspond to a fixed value of E and increasing values of J^{2}. The trajectories belonging to such a sequence cross any given radius'r in an increasingly tangential direction, as can be shown bsinspection of Eq. (7.4). The distance of closest approach to the origin $r=0$ for particles which come from infinity will always increase with increasing J^{2}. Therefore there will always be a largest angular momentum J_{1} for which particles still strike the probe. (This does not always correspond to grazing incidence at the probe surfe ?e; see for example the set of particle trajectories shown in Fig. 4d.) For all values of J^{2} from 0 to $J_{1}{ }^{2}$, it follows that $K=1$.

Similarly, for a fixed E, there will always be a largest ngular momentum $J_{2} \geq J_{1}$ for which particles still penetrate inward as far as any given radius r; at this radius, a particle with energy E and angular momentum greater than J_{2} is forbidden. For vaiues of J^{2} between $\mathrm{J}_{1}{ }^{2}$ and $\mathrm{J}_{2}{ }^{2}$, we then have $K=2$; for larger values of J^{2}, we have $K=0$.

We evaluate the Jacobian in Eq. (7.5) to obtain:

If the velocity distrinution does not depend on J, as is the case for all distributions to be conkdered, then $f=f(E)$ and the integration over J may be immediately carried out over all ranges of J^{2} in which the value of K does not change. The result wila the sum of a number of integrated terms, one for each end of each of them "anges. For compactness of notation, we define K_{n} as the value of K correspondia to all values of J between J_{n-1} and J_{n} where $n=1$ or 2 . For convenfence we. - 180 define a zero value of anguiar momentum J_{0}. We note that by the de: Ation of K_{n} we have $K_{1}=1$ and $K_{2}=2$. We then obtain:

$$
\begin{equation*}
\mathbb{N}(r)=-\left.\frac{2 \pi}{m^{2}} \int_{0}^{\infty} d E f_{v_{r<0}}(E) \sum_{n=1}^{2} K_{n}\left\{2 m(E-\operatorname{Ze\phi }(r))-J^{2} / r^{2}\right\}^{\frac{1}{2}}\right|_{J_{n-1}(E, r)} ^{J_{n}(E r)} \tag{7.7}
\end{equation*}
$$

The value J_{1} is both the lower limit of the region in which $K=K_{2}=2$, and the upper imit of the region in which $K=K_{1}=1$. Accordingly, the summation indicated in Eq. (7.7) may be condensed by combining the corresponding pair of terms. In order to preserve compactness of notation, we define quantities K_{0} and K_{3}, which are both zero, and then define the quantity $Q_{n}=K_{n-1}-K_{n}$; we then have $Q_{1}=-1, Q_{2}=-1$, and $Q_{3}=2$. Equation (7.7) then reduces to:

$$
\begin{equation*}
N(r)=-\frac{2 \pi}{m^{2}} \int_{0}^{\infty} 3 E f_{v_{r<0}}(E) \sum_{n=1}^{3} Q_{n}\left\{2 m(E-\operatorname{Ze\phi }(r))-J_{n}^{2} / r^{2}\right\}^{\frac{1}{2}} \tag{7.8}
\end{equation*}
$$

where

$$
0=J_{0} \leq J_{1}(E) \leq J_{2}(E, r)
$$

This formal way of expressing the number density $\mathbb{N}(r)$ will prove to be of advantage later in calculating specific values of this quantity. In a number of situations, at will be found that some or all of the quantities J_{0}, J_{1}, and J_{2} will coincide in certain ranges of E, and the summation in Eq. (7.8) mil consist of fewer than the indicated three terms in these same ranges of E. These points will become clear later (Appendix E).

We see that the integration over velocity space in Eq. (7.1) has been reduced to the calculation of a set of line integrals over paths $J_{n}{ }^{2}(E)$ in the $\left(J^{2}, E\right)$ plane. These paths are characterized by the fact that K takes on different values on either side of them. It is therefore necessary to consider within what regions of the ($J 2, E$) plane an incoming particle will strike the probe, within what regions it flies by the probe and within what regions its existence at a given radius is forbidden. This question is storied in Sec. VIII.

The current of a given specie of particle in the plasma, collected by the probe, is given by:

$$
\begin{equation*}
I=\left[4 \pi r^{2} \mathrm{ze} \int \mathrm{f}_{\mathrm{v}_{r}<0}(r, \underline{v})\left|v_{r}\right| d^{3} \underline{v}\right]_{r=R_{p}} \tag{7.9}
\end{equation*}
$$

This integration may be transformed in a manner similar to Eq. (7.5), into an integration over ($\left.J^{2}, E\right)$ space. Since we intend to study only situations in which $f_{v_{r}<0}$ does not depend on J^{2}, the result is:

$$
\begin{equation*}
I=\frac{4 \pi^{2} Z e}{m^{3}} \int_{0}^{\infty} f_{v_{r<O}}(E) J_{1}^{2}(E) d E \tag{7.10}
\end{equation*}
$$

The quantity of interest for experimental measurements is the net current $I_{\text {net, }}$ which may be obtained as follows, after Eq. (7.10) has been evaluated for each of the species of charged particles:

$$
\begin{equation*}
I_{n e t}=I_{+}+I_{-}=I_{+}-\left|I_{-}\right| \tag{7.21}
\end{equation*}
$$

In this study the velocity distribution at infinity for each species is taken as a Maxwellian distribution function:

$$
\begin{equation*}
f(E)=N_{\infty}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-E / k T} \tag{7.12}
\end{equation*}
$$

For purposes of comparison with work by other authors who employed mono-energetic distributions for the attracted species (Sec. V), we define a mono-energetic velocity distribution corresponding to particle's which have no preferred direction of motion and which each possess an equal amount of total energy which we call E_{M}. If $\bar{\delta}(\mathrm{x})$ is the well-known Dirac delta function, then this distribution is:

$$
\begin{equation*}
f(E)=\frac{m^{2} N_{\infty}}{4 \pi} \frac{\delta\left(E-E_{M}\right)}{\left(2 m E_{M}\right)^{\frac{2}{2}}} \tag{7.13}
\end{equation*}
$$

An energy E_{M} must now be chosen which will cause the mono-energetic distribution to best approximate the Maxwellian distribution which corresponds to the temperature T. In order to do this, we choose the value of E_{M} which will cause a low-order moment of the mono-energetie distribution to coincide with the same moment of the Maxwellian. It, has been suggested by then (Ref. 8) that the most suitable moment is the random flux; this equates the current collected by a probe at plasma potential. Equating this for both distributions, we obtain, for the spherical probe:

$$
\begin{equation*}
E_{M}=\frac{4}{\pi} \mathrm{kT} \tag{7.14}
\end{equation*}
$$

VIII.

ANALYSIS OF PARI:ICLE OBPITS

It' we eliminate v_{t} from Eqs. (7.3), we obtain:

$$
\begin{equation*}
\mathrm{F}-\left(\% e \phi(r)+J^{2} / 2 m r^{2}\right)=m v_{r}^{2} / 2 \tag{8.1}
\end{equation*}
$$

The torm $J^{2} / 2 \mathrm{mr}{ }^{2}$ in this equation expresses the effect of angular momentun of circunferential motion of a particle on i.ts radial motion. The form of this equation shows that this term is in effect a repulsive contribution to the potent, l energy. Accordingly, we define as follows an effective potential energy U for the motion of a particle possessing angular momentum $\ddagger \mathrm{J}$:

$$
\begin{equation*}
U=Z e \phi(r)+J^{2} / 2 m r^{2} \tag{8.2}
\end{equation*}
$$

A particle with a particular J^{2} and E can reach a particular r only if $E-U(r) \geq 0$. The relation $E=U$ defines a straight line in the (J^{2}, \mathbb{E}) plane, having a poaltive slope equal to $1 / 2 \mathrm{mr}^{2}$. Below this line, particles cannot exlst. This line will therefore be called the "cutoff boundary" corresponding to the radius r.

It is also possible for a particle which is not prohibited from n particular r by the $E<U$ condition to be prevented from penetrating inward to this radius by a potential barrier at a larger radius. In other words, a particle corresponding to the values E and J^{2} will exist at a particular r if and only if $E \geq U\left(r^{\prime}\right)$ for all $r^{\prime} \geq r$.

Any particle able to exist at the probe surface will be absorbed by the probe. Therefore, unless potential barriers exist at larger radii, all particles will be absorbed by the probe above the line:

$$
\begin{equation*}
E=Z e \phi_{p}+J^{2} / 2 m R_{p}^{2} \tag{8.3}
\end{equation*}
$$

The general appearance of the (J^{2}, E) plane is shown in Fig. $3 a$ for an attracting probe ($2 e \phi_{p}<0$ for the species under consideration) and in Fig. 3b for a repelling probe ${ }^{p}\left(\mathrm{Ze} \phi_{\mathrm{p}}>0\right)$, unless potential barriers intervene.

These diagrams are drawn for some specific radius r. They show the location of the cutoff boundary conresponding to this radius; they also show the location of the line correspording to Eq. (8.3), which represents the cutoff boundary corresponding to $r=R_{p}^{\prime}$. Values of the integer Q defined in Sec. VII, corresponding to these boundaries and to all other boundaries across which the integer K (Sec. VII) changes, are also shown. The quantities β and Ω shown in these diagrams are nondimensional equivalents of E and J^{2} defined in Sec. IX. For an attracting probe, it can be shown that potential barriers do not intervene to alter these diagrams if potential falls off with increasing radius sufficiently slowly for a repelling probe, the necessary condition is that the potential be monotonically decreasing. These statements are discussed in greater detail later in this section.

It is now necessary to examine the influence of potential barriers on these diagrams.

Figures $4 a$ and $4 b$ show families of curves of effective potential U as a function of r, sketched for various values of J^{2}, corresponding to attractive potentials Zeф(r) which decay more rapidly or more slowly than an inverse square potential, respectively. Examination of the expression for U (Eq. 8.2) shows that if $\phi(r)$ decreases more steeply with increasing r than an inverse square law, then the term $\mathrm{J}^{2} / 2 \mathrm{mr}^{2}$ will dominate at large enough radii and the term $\operatorname{Ze\phi }(r)$ will dominate at small radii. Since $J^{2} / 2 m r^{2}>0$ for any nonzero value of J, and $Z \in \phi(r)<0$ for an attractive potential, the effective potential will have a maximum at some value of r. For a larger value of J^{2}, this maximum will occur at a smaller radius. If $\phi(r)$ decreases more slowiy than an inverse square potential, then the term $\mathrm{J}^{2} / 2 \mathrm{mr}^{2}$ will dominate at smailer radii, and the term $\mathrm{Ze} \phi(r)$ will dominate at larger radil, producing a minimum in $U(r)$.

As Fig. 4a illustrates, if a maximum occurs in a curve of effective potential corresponding to a particular value of J^{2}, all particles coming from infinity whose trajectories correspond to that value of J^{2} and to energies E less than the value of U at the maximum, are prevented from penetrating inward past the maximum and therefore do not reach the probe. Therefore, if an attractive potential $\phi(r)$ is a steeper function of r than an inverse square, potential barriers exist which decrease the current collected by the probe.

We now examine, with reference to Fig. $4 a$, a sequence of trajectories corresponding to some given energy E, and to increasing values of J^{2}. As J^{2} is increased, the corresponding curve $U(r)$ moves upward until the maximum in this curve becomes equal to E. No trajectories corresponding to larger J^{2} can reach the probe, or even penetrate inward as far as the radius at which the maximum of $U(r)$ is just equal to E; we will call this radius $r_{M}(E)$. We also see that any particle with energy E that does penetrate inward to this radius must have an angular momentum small enough that it will reach the probe and be absorbed by it; we therefore call $r_{M}(E)$ the absorption boundary corresponding to the energy E. Figure 4 d shows such a sequence of trajectories, and also shows the location of $r_{M}(E)$. As E is increased, $r_{M}(E)$ is decreased, until for sufficiently large $E, r_{M}(E)=R_{p}$. For larger values of E, there exist no corresponding absorption radii, and the maximum value of J^{2} for which such particles still strike the probe is given by Eq. (8.3). A sequence of trajectories corresponding to such a value of E, and increasing values of J^{2}, is shown in Fig. 4c. For such a sequence of trajectories, i.e. when no absorption radius $\mathrm{r}_{\mathrm{M}}(\mathrm{E})$ exists for the energy E , current collection is said to be "orbital-motion-limited" at the energy E.

The orbital-motion-limited current represents the maximum current of particles of energy E that can be collected for a given probe potential and given distribution of such particles at infinity, in the collisionless case. This is true because the presence of potential barriers can only decrease the number of particles of this energy which reach the probe. If the current is orbital-motion-limited for all values of E corresponding to particles which come from infinity, then it is simply described as orbital-motion-limited. This terminology has been used by previous authors, though it may be considered as not very illuminating.

We now examine a sequence of cases in which the probe potential and all other nondimensional parameters are held constant except that the ratio of probe radius to Debye length is increased. Since the thickness of the sheath adjacent to the probe is always of the order of a few Debye lengths (Sections XV and XVI) the potential well surrounding the probe will contract and steepen, and, in general, an increasing number of particles will be prevented by potential barriers from reaching the probe, so that the collected current will decrease. Since there is always a largest energy E for which there still exists outside the probe an absorption radius $r_{M}(E)$, we expect that this largest E, which we call E_{H}, will increase as $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}}$ is increased.

We may now infer some differences which we may expect to see in the collected current as R_{p} / λ_{D} is increased, depending on whether the distribution of attracted particles is Maxwellian or mono-energetic. First, the current collection for mono-energetic particles need only be orbital-motion-limited at one energy in order to be completely orbital-motion-limited, so we expect current collection in this case to remain orbital-motion-limited for larger values of R_{p} / λ_{D}. Also, we may expect current collection in this case to decrease more suddenly once it is no longer orbital-motion-limited, since in the Maxwellian case current collection is an integral over contributions from many energics, each of which will cease to be orbital-motion-limited at a different value of R_{p} / λ_{D}. Both of these expectations are borne out in the computed results (Sections XV and XVI); in fact, in the mono-energetic case, curves of current collection vs $R_{p} / \lambda_{D_{2}}$ actually have a discontinuous slope at the value at which current becomes no ionger orbital-motion-limited.

Another type of orbit which exists when absorption radii are present is shown in Fig. 4e; this diagram shows an orbit corresponding to the same values of J^{2}, and E as a particle coming from infinity, but which connects with it nowhere, and originates and ends at the probe surface. This orbit lies entirely inside $r_{M}(E)$ whereas the other orbit lies entirely outside $r_{M}(E)$. Such an orbit can only be populated by emission from the probe surface, which we have assumed does not occur, or momentarily, by a collision; the population of such orbits is a negligible problem in comparison with the more serious one of trapped orbits.

Such trapped orbits exist when minima of effective potential occur, such as those shown in Fig. 4b; an example of a trapped orbit is shown in Fig. 4f. Trapped orbits and their implications are discussed in detail later in this section.

A more complicated situation than those of Figs. $4 a$ and $4 b$ is shown in Fig. 5a, which shows a family of effective potential surves, corresponding to various values of J^{2}, for a case in which the dependence of $\phi(r)$ on r is sjeeper than an inverse square at some radii, and shallower at others. In this case, trapped orbits, orbits unpopulated because they originate at the probe, and potential barriers, are all present. This situation is typical of potential configurations actually found to exist in many cases; variations of this situation also occur, as discussed later in this section. We also note that in the situation show, the smallest absorption radius that. is preseat does not lie immediately adjacent to the probe surface but is at some distance from it.

We now proceed to derive a more quantitative manner of dealing with the effects of potential barriers; this formulation will be essential in constructing a calculation scheme.

Since $\nabla^{2} \phi=-\rho / \epsilon$ and ρ is finite everywhere, $\nabla \phi$ is continuous everywhere. Therefore, ϕ is a continuous, smooth function of r. By its definition, Eq. (8.2), U is therefore a continuous, smooth function of r. Since $\phi \rightarrow 0$ as $r \rightarrow \infty, U \rightarrow 0$ also. We also have $E \geq 0$ for any particle coming in from infinity. Therefore, if $U(r) \leq E$ and $U\left(r^{\prime}\right)>E$ for some $r^{\prime}>r$, i.e. if the corresponding orbit is unpopulated at r, then U must have a maximum at some radius $r^{\prime \prime}$ larger than r. The maximal value $U\left(r^{\prime \prime}\right)$ must be greater than E.

In Figs. $4 \mathrm{a}, 4 \mathrm{~b}$, and 5a, all points $\left(r^{\prime \prime}, U\left(r^{\prime \prime}\right)\right.$), where a maximum or a minimum occurs in a curve of effective potential versus radius, have been joined to generate a curve called a locus of extrema in the (x, U) plane. The orbit corresponding to a given J^{2} and \mathbb{E} will be unpopulated at the radius r if the locus of extrema attains a value of U greater than E, at the point where it crosses the curve $U(r)$ corresponding to J^{2}, for any r^{\prime} greater than r.

The locus of extrems of the curves $U(r)$ is therefore of primary imporantance in the analysis of particle orbits and the determination of $J_{1}(\mathbb{E})$ and $J_{2}^{(L}(\mathbb{T}, r)$. Fach point on this locus of extrema crosses a specific curve of effective potential, corresponding to a specific value of J^{2}. Furthermore, it crosses at a specific value of U which corresponds to a specific energy level $E=U$. Eech point on this locus of extrema therefore corresponds to a particular j^{2} and E as well as a particular r; therefore, for a given potential function $\phi(r)$, the locus of extrema iefines a curve in the $\left(J^{2}, s\right)$ plane having
r as its parameter. It will be shown below that this curve is a well-behaved function of ϕ and $\mathrm{d} \phi / \mathrm{dr}$ and always has a positive slope which decreases as r increases. It may, however, contain one or more cusps.

The foregoing statements may now be given a geometrical interpretation in the ($\mathrm{J}^{2}, \mathrm{E}$) plane; namely; any point in this plane will be unpopulated at a radius r if any portion of the locus of extrema corresponding to radii greater than r passes above it, i.e., attains a greater E for the same value of J^{2}.

The defining condition for the locus of extrema is

$$
\left(\frac{d U}{d r}\right)_{J}=0
$$

If we define the subscript G as referring to the locus of extrema, we obtain:

$$
\begin{equation*}
J_{G}{ }^{2}=m r^{3} Z e \frac{d \phi}{d r} \tag{8.4}
\end{equation*}
$$

Substituting this result in the relation:

$$
\begin{equation*}
E=Z e \phi(r)+J^{2} / 2 m r^{2} \tag{8.5}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{G}}=\mathrm{Ze}\left(\phi(r)+\frac{r}{2} \frac{\partial \phi}{d r}\right) \tag{8.6}
\end{equation*}
$$

If Eq. (8.5) is differentiated with respect to r and the resulting equation is solved together with Eq. (8.5) to obtain expressions for J^{2} and E, these expressions are identical with Eqs. (8.4) and (8.6). The procedure just described is the standard technique for obtaining the parametric form of the curve which is the envelope of a family of straight lines whose generating parameter is r. This means that the curve $\left(J_{G}{ }^{2}(r), E_{G}(r)\right)$ is the envelope of all the straight lines represented by Eq. (8.5) in the (J^{2}, E) plane. The locus of extrema is therefore tangent to the straight line given by Eq. (8.5) at the point on the locus corresponding to the conditions at r. The slope of the locus of extrema must therefore decrease toward zero as r increases.

It is now possible to draw the $\left(J^{2}, \mathbb{E}\right)$ diagram corresponding to Fig. 5a. This diagram is show in Fig. 5b. The integration paths $J_{n}{ }^{2}(E)$ required to integrate Eqs. (7.8) and (7.10) or their cylindrical analogues Eqs. (10.6) and (10.8) can be seen on this diagram. It is instructive to trace in detail theise integration paths, in order to obtain a clear picture of what is involved in the integration of these expressions. The integration path Jo (E) corresponds in this diagram to the live that is labeled AB; the paths $J_{1}{ }^{2}(\mathbb{S})$ and $J_{2}{ }^{2}(E)$ correspond to the loci labeled CEF and CELG, respectively. At larger values of r, the point of tangency of the cutoff boundary (8.5) slides along the locus of extrema. The path $J_{2}{ }^{2}(\mathbb{B})$ must be modified qualitatively at these larger radii. Figures 6 a to $6 c$ show the resulting appearance of the $\left(J^{2}, E\right)$ diagram for three successively larger values of r. In Fis. $6 a, J_{2}{ }^{2}(E)$ corresponds to the locus labeled CHEC; in Figs. $6 b$ and $6 c, J_{2}{ }^{2}(E)$ corresponds to the loci labeled $C D E$ and $C D$, respectively. qualitative departures from the situation shown may also occur for potentials $U(x)$ which have other shapes, so that the integration paths examined here are only a small sample of the many configurations that are possible.

Some further properties of the locus of extrema are of importance. Examination of Eq. (8.4) for $J_{G}{ }^{2}$ and Eq. (8.6) for E_{G} shows that both of these quantities are able to take on negative values. For example, $J_{G}{ }^{2}$ wi 11 actually do so in the case of either a repelling potential or an attracting one that is non-monotonic in form. It is therefore possible for the locus of extrema to enter any quadrant of the $\left(J^{2}, E\right)$ plane, but since negative values of J^{2} are physically meaningless and particles coming from infinity always have $E \geq 0$, this curve becomes of importance only when it enters the first quadrant. Since the locus of extrema is tangent to the cutoff boundary (8.5) at the point $\left(J_{G}{ }^{2}(r), E(r)\right)$, it always has a positive slope which decreases as increases.

The locus of extrema itself possesses maxima and minima in the (r, U) plane. An extremum in the locus of extrema corresponds to extremal values of both E_{G} and J_{G}^{2} simultaneously (Fig. 5a), and therefore has two defining conditions, both of which are equivalent. These are:

$$
\begin{equation*}
\frac{d E_{G}}{d r}=\frac{d J_{G}^{2}}{d r}=0 \tag{8.7}
\end{equation*}
$$

The first relation gives:

$$
\begin{equation*}
\mathrm{Ze}\left(\frac{3}{2} \frac{d \phi}{d r}+\frac{r}{2} \frac{d^{2} \phi}{d r^{2}}\right)=0 \tag{8.8}
\end{equation*}
$$

The expression for $d E_{G} / d r$, which is equated to zero in Eq. (8.8), represents the slope of the locus of extrema in the (r, U) plane. Positive or negative values of this slope correspond respectively to regions containing absorption boundaries or trapped orbits (Figs. 4a, 4b, 5a). Nmerical tests of the sign of this quantity therefore provide essential irformation for the computation scheme by determining the natiure of the potential generated during each iteration. This quantity will reappear later in nondimensional form in Eq. (E.29).

Since the locus of extrema always has a positive slope in the $\left(J^{2}, E\right)$ plane, and since $d F_{G} / d r$ and $d J_{G}^{2} / d r$ always change sign simultaneousiy, therefore an extremum of the locus of extrems in the (r, U) plane always produces a cusp in the $\left(J^{2}, E\right)$ plane. Two such cusps are visible in Fig. $5 b$ and in Fige. 6e to 6c.

A potential may be envisioned that would be sufficiently irregular in form to cause $d B_{\mathrm{G}} / \mathrm{dr}$ and $\mathrm{d}_{\mathrm{C}} / \mathrm{dr}$ to change sign several times and thereforc produce a locus of extrema baving several cusps, corresponding to multiple systems of potential berriers. Situations of this type were in fact found to be generated as transient phenomens by the iterative schome. In order to continue the calculations beyond this point, it therefore became necessary to incorporate into the program an ability to calcilate charge density even in these situations. It was feared that the use of approximate calculations at this stage might disturb the computation enough to keep it from converging to the true solution. It was also considered dangerous to ignore the possibility that in some cases even the final solution might have such a configuration. The detailed study of these multiple-cusp or multiple-barrier potentials, such as that made bere, has therefore been an essential part of this investigetion.

Pigure 7 shows some possible potential conflgurations, together with the resulting forms of the locus of extrem in the (r, U) plane, and its corresponding forms in the ($\mathrm{J}^{2}, \mathrm{~s}$) plane. The 10 specific ceses shown in Fig. 8 have been incorporated into the computation scheme.

The dotted curves in this figure represent segments of the locus of extrema which may enter the first quadrant but which do so in such a manner as not to influence any of the particles which strike the probe. Fon example, the presence of any of the dotted segments in cases 5 and 6 in this figure would represent situations in which the current collection was still orbital-motion-limited, but the charge density at certain radii was affected by potential barriers.

This examination of the behaviour of the locus of extrema has until now considered only the case of an infinite plasma. However, it has been pointed out earlier (Sec. II) that the calculation scheme defined here makes use of an outer boundary at finite radius. In general, the presence of any boundary of this type makes it necessary to modify the preceding discussion; however, it can be shown that no such changes are necessary for the particular boundary conditions specified here. To prove this will be the purpose of the following discussion.

The asymptotic potentials for large radius, $\phi \alpha \mathrm{r}^{-2}$ for a spherical probe and $\phi \alpha r^{-1}$ for a cylindrical probe, derived by Bernstein and Rabinowitz (Ref. 5), lead to the relations:

$$
\begin{array}{ll}
\mathrm{d} \phi / \mathrm{dr}=-2 \phi / \mathrm{r} & \text { spherical probe } \tag{8.9}\\
\mathrm{d} \phi / \mathrm{dr}=-\phi / r & \text { cylinarical probe }
\end{array}
$$

These relations are used as boundary conditions on Poisson's equation at the outer edge $r=K_{B}$ of the computation net. Appendix D derives in detail the resulting method for integrating the Poisson equation.

Examination of Eqs. (8.4) and (8.6) for a power-1aw potential $\phi \alpha r^{-n}$ shows that the locus of extrema does not enter the first quadrant of the ($\left.J^{2}, E\right)$ plane for $n \leq 2$. Since this condition is satisfied in both the spherical and cylindrical cases for the power-law potentials assumed beyond the boundary, the locus of extreme enters the first quadrant only for $r<R_{B}$. This fact is of advantage in devising the scheme for calculation of the charge densities for $r \leq R_{B}$. It means that the form of the potential beyond the boundary has no effect on the formulation of these calculations.

As a result, it is possible to calculate both the attracted and repelled charge densities waile leaving the precise depenience of potential on radius beyond the boundary unspecified; this dependence enters the problem only as a boundary condition on the integration of the Polsson equation (Appendix D).

The introduction of this power-lay boundary condition is of crucial importance in defining a vorkable computation schame, because the fact that the assumed potential at and beyond the boundary is a close approximation to the actual potential in the infinite case means that the outer boundary can be placed much closer to the probe without significantly disturbing the computed results than would be possible for the mons obvious assumption of a boundary held at zero potential. IMis matter is di. ussed in more deteil in Appendix H.

It may be seen from Figs. 4 b and 5 a that if $\mathrm{dE} / \mathrm{dr}$ is positive over some range of radii, a family of minima in curves of effective potential will exist in this range. These minima form potential wells which are capable of trapping particles in bounded orbits that do not strike the probe surface. An orbit of this type is illustrated in Fig. 4f. As Bernstein and Rabinowitz (Ref. 5) have point out, these orbits can be populated by collisions, no matter how infrequently such collisions occur. This effect occurs because these collisions are capable of changing the energy and angular momentum of a particle at some radius to values corresponding to those of any trapped orbits that exist at that radius. A particle thus "knocked into" a trapped orbit will remain in it until another collision knocks it out ggain. Appendix A imposes a modification on this argument; it is shown there that it is much more common in general for charged particles to be scattered out of their collisionless trajectories by numerous small-angle encounters than by large angle collisions. Thus particles will tend to "drift into" or out of trapped orbits instead of being knocked into them. In any case, the resulting contributions to charge density cannot be calculated by the collisionless theory used here.

Since the assumption has been made (Sec. II) that all such potential wells are unpopulated, the results of this investigation may be of restricted use to the experimenter in any situation where these results predict the existence of potential wells. An exception to this will occur if an experimental situation arises in which the population of these orbits can be shown to be negligible. It may be argued that this occurs for a cylindrical probe; even when the length-to-diameter ratio of the probe is large enough for the infinite-cylinder results obtained here to be useful, the trapped particles may still be expected to leak out of the ends of the geometry rapidly enough to prevent appreciable charge accumulation. Noreover, if the plasma is flowing parallel to the cylinder axis, nearly all trapped particles will be carried downstream by their langitudinal velocity.

This is a fortunate coincidence, because the cylindrical probe can be shown to be ajways surrounded by trapped orbits, which exist everywhere outside a certain radius. Substitution of $\phi \alpha 1 / r$, the asymptotic potential for large radii, into expression (8.6) gives a form for E_{o} whose radial derivative is always pusitive in the case of the attracted species. As the probe potential is increased, the innermost radius of thase trapped arbits moves outward. At sufficiently large probe potentials, a second, inuer fanily of trapped orbits forms adjacent to the probe. The outer boundary of this fandly then moves outward upon further increase of probe potential.

In contrast with this situation, the spberical probe, mase asymptotic potential $\phi \alpha 1 / r^{2}$ is ateeper than that for a cylinder, develops only the inner fanily of trapped orbits. In both the apherical and cylindrical cases, the potential in the vicinity of the probe will be more shailow in form for smaller ratios of probe redius to Debye length, and the inner fanily of trapped orbits will begin to appear at smiler probe potentials.

It should be noted here that qualitative reasoning of the type presented above to argue for the non-population of trapped orbits around a cylindrical probe, is ofter dangerous. The final answer to this question muat ultimately come from a more complete theory or from experiment.

Although the collisionless theory developed bere canoot be used to predict the effect on the collecten current of trupped-orbit population, an
argument may be advanced to suggest whether the effect will be to increase or decrease the collected current in any given case. If trapped orbits near the probe are populated, the density of the attracted species will be locally increased. Examination of the Poisson equation (4.3) shows that the magnitude of ∇_{ϕ} near the probe will be increased, tending to increase the curvature of the potential well near the probe and hence to cause the potential well to steepen and contract. Particles which would otherwise have orbited into the probe will miss it and the collection of the attracted species will be decreased.

This argument is subject to the same warning as the preceding argument. However, it may be made more convincing by examination of a related effect. Calculations have been carried out in this investigation for the case in which the distribution for repelled particles is replaced by one corresponding to the simple "Boltzmann factor" law (Eq. 13.13). This situation corresponds to repelled particles which are not absorbed or annihilated at the probe surface but simply "reflected" by it. These calculations are discussed in greater detail in Seciions XIII and XV; their relevance here is that they correspond to an increase in the density of the repelled rather than the attracted particles near the probe and therefore constitute the converse of the effect of populating the trapped orbits. As is shown in Sec. XV, the attracted-species current is in all such cases increased above corresponding values calculated for a completely absorptive probe. Therefore, if trapped-orbit population increases the attractedspecies density near the probe, we may indeed suspect that the attracted-species current will decrease. In other words, the results presented here will in this ${ }^{-}$ case form an upper bound.

There is one respect in which the two situations discussed here will fail to be the converse of each other. In the "reflecting probe" situation, the increment in charge density will have its largest value at the probe surface, whereas if trapped orbits are populated, the maximum increment will occur at a certain distance from the probe. Furthermore, an increase in attracted-particle density will change the potential everywhere, and situations may be envisioned in which the chaage is such as to increase rather than decrease the current collection.

IX. HOM-DTESESIOML EOUAMIONS - SETERTCA FROBE

In order to discard unnecessai'y groups of symbols and make easier the task of constructing a computation scheme, we now rewrite the expressions developed in Chapter VII in nondimenaional form. We therefore introduce the following dimensionless quantities:

$$
\begin{align*}
B & =E / K I \\
Q & =J^{2} / Z_{m} R_{p}^{2} k I \tag{9.1}\\
x & =R_{p} / r \\
x & =2 Q / k T \\
m_{7} & =-\frac{n_{+}}{m_{-}} \frac{Z_{-}}{Z_{+}}
\end{align*}
$$

$$
\begin{aligned}
& \eta=p / D_{\infty}=\| / M \infty \\
& \tilde{v}=v(m / k T)^{\frac{1}{2}} \\
& \tilde{r}=I / M_{\infty}(\mathrm{kI} / \mathrm{m})^{3 / 2} \\
& r=R_{p}^{2} / \lambda_{D}^{2} \\
& 1=I /(I)_{\phi_{P}}=0
\end{aligned}
$$

The Maxwell velocity distribution (7.12) becomes

$$
\begin{equation*}
\tilde{f}=(1 / 2 \pi)^{3 / 2} e^{-\beta} \tag{9.2}
\end{equation*}
$$

The mono-entrgetic distribution (7.13) becomes:

$$
\begin{equation*}
\tilde{f}=\frac{\delta\left(\beta-\beta_{M}\right)}{4 \pi \sqrt{2 \beta_{M}}} \tag{9.3}
\end{equation*}
$$

Frou (i.14): we have:

$$
\begin{equation*}
\beta_{M}=\frac{4}{\pi} \tag{9.4}
\end{equation*}
$$

Equation (7.8) for the density of either species of charged particle, becomes:

$$
\begin{align*}
\eta=- & \dot{c}^{j / 2} \pi \int_{0}^{\infty} \dot{d \beta} \hat{f}(\beta) \sum_{n} Q_{n}\left\{\beta-x-\Omega_{n}(\beta) x^{2}\right\}^{\frac{1}{2}} \\
& \text { Fcissorn's equation }(4 \cdot 3) \text { reduces to: } \\
& \frac{d^{2} x}{d x^{2}}=-\frac{\gamma \eta_{n e t}}{x^{4}} \tag{9.6}
\end{align*}
$$

Equatian (4.4) becomes:

$$
\begin{equation*}
\eta_{\text {Het }_{+}}=p / \rho_{\infty_{+}}=\eta_{+}-\eta_{-} \tag{9.7}
\end{equation*}
$$

Equations (0.4) and (8.6) become:

$$
\begin{equation*}
\lambda_{G}=-\frac{1}{\overrightarrow{r x}} \frac{d x}{d x} \quad B_{G}=x-\frac{x}{2} \frac{d x}{d x} \tag{9.8}
\end{equation*}
$$

The ahove equations, (9.2) to (9.8), together with appropriate tests $3 n$ the potential χ and its derivatives in order to find the proper values

Ine current collection (7.10) becomes:

$$
\begin{equation*}
1=(2 \sim)^{3 / 2} \int_{0}^{\infty} d \beta \tilde{f}(\beta) \Omega_{1}(\beta) \tag{9.9}
\end{equation*}
$$

If electron current at plabin potential is used as a reference, the net current equation (7.11) beccmes:

$$
\begin{equation*}
i_{\text {tet }}=I_{n e t} / I_{0}=1_{-}-1_{+}\left(\pi_{6} / \pi_{7}\right)^{\frac{1}{2}} \tag{9.10a}
\end{equation*}
$$

A convenient reference current for the ions is that ion current which would be collected by arobe at plasma potential if the effective temperawure of the lons were the same as that of the electrons. If we define the ion ciatrent vondimensionalized in this manner as $1+$, we obtain:

$$
i_{+-}=i_{+}\left(\pi_{6}\right)^{\frac{1}{2}}
$$

The momentum-energy boundaries $\Omega_{n}(\beta)$ take any one of four rems. is the nondimensional form of the cutaf boundary relation (8.5):

$$
\Omega_{n}(\beta)=(\beta-\chi(x)) / x^{2}
$$

The second corresponds to the probe surface cutoff bounding?

$$
\Omega_{n}(\beta)=\beta-\chi_{p}
$$

The third and fourth core spend respectively to zero momentum and to the locus of extrema:

$$
\begin{gathered}
\Omega_{n}(\beta)=0 \\
\Omega_{n}(\beta)=\Omega_{G}(\beta)
\end{gathered}
$$

When these expressions are stituted into Eqs. (9.5) and (0,9) or their cylindrical analogues Ens. (11.2) (11.4), the first three them =ion duce integrals in β that may be evaluated and focally. Expression (c.14) pro duce integrals that must be evaluated numeric ely, but may first be transform ad into integrations over radius.

These integrations are carried out $\frac{1}{}$ detail in Appendix E.
From the definitions of π_{6} and χ, we tain the following \boldsymbol{r}, lation between the potential nondimensionalized in termor ion energy terms of electron energy:

$$
x_{-}=-x_{+} \pi_{6}
$$

Finally, from the definitions of π_{6} and γ, end making use of the p^{*} ama newtrality condition (3.1), we obtain the following relation between tore ratios of probe radius to ion and electron Debye lengths:

X. CYLINDRICAL PROBE

For the cylindrical probe, it is convenient to emplo the wal coordinates r, θ, z. The number density of either species of partite is then given by:

$$
\begin{equation*}
N(\underline{r})=\int f(\underline{r}, \underline{v}) d v_{r} d v_{\theta} d v_{z} \tag{10.1}
\end{equation*}
$$

The appropriate constants of the motion are the enter and angular momentum J of transverse motion in the (r, θ) plane, and the plocity $\mathbf{v}_{\mathbf{z}}$ of motion parallel to the cylinder axis. E and J are given in terns of v_{r} and v_{θ} by expressions similar to Eq. (7.3).

It is useful to define a reduced velocity distribution as
Sollomg:

$$
\begin{equation*}
\hat{\hat{f}}(E, J)=\int_{-\infty}^{\infty} f\left(E, J, v_{z}\right) d v_{z} \tag{10.2}
\end{equation*}
$$

We then proceed as in the spherical case, observing that the same discussion , mout the limits of integration on v_{r} and v_{θ}, and hence on E and J, applies gain:

$$
\begin{equation*}
N(r)=\int_{V_{\theta}=x}^{v_{\theta}=\infty} \int_{v_{r}=-\infty}^{v_{r}=\infty} \widehat{f}(E, J) \frac{\partial\left(v_{r}, v_{\theta}\right)}{\partial(E, J)} d E d J \tag{10.3}
\end{equation*}
$$

=-
$-\left.\frac{2}{m} \int_{E=0}^{E=\infty} d E \hat{f}_{V_{r}<0}(E) \sum_{n} K_{n}\left(J^{2}\right) \arcsin \left\{\frac{J^{2}}{2 m r^{2}(E-Z e \phi(r))}\right\}^{\frac{1}{2}}\right|_{J=J} ^{J=J}$

$$
=\frac{2}{m} \int_{E=0}^{E=\infty} d E \hat{X}_{v_{r<0}}(E) \sum_{n} Q_{n} \arcsin \left\{\frac{J_{n}^{2}}{2 m r^{2}(E-Z e \phi(r)}\right\}^{\frac{1}{2}}
$$

In Eqs. (10.4) to (10.6), the quantities K, K_{n}, and Q_{n} are as defined in Sec. VII.

The collected current per unit probe length is

$$
\begin{align*}
I & =\left[2 \pi r \mathrm{Ze} \int f_{v_{r<0}}(r, \underline{v})\left|v_{r}\right| d^{3} \underline{v}\right]_{r=R_{p}} \tag{10.7}\\
& =\frac{4 \pi Z e}{m^{2}} \int_{E=0}^{E=\infty} \widehat{f}(E) J_{1}(E) d E \tag{10.8}
\end{align*}
$$

The velocity distribution that is Maxwellian in transverse motion is

$$
\begin{equation*}
\widehat{\mathrm{f}}(E)=N_{\infty} \frac{m}{2 \pi k T} e^{-E / k T} \tag{10.9}
\end{equation*}
$$

The velocity distribution that is mono-energetic in transverse motion is

$$
\begin{equation*}
\hat{\mathrm{f}}(E)=\frac{m N_{\infty}}{2 \pi} \quad \delta\left(E-E_{M}\right) \tag{10.10}
\end{equation*}
$$

As before, we equate collected currents at plasma potential in order to fix E_{M}. We first observe that if $\overline{\mathrm{F}}$ is the average velocity of particle motion transverse to the cylinder axis, rather than the average velocity of three-dimensional motion, then the number of particles striking the probe surface per unit area per unit time is NV/ π rather than No/4.

Equating currents, we obtain:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{M}}=\frac{\pi}{4} \mathrm{kT} \tag{10.11}
\end{equation*}
$$

for the cylindrical probe.
XI. NON-DIMENSIONAL EQUATIONS - CYLINDRICAL PROBE

We define a non-dimensional velocity distribution in terms of the reduced distribution (10.2):

$$
\begin{equation*}
\tilde{\mathrm{f}}=\frac{\hat{\mathrm{I}}}{\bar{N}_{\infty}} \frac{\mathrm{kT}}{\mathrm{~m}} \tag{11.1}
\end{equation*}
$$

Equation (10.6) becomes:

$$
\begin{equation*}
\eta=2 \int_{0}^{\infty} d \beta \tilde{f}(\bar{\beta}) \sum_{n} Q_{n} \text { arc } \sin \left\{\frac{\Omega_{n} x^{2}}{\beta-\chi}\right\}^{\frac{1}{2}} \tag{11.2}
\end{equation*}
$$

Poisson's equation becomes:

$$
\begin{equation*}
\frac{d}{d x}\left(x \frac{d x}{d x}\right)=-\frac{\gamma \eta_{\text {net }}}{x^{3}} \tag{11.3}
\end{equation*}
$$

The current collection equation (10.8) becomes:

$$
\begin{equation*}
i=4(\pi)^{\frac{1}{2}} \int_{0}^{\infty} d \beta \tilde{\mathrm{f}}(\beta)\left(\Omega_{1}(\beta)\right)^{\frac{1}{2}} \tag{11.4}
\end{equation*}
$$

The Maxwell distribution (10.9) becomes:

$$
\begin{equation*}
\tilde{f}=\frac{1}{2 \pi} e^{-\beta} \tag{11.5}
\end{equation*}
$$

The mono-energetic distribution (10.10) becomes:

$$
\begin{equation*}
\tilde{f}=\frac{\delta\left(\beta-\beta_{M}\right)}{2 \pi} \tag{11.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
\beta_{M}=\frac{\pi}{4} \tag{11.7}
\end{equation*}
$$

XII. THE LIMIT OF ZERO-TEMPGRATURE REPELTED PARTICIES

A frequently occurring experimental situation is one in which the ion-to-electron temperature ratio is very small compared to unity. In such situations, the positive half or electron collection part of the probe characteristic becomes very difficult to calculate. The ions, which in this case are the repelled species, have relatively little thermal energy and are turned back נy a correspondingly small rise in potential. The ion density falls to zero very rapidly as the sheath is entered, and the sheath edge tends to become very sharply defined. Calculations of electron current were found to become very sensitive in these cases. Since these calculations were considered to be of substantial value, it was decided to consider the limiting case of zero repelledspecies temperature and modify the computation scheme to obtain the corresponding attracted-species current results. These would then form end-point data for results obtained at progressively decreasing repelled-species temperatures. This modified computation scheme is described here.

We first examine certain expressions for number density $N(r)$ as a function of potential $\phi(r)$, derived in detail in Appendix E. For the repelled species (Ze $\phi_{p}>0$), these expressions are given by Eq. (E.39) for the spherical probe and by Eq. (E.92) for the cylinder. Examination of these expressions shows that for probe potentials much larger than the repelled-species thermal energy, they both reduce to:

$$
\begin{equation*}
N / N_{\infty}=e^{-\mathrm{Ze} \phi / k T} \tag{12.1}
\end{equation*}
$$

This dependence is of the same form as that prediced in general by equilibrium thermodynamics. In the limit $T \rightarrow O$, the value of N given by Eq. (12.1) is zero for $Z e \phi$ positive, and indeterminate for $Z e \phi$ zero. The region outside the probe is therefore split by a sharply defined sheath edge into two regions: a plasma in which ϕ vanishes exactly everywhere and the density of repelled particles is exactly equal to the density of attracted particles; and a sheath where ϕ rises to its value at the probe and from which repelled particles are completely excluded. The density of repelled particles falls discontinuously to zero as the sheath is entered. The electric field is continuous across the sheath edge since no mechanism exists which can produce an infinite charge density there or anywhere else outside the probe. Therefore ϕ and d ϕ / dr both vanish at the sheath edge; the inward flux of attracted particles at this radius is entirely due to their random thermal motion. The density of the attracted species outside the sheath is affected by the depletion of these particles by the probe, but since electric fields are zero in this region, this density no longer influences the rest of the problem. The flux of attracted particles reaching the probe is therefore dependent only on the potential distribution in the sheath, and not on conditions outside it. Computations of potential and charge density therefore need to be carried out only inside the sheath. The sheath edge radius is not known in advance, but since no electric fields may penetrate past the sheath edge into the plasme, its position must adjust itself until the total space charge within the sheath exactly cancels the charge on the probe. This condition is equivalent to the vanishing of $\mathrm{d} \phi / \mathrm{dr}$ at the sheath edge.

These considerations serve to define a boundary value problem in which not only the potential and charge density distributions but also the position of one boundary, the sheath edge, must be found as part of the solution. This
problem is solved here ir order to calculate the collected current in the limit of zero-temperature repelled particles. Figure 9 shows qualitatively the forms of potential and charge densities as functions of radius. The subscript 9 is here defined as referring to the sheath edge radius.

The modified solution scheme used to calculate the collected currents is as follows. The boundary condition for ($\alpha \phi / d r)_{E}$ is relaxed. For a given charge distribution, the houndary conditions $\phi \rightarrow \phi_{p}$ as $r \rightarrow R_{p}$ and $\phi_{\mathrm{E}}=0$ then serve to define a well-poser two-point boundary value problem for Poisson's equation. (The solution is derived in dotail in Appendix D.) An initial trial value is assumed for the sheath edge radius R_{B}. An iterative procedure is carried out, as in the general case, to oftain the potential as a function of radius, and the collected current. The value thus ohtained for the sheath edge potential gradient $(d \phi / d r)_{B}$ is used to decide whether the assumed sheath edge radius is too large or too small. A second trial value of R_{B} is computed and the process is repeated. When a sheath edge position is found which produces a sufficiently small sheath edge gotential gradient; the calculatior is stopped.

The method for caloulating the density of attracted particles must be modified in the presence of the zero-potential sheath edge. In order to examine why this is so, we substitute the sheath edge boundary condition $\phi\left(\mathrm{R}_{\mathrm{B}}\right)=0$ into the cutoff boundary expression given by Eq. (8.5) and use Eqs. (9.1) to convert the resulting expression into non-dimensional form. We then obtain the following expression for the sheath edge cutoff boundary in the (Ω, β) plane:

$$
\begin{equation*}
\beta=\delta_{x_{B}}{ }^{2} \tag{12.2}
\end{equation*}
$$

This boundary appears in Fig. 10 as a straight line having positive slope and passing through the origin. No particles coming from infinity can reach the sheath edge having an angular momentum and energy corresponding to ariy point below this line. Therefore, in order to influerce the current and charge density, the locus of extrema must now not only enter the first quadrant of the (Ω, β) plane, but must, also rise ahove this line. Figure 10 shows the resulting changes that will. occur in Figs. $3 a$ and 6c. As in Sec. VIII, it is instructive to identify the integration paths $J_{1}(E)$ and $J_{2}(E)$ with the corresponding $100 i$ in $\$ 1 g .10$. In Figs. 10 a and 10 b , $J_{1}^{1}(F)$ is represented by the ioci $A C F$ and $A C H$: respectively; $j_{2}(F)$ is represerted by the paths $A B C$ and $A C E G$, respectively. Once again, it should be noted that these particular configurations are only a small sample of the many that are possible.

Using Fig. li)a and the notation devaloped in Appendix E, we obtain the following expression for the maximum current of colisionless attracted particles that may be collected by a probe in the presence of the zero-potential sheath edse at the location $x=x_{B}$:

$$
\begin{equation*}
1: i_{2}\left(B_{C}\right)+i_{1}\left(\beta_{C}\right) \tag{12,3}
\end{equation*}
$$

where β_{c} is the vaiue of β corresponding to the intersection between the lines $\beta=53 x_{B}^{2}$ and $\beta=\chi_{p}+\Omega$, which is therefore given by:

$$
\begin{equation*}
\beta_{C}=\cdot \frac{x_{\tilde{E}}}{\frac{1}{x_{\mathrm{E}}^{2}}-1} \tag{12.4}
\end{equation*}
$$

\because For the spherical probe, we substitute Eqs. (E.34) and (E.35)
into Eq. (12.3) to obtain:

$$
\begin{equation*}
i=\frac{1}{x_{B}{ }^{2}}\left(1-\left(\beta_{C}+1\right) e^{-\beta_{C}}\right)+\left(\beta_{C}-\chi_{p}+1\right) e^{-\beta_{C}} \tag{12.5}
\end{equation*}
$$

For the cylindrical probe, we substitute Eqs. (E. 89) and (E.90) to obtain:

$$
\begin{equation*}
i=\frac{1}{x_{B}}\left[1-\frac{2}{\sqrt{\pi}} e^{-\beta C}\left(\sqrt{\beta_{C}}+g\left(\sqrt{\beta_{C}}\right)\right)\right]+\frac{2}{\sqrt{\pi}} e^{-\beta_{C}}\left[\sqrt{\beta_{C}-\chi_{p}}+g\left(\sqrt{\beta_{C}-x_{p}}\right)\right] \tag{12.6}
\end{equation*}
$$

These expressions give the maximum values of collected current that can be drawn from a concentric outer boundary for a given boundary radius and potential difference between the inner and outer boundary, when the cuter boundary emits collisionless Maxweliian particles inward. An expression equivalent to Eq. (12.5) has been derived by Medicus (Ref. 30). For large values of R_{B} / R_{p} expressions (12.5) and (12.6) approach the orbital-motion-limited current expressions (E .43 a) and (E.94a), respectively. For values of $\mathrm{R}_{\mathrm{E}} / \mathrm{R}_{\mathrm{p}}$ only slightly greater than l, they reduce to the usual expressions for current increase as a function of sheath edge radius in which it is assumed that all particles entering the sheath strike the probe. Large values for R_{B} / R_{p} may be expected to occur if the probe diameter is small compared to the attractedspecies Debye length ($R_{p} \ll \lambda_{D}$) and the probe potential is large; R_{B} / R_{p} will be close to 1 if $R_{p} \gg \lambda_{D}$.

The currents given by Eqs. (12.5) and (12.6) in terms of sheath edge location are upper bounds for the current values calculated here by the solution scheme described above. These upper bounds are never actually attained "(for a given sheath edge location) because barriers of effective potential are always present within the sheath. This is because there will always be a region just inside the sheath edge in which the potential varies more steepiy with radius than an inverse square law. (This happens in spite of the fact that the potential gradient approaches zero at the sheath edge.) This is equivalent to the statement that the locus of extrema always enters the region $\Omega>0, \beta>\Omega x_{B}{ }^{2}$. The latter may be proven by noting that at $x_{1}=x_{B}$, $x=d x / d x=0$ and $d^{2} \chi / d x^{2}<0$, and substituting this informatioh into Eqs. (9.8) for Ω_{G} and β_{G}.

In the limit of large R_{p} / λ_{D}, the sheath lies close to the probe surface and is well approximated by a planar situation in which all particles entering the sheath strike the probe. The collected current can then be calculated if the sheath edge radius alone is known, and the sheath edge radius can be obtained from the solution of the planar Poisson equation. This solution is derived in Appendix F for the case in which the particles being attracted into the sheath are Maxwellian. At large probe potentials the form of the solution curve is asymptotic to the familiar Child-Langmuir sheath relation. Since this relation does not correctly predict the form of the sheath potential at small potentials, a finite difference between the sheath edge radil predicted by the Child-Langmuir and the exact solutions will persist even at large probe potentials.

If either the spherical or cylindrical mono-energetic distributions (Eqs. (9.3) and (11.6), respectively) are substituted in place of the Maxwellian in Appendix F, and the corresponding calculations are repeated, sheath potentials will result which are different than the one derived there. These can also be shown to be asymptotic to the Child-Langmuir result, so that the above, remarks apply once again.

These spherical and cylindrical mono-energetic distributions will produce sheath potential shapes, even in the large-probe limit, that differ from each other as well as from the Maxwellian result. This is because the cylindrical distribution of Eq. (1i.6) is mono-energetic in transverse motion only. The spherical distribution of Eq. (9.3) forms a spherical shell in velocity space; on the other hand the distribution corresponding to Eq. (11.6) forms a cylindrical shell. No distribution of longitudinal velocity exists which can make the two equivalent.

XIII. MONO-ENERGETIC ATTRACTED PARTICLES; THE PLASMA APPROXIMATION

It has been indicated earlier (Sec. IV) that other authors have substituted a mono-energetic model for the velocity distribution of the attracted species, in place of the more realistic Maxwellian, in order to reduce the problem from a system of integral equations to an ordinary differential equation and make the task of obtaining numerical results substantially easier. Since one of the goals of this, research has been to display explicitly the effects of this approximation by comparing the results with those for the Maxwellian case, a routine for calculation of the density of mono-energetic attracted particles has been incorporated into the computing program. This subprogram operates within the iterative scheme designed for the Maxwellian case. One practical benefit that has resulted has been the use of this subprogram to provide a very good first approximation for the Maxwellian case, which is much more expensive in computation time. This has resulted in a substantial reduction in the total computation time required to obtain the Maxwellian results.

Furthermore, the Maxwellian and mono-energetic distributions coalesce in the zero-temperature limit, so that the zero-temperature monoenergetic results provide an end point for curves of collected current vs attracted-species temperature for either distribution.

We therefore include here a brief derivation of the expressions for the density of mono-energetic attracted particles. Apart from notation, many of these expressions are substantially the same as those developed in Ref. 5.

For the spherical probe, substitution of Eq. (9.3) into Eqs. (9.5) and (9.9) gives:

$$
\begin{align*}
& \eta=-\frac{1}{2 \sqrt{\beta_{M}}} \sum_{n} Q_{n}\left\{\beta_{M}-\chi-\Omega_{n}\left(\beta_{M}\right) x^{2}\right\}^{\frac{1}{2}} \tag{13.1}\\
& 1=\frac{1}{2} \sqrt{\frac{\pi}{\beta_{M}}} \Omega_{1}\left(\beta_{M}\right)
\end{align*}
$$

$$
\beta_{M}=\frac{4}{\pi}
$$

For the cylindrical probe, substitution of Eq. (11.6) into Eq. (11.2) and (11.4) gives:

$$
\begin{aligned}
\eta & =\frac{1}{\pi} \sum_{\mathrm{n}} Q_{\mathrm{n}} \operatorname{arc} \sin \left\{\frac{\Omega_{\mathrm{n}}\left(\beta_{M}\right) x^{2}}{\beta_{M}-x}\right\}^{\frac{1}{2}} \\
i & =\frac{2}{\sqrt{\pi}} \sqrt{\Omega_{1}\left(\beta_{M}\right)} \\
\beta_{\mathrm{M}} & =\frac{\pi}{4}
\end{aligned}
$$

In both the spherical and the cylindrical cases, the locus of extrema normally has the general appearance shown in Figs. Sb and 6, with two exceptions: first, the upper cusps shown in these diagrams are generally absent for small probe potentials or large probe radii because the potential in these cases will remain steeper than an inverse square law near the probe (no inner family of trapped orbits); second, for the spherical probe the lower cusp usually vanishes, because in contrast with the cylinder, the potential will remain steeper than an inverse square as radius increases. In this case the locus of extrema corresponding to large radii becomes tangent to the Ω axis as shown in Fig. Ta.

As is shown in Fig. 6, as the radius increases, the cutoff line (shown as DE in Fig. Sb) moves downward and to the right, and its point of tangency D (Fig.6b) moves downward along the locus of extrema. Two cases may be distinguished: at smaller radii, D is above the energy level B_{M}. This energy level would appear as a fixed horizontal line in Fig. Sb and Figs. Ga to bc but is not included since these diagrams have not been drawn for a specific distribution function. This line would then intersect the segment $C D$ of the locus of extrema in Fig. Gb. Corresponding to this situation it is evident from the definitions of $\Omega_{1}(\beta)$ and $\Omega_{2}(\beta)$ that we have $\Omega_{1}\left(\beta_{X}\right)=\Omega_{2}\left(\beta_{K}\right)=\Omega_{G}\left(E_{K}\right)$. At larger radii, D goes below the energy level β_{M}. In this case, a line representing this energy level would intersect both the segment DH of the locus of extrema and the cutoff boundary DE in Fig. 6. Corresponding to this situation we have $\Omega_{1}\left(\beta_{M}\right)=\Omega_{G}\left(\beta_{M}\right)$ and $\Omega_{2}\left(\beta_{M}\right)=\left(\beta_{M}-x\right) / x^{2}$. In both cases, $\Omega_{0}=0$, $Q_{0}=Q_{1}=-1$ and $Q_{2}=2$. If we define X_{M} as the value of x at which the point of tangency is at energy β_{N}, we then obtain for the sphere, from Eq. (13.1):

$$
\begin{gather*}
\eta=\frac{1}{2}\left\{1-\frac{x}{\beta_{N}}\right\}^{\frac{1}{2}} ; \frac{1}{2}\left\{1-\frac{x}{\beta_{M}}-\frac{\Omega_{G}\left(\beta_{M}\right)}{\beta_{M}} x^{2}\right\}^{\frac{1}{2}} ; x \geqslant x_{M} \tag{13.3}\\
1=\frac{1}{2} \sqrt{\frac{\pi}{\beta_{M}}} \Omega_{G}\left(\beta_{M}\right)
\end{gather*}
$$

Similarly, for the cylinder we obtain from Eq. (13.2):

$$
\begin{aligned}
\eta & =\frac{1}{\pi} \arcsin \left\{\frac{\Omega_{G}\left(\beta_{M} y x^{2}\right.}{\beta_{M}\left(1-\chi / \beta_{M}\right)}\right\}^{\frac{1}{2}} ; x>x_{M} \\
& =1-\frac{1}{\pi} \operatorname{arc} \sin \left\{\frac{\Omega_{G}\left(\beta_{M}\right) x^{2}}{\beta_{M}\left(1-x / \beta_{M}\right)}\right\}^{\frac{1}{2}} ; x<x_{M} \\
1 & =\frac{2}{\sqrt{\pi}} \sqrt{\Omega_{G}\left(\beta_{M}\right)}
\end{aligned}
$$

The radial coordinate x_{M} may be given a physical interpretation by noting that for radii smaller than the one corresponding to this value, $\Omega_{1}\left(\beta_{1}\right)=\Omega_{2}\left(\beta_{\mu}\right)$; in other words, all particles that exist at these radii strike the probe. The quantity x_{M} therefore corresponds to an absorption radius for the mono-energetic attracted particles; any of these particles that have small enough angular momentum to allow them to come inside this radius are collected by the probe (Fig. 4a). If the distribution function is poly-energetic, a continum of such radii exists, one for each energy level in the distribution. These radil decrease as the corresponding energy increases. For particles possessing sufficiently high energies, no absorption radius exists; collection of these particles is orbital-motion-limited. In situations such as that of Figs. 5 and 6, where the locus of extrema goes through a maximum and an inner family of trapped orbits exists near the probe, there also exists near the probe a region containing no absorption radii.

The cutoff boundary $\beta=X\left(x_{X}\right)+\Omega x_{x}{ }^{2}$ corresponding to the radial coordiaate x_{Y} is tangent to the locus of extrema $\Theta_{G}(\beta)$ at the point $\left.P_{G}\left(A_{X}\right), \beta_{X}\right)$; therefore, at $x=x_{X}$, we have:

$$
\begin{align*}
& \Omega_{G}\left(\beta_{X}\right)-\frac{\beta_{Y}-x(x)}{x^{2}}=0 \\
& \frac{d}{d x}\left(\beta_{G}\left(\beta_{M}\right)-\frac{\beta_{M}-x(x)}{x^{2}}\right)=0 \tag{13.5}\\
& \frac{d^{2}}{d x^{2}}\left(\Omega_{G}\left(\beta_{X}\right)-\frac{\beta_{M}-x(x)}{x^{2}}\right)<0
\end{align*}
$$

The firat of these conditions limiles that the second bracketed quantity in Eq. (13.3) vanishes at $x=x y$, and that the bracketed quantities in Eq. (13.4) are equal to unity at $x=x \%$.

In order to derive the Bernutein and Babinowits differential quations for potential as a runction of radius, we icentify the attracted species with the loas, and we define new non-dimensional radil and ion currents. We assume that the probe poteatial is negative, or ion attracting, and that it is much greater in magnitude than the electron energy. We use as reference radius the electron Debye length $\lambda_{D_{~}}=\left(\epsilon \mathrm{kf} / \mathrm{q}^{2} \mathrm{~L}_{\mathrm{L}}\right)^{\frac{1}{2}}$ and as reference current, the ion current that would be collected by a spbere, or by unit length of cylinder, having a radius of one electron Debye length if the lons were Maxwellian and their offective temperature (Sec.III) ware equal to that of the electrons. For the uphere and cylinder, reapectively, the non-dimensional currents 1^{*} reforred to these reforence currents are:

$$
\begin{align*}
& i^{*}=I_{+}\left(Z_{+} e N_{b_{+}} \lambda_{D_{-}}{ }^{2}\right)^{-1}\left(\frac{8 \pi k T}{m_{+}}\right)^{-\frac{1}{2}}\left(-\frac{Z_{+}}{Z_{-}}\right)^{-\frac{1}{2}}=i_{+} \gamma_{-} \sqrt{\pi_{6}} \tag{13.6}\\
& i^{*}=I_{+}\left(Z_{+} e N_{\infty_{+}} \lambda_{D_{-}}\right)^{-1}\left(\frac{8 \pi k T}{m_{+}}\right)^{-\frac{1}{2}}\left(-\frac{Z_{+}}{Z_{-}}\right)^{-\frac{1}{2}}=i_{+} \sqrt{\gamma_{-} \pi_{6}}
\end{align*}
$$

We note that Eqs. (13.3) and (13.4) contain the expression χ_{+} / β_{M}. This becomes:

$$
\begin{equation*}
\left.\frac{x_{+}}{\beta_{M}}=-\frac{x_{-}}{\pi_{6} \beta_{M}}=\frac{-x_{-}}{\left(-\frac{Z_{-}}{Z_{+}} \frac{E_{+}}{k_{-} T}\right.}\right)=-\frac{x_{-}}{\beta^{*}} \tag{13.7}
\end{equation*}
$$

The new quantity β^{*} defined by Eq. (13.7) represents non-dimentincal energy for the mono-energetic ions, now referred to the temperature of Maxwellian electrons rather than to the temperature of a corresponding distributic of Maxvellian ions as in earlier Sections. The quantity β_{N}, which is the ratio E_{+} / KI_{+}, is therefore no^{+}, contained in the definition of β^{*}. For singly charged ions: as is usually the case, β^{*} is identical to the quantity β used in Ref. 5.

We also note that $\chi_{-}>0$ for all x.
We define a new radial variable ξ as follows:

$$
\begin{equation*}
-\frac{r}{\lambda_{D_{-}}}=\frac{r}{R_{p}} \quad \frac{R_{p}}{\lambda_{D_{-}}}=\frac{\sqrt{\gamma_{-}}}{x} \tag{13.8}
\end{equation*}
$$

We substitute Eqs. (23.6) to (13.8) into Eqs. (13.3) and (23.5) t.) obtain fur the spherical case:

$$
\begin{align*}
& \eta_{1}=\frac{1}{2}\left\{1+\frac{x_{-}}{\beta^{*}}\right\}^{\frac{1}{2}} \mp \frac{1}{2}\left\{1+\frac{x_{-}}{\beta^{*}}-\frac{2}{\sqrt{\pi}} \frac{1^{*}}{\beta^{*} \xi^{2}}\right\}^{\frac{1}{2}} ; \xi \xi_{M} \\
& 1+\frac{x_{1}\left(\xi_{M}\right)}{\beta^{*}}-\frac{2}{\sqrt{\pi}} \frac{1^{*}}{\sqrt{\beta^{*} \xi_{N}^{2}}}=0
\end{align*}
$$

For the cylinder, we obtain from Eqs. (13.4) and (13.5):

$$
\begin{aligned}
& \eta_{+}=\frac{1}{\pi} \arcsin \left\{\frac{\pi}{4} \frac{1^{*}}{\beta^{2}\left(\beta^{*}+\alpha\right.}\right\}^{\frac{1}{2}} ; \leqslant<s_{N} \\
& \left.\eta_{+}=1-\frac{1}{\pi} \arcsin \left\{\frac{\pi}{4} \quad \frac{s^{* 2}}{E^{2}\left(p^{2}+x_{0}\right.}\right\}\right\}^{\frac{1}{2}} ; s>g_{x} \\
& \frac{\pi}{4} \frac{a^{* 2}}{y^{2}\left(\beta^{\prime 2}+x_{0}(5 M)\right)}=1
\end{aligned}
$$

Expressions (13.9) and (13.10) are in a form equivalent to those derived by Bernstein and Rabinowitz (Ref. 5) for ion density. By comparing Eqs. (13.9) and (13.10) with their Eqs. (34) and (51), it is possible to obtain expressions for their nondimensional current 2 in terms of the quantities defined here. For the sphere and cylinder, respectively, these are:

$$
\begin{align*}
& 2=\frac{2}{\sqrt{\pi}} i^{*} \\
& i=\frac{\pi}{4} \frac{i^{* 2}}{\beta^{*}} \tag{13.11}
\end{align*}
$$

The second expression in Eq. (13.11) illustrates the reason why Bernstein and Rabinowitz were unable to display solution curves for the cylindrical probe for the case $\beta^{*}=0$, which is a nonsingular limit of Eq. (13.10); they nondimensionalized their ion current using a reference current which is a function of β^{*}. As $\beta^{*} \rightarrow 0$, their nondimensional current 2 becomes infinite for a given frobe potential X_{-p} and probe redius 5_{p}, whereas the actua? current collectod is finite.

In terms of the radial variable ξ, Poisson's equation (4.3) becomes, for the sphere and cylinder, respectively:

$$
\begin{align*}
& \frac{1}{\xi^{2}} \frac{d}{d \xi}\left(\xi^{2} \frac{d x_{-}}{d \xi}\right)=\eta_{+}-\eta_{-} \tag{13.12}\\
& \frac{1}{\xi} \frac{d}{d \xi}\left(\xi \frac{d x_{0}}{d \xi}\right)=\eta_{+}-\eta_{-}
\end{align*}
$$

From Eqs. (E.39) and (E.92), we obtain for $x_{-p} \gg 1$, the following expression for electron density:

$$
\begin{equation*}
\eta_{-} \simeq e^{-x_{-}} \tag{13.13}
\end{equation*}
$$

This approximation towether with Eqs. (13.9) to (13.12) constitutes the Bernstein and Rabinowitz differential equations for potential vs redius, for the sphere and cylinder. This expression for the electron density would also be correct. for small repelling probe potentials in the hypothetical case of a probe which reflected all electrons which struck it, because the electrons would then not be depleted by the probe and vould be in the rmodynamic equilibrium; Eq. (13.13) coincides with the well-known distribution corresponding to this condition.

If the limit of zero ion temperature, $\beta^{*} \rightarrow 0$, is taken in Eq. (13.9), the result diverges for $\xi>\xi_{N}$; for $\xi<\xi_{M}$, we obtain:

$$
\begin{equation*}
\eta_{+}=\frac{1}{2 \sqrt{F}} \frac{i^{*}}{5^{2} \sqrt{x_{0}}} \tag{13.14}
\end{equation*}
$$

This result implies that $\beta_{N} \rightarrow \infty$ as $\beta^{*} \rightarrow 0$: this can also be proven by letting $\beta^{*} \rightarrow 0$ in Eq. (13.9b); we obtain the result $x_{-}\left(\xi_{X}\right) \rightarrow 0$; this in turn implies $\mathbf{F}_{\mathbf{K}} \rightarrow \infty$. is Bernstein and Rabinowitz have pointed out, Eq. (13.14), apart from notation, is identical to the form which Allen, Boyd, and

Reynolds (Ref. 6) derived by assuming that the ions had no thermal motion and fell radially inward from infinity under the influence of the electric field.

The form of Eq. (13.14) indicates that the solution scheme developed here for the general case will break down for the spherical probe in the limit of zero ion temperature. This may be seen by noting that as $\xi \rightarrow \infty$, we require $\eta_{+} \rightarrow 1$; we observe that Eq. (13.14) specifies the collected current i^{*} in terms of the limiting behaviour of the potential $x_{\text {a }}$ at infinite radius. Since the present calculation scheme replaces the infinite piasma by a finite outer boundary, it is clear that the scheme will fail to work in the limit $\beta^{*} \rightarrow 0$. In fact, it may be expected that the calculation scheme for finite ion temperature will become progressively more ill-behaved as ion temperature decreases because the form of the putential at large radii will become relatively more important. This expectation has been borne out in computations for the spherical probe in both the Maxwellian and the mono-energetic cases (Sec. XV; Appencix H).
...-The Bernstein and Rabinowitz and Allen, Boyd and Reynolds calculations do not have this difficulty because they extend to infinite radius. Neither of these, however, is able to deal with a Maxwellian plasma or a small probe potential. Therefore, no method exists at present to adequately treat these cases whan the ion temperature is small. However, for large probe potential. the Allen, Boyd and Reynolds equation is the zero-ion-temperature limit for the Maxwellian as well as for the mono-energetic case. Solutions of this equation may therefore be expected to provide an end point for curves of ion surrent vs ion temperature, and thereby enable graphical determination of ion current in the complete range of temperatures extending to zero.

Accordingly, a numerical solution of the Allen, Boyd and Reynolds equation has been carried out here (Appendices G and I) in order to provide these limiting values. This is in spite of the fact that this task has already been carried out by three other authors (Refs. 5, 6 and 8); none of these has carried out calculations in the complete range required here, and none of them has published his computer program.

A qualitatively different situation is obtained for the cylinarical probe if the limit $B^{*} \rightarrow 0$ is taken in Eq. (13.10); we note that ξ_{M} does not become infinite, and that the expression for η_{+}does not approach the expression that may be derived by assuming that the ions move radially inward (Ref. 8). This anomaly has been a source of concern to several previo:s authors (Refis. 6 and 8); some light may be shed on it by studying the behaviour of the electric potential at large radil.

For the sphere, we assume $\xi>\xi_{N}, \xi \rightarrow \infty$ and $\chi_{-} \rightarrow 0$, and approximate the set of Bernstein and Rabinowit2 differential equations (13.9), (13.1ć) and (13.13) to obtain:

$$
\begin{equation*}
\frac{d^{2} x}{d \xi^{2}}+\frac{2}{\xi} \frac{d x_{n}}{d \xi}=x_{-}\left(1+\frac{1}{2 \beta^{*}}\right)-\left(\frac{1}{2 \sqrt{\pi}} \frac{i^{*}}{\sqrt{\beta^{*}}}\right) \xi^{-2} \tag{13.15}
\end{equation*}
$$

If $x_{-} \propto \xi^{-N}$, the left side of Eq. (13.15) $\propto \xi^{-(1+2)}$ and vanishes to order $\mathrm{H}_{\text {; }}$ neither bracketed term on the right side vanishes; therefore, $\mathrm{H}=2$, and we obtcin, to second order in $\xi:$

$$
\begin{equation*}
x_{-} \simeq \frac{1}{2 \sqrt{\pi}} \quad \frac{i^{*}}{\sqrt{\beta^{*}}+\frac{1}{2 \sqrt{\beta^{*}}}} \xi^{-2} \tag{13.16}
\end{equation*}
$$

Apart from notation, this result is the same as that obeined by Bernstein and Rabinowitz using the plasma approximation.

If $\beta^{*} \rightarrow 0$, the coefficient of ξ^{-2} in Eq. (13.16) vanisme, and the leading term in the potential for large radii may be found from ${ }^{2}$. (13.14) by noting that as $\xi \rightarrow \infty, \eta_{+} \rightarrow 1$; this gives:

$$
\begin{equation*}
x_{-} \simeq \frac{i^{* 2}}{4 \pi} \xi^{-4} \tag{13.17}
\end{equation*}
$$

For the cylinder, we combine Eqs. (13.10), (13.12) and (13) and approximate as before to obtain:

$$
\frac{d^{2} \chi_{-}}{d \xi^{2}}+\frac{1}{\xi} \frac{d x_{-}}{d \xi} \simeq x_{-}-\frac{1}{2 \sqrt{\pi}} \frac{i^{*}}{\sqrt{B^{*}+\chi_{-}}}
$$

For finite β^{*}, χ_{-}vasiishes in comparison with β^{*} in the limith of large radii; once again, if $\chi_{-} \alpha \xi^{-N}$, the left side vanishes to order \mathcal{N}_{5} we obtain, to first order in ξ :-

$$
\begin{equation*}
x_{-} \simeq \frac{1}{2 \sqrt{\pi}} \frac{i^{*}}{\sqrt{\beta^{*}}} \xi^{-1} \tag{19}
\end{equation*}
$$

To obtain the leading term in the case $\beta^{*}=0$, we proceed to this limit in Eq. (13.18) before letting $\boldsymbol{x}_{\boldsymbol{\prime}} \rightarrow 0$; we then obtain:

$$
\begin{equation*}
x_{-} \simeq\left(\frac{i^{*}}{2 \sqrt{\pi}}\right)^{\frac{2}{3}} \cdot \xi^{-\frac{2}{3}} \tag{13娄}
\end{equation*}
$$

Examination of these asymptotic potentials shows that in the case of the sphere, the potential becomes a steeper function of radius in the limit of zero ion temperature, whereas for the cylinder, it becomes shallower. Furthermore, for sufficiently small ion temperatures and large radii, the dependence of potential on radius will always be steeper than an inverse square law for the sphere, and shallower for the cylinder.

In order to illustrate the significance of this difference, we consider an ion of zero total energy and zero angular momentum, which suffers a small deflection while falling radially inward toward the probe under the influence of the electric field. We assume that this ion is doflected in angle but that its speed is unchaiged; i.e., its total energy remains zero but it acquires a finite angular momentum. It is possible to show (Fig. 4) that if it is moving in a potential steeper than an inverse square, it will always continue to fall inward to the probe, but if the potential is shollower than an inverse square, and the ion has acquired sufficient angular momentum, there exists a turning pnint in its orbit. It will miss the probe and move back out into the plasma; it will fail to be collected.

In any physical situation all of the ions are scattered to some extent by the presence of other particles (Appendix A) and will in general acquire a non-zero distribution of angular momenta. If this distribution corresponds to one isotropic at infinite radius, and if the total energy of each ion remains unchanged, the results computed here for the cylinder, which are based on the zero-ion-temperature limit of Eq. (13.10), will correctly predict the current. Chen (Ref. 8) has carried out zero-ion-temperature cylindri-cal-probe calculations based on the assumption that the ions have zero angular momentum and move radially inward. His results may be expected to overestimate the current collection.

Since the cold-ion limit gives a result that disagrees with the zero-ion-temperature assumption of radially inward motion, the ion temperature β^{*} plays the role of a singular perturbation, similar to that of the inverse Reynolds number in continuum fluid mechanics. It is this fact that Chen has not taken into account.

Of some interest in studying the behaviour of the potential is the "plasma approximation" or "quasi-neutral solution". This solution is obtained by observing that outside the sheath the ion and electron charge densities approach each other very rapidly, so that the difference between the two rapidly becomes much smaller than the magnitude of either. Therefore, the potential obtained by making the approximation of equal charge densities, $\eta_{+}=\eta_{-}$, is a close approximation to the actual potential.

Using this approximation, together with Eqs.(13.9), (13.10) and (13.13), and solving for the radius ξ, we obtain, for the sphere and cylinder, respectively:

E

$$
\begin{align*}
& \frac{i^{*}}{2 \sqrt{\pi} \xi^{2}}=e^{-\chi_{-}} \sqrt{\beta^{*}+\chi_{-}}-\sqrt{\beta^{*}} e^{-2 \chi_{-}} \tag{13.21}\\
& \frac{\sqrt{\pi}}{2} \frac{i^{*}}{\xi}=\left(\beta^{*}+\chi_{-}\right)^{\frac{1}{2}} \sin \left(\pi e^{-\chi_{-}}\right)
\end{align*}
$$

We observe that in both cases, the radius ξ becomes large as then potential χ. becomes small, as expected, but that ξ also becomes large for arge χ_{-}. This means that for a certain value of $\chi_{-, \xi}$ goes through a minimim, and the potential slope $d \chi-/ d \xi$ becomes infinite. This suggests that the corresponding radius ξ is a lower limit for radii at which the plasma approximation will hold.

It is of interest to compare the value of χ_{-}at which $d x_{-} / d \xi$ becomes infinite, with a prediction derived by Bohm (Ref. 12) that at the sheath edge $x-\geq$, te for a stable sheath.

商 differentiating ξ^{-2} and ξ^{-1} with respect to $x_{\text {_ }}$ in Eqs. 1. 'i) and (21 lb) respectively, and equating the result to zero, we obtain thenowing exporsions for the sheath edge potential $\chi_{S E}$:

$$
\begin{align*}
& \frac{1}{2}-\left(\beta^{*}+\chi_{S E}\right)+2 e^{-\chi_{S E}} \sqrt{\beta^{*}\left(\beta^{*}+\chi_{S E}\right)}=0 \\
& \tan \left(\pi_{e}{ }^{-\chi_{S E}} j-2 \pi e^{-\chi_{S E}}\left(\beta^{*}+\chi_{S E}\right)=0\right. \tag{13.22}
\end{align*}
$$

Solving Eqs. (13.22) numerically for the value of X SE $^{\text {S }}$ associated with a given β^{*} shows that Bohm's criterion is fulfilled in all cases. For the sphere, $\chi_{\text {SE }}=1 / 2$ when $\beta^{*}=0$; as β^{*} increases $\chi_{\text {SE }}$ first increases, then maximizes for β^{*} somewhat less than unity, then decreases toward $\ln 2=0.693 \ldots$ as β^{*} becomes large. For the :ylinder, $\chi_{S E}$ is slightly less than unity for $\beta^{*}=0$, and decreases to $\ln 2$ as β^{*} becomes large. Therefore, another qualitative difference between the sphere and the cylinder is seen to exist; for moderately small β^{*}, the rate of change of sheath edge potential with β^{*} is positive for the sphere and negative for the cylinder.

Expres\$ions for the absorption boundary potential and radius may be obtained by substituting the expressions for ξ_{M} in Eqs. (13.9) and (13.10) into Eq. (13.21). For the sphere, this procedure gives:

$$
\begin{align*}
& 4 e^{-2 x_{M}}=1+\frac{\chi_{M}}{\beta^{*}} \tag{13.23}\\
& \xi_{M^{2}}^{2}=\frac{e^{2 x_{M}}}{2 \sqrt{\pi}} \frac{i^{*}}{\sqrt{\beta^{*}}}
\end{align*}
$$

For the cylinder:

$$
\therefore n=\ln 2
$$

$$
\begin{equation*}
\xi_{M}^{2}=\frac{\pi}{4} \quad \frac{i^{* 2}}{\beta^{*}+\ln 2} \tag{13.24}
\end{equation*}
$$

Expressions (13.23) and (13.24) show once again that for the sphere, the absorption boundary moves out to infinity as the ion temperature becomes small, whereas for the cylinder, it remains finite. By allowing β^{*} to become large in Eq. (13.23a) we obtain $\chi_{M} \rightarrow \ln 2$; for the cylinder, $\chi_{\mathrm{M}}=\ln 2$ for any β^{*}. Therefore, in both cases, as β^{*} becomes large, $\chi_{M} \rightarrow \chi_{S E}$; if the attracted species is much hotter than the repelled species, the absorption boundary and sheath edge radius tend to coincide.

Many of the results obtained here may be expected to agree qualitatively with the Maxwellian case, for which it is impossible to use these methods to obtain similar expressions.

The orbital-motion-limited current (Sec. VIII) is that collected by a probe when none of the particles which come from infinity and are capable of penetrating inward to the probe are excluded from it by intermediate barriers of effective potential. In other words, all particles which lie above the probe cutoff boundary of Eq. (8.3) in the (J^{2}, E) plane actually reach the probe. For the attracted species, it is the collected current in the limit $R_{p} / \lambda_{D} \rightarrow 0$, and, in certain cases, it is the collected current within a finite neighbourhood of this limit (Appendix E; Sections XV and XVI). We summarize here the expressions for orbital-motion-limited current derived in other sections. From Eqs. (E.43) and (E.94), we have for Maxwellian particles:

For the spherical probe:

$$
\begin{array}{lll}
i=1-x_{p} & ; & x_{p} \leq 0 \\
i=e^{-x_{p}} & ; & x_{p} \geq 0 \tag{14.1}
\end{array}
$$

and for the cylindrical probe:

$$
\begin{array}{ll}
i=\frac{2}{\sqrt{\pi}}\left(\sqrt{-\chi_{p}}+g\left(\sqrt{-\chi_{p}}\right)\right) ; & x_{p} \leq 0 \\
i=e^{-\chi_{p}} & ; \tag{14,2}
\end{array} x_{p} \geq 0 . ~ l
$$

From Eqs. (13.1) and (13.2), setting $\Omega_{1}\left(\beta_{M}\right)=\beta_{M}-\chi_{p}$, we obtain for mono-energetic particles, for the sphere and cylinder, respectively:

$$
\begin{array}{ll}
i=1-\frac{\pi}{4} x_{p} ; & x_{p} \leq \frac{4}{\pi} \\
i=\sqrt{1-\frac{4}{\pi} x_{p} ;} & x_{p} \leq \frac{\pi}{4} \tag{14.3}
\end{array}
$$

It is often useful to non-dimensionalize the ion current by dividing by its value when the ions are at electron temperature and the probe is at plasma potential. We substitute expressions (9.10b) and (9.15) into Eqs. (14.1) to (14.3) to obtain the following ion current expressions. For Maxwellian ions collected by a spherical probe, we have:

$$
\begin{align*}
& i_{+-}=\sqrt{\pi_{6}}+\frac{x_{p_{-}}}{\sqrt{\pi_{6}}} ; \quad x_{p_{-}} \geq 0 \tag{14.4}\\
& 1_{+-}=\sqrt{\pi_{6}} \mathrm{e}^{x_{p_{-}} / \pi_{6}} ; \quad x_{p_{-}} \leq 0
\end{align*}
$$

For Maxwellian ions collected by a cylindrical probe:

$$
\begin{array}{ll}
i_{+-}=\frac{2}{\sqrt{\pi}}\left(\sqrt{x_{p_{-}}}+\sqrt{\pi_{6}} g\left(\sqrt{x_{p_{-}} / \pi_{6}}\right)\right) ; & x_{p_{-} \geq 0} \tag{14.5}\\
i_{+-}=\sqrt{\pi_{6}} e^{x_{p_{-}} / \pi_{6}} & ; x_{p_{-}} \leq 0
\end{array}
$$

For mono-energetic ions, we obtain from Eq. (14.3) the following expressions for the sphere and cylinder, respectively:

$$
\begin{array}{ll}
i_{+-}=\sqrt{\pi_{6}}+\frac{\pi}{4} \frac{x_{p_{-}}}{\sqrt{\pi 6}} ; & x_{p_{-}} \geq-\frac{4}{\pi} \pi_{6} \tag{14.6}\\
i_{+-}=\frac{2}{\sqrt{\pi}} \sqrt{x_{p_{-}}+\frac{\pi}{4} \pi_{6}} ; & x_{p_{-}} \geq-\frac{\pi}{4} \pi_{6}
\end{array}
$$

Examination of Eqs. (14.4) to (14.6) shows that in general, the mono-energetic expression approximates the Maxwellian much more closely for the cylindrical case. For the sphere, the two do not approach each other at large probe potentials as they do for the cylinder. It is also noteworthy that as the ion temperature becomes zero, the orbital-motion-limited current becomes infinite for the sphere, but remains finite for the cylinder.

Computations of current for a cylindrical probe in the general case show that in certain ranges of R_{p} / λ_{D}, the differences between the Maxwellian and the mono-energetic results are considerably greater than in the orbital-motion-limited case (Sec. XV).

We also note once again that the roles of ions and electrons in expressions . (14.4) to (14.6) are completely interchangeable.

XV. RESULTS AND DISCUSSION - SPHERICAL PROBE ${ }^{\text {? }}$

Before beginning discussion of the relevant features of the calculated results, a brief description is given of where can be found the various items of background material in this report. The Fortran II programs that have been developed and used to obtain the numerical results presented here are listed in Appendix I. Table 3 identifies the most important Fortran variables and formulas in these programs with their text equivalents. Representative samples of printed output obtained from the University of Toronto IBM 7094 digital computer using these programs are shown in Appendix J. Computed current collection results are presented in Table 5 for the spherical probe and in Table 6 for the cylindrical probe. Appendix H contains a discussion of the accuracy of these results. Current collection results, potential and charge density distributions, and trapped-orbit and orbital-motion-limited-current boundaries are shown in Figs. 13 to 31 for the spherical probe and in Figs. 32 to 51 for the cylindrical' probe.

It is common usage to employ the electrons as the reference species in any discussion of Langmuir probes; this convention is followed in
presenting these results. The electrons are also the hotter species in the majority of situations of laboratory interest; accordingly, results are presented here for the range $0 \leq T_{+} / T_{-} \leq 1$.

For brevity of presentation, we also assume in presenting all results that $Z_{+}=1$ and $Z_{-}=-1$. As pointed out in Sec. III, this assumption involves no real loss of generality since the results may be applied to the case of multiply charged ions by scaling the temperature ratio T_{+} / T_{-}. Since the nondimensional probe potential $\chi_{p_{-}}$referred to electrons always has the opposite sign to the probe potential ϕ_{p}, it is also common practice to use as a nondimensional probe potential the quantity $-\chi_{p_{-}}$; since $Z_{L_{-}}=-1$, we have $-\chi_{p_{-}}=e \phi_{\mathrm{p}} / \mathrm{kT}$.

It has already been pointed out (Sec. III) that the roles of ions and electrons are interchangeable for purposes of this discussion; also that these results may be applied to the case of multiply charged particles by scaling the quantity $T_{+} / T_{\text {. . . It }}$ is also note-worthy that if the need arises to use the colder species as reference, these results may be expressed in terms of nondimensional probe potential relative to the colder species, and the ratio of probe radius to colder-species Debye length, by using Eqs. (9.15) and (9.16) to scale the quantities χ_{p} and $\gamma_{\text {。 }}$

Furthermore, the nondimensional probe potential referred to the colder species is always larger than that referred to the hotter species so that these results, which are computed for values of χ_{p}, referred to the hotter species, from -25 to 25 , will always cover a range larger than this when referred to the colder species. By identifying the colder species with the electrons, it is possible by the above reasoning to apply the results presenfed here to cases in which $\mathbb{T}_{+} / T_{\text {. }}$ is greater than unity.

The results of these calculations therefore apply to a considerably larger range of situations than those evident at first glance.

The preceding remarks in this Section apply not only to the results for the spherical probe but also those for the cylindrical probe presented in Sec. XVI. The remainder of this section is devoted to a disqussion of the computed results for the spherical probe which appear in Figs. 3 to 31. The current, collection results plotted in Figs. 20 to 29 are also presented in Table 5.

Figure 13 shows potential vs distance from probe surface in electron (or ion) Debye lengths for a probe at a fixed potential $e \phi_{\mathrm{p}} / \mathrm{kT} \mathbf{F}_{-}= \pm 25$, for equal ion and electron temperatures and a range of ratios of probe radius to either Debye length from 1 to 100 . Figure 14 shows corresponding ion and electron charge densities. In both cases the influence of the prbbe may be seen extending a greater number of Debye lengths into the plasma as R_{p} / λ_{D}. is increased. The local rise in attracted-species charge density near the probe for the smaller values of R_{p} / λ_{D} shown is due to two causes. First, the potential in this region is of a form which allows particles having certain values of angular momentum and energy to orbit the probe many times before falling into it or moving back out to infinity; the presence of these particles in this region therefore produces a rise in charge density because of their long dwell time. The second reason is that because of the spherical geometry, the particles moving toward the probe are concentrated into a smaller volume as they approach it; their density must rise accordingly.

A situation in which the ions and electrons are at different temperatures is shown in Fig. 15. In this diagram potential is plotted against radius for various values of probe potential for the values $T_{+} / T_{-}=0.1$ and $R_{p} / \lambda_{D_{-}}=10$. The marked asymmetry Eetween the cases of positive and negative probe potentials is due to the fact that in these two ranges the colder and hotter species, respectively, are repelled. As discussed in Sec. XIII, the amount of electric field that penetrates past the sheath edge into the plasma is nearly proportional to the thermal energy of the repelled species; therefore, shielding by the ions at positive probe potentials is nearly complete, whereas electron shielding at negative probe potentials allows a much larger amount of electric field to penetrate into the plasma.

A related set of charge distributions is plotted in Fig. 16, which shows ion and electron densities for a probe at positive potentials for the same range of cases as those shown for a positive probe in Fig. l5. The progressive increase in charge separation associated with sheath formation and growth is evident here. If the results corresponding to $e \phi_{\mathrm{p}} / \mathrm{kT}=-25$ and $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=10$ are compared in Figs. 14 and 16 , the difference between them is that in Fig. 16, the repelled species, i.e. the ions, is no longer at the same temperature as the attracted species but only at a tenth of it. Comparison of these results shows the sharpening of the sheath edge as the repelled-species temperature is reduced with attracted-species parameters held constant. The dotted curve in Fig. 16 showing the corresponding result for $T_{+} / T_{-}=0$ shows this trend carried to completion.

Figures 17 and 18 show potential and charge densities, respectively, plotted as functions of radius for the case of zero attracted-particle temperature and large probe potential, obtained by numerical solution of the Allen, Boyd, and Reynolds equation (Ref. 6) as treated in Sec. XIII and Appendix G, and carried out by Program 4 (Appendix I). Figure 17 also shows as a dotted curve the trappedorbit boundary. If some particular situation involving zero attracted-species (ion, in this case) temperature has values of probe potential and R_{p} / λ_{D} corresponding to values of potential and r / λ_{D} _ in Fig. 17 which lie above this doundary, then the form of the potential adjacent to the probe will be such that trapped crbits of the type discussed in Section VIII exist. The results plotted above this boundary are therefore subject to the qualificatıons noted in that Section, namely, that the population of such orbits must be negligible. In Fig. 17 and in all later diagrams in which trapped-orbit boundaries appear, it is to be understood that they refer only to a fully Maxwellian plasma, and not to one with a mono-energetic distribution for the attracted species; zero-temperature attracted particles are included in this definition as a limiting case of the Maxwellian distribution.

L'he increasing concentration of the attracted particles as they move radially inward toward the probe is again visible in Fig. l7, as in Fig. 14; in this case the particles do not orbit the probe and the increase in their density is due only to the decrease in the volume that they occupy as they approach the probe.

If the probe potential is now changed in sign so that the particles which are at zero temperature are now the repelled ones, then the situation is as described in Sec. XII. In particular, the sheath edge radius in this case is now a sharply defined location at which the repelled-species density falls discontinuously from its value outside the sheath to zero within it. Computed values of this sheath edge radius are plotted in Fig. 17 as a function of probe
potential and ratio of electron, i.e. attracted species, Debye length to proke radius. The results for non-zero values of $\lambda_{D_{-}} / R_{p}$ have been computed using Program 2 (Sec. XII; Appendix I): the curve for $\lambda_{D_{-}}^{p} / R_{p}=0$ has been computed using Program 3, which calculates the probe characteristic in the pianarsheath limj.t (Appendices F, I). The smooth transition in the resuit from the non-zero case to the limit may be regarded as a check on the correctness of both programs; on the other hand, the steep variation of sheath edge radius with λ_{D} / R_{p} near this limit at larger probe potentials is an indication that the more eomplete description deviates rapidly from the planar-sheath approximation as $\lambda_{D_{-}} / R_{p}$ increasas. The trapped-orbit bcundary is also shown in this diagram.

The trappeci-orbit boundaries shown in Fig. 19 and subsequent diagrams have been obtained from the computed results by the following method. Corresponding to each set of values of the three parameters $T_{+} / T_{\text {. }}$, e ϕ_{p} / kT-. and $R_{p} / \lambda_{D_{-}}$is a maximum radius at which the shape of the potential allows trapced orbits to exist. Table 3 identifies this quantity in the output of the computer programs. The ratio $\mathrm{II}_{+} / \mathrm{T}_{-}$and either one of the two quantities $e \phi_{\mathrm{p}} / \mathrm{kT}$ - or $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{\text {_ }}}$ are held constant and this maximum radius is obtained as a computed result for several values of the other. It is then extrapolated back to zero distance from the probe as a function of this quantity.

Figure 20 shows attracted-species (ion or electron) current collection as a function of probe potential for the case $T_{+} / T_{-}=1$ for various values of $R_{p} / \lambda_{D_{-}}$. The result for $R_{p} / \lambda_{D_{-}}=0$, the orbital-notion-limited current, is obtained from Eq. (14.1); the remaining curves are computed results appearing in Table 5c.

Figure 20 also shows the trapped-orbit boundary for $T_{+} / T_{-}=1$; as in Figs. 17 and 19, this boundary corresponds to the smallest probe potential for a given value of $R_{p} / \lambda_{D_{-}}$, or equivalently the largest value of $R_{p} / \lambda_{D_{-}}$for a given probe potential, for which the form of the potential adjacent to the probe is shallow enough so that trapped orbits exist. The question of whether these trapped orijits, when they exist, will be populated, has been discussed $\therefore \mathrm{Sec}$. VIII. In that section it is pointed out that if these orbits are populated, the probable effect will be a decrease in current collection below the values shown in Fig. 20. All results in this diagram corresponding to points above this boundary are therefore subject to this qualification.

Ion current results for the case $T_{+} / T_{-}=0$ are skown in Fig. 21, plotted as functions of probe potential for various values of $R_{p} / \lambda_{D_{-}}$. These resuits correspond to the potentials and charge densities of Figs. 17 and 18 and are therefore based on the simplified electron density model of Eq. (13.13). Accordingly, for values of $-e \phi_{\mathrm{p}} / \mathrm{kT}$. smaller than about 5 , they can be expected to deviate significantly frum current collection values corresponding to the more realistic model of an absorbing probe (i.e. one that collects every charged particle that strikes it), and should therefore be used with caution. In contrast with the case of finite ion temperature (Fig. 20) the ion current at zero ion temperature increases without limit as $\mathrm{Rp}_{\mathrm{p}} / \lambda_{D_{-}}$is decreased, for any fixed probe potential. Figure 21 also shows the trapped-orbit boundary corresponding to $T_{+} / T_{-}=0$. The current collection results shown in this diagram appear in Table 5a.

Figure 22 shows electron current as a function of probe potential Ior various values of R_{p} / λ_{D}, for the case $T_{i} / T_{-}=0$, i.e. for the case of zerotemperature repeiled particies. the results for non-zero values of R_{p} / λ_{D}.
have been computed using Program 2 (Appendix I); the result for $R_{p} / \lambda_{D_{-}}=0$ is the same as that for Fig. 20. Once again, the trapped-orbit boundary is shown.

Comparison of Fig. 22 with Fig. 20 shows that the electron current decreases more rapidly as R_{p} / λ_{D}. increases when the ions are at zero temperature than when they are at electron temperature. This effect is brought out more clearly in Fig. 26; the reasons for it are discussed in connection with that diagram. The current collection results in Fig. 22 correspond to the same cases as the sheath edge radii shown in Fig. 19.

Ion collection as a function of $\lambda_{D_{-}} / R_{p}$ is shown in Fig. 23 for $e \phi_{\mathrm{p}} / \mathrm{kr}_{-}=-25$ and values of $\mathrm{T}_{+} / \mathrm{T}_{-}$of $0,0.5$ and $\mathrm{I}_{\text {. This diagram has been }}$ plotted in this manner in order to best illustrate the behaviour of the collected current as $\lambda_{D_{-}} / R_{p}$ becomes small. This diagram shows that for smaller values of $\lambda_{D_{-}} / R_{p}$ the ion collection is not a monotonic function of ion temperature; this behaviour is brought out more clearly in Figs. 27a and 28. This diagram also shows the corresponding results for mono-energetic ions. The curve shown for the case $T_{+} / T_{-}=0$ is a member of both the Maxwellian and monoenergetic families of curves in this diagram since, as pointed out in Sec. XIII, the mono-energetic and Maxwellian distributionsare the same in this limit.

The kink in the mono-energetic curve for $T_{+} / T_{-}=1$ is caused by the fact theit current collection for mono-energetic ions becomes orbital-motionlimited at this point. It may also be noted that no such feature appears in the corresponding Maxwellian result. The reasons for this behaviour have been discussed. n Sec. VIII; this section also defines what is meant by orbital-motion-linted current when the attracted species is Maxwellian. The results for ion and electron collection are of course the same for the case $T_{+} / T_{0}=1$.

None of these curves extend to $\lambda_{D_{-}} / R_{p}=0$ since the computation scheme has been defined only for finite values of $R_{p}^{p} / \lambda_{p_{-}}$. An exception to this occurs in Figs. 25 and 45 for the case where the repelled particles are at zero temperature.

The trapped-orbit boundary for the Maxwellian case is also shown in Fig. 23. As mentioned in connection with Fig., 17, all trapped-orbit boundaries shown in this and other diagrams refer to a fuily Maxwellian plasma only.

In order to display more clearly the behavior of the ion current at small values of $R_{p} / \lambda_{D_{-}}$, the same results as those of Fig. 23 are shown again in Fig. 24, plotted as functions of $R_{p} / \lambda_{D_{-}}$instead of $\lambda_{D_{-}} / R_{p}$. Here the results shown for non-zero.values of $T_{+} / T_{\text {. indicate that in the Maxwellian case, }}$ the current collection for non-zero values of R_{p} / λ_{D}. approaches the result for $R_{p} / \lambda_{D_{-}}=0$ only as a limit. In contrast, the mono-energetic results show a finite range of values of R_{p} / λ_{D}. in which the current has a constant value. In Sec. XVI, it will be seen that the corresponding Maxwellian results for the cylindrical probe, unlike those for the sphere, also show such a region of constant current level. Appendix E contains a discussion of the reasons for this difference in behavior. Since it was impractical to use the computation scheme arbitrarily close to zero R_{p} / λ_{D}. (the smallest value of R_{p} / λ_{D}. for which computations were done was 0.2) the question of whether the current collection becomes orbital-motion-limited, i.e. reaches this maximum value, for any non-zero values of R_{p} / λ_{D}. cannot be definitely settled without an asymptotic analysis of the problem for small $R_{p} / \lambda_{D_{0}}$; such an analysis is beyond the scope of this
research. Rorsover, this quesion is of academic interst, only since the result for zero $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}}$. is krows 'and the residual uncertainty for very smail R_{p} / λ_{D}. is extrerely smail.

Figure 25 shovs electron current as a function of $\lambda_{D_{-}} / R_{p}$ for $\theta \phi_{\mathrm{p}} / \mathrm{kT}^{2}=25$ ard values of $\mathrm{T}_{+} / \mathrm{T}^{2}$. of $\mathrm{C}, 0.5$, and 1 . Once again, the trappedorbit toundiy is shown. The corresponding mono-energetic current results are also shown. The planar-shestli approximation to the result for large $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{I}}$. and $T_{-} / T_{-}=0$ (Appendices $F_{\text {. J }}$) is also shom: in spite of the fact trat the
 diagran for small values of λ_{D} / π_{p}, tt shonc be noted that only the Maxwelifan curve has the plemar-sheath apmoximation as an asymotote. The curves
 $i_{-}=1$ is krown (sec. XIi).

The electron curent resuts of Fig. 25 are shown again in Fig. 26, ploted as functicns of $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}}$. insteas of λ_{D}. $/ \mathrm{R}_{\mathrm{p}}$. As noted earlier in nonnection wjith Fis. $2 i$, the Electron current decreases more rafidiy as $\mathrm{R}_{\mathrm{D}} / \lambda_{\mathrm{D}}$. increases when the joris are at a lower temerature. mhis occurs because the ions are in this case the revshiec species; for lower values of their tempersture a maller arounts of the fielc ot the probe is able to penetrate past the sheath edge into the plasnia (Suc. XII:) wis atsect electrons to the prove. As noted earlier in comection with Figs. 14 and 1.5 , if the temperature or the repslled species is lowere while the attracteu-species parameters are held constant, the sheath edge teads to sharpen sine the repelled particles are now turned back by a smaller rise in potertisi. As a result, the potential well surroundiry the probe steepens and contracts: fewer particles enter this well; current collection decreaces.

Once rgain, as mationed an conection with Fif. 24, tine precis? dependence of current on $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}} \mathrm{D}_{\text {. for }}$ falues near zero cannot be determined without an asympotic andysis for cases near this limit. In particular, when $T_{+} / T_{-}=0$, the behaviou: of the sheath edge iracius as $R_{p} / \lambda_{D_{-}} \rightarrow 0$ is a very involved question. As before, the unswers to these questions are of very minor imporinnce in detemining curcerc concotion since the limiting result is known.

Figure a'fa shows ion and electron urrents as functions of $\mathrm{T}_{+} /$T for various atorscting probs yotentins and $\mathrm{K}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=10$. Mono-energetic results with firite collection of the repelled panticles, and the simpla:ied case based on the assumption of ecro callection of these particles, are both shown; the latter corresponds to the use oif the simplified relation (13.1j) for electeca density. Curren zollection values for exp/kT_ =-10 obtained from the tabulated "esuits of Bew:stcin and Rabinowitz (Ref. 2l) are shown circled for comparison. they are seen to join smoothly on to the mono-energetic results comyuted here for larger ialues of ion temperature. The most striking feauure of these results is that as ion so nlectron temperature ratio $T_{+} / T_{\text {. }}$ is decreased, the ion cullection pasises throunh a minimum, then increases very rapidly as T+/T_ approaches zero. The reuson for this bshaviour is that as ion temperature decreases, the dominant iniluence is at farst the decrease or ion thermal metion and therniore ion landon tlax; as ion temperature decreases further, the absorption radil discussed in Sections Vill and XIII nove nutward to infinity, slowly at finst, then very rapidly, so that the increase ii: ion collection volume becones the dominant iafluence. The reason why this behaviour scours has also beat: discussed in G.:. XIII. On the other hand the electron
collection for positive probe potentials is seen to be a smoothly increasing function of $\mathrm{T}_{+} / \mathrm{T}_{-}$. Since the points corresponding to $\mathrm{T}_{+} / \mathrm{T}_{-}=0$ are calculated using a different solution scheme (Program 2; Appendix I) than those corresponding to non-zero values of T_{+} / T_{-}, these results also furnish a check on the correctness of both programs.

Figure 27b shows ion or electron collection as a function of probe potential for $T_{+} / T_{-}=1$ and $R_{p} / \lambda_{D_{-}}=100$. This diagram has been plotted for the cases of Maxwellian attracted particles and mono-energetic attracted particles with and without collection by the probe of repelled particles. In the latter case the distribution of repelled particles again corresponds to the simplified model of Eq. (13.13). The difference between these results for mono-energetic attracted particles is typical of all corresponding results obtained for both the spherical and cylindrical probes, though it is smaller at lower values of $R_{p} / \lambda_{D_{-}}$. The reason why the current in the case of non-collection is increased relative to its values in the case of collection has been discussed in Sec. VIII. It, is due to the fact that the assumption of zero collection results in an increase in the density of the repelled particles adjacent to the probe and decreases the steepness of the potential near the probe, allowing more of the attrseted particles to reach it.

In order to illustrate more clearly the behaviour of the ion current, this quantity is plotted again in Fig. 28, as a function of both T_{+} / T_{-}and probe potential for $R_{p} / \lambda_{D_{-}}=10$. As explained in connection with Fig. 21, the zero-temperature result is of the required accuracy for the completely absorptive probe assumed in this research only in the range e $\phi_{\mathrm{p}} / \mathrm{kT} . \mathrm{s}_{\mathrm{s}}-5$. Accordingly, this curve is not drawn for probe potentials closer to zero. The non-monotonic nature of the dependence on ion temperature is again visible, as in Fig. 27a. The curve for $T_{+} / T_{-}=0.1$ extends only to $e \phi_{\mathrm{p}} / \mathrm{kT}$: $=-10$ since the computation scheme proved unable to carry out these calculations at larger probe potentials (Sec. XIII; Appendix H) Accordingly, the regions between $\mathrm{T}_{+} / \mathrm{T}_{-}=0$ and 0.25 of the curves corresponding to values of -e $\phi / / \mathrm{kT}$. of 15,20 , and $\overline{2} 5$, have been plotted on the basis of the expected behaviour of these curves, using as guides the curves shown for smaller values of -e $\phi_{\mathrm{p}} / \mathrm{kT}$, , as well as the mono-energetic curve shown for $-\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}=25$. Results for mono-energetic ions are shown for $T_{+} / T_{-}=1$ and for $e \phi_{\mathrm{p}} / \mathrm{kT}=-25$. The trapped-orbit boundary is also show.

Figure 29 shows electron current as a function of probe potential for $R_{p} / \lambda_{D_{-}}=10$ and values of $T_{+} / T_{\text {. }}$ from 0 to 1 . The manner in which the curves for decreasing values of $T_{+} / T_{\text {_ }}$ depart at progressively lower probe potentials from the resuit for $T_{+} / T_{-}=1$ is because of the progressively smaller probe potentials at which the electron sheath begins to form as T_{+} / T_{-}decreases. Again, the trapped-orbit boundary is shown; as indicated earlier, the location of this boundary corresponds to the smailest probe potential for which trapped orbits exist, for given values of T_{+} / T_{-}and $R_{p} / \lambda_{D_{-}}$.

The trapyed-orbit boundary locations plotted in the preceding diagrams have been summarized in Figs. 30 and 31 for negative anci positive probe potentials, respectively, for values of $T+T$. from 0 to 1 . The boundary for $T_{+} / T_{-}=0$ in Fig. 30 is shown as a dotted line in the range $0<-e \phi_{p} / \mathrm{kI}$. < since this curve is based on solutions of the Allen, Boyd, and Reynolds equation (Appendices G, I) corresponding to the equilibriwm distribution (13.13) for electrons. Also, in Fig. 30, it is evident that the trapped-orbit boundary location, like tice ion current, is not a monotonic ranction of T_{+} / T_{\ldots}. The fact
that Fone of the boundaries shom jn Fige. jo ard 31, as well as those for the

 otale vompette intormat:on about the quantity of primary importance, the currera collestior.

Thi: complete; the discuscion of the results compuaed for the spherinel prove.

 serece in 5abile

ج'e poontith are chare deatior distributiors shown in Figs.
 In conmotioli with the zphericil probe, all of these diagrens show the larger extent ot the diotiabsaces ir both potential and charge derisity created by the jrestaci \ddagger the ovlindricel prose. Fiefure 33 in comparison with Fig. 14 shows : malcor comentretion ot tiea attracted particies netr the probe at low values
 cenosces more sinuy i! the cylindrinal geomatry as they move toward the prohe.

Eigure je shows ruteritizl vs cerins for $R_{p} / \lambda_{D}=10$, for vaiues
 reen shown tr Gec. XJj.j thet for murosrergetic ions the form of the potential at. -ange radius becomes more shallow in the limit as $T_{+} / T T_{-} \rightarrow 0$. These resuits for $=41 y$ Naxwelinen plasme sinow the same effect. Corresponding charge densities are plosted as furictions of rajus in Fic. 37, for the same values of
 dessitites axe ziso ntserved to neve a mote gedad dependence on ratius when $T_{+} / T_{-}=0$.

Sheath edge thickness ts siom in Fig. 38 as a function of both prose potential ard $\lambda_{D_{-}} / \mathrm{D}_{\mathrm{p}}$ for $\mathrm{T}_{\mathrm{r}} / \mathrm{TH}_{-} \because 0$ and positive vaiues of probe potential i.e. for the "ase of zerctemperatue repelled particlos, corresponding to fig. 19 for the shere. Comparison of these two diagrems shows that the sheath edge always ijes farther from the mobe in the sylindrical aase for the same vaiuss of probe potentau ard $\lambda_{D} / \pi_{i,}$. One reason for this is that, as shown in Seo. XII: if the ropelled particles are at zero temperature, none of the electaic field due to the probe's presence san jenetrete past the sheath edge into the plasne. This means that the total fot space charge in the sheath must exactiy cascel the oharge on the probe. In the oyinndrical case, the sheath volume per unit probe surface area is smaller for a given sheath thickness because of the geometry. The sheath edee most therefowe tend to lie farther from the prove.

Figure 38 also shous jart of the trapped-orbit bondary the portion of this bourdary corres, onding to smaller values of λ_{i} / ip is mot shown became the computer program was mathe to produce results in this region (Appandix 4). This trapped-wit howdary, and all others shown on diagrams
which refer to the cylitudical probe, refer only to the inner family o: trapped orbits discussed in Sec. VIII.

Ion or electron current is plotted in Fig. 39 as a function of probe potential for $T_{+} / T_{-}=1$ and various values of $R_{p} / \lambda_{D_{-}}$, corresponding to Fig. 20 for the sphere. In comparison, the current collection for the cylinder increases considerably more slowly with increasing probe potential. In contrast with the sphere, it remains orbital-motion-limited at non-zero vaiues of $R_{p} / \lambda_{D_{-}}$. For instance, the curve for $R_{p} / \lambda_{D_{-}}=2$ in Fig. 39 coalesces with the orbital-motion-limited result (Eq. 14.5a with $\pi_{6}=1$) at $e \phi_{\mathrm{p}} / \mathrm{kT}= \pm 2.9$. Figure 50 b may be used to verify this value. Figure 39 also shows the trapped orbit boundary.

Figure 40 shows ion collection as a function of probe potential for $T_{+} / T_{-}=0$ and various values of $R_{p} / \lambda_{D_{-}}$. This diagram corresponds to Fig. 21 for the sphere, except that the correct form of the electron distribution for small probe potentials has been used in the cylindrical case. Another difference between the two diagrams is that current collection for the cylinder remains finite in the limit $R_{p} / \lambda_{D_{-}} \rightarrow 0$ and becomes orbital-motion-limited for non-zero values of $R_{p} / \lambda_{D_{-}}$as this limit is approached. The result in Fig. 40 corresponding to $R_{p} / \lambda_{D_{-}}=0$ is that of either Eq. (14.5a) or Eq. (14.6b) with π_{6} set equal to zero.

Electron collection is shown in Fig. 41 as a function of probe potential for various values of $R_{p} / \lambda_{D_{-}}$and for $T_{+} / T_{-}=0$, i.e. for the case of zero-temperature repelled particles, corresponding to Fig. 22 for the sphere. Part of the trapped-orbit boundary is shown/ The reason why a section of it is not shown has been discussed in connection/with Fig. 38 which corresponds to the same cases as those of Fig. 41. As in the spherical case, for increasing values of R_{p} / λ_{D}. the electron collection initially decreases more rapidly when the ions are at zero temperature than when they are at electron temperature. In contrast to the results shown in Figs. 39 and 40 , current collection in Fig. 41 is equal to the orbital-motion-limited result only in the limit as $R_{p} / \lambda_{D_{-}} \rightarrow 0$. The reason for this is that the orbital-motion-limited current cannot be attained in the presence of a zero-potential sheath edge at any finite radius (Sec. XII).

In order to display more clearly the behaviour of the current at small Debye lengths, the ion or electron collection has been plotted in Fig. 42 as a function of $\lambda_{D_{-}} / R_{p}$ for $T_{+} / T_{-}=1$ and various values of probe potential. Trapped-orbit and orbital-motion-limited current boundaries are shown. The method of obtaining the location of the orbital-motion-limited current boundary from the computed results is described later in connection with Fig. 50a. As is the case with the trapped-orbit boundaries, all orbital-motion-limited current boundaries shown in this and subsequent diagrams refer to a fully Maxwellian plasma, with the understanding that zero-temperature attracted particles are included as a special case.

The corresponding dependence of ion collection on $\lambda_{D_{-}} / R_{p}$ for $T_{+} / T_{-}=0$ is shown in Fig. 43 for various probe potentials. In comparison with Fig. 42, both the trapped-orbit and orbital-motion-limited current boundaries in general lie at larger values of $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}}$. for any given probe potential. Figure 50a and 50 b also show these boundaries. The kink in the current-collection curves of Fig. 43 occurs because when the attracted species is at zero temperature, it is mono-energetic, and the discussion in Sec. VIII applies.
which show the correxpording revhlts lor the sphere, the lon current is boundea
at. large values of $\lambda_{D_{\mu}} / \mathrm{R}_{\mathrm{p}}$ and small values of $\mathrm{T}_{+} / \mathrm{T}_{-}$, for any given probe potential.
Current results for mono-energetic ions are shown for comparison; once again,
the result for $T_{+} / T_{-}=0$ is a member of both the Maxwellian and mono-energetic
families of results. There is seen to be a range of values of $\lambda_{D_{-}} / R_{p}$ in which
the current collection at fixed $\lambda_{D_{-}} / R_{D}$ is not a monotonic function of T_{+} / T_{-}.
A detailed comparison of Figs. 42 and 43 shows that this occurs only for values
of $-\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$ _ greater than about 10 . The trapped-orbit boundary is also shown.

Electron collection results have been plotted in Figs. 45 and 46 as functions of $\lambda_{D_{I}} / R_{p}$ and $R_{p} / \lambda_{D_{-}}$, respectively, in order to illustrate the behaviour of the current collection for both small and large Debye lengtr.s. These results are plotted for $\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}_{-}=25$ and values of $\mathrm{T}_{+} / \mathrm{T}_{-}$of $0,0.5$, and 1 . These diagrams correspond to Figs. 25 and 26 for the sphere. Figure 45 shows the trapped-orbit boundary in incomplete form since its location for $T_{+} / T_{-}=0$ is not available, as discussed in connection with Fig. 38. As in Fig. 25, the results for $T_{+} / T_{-}=0$ in Fig. 45 include the end point for $R_{p} / \lambda_{D_{-}}=0$ since the limiting result $i_{-}=1$ is known. Current collection for Maxwellian electrons based on the planar-sheath approximation is also shown again in Fig. 45. Figures 45 and 46 also show corresponding current collection results for mono-energetic electrons. In contrast to the spherical case of Fig. 26, current collection for non-zero values of $T_{+} / T_{\text {_ }}$ in Fig. 46 is seen to be orbital-motion-limited, i.e. not a function of $R_{p} / \lambda_{D_{-}}$, over a non-zero range of $R_{p} / \lambda_{D_{-}}$.

Figure 47 shows ion collection for $e \phi_{\mathrm{p}} / \mathrm{KT}_{2}=-25$ and electron collection for $e \phi_{p} / k T_{-}=25$, as functions of T_{+} / T_{-}, for $\bar{R}_{p} / \lambda_{D_{0}}=10$. Results for mono-energetic attracted particles are shown for comparison. The Maxwellian and mono-energetic ion current results are seen to coalesce as $T_{+} / T_{-} \rightarrow 0$, as must be the case (Sec. XIII). Since the electron collection result for a positive probe in the limiting case $T_{+} / T_{-}=0$ is calculated by a different program (Appendix I) than the results for non-zero values of T_{+} / \mathbb{T}_{-}, the fact that these results are seen to join smoothly in Fig . 47 serves to verify the operation of both programs. We also note that the ion current for the negative probe is equal to the electron current for the positive probe when $T_{r} / T_{-}=1$, as it must be (Sec. III).

Ion collection is shown in Fig. 48 for $R_{p} / \lambda_{D_{-}}=10$ as a function of both $T_{+} / T_{\text {_ }}$ and probe potential. This diagram corresponds to Fig. 28 for the sphere. The trapped-orbit boundary is shown, as well as the current collection for mono-energetic ions for $T_{+} / T_{-}=1$ and for $e \phi_{p} / k T_{-}=-25$. In contrast with Fig. 28, the ion collection is seen to be a monotonic function of ion temperature for the cylinder for $R_{p} / \lambda_{D_{-}}=10$; the fact that this is not true for some values of $R_{p} / \lambda_{D_{-}}$has been noted in connection with Fig. 44. The curve for $T_{+} / T_{-}=0$ is seen to be complete in the cylindrical case, unlike that for the sphere.

Figure 49 shows electron current as a function of probe potential for $R_{p} / \lambda_{D_{-}}=10$ and values of T_{+} / T_{-}from 0 to 1 . This diagram corresponds to Fig. 29 for the sphere. In comparison, the increase in current collection with probe potential is smaller in all cases, and the inner family of trapped orbits (Sec. VIII) occurs at smaller probe potentials in the cylindrical case than trapped orbits occur in the spherical case.

Tiapped-orbit and orbital-motion-linited current boundaries are plotted in Fig. 50a for an ion-collecting probe for values of $\mathrm{T}_{\boldsymbol{*}} / \mathrm{T}_{\text {. }}$ of 0 , 0.5 , and 1. This diagram corresponds to Fig. 30 for the sphere; in contrast, the trapped-orbit boundary position is for nearly all values of probe potential seen to be a monotonic function of $T_{+} / T_{\text {. in }}$ ine cylindrical case. In this case, trapped orbits also exist at larger values of $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}}$. than in the corresponding spherical case; this is because the potential in the cylindrical case is generally more shallow in form (Sec. VIIT). Another difference between Figs. 30 and $50 a$ is that in the spherical case, no orbital-motion-limited current boundaries are shown since there are no non-zero values of $R_{p} / \lambda_{D_{2}}$ for which this amount of current is actually collected; a discussion of the reasons for this difference appears in Appendix E. These bounauries have been obtained in the cylindrical case by obtaining as computer output for a sequence of cases the value of the maximum energy level for which current collection is not orbital-motion-limited (Sec. VIII; Table 3) and extraparating this result to zero as a function of either probe potential or $R_{p} / \lambda_{D_{-}}$. Figure $50 b$ shows the data of Fig. 50a plotted on a larger scale in R_{p} / λ_{D} to show more cleirly the location of the orbital-motion-limited current boundaries.

Figure 51 shows the same boundaries as those of Fig. 50 in the case of an electron-collecting probe. This diagram corresponds to Fig. 31 for the sphere. The trapped-orbit boundary for $T_{+} / T_{-}=0$ is incomplete as in Figs. 38 and 41. The boundaries for $T_{+} / T_{-}=1$ are the same as those for ion collection in Fig. 50, as they must be (Sec. III).

It is clear from examination of the preceding diagrams that much of the information computed here for both the spherical and the cylindrical probes is in the region where trapped orbits exist. The fact that populating these orbits in any particular case is likely to cause a decrease in the attractedspecies current has been pointed out in Sec. VIII. Since no quantitative predictions exist of the magnitude of these effects, it is evident that theoretical or experimental investigation of them would be of great value in finding out whether in any given situation they appreciably affect the current collection.

It is noteworthy that Bernstein and Rabinowitz (Refs. 5 and 21) were sufficiently concerned about this problem to forego carrying out their mono-energetic calculations in the trapped-orbit region. However, important cases are believed to exist in which the population of these orbits will be negligible (Sec. VIII); the obtaining of these results was accordingly considered to be a worthwhile task.

This completes the discussion of the computed results of this investigation. As noted in Sec. XV, these results may be applied by scaling of the appropriate parameters to situations involving multiply charged ions and values of T_{+} / \mathbb{T}_{-}greater than 1 .

The theory and numerical calculations wich form the subject of this investigation have been carried out as part of a coordinated project in the development of plasma diagnostic techniques at U.T.I.A.S. As part of this project, experimental work closely related to the work described herein has been performed by Graf (Ref. 3) and Sonin (Ref. 4). Results of this combined investigation have also been reported in Ref. 19.

Reference 3 reports the results of a comparison made between Langmuir probe and microwave measurements on the subsonic portion of a freeexpansion argon plasma jet. Figure 52, which has been obtained from the results of Ref. 3 as they appear in Ref. 19, shows a comparison of electron number density results obtained using these two techniques. The Langmuir probe measurements used in constructing this diagram were made using a cylindrical probe of large length-to-diameter ratio aligned parallel to the local flow direction; numerical results which appear in Table 6 were used in calibrating this probe.

Reference 4 reports the results of experiments undertaken to compare the experimentally measured current collection of cylindrical probes with the results of this investigation (Table 6) and with results obtained from other theoretical formulations (Sections I, V, XIII). These probes were used under essentially similar conditions to those mentioned above in connection with Ref. 3. Figure 53 is reproduced from Ref. 4. This diagram corresponds to a situation in which the ion to electron temperature ratio was nearly zero and shows ion current I_{i} measured at 10 dimensionless units below the floating potential χ_{f}, plotted as a function of ($\left.R_{p} / \lambda_{D}\right)^{2} I_{i}\left(\chi_{f}-10\right)$ where R_{p} / λ_{D} is in Fig. 53 the ratio of probe radius to electron Debye length. Numerical results of this investigation, and results calculated by Chen (Ref. 8) are shown for comparison. It is seen that at larger values of the abscissa in this diagram, the experimental results give good agreement with the theoretical results obtained here rather than with those of Ref. 8, which are based on the zero-angular-momentum or radially-inward-motion assumption for zero-temperature ions. The implications of this assumption have been discussed in Sec. XIII; the experimental data shown in Fig. 53 therefore amount to a verification of the assumption made here in this investigation that the zero energy ions have a uniform distribution of angular momentum far from the probe. In other words, their distribution is correctly predicted by the zero-energy limit of the mono-energetic distribution (Sec. XIII).

It is also seen in this diagram that the experimental points depart from the theory at the point where the theory predicts that the current becomes orbital-motion-limited and no longer increases. This effect must almost certainly be a collisional one; it means that a significant number of ions presumably undergo collisions while orbiting by the probe and are deflected so as to strike it when they would otherwise miss it. The purpose of this investigation has been to explore the implications of a collisionless theory, and calculations involving collisions are beyond its scope. However, this diagram illustrates the fact that it is possible to find some situations in which the collision. less results are much more sensitive to the presence of collisions than in other cases.

The forecoing questions are discussed in more detail in Refs. 3 and 4, which also contain complete descriptions of the experimental procedures involved. Reference 19 has been written as a summary of some of the results of this combined research program; it also contains further information on the relationships between this theory and the experiments just described.
XVIII. CONCLUDING REMARKS

A method has been developed and used to obtain theoretical predictions of the current collected from a collisionless, fully Maxwellian plasma at rest by an electrically conducting Langmuir probe having spherical or cylindrical symmetry; the results for the cylinder have the advantage of being applicable to an aligned probe in a flowing plasma. The probe characteristic has been determined for both spherical and cylindrical geometries for probe radii up to 100 times the Debye shielding distance of the hotter species of charged particle, for a complete range of ion-to-electron temperature ratios, and for probe potentials from -25 to 25 times the thermal energy of the hotter species. Results have been presented explicitly for temperature ratios in the range $0 \leq T_{+} / T_{-} \leq 1$, and it has been indicated (Sections IX, XV) that results for greater values of T_{+} / T_{-}may be obtained from these by scaling the apprapriate rondimensional parameters. Each current collection result has been computed to a relative accuracy of 0.002 or better in an average time of approximately two minutes on the IBM 7094 at the University of Toronto.

Maxwellian velocity distributions and finite current collection have been assumed for both ions and electrons. The key to the construction of a workable computation scheme has been the replacement of the infinite plasma by an outer boundary at a finite radius, beyond which a power-law potential is specified. Experience with the computer program has in most cases shown that the computed results are remarkably insensitive to the precise location of this boundary, so that it may be placed relatively close to the probe surface, at a major gain in computation economy without appreciably disturbing the results.

The problem defined by these assumptions is expressible as a nonlinear system of integral equations, which has been solved numerically by an iterative scheme involving a sequence of successive approximations to potential and charge density distributions. An extension of the method of Bernstein and Rabinowitz (Refs. 5, 21) has been used to provide charge densities for ions and electrons at each step in the iterative process. The iteration has been found to be divergent in general, and convergence has been forced by modifying the computation scheme to provide mixing of each successive charge density result with its predecessor. The procedure does not assume any a priori separation into sheath and quasi-neutral regions.

Calculations based on the assumption of a mono-energetic distribution for the attranted particles have been made within the framework of this computation scheme, in order to provide explicit comparison with the results for a fully Maxwellian plasma, and to provide an efficient first approximation for computations with the Maxwellian plasma. In general, the results based on the mono-energetic model have been found to be a good approximation to those for the Maxwellian plasma for values of R_{p} / λ_{D} greater than about 5 but show marked deviation from them for smaller values of $\mathrm{Rp}_{\mathrm{p}} / \lambda_{\mathrm{D}}$. (Figs. 23 to 26,44 to 46).

It has also been shown that the difficulties encountered by Bernstein and Rabinowitz (Ref. 5) in computing the ion current for the cylinder in the zero-ion-temperature limit are illusory, and that the computations of Chen (Ref. 8) for this case do not take into account the fact that the ion temperature acts as a singular perturbation.

Experimental results by Sonin (Ref. 4), using a cylindrical probe have been cited in Sec. XVII to indicate that even in the zero-iontemperature limit, the current collection appears to be correctly predicted by the assumption of a uniform distribution in angular momentum as made here, rather than by the radially inward motion assumption made by Chen (Ref. 8). It is also pointed out in Sec. XVII that an exception to this occurs for values of $R_{p} / \lambda_{D_{-}}$in the orbital-motion-limited range, where the ion collection rises above the orbital-motion-limited value and hence disagrees with either theory, apparently because of collisional effects (Fig. 53).

Although the computation scheme used in this investigation to obtain results in the general case has been found to break down in certain extreme ranges of the plasma parameters, modifications or simpler theories have been found to give end-point data at nearly all of these limits, particularly when either the repelled or attracted species is at zero temperature (Sections XII, XIII, Appendix H). In the case of zero-temperature repelled particles, the modifications involved a major effort and allowed results to be obtained in an area in which up to now, even for the simplified case of mono-energetic ions, no results exist in the literature.

Computed charge density and potential distributions, as well as trapped-orbit and orbital-motion-limited boundaries and certain other information, have been presented graphically. Computed probe characteristics have been presented in both graphical and tabular form (Sections XV and XVI, Tables 5 and 6). A listing is included of the Fortran programs used to obtain these results (Appendix I).

RGFTGRENCES

1. French, J.B.
2. de Leeuw, J.H.
3. Graf, K.A.
4. Sonin, A.A.
5. Bernstein, I.B.

Rabinowitz, I.N.
6. Allen, J.E.

Boyd, R.L.F. Reynolds, P.
7. Lam, S.H.
8. Chen, F.F.
9. Lenghaar, H.L.
10. Rostoker, N. Rosenbluth, M.N.
11. Goldstein, H.
12. Bohm, D.
13. Spitzer, L., Jr.
14. Chapman, S., Cowling, T.G.

Langmuir Probes in a Flowing Low Density Plasma. Institute for Aerospace Studies, Univ. of Toronto, UTIAS Report No. 79 (1961).

Electrostatic Plasma Probes. Fifth Biennial Gas Dynamics Symposium, 1963.

The Determination of Spatially Non-Uniform Electron Density Distribution. Institute for Aerospace Studies, Univ. of Toronto, UTIAS Report No. 108 (1965).

The Behaviour of Free Molecule Cylindrical Langmuir Probes in Supersonic Flows, and Their Application to the Study of the Blunt Body Stagnation Layer. Institute for Aerospace Studies, Univ. of Toronto, UIIAS Report No. 109 (1965).

Theory of Electrostatic Probes in a Low Density Plasma. Phys. of Fluids, Vol. 2, p. 112 (1959).

The Collection of Positive Ions by a Probe Immersed in a Plasma. Prcc. Phys. Soc. B., Vol. 70, p. 297 (1957).

The Langmuir Probe in a Collisionless Plasma. Princeton Univ., Gas Dynamics Lab. Rep. 681, (1964).

Numerical Computations for Ion Probe Characteristics in a Collisionless Plasma. Princeton Univ., Plasma Phys. Lab. A.E.C.R. \& D. Rep. MATT-252 (1964).

Dimensional Analysis and Theory of Models, John Wiley \& Sons, 1951.

Test Particles in a Completely Ionized Plasma. Phys. of Fluids, Vol. 3, p. 1 (1960).

Classical Mechanics. Addison-Wesley, 1959.
Minimum Ionic Kinetic Energy for a Stable Sheath. In: Characteristics of Electrical Discharges in Magnetic Fields. Ed. Guthrie and Wakerling, McGraw-Hill, 1949.

Physics of Fully Icizized Gases, Interscience Publishers Inc., New York, 1956.

The Nathematical Theory of Non-Uniform Gases, Cambridge Press, 1961.

15.	Sundaresan, M.K. Hu, T.Y.	Thermal Conductivity oi a Bully Ionized jas. Can. J. Phys., Vol. 42, No. 4, p. 794, 1\%64.
16.	$\begin{aligned} & \text { Plerce, B.O. } \\ & \text { Foster, R.M. } \end{aligned}$	A Short Table of Integrals, Ginn and Company, 1956.
17.	Hastings, C., Jr.	Approximations for Digital Computers. Princeton, 1955.
18.	McLachlan, N.W.	Bessel Functions for Engineers, Oxford, 1948.
19.	Sonin, A.A. Graf, K.A. Laframboise, J.G. de Leeuw, J.H.	The Ion Collection of Free Molecular Cylindrical Langmuir Probes in Flowing Plasmas. Seventh International Conference on Phenomena in Ionized Gases, August 1965. Gradevinska Knjiga Publishing House. Beograd, Yugoslavia.
20.	Laframboise, J.G.	Theory of Cylindrical and Spherical Langmuir Probes in a Collisionless Plasma at Rest. Fourth International Symposium on Rarefied Gas Dynamics, Toronto, July 14-17, 1964.In: Rarefied Gas Dynamics, J. H. de Leeuw, Ed., Academic Press, New York (1965)
21.	Bernstein, I.B. Rabinowitz, I.N.	Theory of Electrostatic Probes in a Low Density Plasma. Princeton Univ., Plasme Phys. Lab. A.E.C.R.\&D Rep. PM-S-38 (1959).
22.	Hamza, V. Richley, E.A.	Numerical Solution of Two-Dimensional Poisson Equation: Theory and Application to Electrostatic-Ion-Engine Analysis. NASA Tech. Note D-1323 (1962).
23.	Hall, L.S.	Probes and Magnetic Pumping in Plasma. Univ. of California, Lawrence Radiation Lab. Rep. No. UCRL6535 (1961).
24.	Hall, L.S.	The Computation of Self-Consistent Potential Distributions in a Collisionless Plasma. Univ. of California, Lawrence Radiation Lab. Rep. No. UCRL-7660-T (1964).
25.	$\begin{aligned} & \text { Hall, L.S. } \\ & \text { Freis, R.P. } \end{aligned}$	Theory of the Electrostatic Probe and Its Improved Use as a Diagnostic Tool. Univ. of California, Lawrence Radiation Lab. Rep. No. UCRL-12480 (1965).
26.	Moskalenko, A.M.	Concentration and Flux of Particles Near a Cylindrical Body in a Plasma. XVth International Astronautical Congress, Warsaw, Poland, Sept. 7-12, 1964.
27.	Lem, S.H.	Plasma Diagnostics with Moderately Large Langmuir Probes. Phys. of Fluids, Vol. 8; p. 1002 (1965).
28.	Walker, E.H.	Plasma Sheath and Screening Around A Stationary Charged Sphere and a Rapidly Moving Charged Body. In: Interactions of Space Vahicles with an Ionized Atmosphere, S.F. Singer, Ed., Pergamon Press, London (1965).

2;. Betlinger, R.T. Walkers E.H.
30. Medicus, G.

Relationship for Plasma Sheaths About Langmuir Probes. Phys. of Fluids, Vol. 8, Page 748 (1965).

Theory of Electron Collection of Spherical Probes. Journal of Applied Physics, Vol. 32, p. 2512 (1961).

TABLS 1

Maximum Number Density $\mathrm{I}_{\text {max. }}$ of a Species of Charged Particles Whose Scattering Distance S_{d} is to be Larger Than One Probe Diameter, As a Function of R_{p} / λ_{D} and T

R_{p} / λ_{D}	$g_{\max }$	$T=10^{3} 0_{K}$	$T=2 \times 10^{4} \mathrm{~K}$
2.5	6.34	4.3×10^{15}	3.5×10^{19}
10	0.712	5.5×10^{13}	4.4×10^{17}
100	0.0415	1.85×10^{11}	1.48×10^{15}

Asymptotic Potentials at Large Radius

	Spherical Symmetry	Cylindrical Symmetry
Unshielded Coulamb Potential	$\phi \alpha r^{-1}$	Logarithmic Divergence
Debye Shielded Potential	$\phi \alpha \frac{e^{-r / \lambda_{D}}}{r}$	$\phi \alpha \frac{e^{-r / \lambda_{D}}}{\sqrt{r}}$
Current-Collecting Probe	$\phi \alpha \mathbf{r}^{-2}$	$\phi \alpha r^{-1}$
Current-collecting Probe; Attracted Particles at Zero Temperature	$\phi \alpha \mathbf{r}^{-4}$	$\phi \alpha r^{-2 / 3}$

TABLE 3 a

Partial List of Correspondences Between Text Symbols and

Fortran Variable Names

Text Reference	Text Symbol	Fortran Variable Name	Program Reference
Eq. (9.1)	x	X	Main Programs 1 and 2 and Related Subprograms
	x^{2}	XSQ	"
Eq. (D.2)	s	S	"
Eq. (D.2)	dx/ds	DXDS	"
	r / R_{p}	ROP	FFN 362*, 256*
	$\sqrt{1-x^{2}}$	SCOT	FFN 18*, 255*
Eq. (5.1)	$\mathrm{M}(\mathrm{r})$	COOK	Function COOKIE
Eq. (9.1)	χ	XI	Main Programs 1 and 2 and Related Subprograms
Eq. (D.2)	$d x / d s$	DXIDS	"
Eq. (9.1)	η	ETA	"
Eq. (9.7)	η_{+}	ETAPS	Subprograms Charge, Chamon, Cal
Eq. (9.7)	η	ETANG	"
Eq. (E.28)	Ω_{G}	OMGAG	"
"	β_{G}	BETAG	"
Eq. (E. 29)	α_{G}	ALFAG	"
Eq. (E.31)	ϵ_{G}	EPSG	FUNCTIONS CHARGE, CAL
APFENDIX D	$\mathrm{y}, \mathrm{K}_{0}, \mathrm{~K}_{1}$	Y	Main Programs 1 and 2, FFN 33,38, 34
APPENDIX D	y	Y	Function CAL, FTN 290
Eqs. (D.21)	Y	2	Main Programs 1 and 2, FFN 34, 35

FFN- Fortran Formula Number

* Nearest Numbered Formula

TABLE 3 a (continued)

Text Reference	Text Symbol	Fortran Variable Name	Program Reference
Figure 5; If the value of s at point D is the value of the Fortran Variable	$\mathrm{s}_{\mathrm{H}}, \mathrm{s}_{\text {L }}$	SH	Subroutine Charge, FFN 320
$S(I)$, Then the value of S at			
Point L is the value of $\mathrm{SH}(\mathrm{I})$.			
It follows that			
s_{H} is Stored in $\mathrm{SH}(1)$			
	π	PI	Main Programs 1 and 2, FFN 101
	$\sqrt{\pi}$	SQTPI	
	$1 / \pi$	VIPI	
	$1 / \sqrt{\pi}$	SAY	
Eq. (D.21)	Δs	DELIS	Main Programs 1 and 2, FFN 16*
Eqs. (3.2), (9.1)	γ_{+}	GAMMA	Main Programs 1 and 2
	π_{3}	PI3	
	π_{6}	PI6	
	s_{B}	P	
	i_{+}	YPOS	
	1.	YNEG	
Figure 5b, 6a,10b	β_{H}	BETH	
Figure 10a	β_{C}	BETH	
		EXX	
Smailest and		SW, SWA	Subroutine Charge
Largest Values of s at Which			
Locus of Extrema			
Enters First Quadrant			

		(TABLE 3a	
Text Reference	Text Symbol	Fortran Variable Name	Program Reference
Values of β corresponding to above values of s		$\begin{aligned} & \text { BETAW, } \\ & \text { BETAWA, } \end{aligned}$	Subroutine Charge
Smallest and largest values of s at which maxima occur		SCRIT, SCRITA	Subroutine Charge
in locus of extrema Coordinate indices		LK, LKA	
corresponding to smallest			$!$
values of s, if any, for which the point H			
in Figs. 5 and 6, corresponding to the cutoff boundary tangent at s, is not in the first quadrant			
Eqs. (E.45), (E.67)	μ	AMU	Fuctions DYO, TRY
Eqs. (E.45), (E.67)	θ	THETA	Functions DYO, TRY
Eqs. (9.4), (11.7)	B_{M}	ENG	Subroutine Chamon, FFN 535, 536
$\cdots \mathrm{Eq}$. (9.10 b)	i	YPN	Main Program 1, FFN 357
Eq. (13.6a)	i^{*}	CURRNT	Main Program 4
Appendix D	$(d x / d x)_{s=0}$	EDGE	Main Programs 1 and 2
Fig. 8	"Case Number	LINK	Subroutines Charge, First, Second, Third, Fourth (Sphere and Cylinder)
Eq. (E.3)	κ	CAPPA	Functions DUO, DYO
Eq. (E.5)	β_{3}	$\left\{\begin{array}{l}\text { ANDA } \\ \text { BH }\end{array}\right.$	Function TRE Function TRY
Ratio of largest		\{RMRIT	Subroutine Charge, FFNN 234
Trapped-orbit radius to R_{p}		RRTRAP	Subroutine Charge, IFN 241, Subroutine Chamon, FFN 481*
Ratio of largest Trapped-orbit radius to λ_{D}.		STRAP	Main Program 4, FTN 99*

Partial List of Correspondences Between Text Equations and Fortran Formula Numbers

Text Equation
$(9.4),(13.1 c)$
$(5.1),(9.7)$
(9.8)
$(9.10 b)$
(9.16)
(9.15)
$(11.7),(13.2 c)$
(12.5)
(12.6)
$(13.1 a)$

Fortran Formula Number

535
40
103* 402*

357
16* 102

706*, 712* 331*, 328* 536

750
108*, 746*
438, 440, 444, 446, 452, 454
(13.2b)
(13.3a)
(i3.4a)
(13.13),
(13.14)
(14.1),(E.43)
(14.2),(E.94)
(D.2)
(D.7), (D.8) (D.10)
(D.11) (D.12)
(D.15), (D.16)
(D.18)
(D.19)

456
439, 441, 445, 447, 453, 455

530
446, 452
"447, 453
27*, 42*,
48*, 177*
751, 204
180*, 204
33
39*, 39
326
325
281
285*, 285
331
330

Program Reference
Subroutine CHAMON
Main Programs 1 and 2
Subroutine CHARGE Subroutine CHAMON
Main Program 1
Main Program 1 Subroutine CHARGE
Subroutine CHARGE Subroutine CHAMON
Subroutine CHAMON
Subroutine THIRD (Sphere) Subroutine THIRD (Cylinder) Subroutine CHAMON

Subroutine CHAMON
Subroutine CHAMON

Subroutine CHAMON
Subroutine CHAMON
Subroutine CHAMON
Main Program 4
Subroutine THIRD (Sphere)
Subroutine THIRD (Cylinder)
Main Programs 1 and 2
Main Programs 1 and 2
Main Program 1
Main Programs 1 and 2
Main Programs 1 and 2
Main Prograus 1 and 2
Main Program 1
Main Programs 1 and 2

$\frac{\text { TABLE } 3 \mathrm{~b}}{\text { (continued) }}$		
Text Equation	Fortran Formula Number	Program Reference
(D.21)	$\begin{aligned} & 34,35 \\ & 25,32 \end{aligned}$	Main Programs 1 and 2 Main Program 3
(D.22)	332 to 337	Function CAL
(E.3)	$\begin{aligned} & 501 * \\ & 205^{*} \end{aligned}$	Function DUO Function DYO
(E.5)	$\begin{array}{r} 401 * \\ 35 * \end{array}$	Function TRE Function TRY
(E.1)		Function UNO
(E.2)		Function DUO
(E.4)		Function TRE
(E.10)		Function DYO
(E.11)		Function TRY
(E.17), (E.42)	176, 751	Subroutine THIRD (Sphere)
(E.17)	176,745,180*	Subroutine THIRD (Cylinder)
(E.18)	$\begin{aligned} & 177 *, 571,204 \\ & 177,571,204 \end{aligned}$	Subroutine THIRD (Sphere) Subroutine THIRD (Cylinder)
(E.19)	$\begin{aligned} & 552^{*}, 552, \\ & 551,560^{*} \end{aligned}$	Subroutine FIRST (Sphere or Cylinder)
(E.20)	$\begin{aligned} & 552^{*}, 556, \\ & 560^{*}, 562 \\ & 552^{*}, 556, \\ & 571,573, \\ & 560^{*}, 575^{*} \end{aligned}$	Subroutine FIRST (Sphere) Subroutine FIRST (Cylinder)
$\begin{aligned} & (E .21), \\ & (E .22) \end{aligned}$		Function COMFT
(E.23)	305	Function USTO
(E.25)	506	Function DUO
(E.27)	406	Function TRR
(E.30)	126**	Subroutine CHARGE
(E.31)	126	Subroutine CHAMON Subroutine CHARGE
(E.32), (E.33)	221, 292	Function CAL
(E.34), (E.89)	$\begin{gathered} 560 * \\ 540 * \\ 750,180 \% \\ 320 * \end{gathered}$	Subroutines FIRST Subroutines secosi 8ubroutines THIRD Subroutines FOURTH

Text Equation	Fortran Formula Number	Program Reference
(E.35), (E.90)	562*,575*	Subroutines FIRST
	750, 746*	Subroutines THIRD
	370, 375*	Subroutines FOURTH
(E.36),(E.91)	226, 3.20	Function CAL
(E.39)	177, 177*	Subroutine THIRD (Sphere)
(E.44)	200,190,84	Function DYO
(E.52)	10*	Function DYO
(E.53)	50	Function DYO
(E.57)	125*	Function DYO
(E.58)	116*	Function DYO
(E.59)	102*	Function CDO
(E.60) to (E.65)	199 to 216	Function DYO
(E.66)	19, 72, 73	Function TRY
(E.69) to (E.72)	40 to 16	Function TRY
(E.73)	22*	Function TRY
(E.76) to (E.78)	41 to 501	Function TRY
(E.82)	508, 509	Function TRY
(E.84), (E.85)	525 to 510	Function TRY
(E.85)	316*	Subroutine CHARGE
	317	Subroutine CHAKON
(E.87), (E.88)	221, 294	Function CAL
(E.92)	177, 571	Subroutine THIRD (Cylinder)
(F.9)	30*	Main Program 3
(F.15)	25,32	Main Progran 3
(F.16)	23	Main Program 3
(G.14)		Subroutine POWERS
(Q.15)	140 to 152	Main Progran 4

TABLE 4
Suggested Computation Net Spacings and Outer Boundary Radii for Use With
Program 1

Sphere: $T_{+} / T_{-}=1 ; \quad \chi_{p_{-}}= \pm 25$

$\mathrm{Rp}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}$	$\Delta \mathrm{s}$	Points Per λ_{D} at Probe	$\left(\frac{d s}{d x}\right)_{r=R_{p}}$	S_{B}	$\frac{\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{p}}}$	$\frac{R_{B}-R_{p}}{\lambda_{D}}$
0.5	. 0667	30	-1	2.8	16.44	7.7
1	. 05	20	-1	2.4	11.02	10.0
2	. 0333	15	-1	2.0	7.39	12.8
5	. 0133	15	-1	0.80	5.00	20.0
10	. 01	10	-1	0.72	3.57	25.7
20	. 005	10	-1	0.56	2.27	25.5
50	. 005	10	-2.5	0.56	1.64	31.8
100	. 005	10	-5	0.50	1.40	40.3

Cylinder: $0 \leq T_{+} / T_{-} \leq 1 ; X_{p_{-}}=25$
$R_{p} / \lambda_{D_{-}} \quad \Delta s \quad \begin{aligned} & \text { Points } \\ & \begin{array}{c}\text { Per } \lambda_{D} \\ \text { at Probe }\end{array} \\ & \text { it }\end{aligned}\left(\frac{\partial s}{\partial x}\right)_{r=R_{p}} \quad s_{B} \quad \frac{R_{B}}{R_{p}} \quad \frac{R_{B}-R_{p}}{\lambda_{D}}$

1	.025
2	.025
5	.01
10	.01
20	.0067
50	.01
100	.01

40	-1
20	-1
20	-1
10	-1
7.5	-1
5	-2.5
5	-5

2.9	18.17	17.2
2.3	9.97	17.9
0.80	5.00	20.0
0.72	3.57	25.7
0.60	2.50	30.0
0.56	1.64	31.8
0.56	1.53	53.4

TABLE 5a
Spherical Probe; Ions at Zero Temperature; Electrons Not Collected by Probe Surface; Ion Currents Obtained from Solution of the Allen, Boyd and Reynolds Equation

$\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=0.5$	
$e \phi_{\mathrm{p}} / \mathrm{kT}$.	i_{+}
36	4.
0.8115	8.0000
1.4094	12.000
2.0770	16.0000
2.801	20.0
3.5843	24.0000
5.2656	32.0000
7.0923	40.0000
10.56	54.0000
12.15	60.0000
17.8113	80.0000
23.9553	100.0000
30.4775	120.0000

$\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=$	
$\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$	0.75
i_{+-}	
0.1250	1.7778
0.3575	3.5556
0.6540	5.3333
0.9970	7.1111
1.3787	8.8889
1.8017	10.6667
2.7292	14.2222
3.7614	17.7778
5.77	24.0000
6.69	26.6667
10.0603	35.5556
13.7698	44.4444
17.7467	53.3333
26.4155	71.1111

$\mathrm{R}_{\mathrm{p}} / \lambda_{\text {D }}$		R_{p}	
$-E \phi_{p} / k T$	i_{+}	-e $\phi_{\mathrm{p}} / \mathrm{kT}$.	i_{+}
0.0191	0.5000	0.0180	0.4800
0.0411	0.7500	0.0316	0.6400
0.0708	1.0000	0.0488	0.8000
0.1075	1.2500	0.0693	0.9600
0.1522	1.5000	0.1214	1.2800
0.2594	2.0000	0.1882	1.6000
0.3932	2.5000	0.340	2.1600
0.688	3.3750	0.415	2.4000
0.833	3.7500	0.7366	3.2000
1.4259	5.0000	1.1550	4.0000
2.1616	6.2500	1.6575	4.8000
3.0136	7.5000	2.9250	6.4000
5.0479	10.0000	4.5001	8.0000
7.4572	12.5000	6.3168	9.6000
10.1480	15.0000	10.6207	12.8000
16.3272	20.0000	15.6457	16.0000
23.3638	25.0000	19.0763	18.0000
28.1026	28.1250	22.6842	20.0000
33.0521	31.2500	26.5548	22.0000
		30.5252	24.0000

$\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=$	1.0
$\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$	i_{+-}
0.0563	1.0000
0.1767	2.0000
0.3393	3.0000
0.5339	4.0000
0.7557	5.0000
1.0076	6.0000
1.5718	8.0000
2.2163	10.0000
3.50	13.5000
4.10	15.0000
6.3338	20.0000
8.8363.	25.0000
11.5497	30.0000
17.5429	40.0000
24.1979	50.0000
31.3254	60.0000

$R_{p} / \lambda_{D_{-}}$	3.0
$-e \phi_{\mathrm{p}} / \mathrm{kT}$	i_{+-}
0.0157	0.4444
0.0246	0.5556
0.0347	0.6667
0.0617	0.8889
0.0967	1.1111
0.179	1.5000
0.219	1.6667
0.3964	2.2222
0.6359	2.7778
0.9313	3.3333
1.7171	4.4444
2.7478	5.5556
3.9872	6.6667
7.0478	8.8889
10.7385	11.1111
13.3015	12.5000
16.0195	13.8889
18.9623	15.2778
21.9963	16.6667
25.0659	18.0000
28.8479	19.5556

$\begin{array}{c}\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}} \\ \mathrm{e} \\ \mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}\end{array}$	1.5
0.0145	0.4444
0.0525	0.8889
0.1088	1.3333
0.1807	1.7778
0.2663	2.2222
0.3678	2.6667
0.6035	3.5556
0.8865	4.4444
1.482	6.0000
1.769	6.6667
2.8855	8.8889
4.1972	11.1111
5.6611	13.3333
9.0028	17.7778
12.8173	22.2222
16.9775	26.6667
26.3051	35.5556

$\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}$	$=4.0$
$-e \phi_{\mathrm{p}} / \mathrm{kI}$	i_{+-}
0.0111	0.3750
0.0202	0.5000
0.0317	0.6250
0.058	0.8438
0.073	0.9375
0.1322	1.2500
0.2150	1.5625
0.3191	1.8750
0.6164	2.5000
1.0381	3.1250
1.5921	3.7500
3.1198	5.0000
5.1487	6.2500
6.6316	7.0313
8.2427	7.8125
10.0306	8.5938
11.9001	9.3750
13.8188	10.1250
16.2165	11.0000
20.5608	12.5000
25.2359	14.0000
30.6338	15.6250

$\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=$	
$-\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$	i_{+-}
0.0128	0.4000
0.024	0.5400
0.029	0.6000
0.0541	0.8000
0.0855	1.0000
0.1271	1.2000
0.2455	1.5000
0.4148	2.0000
0.6493	2.4000
1.3553	3.2000
2.407	4.000
3.2467	4.5000
4.1936	5.0000
5.2873	5.5000
6.4589	6.0000
7.6883	6.4800
9.2571	7.0400
12.1543	8.0000
15.3356	8.9600
19.0671	10.0000
26.9644	12.0000

$R_{p} / \lambda_{D_{1}}$ $-\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$	7.5 i_{+}
0.0104	.0 .3556
0.0163	0.4444
0.0236	0.5333
0.0431	0.7111
0.0696	0.8889
0.1046	1.0667
0.2081	1.4222
0.3680	1.7778
0.5137	2.0000
0.6912	2.2222
0.9244	2.4444
1.2009	2.6667
1.5221	2.8800
1.9801	3.1289
2.9282	3.5556
4.0977	3.9822
5.5930	4.4444
9.0476	5.3333
13.1432	6.2222
17.8576	7.1111
23.0113	8.0000
28.6300	8.8889

$R_{p} / \lambda_{D_{-}}=$	10
$-\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$	i_{+-}
0.0129	0.4000
0.0207	0.5000
0.0299	0.6000
0.0562	0.8000
0.0929	1.0000
0.1209	1.1250
0.1589	1.2500
0.2009	1.3750
0.2546	1.5000
0.3139	1.6200
0.4024	1.7600
0.6000	2.0000
0.8772	2.2400
1.2889	2.5000
2.4710	3.0000
4.1858	3.5000
6.4377	4.0000
9.0921	4.5000
12.1481	5.0000
19.2713	6.0000
27.4560	7.0000

$\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}$	
$-\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$	15
0.0100	0.3556
0.0162	0.4444
0.0211	0.5000
0.0260	0.5556
0.0315	0.6111
0.0376	0.6667
0.0452	0.7200
0.0532	0.7822
0.0716	0.8889
0.0942	0.9956
0.1220	1.1111
0.1966	1.3333
0.3104	1.5556
0.4922	1.7778
0.7682	2.0000
1.2052	2.2222
2.7249	2.6667
5.1857	3.1111
8.5188	3.5556
17.2951	4.4444

$\mathrm{R}_{\mathrm{p}} / \lambda_{D_{-}}=$	20
$-\mathrm{e} \phi_{\mathrm{p}} / \mathrm{kT}$	I_{+-}
0.0112	0.3750
0.0134	0.4050
0.0160	0.4400
0.0211	0.5000
0.0258	0.5600
0.0336	0.6250
0.0496	0.7500
0.0703	0.8750
0.0961	1.0000
0.1283	1.1250
0.1686	1.2500
0.2924	1.5000
0.5198	1.7500
0.9526	2.0000
3.0830	2.5000
7.2985	3.0000
13.2897	3.5000
20.6601	4.0000
24.8126	4.2500

Ion-Attracting Spherical Probe: on Values of Ion Current ite
For Values of T_{+} / T_{-}Between 0 and 1

(OM) - Orbital Motion Limited
TABLE 5c
Spherical Probe: Computed Values of Attracted-Species Current it or in for $\mathrm{T}_{+} / \mathrm{T}_{\boldsymbol{-}}=1$

Both Species Maxwellian.														
$\downarrow \pm \frac{\phi_{p}}{k T}$	$\xrightarrow[0]{R_{p} / \lambda_{D_{D}}}$		0.3	0.5	1	2	3	5	7.5	10	15	20	50	100
0	1.0													1.0
0.1	1.1				1.0999			1.099		1.098		1.097	1.095	1.094
0.3	1.3			b	1.299		1.293	1.288		1.280		1.269	1.255	1.245
0.6	1.6				1.595	1.584	1.572	1.552		1.518		1.481	1.433	1.402
1.0	2.0				1.987	1.955	1.922	1.869		1.783		1.694	1.592	1.534
1.5	2.5			2.493	2.469	2.399	2.329	2.219		2.050		1.887	1.719	1.632
2.0	3.0			2.987	2.945	2.824	2.709	2.529		2.266		2.030	1.803	1.694
3.0	4.0			3.970	3.878	3.632	3.406	3.068		2.609		2.235	1.910	1.762
5.0	6.0			5.917	5.687	5.126	4.640	3.957		3.119		2.516	2.037	1.833
7.5	8.5			8.324	7.871	6.847	6.007	4.887	4.094	3.620		2.779	2.148	1.891
10.0	11.0			10.704	9.990	8.460	7.258	5.710	4.658	4.050		3.002	2.241*	1.938
15.0	16.0			15.403	14.085	11.482	9.542	7.167	5.645	4.796		3.383	2.397	2.022
20.0	21.0			20.031	18.041	14.314	11.636	8.473	6.518	5.453	4.318	3.716	2.532*	2.097^{*}
25.0	26.0	25.763	25.462	24.607	21.895	17.018	13.603	9.676	7.318	6.053	4.719	4.018	2.658	2.166

Table $5 d$
Spherical Probe: Computed Values of Attracted-Species Current it or i_{-}For $T_{+} / T_{-1}=1$?
Attracted Species Mono-Finerfetic. Results for the Case of Repelled Perticles Jot Collected By

15	2050	100
	$\begin{gathered} 1.0785 \\ (1.0785) \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.078 \\ & (1.0785) \end{aligned}$
	$\begin{gathered} 1.2356 \\ (1.2356)(1.2356) \end{gathered}$	$\begin{aligned} & 1.216 \\ & (1.2356) \end{aligned}$
	$\begin{gathered} 1.446 \\ i, 3.4 .312)(1.1458 \end{gathered}$	$\begin{aligned} & 1.35 \% \\ & (1.1,6!) \end{aligned}$
		$\begin{gathered} 7.48 \\ \because 50: \end{gathered}$
	$\begin{array}{cc} \therefore 84 \\ \therefore 820 & a \\ \hdashline-20 \end{array}$	$\therefore \because$
	$\begin{array}{rr} \therefore \% \\ \therefore \quad \text { ary } \end{array}$	
		$\begin{aligned} & \therefore \because \vdots \\ & \therefore \because \end{aligned}$
		$\begin{gathered} \therefore \% z \\ \therefore 1.05 \% \end{gathered}$
	$\therefore \%$ 2.087	is 8 8 8
	2.983	
	3.310 2.337	1.954
4.232	3.633	
4.628	3.930 ?,533	980

TABLE 5e

Electron-Attracting Spherical Probe: Computed Values of Electron Current
Por Values of $T_{+} / T_{\text {. Between } 0} 0$ and 1
(Repelled Species Colder)

$\frac{e \phi_{p}}{k T_{-}}$	$\frac{\mathrm{T}_{+}}{\mathrm{T}_{-}}$	$\begin{aligned} & R_{p} \\ & R_{D} \end{aligned}$	1.		
			Electrons Maxwellian	Electrons Mono-Energetic	Electrons MonoEnergetic, Ions Not Collected by Probe Surface
25	0.75	10	5.629	5.555	
25	0.5	10	5.156	5.102	
20	"	"	4.641	4.592	
15	"	"	4.077	4.041	
10	"	"	3.446	3.418	
5	"	"	2.675	2.660	
3	"	"	2.276	2.268	2.268
1	"	"	1.679	1.672	1.683
0.6	"	"	1.473	1.457	1.467
25	0.25	10	4.614	4.580	
25	0.1	10	4.233	4.216	
20	"	"	3.798	3.790	
15	"	"	3.329	3.326	
10	"	"	2.806	2.808	
7.5	"	"	2.511	2.517	
5	"	"	2.180	2.190	
3	"	"	1.868	1.882	
2	"	"	1.681	1.698	
1.5	"	"	1.574		
1.0	n	"	1.451		
0.7	"	"	1.364		
0.5	"	"	1.296		
0.3	"	"	1.212		
0.1	"	"	1.090		
25	0.5	1	20.412	$20.635 \text { (010). }$	
"	n	2	15.261	17.324	
"	"	3	11.992	12.549	
"	"	5	8.397	8.423	
"	"	20	3.378	3.317	

(ON) - Orbital Motion Limited
$\overline{J C ~ G T G V I}$

(Repelled Species at Zero Temperature). Electrons Maxwellian; Results for Mono-Energetic Electrons are Shown in Brackets										
$\int \frac{e \phi_{p}}{k T T_{-}}$	$\xrightarrow[0]{R_{\mathbf{p}} / \lambda_{\mathbf{D}_{-}}}$	0.5	1	2	3	5	10	15	20	∞
$\begin{aligned} & 0 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & (1.0785) \end{aligned}$	1.097	1.094	1.089	1.085	$\begin{aligned} & 1.077 \\ & (1.0785) \end{aligned}$	$\begin{gathered} 1.063 \\ (1.075) \end{gathered}$			1.0
0.3	$\begin{aligned} & 1.3 \\ & (1.2356) \end{aligned}$	1.287	1.273	1.249	1.230	$\begin{gathered} 1.198 \\ (1.234) \end{gathered}$	$\begin{gathered} 1.147 \\ (1.171) \end{gathered}$			
0.6	$\begin{aligned} & 1.6 \\ & (1.4712) \end{aligned}$	1.566	1.529	1.469	$\begin{gathered} 1.421 \\ (1.4712) \end{gathered}$	$\begin{gathered} 1.349 \\ (1.422) \end{gathered}$	$\begin{gathered} 1.242 \\ (1.270) \end{gathered}$,	
1.0	$\begin{aligned} & 2.0 \\ & (1.7854) \end{aligned}$	1.930	1.858	$\begin{aligned} & 1.740 \\ & (1.7854) \end{aligned}$	$\begin{gathered} 1.650 \\ (1.781) \end{gathered}$	$\begin{gathered} 1.522 \\ (1.620) \end{gathered}$	$\begin{gathered} 1.345 \\ (1.374) \end{gathered}$		$\begin{gathered} 1.202 \\ (1.206) \end{gathered}$	
1.5	$\begin{aligned} & 2.5 \\ & (2.178) \end{aligned}$	2.378	2.253	$\begin{gathered} 2.056 \\ (2.178) \end{gathered}$	$\begin{gathered} 1.911 \\ (2.120) \end{gathered}$	$\begin{aligned} & 1.712 \\ & (1.828) \end{aligned}$	$\begin{aligned} & 1.454 \\ & (1.482) \end{aligned}$			
2.0	$\begin{aligned} & 3.0 \\ & (2.571) \end{aligned}$	2.819	2.637	$\begin{gathered} 2.356 \\ (2.571) \end{gathered}$	$\begin{gathered} 2.154 \\ (2.419) \end{gathered}$	$\begin{gathered} 1.885 \\ (2.011) \end{gathered}$	$\begin{gathered} 1.551 \\ (1.578) \end{gathered}$			
3.0	$\begin{aligned} & 4.0 \\ & (3.356) \end{aligned}$	3.687	3.379	$\begin{gathered} 2.920 \\ (3.356) \end{gathered}$	$\begin{gathered} 2.602 \\ (2.949) \end{gathered}$	$\begin{gathered} 2.196 \\ (2.335) \end{gathered}$	$\begin{gathered} 1.721 \\ (1.746) \end{gathered}$			
5.0	$\begin{aligned} & 6.0 \\ & (4.927) \end{aligned}$	5.379	$\begin{gathered} 4.791 \\ (4.927) \end{gathered}$	$\begin{gathered} 3.956 \\ (4.817) \end{gathered}$	$\begin{gathered} 3.408 \\ (3.858) \end{gathered}$	$\begin{gathered} 2.738 \\ (2.887) \end{gathered}$	$\begin{gathered} 2.009 \\ (2.030) \end{gathered}$			
7.5	$\begin{aligned} & 8.5 \\ & (6.890) \end{aligned}$	7.437	$\begin{aligned} & 6.466 \\ & (6.890) \end{aligned}$	$\begin{gathered} 5.147 \\ (6.316) \end{gathered}$	$\begin{gathered} 4.312 \\ (4.847) \end{gathered}$	$\begin{gathered} 3.330 \\ (3.483) \end{gathered}$	$\begin{gathered} 2.317 \\ (2.334) \end{gathered}$	$\begin{gathered} 1.919 \\ (1.919) \end{gathered}$		
10.0	$\begin{aligned} & 11.0^{\circ} \\ & (8.854) \end{aligned}$	9.448	$\begin{gathered} 8.073 \\ (8.854) \end{gathered}$	$\begin{gathered} 6.262 \\ (7.673) \end{gathered}$	$\begin{gathered} 5.146 \\ (5.742) \end{gathered}$	$\begin{gathered} 3.866 \\ (4.018) \end{gathered}$	$\begin{gathered} 2.592 \\ (2.606) \end{gathered}$	$\begin{aligned} & 2.105 \\ & (2.103) \end{aligned}$	$\begin{gathered} 1.848 \\ (1.843) \end{gathered}$	
15.0	$\begin{aligned} & 16.0 \\ & (12.781) \end{aligned}$	13.370	$\begin{gathered} 11.150 \\ (12.781) \end{gathered}$	$\begin{gathered} 8.347 \\ (10.143) \end{gathered}$	$\begin{gathered} 6.682 \\ (7.361) \end{gathered}$	$\begin{gathered} 4.834 \\ (4.981) \end{gathered}$	$\begin{gathered} 3.082 \\ (3.090) \end{gathered}$	$\begin{gathered} 2.436 \\ (2.430) \end{gathered}$	$\begin{gathered} 2.100 \\ (2.091) \end{gathered}$	
20.0	$\begin{aligned} & 21.0 \\ & (16.708) \end{aligned}$	17.195	$\begin{gathered} 14.098 \\ (16.708) \end{gathered}$	$\begin{gathered} 10.303 \\ (12.404) \end{gathered}$	$\begin{gathered} 8.102 \\ (8.838) \end{gathered}$	$\begin{gathered} 5.713 \\ (5.853) \end{gathered}$	$\begin{gathered} 3.523 \\ (3.526) \end{gathered}$	$\begin{gathered} 2.733 \\ (2.723) \end{gathered}$	$\begin{gathered} 2.326 \\ (2.313) \end{gathered}$	
25.0	$\begin{aligned} & 26.0 \\ & (20.635) \end{aligned}$	20.945	$\begin{gathered} 16.956 \\ (20.635) \end{gathered}$	$\begin{gathered} 12.171 \\ (14.527) \end{gathered}$	$\begin{gathered} 9.444 \\ (10.218) \end{gathered}$	$\begin{array}{r} 6.534 \\ (6.665) \end{array}$	$\begin{gathered} 3.930 \\ (3.930) \end{gathered}$	$\begin{gathered} 3.006 \\ (2.994) \end{gathered}$	$\begin{gathered} 2.53 \\ (2.518) \end{gathered}$	1.0

table 6a

Ion-Attracting Cylindrical Probe; Computed Values of Ion Current for $T_{+} / T_{\sim}=0$														
Her.	0	2	2.7	2.9	3	4	5	10	20	30	40	50	60	100
0	0													0
-0.1	c. 3568							0.3568						0.3555
-0.3	0.618							0.6167						0.5986
-0.6	0.874							0.8579						0.794
-1.0	1.128						1.123	1.069	1.015			0.961		0.936
-1.5								1.246						
-2.0	1.596					1.588	1.536	1.369	1.239			1.127		1.079
-3.0	1.955					1.902	1.802	1.535	1.347			1.191		1.124
-5.0	2.525					2.338	2.164	1.742	1.468			1.252		1.160
-7.5	3.090				3.090	2.732	2.490	1.922	1.564			1.296		1.185
-10.0	3.568				3.505	3.052	2.753	2.067	1.644			1.329		1.201
-15.0	4.370		4.370	4.252	4.173	3.573	3.185	2.306	1.774	1.569		1.389		1.231
-20.0	5.04				4.730	4.007	3.546	2.504	1.885	1.648	1.520	1.438		1.260
-25.0	5.642	5.642			5.213	4.384	3.857	2.680	1.983	1.718	1.575	1.481	1.418	1.281

OML - Orbital Motion Limited

TABLE 6d

Cylindrical Probe: Computed Values of Attracted-Species Current i_{+}or i_{-}For $T_{+} / T_{-}=1$; Attracted Species Mono-Energetic. Results For the Case of Repelled Particles Not Collected by Probe Surface Are Shown in Brackets

TABLE 6e
Electron-Attracting Cylindrical Probe:
Computed Values of Electron Current For Values of T_{+} / T_{-}Between 0 and 1

ϕ_{p}	T_{+}	R_{p}		i.	
kT.	\bar{T}	$\bar{\lambda}_{\text {d }}$	Electrons Maxwellian	Electrons Mono-Energetic	Electrons Mono-Energetic, Ions Not Collected by Probe Surface
25	0.75	10	3.166	3.108	
I	0.5	"	2.915	2.861	
"	0.25	"	2.628	2.583	
"	0.1	"	2.424	2.393	
20	0.1	10	2.263	2.237	
15	"	"	2.083	2.061	
10	"	"	1.870		
7	"	"	1.724		
5	"	"	1.610		
3	"	"	1.471		
2	"	"	1.384		
1.5	"	"	1.333		
1.0	"	"	1.273		
0.6	"	"	1.212		
0.3	"	"	1.147		
0.1	"	"	1.071		
20	0.5	10	2.727	2.678	
15	"	"	2.517	2.473	
10	"	"	2.266	2.233	
5	"	"	1.940	1.919	
1	"	"	1.453	1.445	1.455
25	0.75	1	5.730	5.7298 (014)	
2	0.5	1	5.667	5.7298 (004)	
"	0.75	2	5.480	5.7298 (004)	
"	0.25	2	4.980	5.7298 (004)	
"	0.5	3	4.826	5.436	
"	n	5	4.012	4.062	
"	"	20	2.204	2.152	
n	"	50	1.692	1.644	
n	"	100	1.491	1.448	
n	0.5	2	5.287	5.7298 (000)	

(ONL) - Orbital Motion Linited

$\int \frac{\operatorname{Ap}_{p}}{\text { kx }}$	$\frac{R_{p} / \lambda_{D_{-}}}{0}$	0.5	1	2	3	5	10	20	∞
$\begin{aligned} & 0 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0804 \\ & (1.0618) \end{aligned}$	1.076	1.072	1.064	1.059	$\begin{gathered} 1.051 \\ (1.0618) \end{gathered}$	$\begin{gathered} 1.038 \\ (1.047) \end{gathered}$	$\begin{gathered} 1.025 \\ (1.028) \end{gathered}$	1.0
0.3	$\left(\begin{array}{l} 1.2101 \\ (1.1756) \end{array}\right.$	1.198	1.185	1.163	$\begin{aligned} & 1.145 \\ & (1.1756) \end{aligned}$	$\begin{gathered} 1.120 \\ (1.154) \end{gathered}$	$\begin{gathered} 1.083 \\ (1.095) \end{gathered}$	$\begin{gathered} 1.050 \\ (1.053) \end{gathered}$	
0.6	$\begin{aligned} & 1.3721 \\ & (1.3281) \end{aligned}$	1.351	1.326	1.283	$\begin{aligned} & 1.249 \\ & (1.3281) \end{aligned}$	$\begin{gathered} 1.200 \\ (1.247) \end{gathered}$	$\begin{gathered} 1.131 \\ (1.144) \end{gathered}$	$\begin{gathered} 1.075 \\ (1.078) \end{gathered}$	
1:0	$\begin{aligned} & 1.5560 \\ & (1.5077) \end{aligned}$	1.524	1.485°	$\begin{aligned} & 1.418 \\ & (1.5077) \end{aligned}$	$\begin{gathered} 1.364 \\ (1.483) \end{gathered}$	$\begin{gathered} 1.285 \\ (1.341) \end{gathered}$	$\begin{gathered} 1.182 \\ (1.194) \end{gathered}$	$\begin{gathered} 1.104 \\ (1.104) \end{gathered}$	
2.0	$\begin{aligned} & 1.9320 \\ & (1.8832) \end{aligned}$	1.878	1.810	$\begin{aligned} & 1.689 \\ & (1.8832) \end{aligned}$	$\begin{gathered} 1.594 \\ (1.765) \end{gathered}$	$\begin{gathered} 1.457 \\ (1.518) \end{gathered}$	$\xrightarrow[(1.281]{1.290)}$	$\begin{gathered} 1.155 \\ (1.155) \end{gathered}$	
3.0	$\begin{gathered} 2.2417 \\ (2.1954) \end{gathered}$	2.170	2.076	$\begin{gathered} 1.910 \\ (2.1954) \end{gathered}$	$\begin{gathered} 1.780 \\ (1.981) \end{gathered}$	$\begin{gathered} 1.595 \\ (1.657) \end{gathered}$	$\begin{gathered} 1.360 \\ (1.366) \end{gathered}$	$\begin{gathered} 1.198 \\ (1.196) \end{gathered}$	
5.0	$\begin{gathered} 2.7555 \\ (2.7141) \end{gathered}$	2.652	2.516	$\begin{gathered} 2.275 \\ (2.7141) \end{gathered}$	$\begin{gathered} 2.085 \\ (2.328) \end{gathered}$	$\begin{aligned} & 1.820 \\ & (1882) \end{aligned}$	$\begin{gathered} 1.489 \\ (1.491) \end{gathered}$	$\begin{gathered} 1.268 \\ (1.265) \end{gathered}$	
7.5	$\begin{gathered} 3.2846 \\ (3.2480) \end{gathered}$	3.151	2.971	$\begin{gathered} 2.652 \\ (3.2480) \end{gathered}$	$\begin{gathered} 2.402 \\ (2.679) \end{gathered}$	$\begin{gathered} 2.051 \\ (2.112) \end{gathered}$	$\begin{gathered} 1.622 \\ (1.621) \end{gathered}$	$\begin{gathered} 1.341 \\ (1.337) \end{gathered}$	
10.0	$\begin{gathered} 3.7388 \\ (3.7057) \end{gathered}$		3.36*	$\begin{gathered} 2.975 \\ (3.7057) \end{gathered}$	$\begin{gathered} 2.673 \\ (2.979 j \end{gathered}$	$\begin{gathered} 2.250 \\ (2.310) \end{gathered}$			
15.0	$\begin{gathered} 4.5114 \\ (4.4831) \end{gathered}$	4.308	$\begin{aligned} & 4.029 \\ & (4.4831) \end{aligned}$	$\begin{gathered} 3.530 \\ (4.438) \end{gathered}$	$\begin{gathered} 3.136 \\ (3.490) \end{gathered}$	$\begin{gathered} 2.588 \\ (2.647) \end{gathered}$	$\begin{gathered} 1.933 \\ (1.925) \end{gathered}$	$\begin{gathered} 1.513 \\ (1.507) \end{gathered}$	
20.0	$\begin{aligned} & 5.1695 \\ & (5.1444) \end{aligned}$		$\begin{gathered} 4.61 \\ (5.1444) \end{gathered}$	$\begin{gathered} 4.008 \\ (5.049) \end{gathered}$	$\begin{gathered} 3.538 \\ (3.9 \geq 9) \end{gathered}$	$\begin{gathered} 2.880 \\ (2.938) \end{gathered}$			
25.0	$\begin{gathered} 5.7526 \\ (3.7298) \end{gathered}$	5.485	$\begin{gathered} 5.113 \\ (5.7298 \end{gathered}$	$\begin{gathered} 4.436 \\ (5.5964) \end{gathered}$	$\begin{gathered} 3.097 \\ 4.382 \end{gathered}$	$\begin{gathered} 3.142 \\ (3.108) \end{gathered}$	$\begin{aligned} & 2.254 \\ & (2.241) \end{aligned}$	$\begin{gathered} 1.697 \\ (1.687) \end{gathered}$	1.0

FIGURE 1
PROBES AND BASIC CIRCUIT

FIGURE 2
COMPLETE LANGMUIR PROBE CHARACTERISTIC. (AFTER REF. 2) ION CURRENT EXAGGERATED.

FIGURES 4c and 4d: FAMILIES OF ATTRACTED-PARTICLE ORBITS CORRESPONDING TO THE SA!.iE TOTAL ENERGY E AND VARIOUS VALUES OF ANGULAR MOMENTUM J, SHOWN FOR SITUATIONS WHERE AN ABSORPTION BOUNDARY CORRESPONDING TO THE ENERGY E DOES NOT OR DOES EXIST, RESPECTIVELY.

FIGURES 4e and 4f: FIGURE 4e SHOWS THE ORBIT OF A PARTICLE PREVENTED FROM REACHING THE PROBE BECAUSE OF THE EXISTENCE OF AN ABSORPTION BOUNDARY. FIGURE 4f SHOWS A TRAPPED ORBIT OF THE TYPE WHICH EXISTS WHENEVER THE DEPENDENCE OF POTENTIAL ON RADIUS IS LOCALLY SHALLOWER THAN AN INVERSE SQUARE POTENTIAL, CREATING MINIMA IN EFFECTIVE POTENTIAL FOR SOME VALUES OF J.

$$
\text { \& } \mathrm{E}, \mathrm{U},
$$

FIGURE 5: INFLUENCE OF POTENTIAL BARRIERS ON PARTICLE TRAJECTORIES FOR A CYLINDRICAL PROBE AT LARGE ATTRACTIVE POTENTIAL

FIGURE 6 QUALITATIVE CHANGES IN THE PATH J ${ }_{2}{ }_{2}(E)$ CORRESPONDING TO 3 SUCCESSIVELY INCREASING VALUES OF RADIUS r LARGER THAN THE VALUE CORRESPONDING TO FIG. 5 b.

FIGURE 7 LOCI OF EXTREMA IN THE (r, U) AND ($\left.\mathrm{J}^{2}, ~ E\right)$ PLANES, SHOWING EFFECTS OF IRREGULARLY SHAPED POTENTIAL WELLS

FIGURE 8: LOCI OF EXTREMA IN THE ($\left.\mathrm{J}^{2}, ~ E\right)$ PLANE, SHOWING THE 10 CASES FOR WHICH COMPUTATION OF CHARGE DENSITY HAS BEEN PROGRAMMED.

Potential Zed For Repelled Particles

FIGURE 10: MODIFICATION OF THE FUNCTIONS $\Omega_{1}(\beta)$ AND $\Omega_{2}(\rho)$ CAUSED BY THE PRESENCE OF A ZEROPOTENTIAL OUTER BOUNDARY AT A FINITE RADIUS. FIGUREICa CORRESPONDS TO FIGURE 3a : FIGURE 10b CORRESPONDS TO FIGURE 6c .

FIGURE 13 POTENTIAL VS DISTANCE FROM PROBE SURFACEIN
TERMS OF EITHER DEBYE LENGTH. SPHERICAL ${ }^{\circ}$ ROBE; $e \emptyset_{\mathrm{p}} / \mathrm{kT} \mathrm{T}_{-}= \pm 25 ; \mathrm{T}_{+} / \mathrm{T}_{-}=1$; PLOTTED FOR VARIOUS `ATIOS OF PROBE RADIUS TO ION OR ELECTRON DEBYE LENGTH.

$!$

SHEATH THICKNESS IN ELECTRON DEBYE LENGTHS.
ELECTRON-ATTRACTING SPHERICAL PROBE; $T_{+} / T_{-}=0$
(REPELLED SPECIES AT ZERO TEMPERATURE); PLOTTED
FOR VARIOUS VALUES OF NONDIMENSIONAL PROBE POTENTIAL
AND $\lambda_{D_{-}} / R_{p} \cdot \quad$ DOTTED CURVE SHOWS TRAPPED-ORBIT

FIGURE 19
 VARIOUS RATIOS OF PROBE RADIUS TO POT ION OR ELECTRR
DEBYE LENGTH; SPHERICAL PROBE; $T_{+} / T_{-}=1$. DOTTED
CURVE SHOWS TRAPPED-ORBIT BOUNDARY.

FIGURE 21
ION CURRENT i $_{\text {- }}$ VS PROBE POTENTIAL FOR VARIOUS RATIOS ATTRACTING SPHERO ELECTRON DEBYE LENGTH; IONREFLECTED BY PROBE SUROBE: T ${ }^{+} / \mathrm{T}_{2}=0$; ELECTRONS ERICAL SOLUTION OF THE ALLEN, BOTAINED FROM NUMEQUATION. DOTTED CURVE SHOWS TRAPPEDD REYNOLDS boundary.

FIGURE 22 ELECTRON CURRENT i_ VS PROBE POTENTIAL FOR VARIOUS RATIOS OF PROBE RADIUS TO ELECTRON DEBYE LENGTH; ELECTRON-ATTRACTING SPHERICAL PROBE; $T_{+} / T_{-}=0$ (REPELLED SPECIES AT ZERO TEMPERATURE). DOUTTED CURVE SHOWS TRAPPED-ORBIT BOUNDARY.

FIGURE 23 ION CURRFNT i_{+-}VS $\lambda_{D_{-}} / R_{p}$ FOR VALUES OF $T_{+} / T T_{-}$OF 0. a. 5 AND 1; SPHERICAL PROBE; et $/ \mathbf{k T}$. $=-25$.

FIGURE 24 ION CURRENT i_{+-}VS R $R_{p} \lambda_{D_{~}}$ FOR VARIOUS VALUES OF T+ $/ T_{-}$ FROM 0 TO 1; SPHERICAL PROBE; $\mathrm{e}_{\mathrm{p}} / \mathrm{kT} .=-25$.

FIGUIIE 25: ELECTRON CURRENT i. VS $\lambda_{D_{-}} / R_{p}$ FOR VALUES OF T_{+} / T_{-} OF 0, 0.5 AND 1; SPHERICAL PROBE; e $\emptyset_{\mathrm{p}} / \mathrm{kT}=25$.

FIGURE 27a ION AND ELECTRON CURRENTS COLLECTED BY ION - AND ELECTRON-ATTRACTING SPHERICAL PROBE, RESPECTIVELY, AS FUNCTIONS OF T_{+} / T_{-}, FOR $R_{p} / \lambda_{D_{-}}=10$ AND VALUES OF $\mathrm{e} \emptyset_{\mathrm{p}} / \mathrm{kT}$. OF -25, -10, $-1,1,10$ and 25. RESULTS FOR MONOENERGETIC ATTRACTED SPECIES WITH AND WITHOUT REPELLED-SPECIES COLLECTION BY PROBE SURFACE SHOWN FOR COMPARISON.

FIGURE 28 ION CURRENT i_{+-}AS A FUNCTION OF e $\emptyset_{p} / k T$. AND T_/T_ FOR A SPHERICAL PROBE WITH $R_{p} / \lambda_{D_{-}}=10$. MONO-ENERGETIC RESULTS SHOWN FOR $T_{+} / T_{-}=1$ AND FOR $\mathrm{el}_{\mathrm{p}} / \mathrm{kT} \mathrm{T}_{-}=-25$ FOR COMPARISON.

FIGURE 30
TRAPPED-ORBIT BOUNDARY: UPPER LIMIT OF R $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}}$. FOR WHICH TRAPPED ORBITS EXIST; PLOTTED AS A FUNCTION OF e $\emptyset_{p} / \mathrm{kT} \mathrm{H}_{-}$FOR VALUES OF $\mathrm{T}_{+} / \mathrm{T}_{-}$OF $0,0.25,0.5$ AND 1.0. ION-ATTRACTING SPHERICAL PROBE.

FIGURE 31
TRAPPED-ORBIT BOUNDARY: UPPER LIMIT OF $R_{p} / \lambda_{D_{-}}$FOR WHICH TRAPPED ORBITS EXIST; PLOTTED AS A FUNCTION OF. $\mathrm{e}_{\mathrm{p}} / \mathrm{kT}$. FOR VALUES OF T $\mathrm{T}_{+} / \mathrm{T}_{-}$OF $0,0.5$, AND 1.0. ELECTRON-ATTRACTING SPHERICAL PROBE.

FIGURE 32 POTENTLAL VS distance from probe surface in debye LENGTHS; CYLINDRICAL PROBE; efp/kT. $= \pm 25 ; T_{+} /$T. $_{-}=1$; plotted for various ratios of probe radius to ion OR ELECTRON DEBYE LENGTH.

ION AND ELECTRON CHARGE DENSITIES η_{+}AND $\eta_{\text {_ VROM PROBE SISTANCE }}$
FROM PROBE SURFACE IN DEBYE LENGTHS; CYLINDRICAL PROBE; $\mathrm{e}_{\mathrm{p}} / \mathrm{kT} \mathrm{T}_{-}=-25 ; \mathrm{T}_{+} / \mathrm{T}_{-}=1$; PLOTTED FOR VARIOUS RATIOS OF PROBE RADIUS TO ION OR ELECTRON DEBYE LENGTH.
FIGURE 33

FIGURE 34 POTENTLAL VS RADIUS FOR VARIOUS VALUES OF NONDIMENSIONAL

FIGURE 36
POTENTIAL VS RADIUS FOR VALUES OF T_{+} / T_{-}OF 0 AND 1; ION-ATTRACTING CYLINDRICAL PROBE; $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=10$.

\therefore

FIGURE 42 ION OR ELECTRON CURRENT VS $\lambda_{D_{+}} / R_{p}$ OR $\lambda_{D_{-}} / R_{p}$ FOR

FIGURE 43 ION CURRENT VS $\lambda_{D_{-}} / R_{p}$ FOR'VARIOUS VALUES OF -ef $/ k T T_{-}$ CYLINDRICAL PROBE; $T_{+} / T_{-}=0$. ORBITAL-MOTION-LIMITEDCURRENT AND TRAPPED-ORBIT BOUNDARIES LABELLED AS IN FIGURE 42.
\because

,

[
 RESULT SHOWN FOR T $T_{+} / T_{-}=1$ AND FOR e $\phi_{p} / \mathrm{kT}=-25$ FOR COMPARISON.

FIGURE 30a TRAPPIMD-ORBIT AND ORBITAL-MOTION-LIMITED-CURRENT BOUNDARIES PLOTTED AS FUNCTIONS OF PROBE POTENTLAL FOR an fin-attracting cylindrical probe for values of $\mathrm{T}_{+} / \mathrm{T}_{\text {. O }}$ OF 0.5 AND 1.

FIGURE 50b SAME QUANTITIES AS THOSE OF FIG. 50a PLOTTED ON A LARGER SCALE IN R_{p} / λ_{D}.

FIGURE 51 TRAPPED-ORBIT AND ORBITAL-MOTION-LIMITED-CURRENT BOUNDARIES PLOTTED AS FUNCTIQNS OF PROBE POTENTLAL FOR AN ELECTRON-ATTRACTING CYLINDRICAL PROBE FOR VALUES OF T+/T. OF 0, 0.5 AND 1.

ELECTRON NUMBER DENSITY FROM MICROWAVE MEASUREMENTS (CM ${ }^{-3}$)

FIGURE 52 COMPARISON OF LANGMUIR PROBE AND MICROWAVE MEASUREMENTS, AFTER REFS. 3 AND 19.

APPENDIX A

Limits on the Validity of the Collisionless Boltzmann-Vlasov Equation
The idealized collisionless plasma represented by the Vlasov equation is an abstraction which describes the behaviour of a more general plasma only in the limit as its number density N becomes small or its temperature becomes large. More precisely, it has been shown in a paper by Rostoker and Rosenbluth (Ref. 10) that the Vlasov equation is obtained from the full kinetic equation for the plasma in the limit as the number of particles in a Debye cube becomes large for each species in the plasma; i.e., as $g=1 / N \lambda_{D}{ }^{3} \rightarrow 0$. For a plasma which has a finite N and T, there exists a finite value of g, which is much smaller than unity in most cases of physical interest. It follows that in a hypothetical sequence of physical situations in which all relevant non-dimensional parameters are held constant except g, which is made to approach zero, the effect of collisions must in some manner become negligible. In particular, the distance traversed iv a particle in the plasma before it is appreciably scattered from its collisionless trajectory oy encounters with other individual particles must become large. We note again as in Sections I and III that the collisionless plasma obtained in the limit as $\mathrm{g} \rightarrow 0$ still allows an individual particle to be influenced by the electric fields of others, but only by their collective macroscopic charge density rather than by their presence as individuals, which is the subject of concern here.

Spitzer (Ref. 13) has shown that in such a plasma, i.e. one having a small but non-zero value of g, corresponding to finite N and T, particles are scattered out of their collisionless trajectories by numerous small-deflection encounters with other particles, and that on the average, they are deflected much sooner by an accumulation of these distant encounters than by single close collisions.

These considerations serve to define a criterion which applies to situations wherein a probe of given size is present in a plasma having particular values of N and T. In such a situation, the results of a collisionless theory may be expected to be useful for predicting current collection if the average distance which the charged particles travel before being deflected appreciably from their collisionless trajectories is large compared to the diameter of the probe. Since the ions in the plasma have much greater mass than the electrons, the amounts of scattering accumuiated by ions or by electrons as a result of encounters with ions or with electrons will, in general, be different for each of the four possible combinations of these particles. By considering separately each possible combination of scattered and scattering species, it is possible to derive a set of four scattering distances for the plasma; the smallest of these distances then becomes an upper limit on the probe size for which the collisionless theory will apply.

In order to consider these four scattering processes separately, it is here assumed that the scattering accumulated by a particle due to encounters with particles of each species may be added linearly to find the scattering due to simultaneous interaction with both.

In an incompletely ionized plasma, charged particles are alsu deflected by collisions with neutral atoms. This process has been treated elsewhere, for example in Chapters 3 and 5 of Ref. 14. Because of the short-range nature of the interaction potential between a charged and a neutral particle, collisions involving neutrals do not isually form the most severe limit on the
collisionless theory if the degree of ionization of the plasma is greater than a few percent.

The derivation given by Spitzer (Ref. 13) assumes that a test particle moving through the plasma is deflected by a sequence of independent binary encounters with the unmodified Coulomb fields of nearby particles. This assumption is untrue since the test particle is under the influence of many other particles at any given time. However, Spitzer shows by a physical argument that his results may be expected to approximate usefully the actual behaviour of the test particle. It has also been shown by Sundaresan and Wu (Ref. 15) that expressions for the thermal conductivity of a plasma, obtained using Spitzer's assumption, are in good agreement with results obtained by a rigorous solution of a truncated form of the B-B-G-K-Y hierarchy.

We now consider the four scattering processes mentioned earlier. The ion-ion and electron-electron processes may be considered together. It may also be shown that in the limit of small deflections, ard for a given impact parameter and initial velocity, an electron is scattered the same amount (except for sign) by an encounter either with a stationary ion or with a stationary electron. In the case of the encounter with an ion, the reduced mass (Ref. 13) for the encounter is nearly the electron mass, and the mass-center encounter coordinates coincide closely with the laboratory reference frame. For the electron-electron encounter, the reduced mass is one-half the electron mass. However, the transformation from mass-center to laboratory coordinates decreases the scattering angle by one-half (Ref. 11), and the two effects cancel. Therefore, a test electron moving much faster than the random thermal velocity experiences the same amount of scattering from ions as from other electrons.

Spitzer also shows that the dominant effect on a test particle moving at or above the random spead of the field particles is transverse scatter. In this situation the distance of interest is that in which it is scattered through a large angle; Spitzer uses as a reference an angle of 90°. In the fourth case to be considered, that of an ion test particle moving through electron field particles, the ion normally is moving much more slowly than the electrons and the dominant effect is to cause the ion to lose its forward momentum. In this case, the distance of interest is that in which it is effectively stopped.

In order to study the first three of these four types of scattering, we consider a test particle with velocity v and mass m traversing a plasma which consists of one species of charged particle having a Maxwellian velocity distribution. Let m_{l} be the mass of each field particle in the plasma and let T_{1} and K_{1} be the temperature and number density of the field particles. Let q and q_{1} be the charge on test particle and field particles, respectively. Let b_{o} be the impact parameter between test particle and field particle that would correspond to 90° deflection if the field particle were infinitely massive. Let t_{c} and t_{d} be the average time taken by the test particle to deflect through 90° by a single close encounter and by many small-angle encounters, respectively. Making use of Eq. (5.22) in Spitzer, we obtain

$$
\frac{t_{d}}{t_{c}}=\frac{1}{8 \Psi \ln \Lambda}
$$

where

$$
\begin{align*}
\Lambda & =\lambda_{D} / b_{o} \\
\lambda_{D}^{2} & =\epsilon \mathrm{k} T_{1} / q_{1}^{2} N_{1} \\
t_{c} & =1 / \pi N_{1} \mathrm{vb}_{\mathrm{o}}^{2} \tag{A.1}\\
\mathrm{~b}_{\mathrm{o}} & =\mathrm{q} \mathrm{q}_{1} / 4 \pi \epsilon \mathrm{mv}^{2}
\end{align*}
$$

Ψ is a function of the ratio of test particle speed to field particle thermal speed. When this ratio is large, $\Psi \rightarrow$ l. For ratios of order unity, Ψ is somewhat less than 1 , so that esimates of deflection time based on $\Psi=1$ furm a lower bound on the actual value, and are therefore conservative.

In general, $t_{d} \ll t_{c}$, so that most particles are deflected from their collisionless trajectories by multiple small-angle encounters.

We assume that $\Psi=1$, that $q_{1}=q$, and that the test particle has the same energy as the average over field particles. We then have:

$$
\begin{gather*}
\frac{m}{2} v^{2}=\frac{3}{2} k T_{1} \tag{A.2}\\
b_{0}=q^{2} / 12 \pi \epsilon 1 T_{1}=1 / 12 \pi N_{1} \lambda_{D}^{2} \tag{A.3}\\
\Lambda=\lambda_{D} / b_{0}=12 \pi N_{1} \lambda_{D}^{3}=12 \pi / G \tag{A.4}
\end{gather*}
$$

We define S_{d} as the distance travelled by the test particle while accumulating 90° deflection. We then obtain:

$$
\begin{equation*}
s_{d}=v t_{d}=\frac{1}{8 \pi N_{l} b_{o} 2 \ln \Lambda}=\frac{18 \pi \lambda_{D}}{g \ln (12 \pi / g)} \tag{A.5}
\end{equation*}
$$

We assume that the Vlasov solution will become invalid for probe diameters larger than the 90° deflection distance. We note that $S_{d} / 2 R_{p}$ is, in effect, a Knudsen number for each of the four scattering processes that we are discussing. The condition for validity of results obtained from the Vlasov equation is therefore:

$$
\begin{equation*}
R_{p} / \lambda_{D} \leq 9 \pi / g \ln (12 \pi / g) \tag{A.6}
\end{equation*}
$$

This relation puts an upper limit on g. This limit becomes more severe as R_{p} / λ_{D} increases.

In order to study the fourth scattering case, that of a test ion being deflected by electron field particles, we make use of Eqs. (5.27) to (5.29) in Spitzer, to obtain the following expression for the rate of slowing down of the ion:

$$
\begin{equation*}
-\frac{v}{\dot{v}}=\frac{3 \sqrt{\pi m_{-}}}{2 m_{+}}\left(\frac{2 k^{\prime} T_{-}}{m}\right)^{\frac{3}{2}}\left(\frac{2 \pi \epsilon \epsilon^{2} m_{+}^{2}}{m_{-} q_{+}^{2} q_{-}^{2} \ln N}\right)=K \tag{A.7}
\end{equation*}
$$

K depends on V only through $\ln \Lambda$. " lgnore this dependence to obtain the following expression for the distane cravelled by the ion before losing most of its forward velocity:

$$
\begin{equation*}
S_{s}=\int_{t=t_{0}}^{\infty} v d t=-\int_{v=v_{o}}^{0} K d v=K v_{o} \tag{A.8}
\end{equation*}
$$

We assume that the ion is initially moving at the mean ion thermal speed:

$$
\frac{1}{2} m_{+} v_{0}^{2}=\frac{3}{2} k T_{+}
$$

Substituting, and setting $q_{+}{ }^{2}=q_{-}{ }^{2}$, we obtain:

$$
\begin{equation*}
S_{s}=(6 \pi)^{\frac{3}{2}}\left(\frac{m_{+} T_{+}}{m_{-} T_{-}}\right)^{\frac{1}{2}} \frac{\lambda_{D_{-}}}{g_{-} \ln \left(\frac{12}{g_{-}} \frac{T_{+}}{T_{-}}\right)} \tag{A.10}
\end{equation*}
$$

If $T_{+}=T_{-}$, we obtain, from (A.5) and (A.10):

$$
\begin{equation*}
\frac{s_{s}}{s_{d}}=\left(\frac{2 \pi}{3} \frac{m_{t}}{m_{-}}\right)^{\frac{1}{2}} \tag{A.11}
\end{equation*}
$$

For a hydrogen plasma, this ratio is 62 ; for an argon f . sma it is 390 . Therefore, unless the ratio T_{+} / T_{-}is extremely small, the ion-ion scatter: $\&$ distance S_{d} will always be swaller than the distance S_{S}
in C.G.S. wits, we obtain, for the Debye length:

$$
\begin{align*}
& \left.\lambda_{D}{ }^{t} \mathrm{~cm} m_{\bullet}\right)=6.90 \sqrt{\frac{T\left({ }_{K}\right)}{\mathrm{N}\left(\mathrm{~cm}_{\bullet}^{-3}\right)}} \tag{A.12}\\
& 1 / \mathrm{g}=\mathrm{N} \lambda_{\mathrm{D}}{ }^{3}=328 \sqrt{\frac{\left(\mathrm{~T}\left({ }^{\circ} \mathrm{K}\right)\right)^{3}}{\mathrm{~N}\left(\mathrm{~cm} .^{-3}\right)}} \tag{A.13}
\end{align*}
$$

For any given R_{p} / λ_{D}, it is now possible to obtain a maximum allowable value of g from ($\mathrm{A}, 6$), and thence to obtain a maximum allowable number density for any given T, from (A.13). Tabl- 1 gives a set of values of $N_{\text {max }}$. derived in this manner, for values of the recio R_{p} / λ_{D} of $2.5,10$, and 100 , and values of T of 10^{3} and $2 \times 10^{4} 0 \mathrm{~K}$ 。

It should be , orne in mind that whea the scattering of electrons in a plasma is being considered, N is the total number density $N_{+}+N_{-}$, since, as has been shown,iors and electrons contribute equally to electron scattering. In this case it is also necessary to modify the definition of λ_{r} in Eq. (A.I) and hence the argument of the logarithmic term in subsequent expressions. This
is because λ_{D} appears in the derivation of this expression as the effective penetration distance of the test particle electric field; the Debye length of the plasma as a whole is related to the ion and electron Debye lengths as follows:

$$
\begin{equation*}
\frac{1}{\lambda_{D}{ }^{2}}=\frac{1}{\lambda_{D_{+}}{ }^{2}}+\frac{1}{\lambda_{D_{-}}{ }^{2}} \tag{A.14}
\end{equation*}
$$

If $T_{+}=T_{-}$, the Debye length of the plasma as a whole is less than that for ions or electrons by the factor $\sqrt{2}$; if $T_{+} \ll T_{-}$, the plasma Debye length is approximately equal to that of the ions.

Finally, it should be remembered that. the criteria developed here are useful only for a qualitative estimate of the safety of using the results of the Vlasov solution in any given situation. To obtain a quantitative value of the error made by using the collisionless theory would require a solution of the more general problem including the effects of collisions.

APPENDIX B

Discussion of the Collisionless Boltzmann Equation

It can be shown that the Liouville equation (Ref. 11) that describes the statistical behaviour of a physical system is valid only when the system is described in terms of position coordinates r_{i} and momentum coordinates p_{i} which are canonical; that is, r_{i} end p_{i} satisfy Hamilton's equations:

$$
\begin{equation*}
\frac{\partial H}{\partial p_{i}}=\dot{r}_{i} \quad \frac{\partial H}{\partial r_{i}}=-\dot{p}_{i} \tag{B.1}
\end{equation*}
$$

H is a function of the $r_{i} \& p_{i}$ which can usually be identified with the energy of the system. The totai number of position and momentum coordinates r_{i} and p_{i} is equal to the number of degrees of freedom of the system. For example, if the system consists of n interacting particles and each of these is free to move in three dimensions, then the values of 6 n coordinates must be specified to determine completely the state of the system. In rectangular coordinates, the $3 n$ position coordinates r_{i} then become $x_{1}, \dot{y}_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots x_{n}, y_{n}, z_{r_{1}}$. In this case $p_{i}=m v_{i}=m \dot{r}_{i}$ and the p_{i} become $m \dot{x}_{1}, m \dot{x}_{2}, \ldots m \dot{z}_{n}$.

In the collisionless limit, the motion of each charged particle becomes independent of the individual positions of 0.11 the others and depends only on the macroscopic overali field resulting from their collective charge density (Sec. III). The Liouville equation that describes the motion of that particle then becomes independent of the coordinates of all others; in fact, it reduces to a form identical with the collisionless Boltzmann equetion (4.1a or b). This fact, namely that the collisionless Boltzmenn equation is in reality a one-particle form of the Liouville equation, is pointed out here in order to make clear that it is subject to the same restrictions, namely that it is only true when expressed in canonical ccordinates. The Boltzmann equation is very often derived from elementary considerations rather than as a special case of the Liouville equation, and this restriction then does not appear explicitly. Such derivations are usually carried out in rectangular coordinates, in which case the position coordinates r_{i}, expressed in vector form, become $\underline{r}=(x, y, z)$, and the velocity coordinates v_{i} can be written as $\underline{v}=\dot{\underline{r}}=\left(v_{x}, v_{y}, v_{z}\right)$. The momentum coordinates p_{i} canonical to r_{i} are then expressible as $\underline{i}=\left(\operatorname{mv}_{x}, \operatorname{mv}_{y}, \operatorname{mv}_{z}\right)$. It is then customary to write $p=$ my . If this vector relation is substituted into the collisionless Boltamain equation (4.1a or b) the result is the form commonly seen, for instance in Ref. 5, as follows:

$$
\begin{equation*}
\frac{\partial f}{D t}=\frac{\partial f}{\partial \underline{x}} \cdot \underline{v}+\frac{\partial f}{\partial \underline{f}} \cdot \frac{F^{\prime}}{m}=0 \tag{B.2}
\end{equation*}
$$

However, the relatio $\eta=m \underline{y}$ itself is a formally incorreet statement, since the use of vector notation implies that this relation is true independently of its expression in a particular ccordinate system; this is not the case if p is to fit the definition of Eqs. (B.1). For example, in cylindrical coordinates, where $\underline{r}=(r, \theta, z)$ and $\underline{v}=\left(v_{r}, v_{\theta}, v_{z}\right)=(\dot{r}, r \theta, z)$, the momentum canonicaliy conjugate to \underline{r} by Eqs. (B.i) is $\left.p_{=}=(m r), m r^{2} \dot{\theta}, m \hat{L}\right)$; this expression is not equal to my because the momentum \dot{p}_{θ} canonical to the coordinate θ is the angular momentum $\operatorname{mr}^{2} \dot{\theta}$ rather than the linear momentum mre. This warning is mentioned here because the Boltzmann equation is most often written in the form of Eq. (B.2) rather than that of Eqs. (4.1) and may therefore be a potential source of confusion. The fact that Eq. (B.2) can give incorrect results may be verified by substituting into Eqs. (4.1) and (B.2)
the expressions for $\underset{y}{ }, \underline{y}$ and \mathfrak{p} in cylindrical coordinates, and then solving these equations by standard methods to find the corresponding loci of constant value of f, i.e. particle trajectories. Examination of these resulting trajectories for the case of a central force field will indicate that those obtained from Eq. (B.2) do not show conservation of angular momentum as required. A similar situation holds for spherical coordinates. This anomaly was found during the carly stages of this investigation when an attempt was made to use Eq. (B.2) to obtain explicit trajectory equations.

A related problem is the precise definition of the distribution function f which appears in both Eqs. (4.1) and (B.2) as well as in Sections VII and X. Since Eq. (4.1) is expressed in terms of canonical coordinates r_{i} and p_{1}, the distribution function f referred to in this equation must be a density in the space defined by these same coordinates. In other words, if $\tilde{\mathbb{N}}$ is now the total number of particles in a 6-dimensional volume element in this space, whereas 1 has beendefined as number density in physical space, then the definition of f is $f=d{ }^{6} / d^{3} d^{3} p=d 3^{2} / d 3^{2}$, However, both of the distribution functions given by Eqs. (7.12) and (7.13), for instance, are of the form implied by their appearance in Eq. (7.1) and therefore are given in terms of positionvelocity rather than position momentum space. In other words, f in these equations has the definttion $f=d^{6} 1 / d^{3} \underline{r} d^{3} \underline{y}=d^{3} N / d^{3} \underline{y}$. This is in spite of the fact that f appears in these equations as a function of energy E. By way of further illustration, the density in ($\mathrm{E}, \mathrm{J}^{2}$) space (in spherical coordinates) i.e. d^{2} /dEdN2, is given by a different expression, namely the integrand of Eq. (7.5), which is the quantity $\operatorname{mf}^{\prime}(E, J) \partial\left(v_{r}, v_{t}{ }^{2}\right) / \partial\left(E, J^{2}\right)$.

APRPIDIX C
 Behaviour of the Iterative Solution Method

We first examine Poisson's equation in its nondimensional form, Eqs. (9.6) or (11.3). We imagine that we have a net charge density $\eta_{\text {net }}(x)$ that differs from the solution of the problem by a small positive increment over a certain range of x. Because of the negative aign in the Poisson equation, the resulting effect will be to depress the second derivative of χ by a small increment over this range. This increment will be proportional to γ, the square of ratio of probe radius to the reference Debye length. Since we have a two-point boundary value problem involving a constraint on potential at either end of the range of x, a rise in potential will be produced over the entire range, with the maximum rise tending to occur near the region where the charge increment has been imposed. If the distribution of charged particles in position space is now calculated, and the result is compared to that for the true solution, there will be fewer ions but more electrons in this region. The result will be a net charge density that now differs from the true solution by a negative rather than a positive increment.

The magnitude of this increment will increase if either γ is increased or the range of x between end points is increased. If the process is repeated, the increment again changes sign. The regult of repeating this process is therefore a sequence of functions $\eta_{\text {net }}(x)$ which osciliates about the true solution. If γ or the range of x is sufficiently large, the oscillations will diverge and must be damped by mixing the $\overline{1}$ 'th and $\overline{1}+1$ 'th iteratea at each step.

APPMiDIX D
 Integration of the Poisson Equation

From Eq. (9.6), the Poisson equation for the spherical probe is:

$$
\begin{equation*}
\frac{d^{2} x}{d x^{2}}=-\frac{\gamma \eta_{\text {net }}}{x^{4}} \tag{D.1}
\end{equation*}
$$

We introduce a new radial variajole $s(x)$ which is zero at the probe surface ($x=1$) and which increases as radius increases (x decreases). We arrange the radial dependence of s so that s is a steeply rising function near the probe surface and a less steeply rising function farther out. This is done in order to define a suitable computation net; points in this net will be placed at equal increments in 8 . Varying the form of $s(x)$ allows us to place points in this net densely within the sheath region and sparsely outside it. The specific forms of $g(x)$ that have been used in the computations are contained in the listing of Program 1 in Appendix I. We assume that $d x / d s$ can be explicitly calculated everywhere. We then have:

$$
\begin{array}{r}
\frac{d s}{d x} \frac{d}{d s}\left(\frac{d x}{d s} \frac{d s}{d x}\right)=-\frac{\gamma \eta_{n e t}(s)}{x^{4}(s)}=K_{0}(s) \\
\frac{d X}{d s}=\frac{d x}{d s}\left(\frac{d x}{d s} \frac{d s}{d x}\right)_{s=0}+\frac{d x}{d s} \int_{0}^{s} K_{0}\left(s^{\prime}\right) \frac{d x^{\prime}}{d s^{\prime}} d s^{\prime} \tag{D.3}
\end{array}
$$

Let:

$$
\begin{equation*}
K_{1}(s)=\frac{d x}{d s} \int_{0}^{8} K_{0}\left(s^{\prime}\right) \frac{d x^{\prime}}{d s^{\prime}} d s^{\prime} \tag{D.4}
\end{equation*}
$$

Integrating a second time, and noting that the bracketed quantity in Eq. (D.3) is equal to $(d x / d x)_{y=0}$, we obtain:

$$
\begin{equation*}
x(s)=x(0)+\left(\frac{d x}{d x}\right)_{0=0}(x(s)-x(0))+\int_{0}^{s} x_{1}\left(s^{\prime}\right) d s^{\prime} \tag{D.5}
\end{equation*}
$$

Let:

$$
\begin{equation*}
x_{2}(s)=x(0)+\int_{0}^{s} x_{1}\left(s^{\prime}\right) d s^{\prime} \tag{D.6}
\end{equation*}
$$

Then:

$$
\begin{equation*}
x(s)=\left(\frac{d x}{d x}\right)_{s=0}(x(s)-1)+E_{2}(s) \tag{D.7}
\end{equation*}
$$

From (D.3), we obtain:

$$
\begin{equation*}
\frac{d x}{d x}(s)=\left(\frac{d y}{d x}\right)_{s=0}+\frac{x_{1}(s)}{\frac{d x}{d s}(s)} \tag{D.8}
\end{equation*}
$$

Equations (D.7) and (D.8) are now used together with appropriate boundary conditions at the outer edge of the computation net, to solve for ($\mathrm{dx} / \mathrm{dx})_{\mathrm{s}=0}$. Equations (8.9), expressed in non-dimensional form in terms of x, give in the spherical case the following boundary condition at $x=x_{B}$:

$$
\begin{equation*}
\left(\frac{d x}{d x}\right)_{B}=\frac{2 x_{B}}{x_{B}} \tag{D.9}
\end{equation*}
$$

By setting $s=s_{B}$ in (D.7) and (D.8), and substituting the resulting two equations in (D.9), we obtain:

$$
\begin{equation*}
\left(\frac{d x}{d x}\right)_{S=0}=\frac{2 K_{2}\left(s_{B}\right)-x_{B} K_{1}\left(s_{B}\right)\left(\frac{d x}{d s}\right)_{B}}{2-x_{B}} \tag{D.10}
\end{equation*}
$$

This value of $(d x / d x)_{S=0}$ may now be substituted into (D.7) and (D.8) to compute $\chi, d X / d x$, and thereby $d X / d s$, as functions of s. The quantities χ and $d X / d s$ are used in the subsequent calculation of charge densities as outlined in Appendix E .

In solving the boundary-value problem concerned with zero-temperature repelled particles (Sec. XII), the outer boundary of the computation net becomes the sheath edge, so that the required boundary condition becomes $X_{B}=0$, Setting the left side of Eq. (D.7) equal to zero gives:

$$
\begin{equation*}
\left(\frac{\partial x}{\partial x}\right)_{s=0}=\frac{K_{2}\left(s_{B}\right)}{1-x_{B}} \tag{D.11}
\end{equation*}
$$

In this case we choose a function $s(x)$ which places points densely near the sheath edge and less densely closer to the probe. The function actually used is indicated in the listing of Program 2 in Appendix I.

A similar procedure can be derived in the cylindrical case. Here the Poisson equation (11.3) becomes

$$
\begin{equation*}
\frac{d}{d x}\left(x \frac{d x}{d x}\right)=-\frac{y \eta_{n e t}(s)}{x^{3}(s)}=K_{0}(s) \tag{D.12}
\end{equation*}
$$

Proceeding as before, we obtain:

$$
\begin{equation*}
\frac{d x}{d s}=\frac{1}{x} \frac{d x}{d s}\left(\frac{d x}{d x}\right)_{s=0}+\frac{1}{x} \frac{d x}{d s} \int_{0}^{s} K_{0}\left(s^{\prime}\right) \frac{d x^{\prime}}{d s^{\prime}} d s^{\prime} \tag{D.13}
\end{equation*}
$$

We define:

$$
\begin{equation*}
X_{1}(s)=\frac{1}{x} \frac{d x}{d s} \int_{0}^{s} X_{0}\left(s^{\prime}\right) \frac{d x^{\prime}}{d s^{\prime}} d s^{\prime} \tag{D.14}
\end{equation*}
$$

We integrate again, and use the definition of $K_{2}(s)$ in Eq. (D.6)
to obtain:

$$
\begin{equation*}
\chi(s)=\left(\frac{d x}{d x}\right)_{s=0} \ln x(s)+K_{2}(s) \tag{D.15}
\end{equation*}
$$

From (D.13), we oktain:

$$
\begin{equation*}
\frac{d x}{d x}(s)=\frac{\left(\frac{d x}{d x}\right)_{s=0}}{x(s)}+\frac{K_{1}(s)}{\frac{d x}{d s}(s)} \tag{D.16}
\end{equation*}
$$

Using (8.9b), we obtain:

$$
\begin{equation*}
\left(\frac{d X}{d x}\right)_{B}=\frac{x_{B}}{x_{B}} \tag{D.17}
\end{equation*}
$$

We proceed as in the spherical case and set $s=s_{B}$ in (D.15) and (D.16), then substitute in (D.17) to obtain:

$$
\begin{equation*}
\left(\frac{d x}{d x}\right)_{s=0}=\frac{K_{2}\left(s_{B}\right)-x_{B} K_{1}\left(s_{B}\right) /\left(\frac{d x}{d s}\right)_{B}}{1-\ln x_{B}} \tag{D.18}
\end{equation*}
$$

If we again use the boundary condition $x_{B}=0$, we obtain:

$$
\begin{equation*}
\left(\frac{d x}{d x}\right)_{s=0}=-\frac{K_{2}\left(s_{B}\right)}{\ln x_{B}} \tag{D.19}
\end{equation*}
$$

The numerical integrations required in calculations of the functions $K_{1}(s)$ and $K_{2}(s)$ involve integrands that are specified at n discrete values of s separated by equal intervals $\Delta \mathrm{s}$. It is necessary to compute values of these functions corresponding to the same n values of s. If we let $y_{i}=y\left(s_{i}\right)$ represent the given integrand and $Y_{i}=Y\left(s_{i}\right)$ represent the required result for $i=1,2, \ldots n$, we then have:

$$
\begin{equation*}
y_{i}=y_{1-1}+\int_{s_{1-1}}^{e_{1}} y(s) d s \tag{D.20}
\end{equation*}
$$

This integration process is approximated as follows: we pass a parabolic arc through the points $y_{1} ; y_{2}$, and y_{3} to find $Y_{2}-Y_{1}$; cubic arc through y_{1-2} to y_{1+1} to find $Y_{1}=Y_{1-1}$ for $1=3,4, \ldots n-1$, and another parabolic arc through $\mathbf{Y}_{\mathbf{n - 2}}, y_{n-1}$, and y_{n} to find $Y_{n}=Y_{n-1}$. The resulting formulae are:

$$
\begin{align*}
& y_{2}=Y_{1}+\left(5 y_{1}+8 y_{2}-y_{3}\right) \Delta_{8} / 12 \\
& y_{1}=y_{1-1}+\left(13\left(y_{1-1}+y_{1}\right)-y_{i-2}-y_{i+1}\right) \Delta s / 24 ; i=3,4, \ldots n-1 \\
& y_{n}=y_{n-1}+\left(5 y_{n}+8 y_{n-1}-y_{n-2}\right) \Delta 8 / 12 \tag{D.21}
\end{align*}
$$

If we set $Y_{1}=0$ and sum expressions (D.21), we obtain the following approximation formulae for Y_{n}, for various values of n :

$$
\begin{align*}
Y_{3} & =\left(y_{1}+4 y_{2}+y_{3}\right) \Delta s / 3 \\
Y_{4} & =\left(3 y_{1}+9 y_{2}+9 y_{3}+3 y_{4}\right) \Delta s / 8 \\
Y_{5} & =\left(9 y_{1}+28 y_{2}+22 y_{3}+28 y_{4}+9 y_{5}\right) \Delta s / 24 \tag{D.22}\\
Y_{6} & =\left(9 y_{1}+28 y_{2}+23 y_{3}+23 y_{4}+28 y_{5}+9 y_{6}\right) \Delta s / 24 \\
Y_{n} & =\left(9 y_{1}+28 y_{2}+23 y_{3}+24\left(y_{4}+y_{5}+\ldots y_{n-3}\right)\right. \\
& \left.+23 y_{n-2}+28 y_{n-1}+9 y_{n}\right) \Delta s / 24 ; n>6
\end{align*}
$$

These formulae have been used in evaluating the integrals (E.33), (E.36), (E.88), and (E.91). The major advantage of these expressions, in comparison with many other numerical integration formulae, is that they weigh equally all of the interior points $y_{4} \ldots y_{n-3}$. This feature is of particular importance in evaluating (E.33) and (E.88). These functions are evaluated successively, many times during each iteration of the computing program,for values of s differing by Δs, and with integrands $y\left(s, s^{\prime}\right)$ that are integrated over s^{\prime} and change in a continuous manner from each value of s to the next. In many cases $y\left(s, s^{\prime}\right)$ is a rapidly varying function of s and s^{\prime}, and it was found that application of a standard numerical procedure having unequal weighting factors tended to cause unacceptable scatter in calculations of charge densities.

Another advantage of expressions (D.22) is that they do not restrict the integer n to multiples of other integers.

APPENDIX E

Expressions for Charge Density and Collected Current in the Case

 of a Maxwellian Velocity DistributionWe substitute expressions (9.11) to (9.14) and (12.2) for $\Omega_{n}(\beta)$, together with expressions (9.2) and (11.5) for the Maxwellian velocity distribution, into the charge density expressions (9.5) and (11.2) and the current collection expressions (9.9) and (11.4). By referring to Figs. 3, 5, 6, 8 and 10, we then define a set of integrals in terms of which charge density and collected current may be calculated.

For the sphere, we substitute Eqs. (9.13), (9.12), (12.2), (9.14) and (9.11), in that order, together with Eq. (9.2), into Eq. (9.5), to define the following integrals:

$$
\begin{equation*}
\eta_{1, s}(A)=-\frac{1}{\sqrt{\pi}} \int_{A}^{\infty} d B e^{-\beta}(B-\chi)^{\frac{1}{2}} \tag{E.1}
\end{equation*}
$$

where $A \geq X$. We note that the value of this integral depends on χ as well as on A although for conciseness in later expressions this dependence on χ is not indicated explicitly. The subscript s is defined as referring to the spherical probe; the subscript c will be used to refer to the cylindrical probe. It is important to note here that the subscript s does not correspond in any way with the radial net coordinate s, which has been used in Appendix D and is used again in this Appendix, beginning with Eq. (E.28).

$$
\begin{equation*}
\eta_{2, s}(A)=-\frac{1}{\sqrt{\pi}} \int_{A}^{\infty} d \beta e^{-\beta}\left\{\beta-x-x^{2}\left(\beta-x_{p}\right)\right\}^{\frac{1}{2}} \tag{E.2}
\end{equation*}
$$

where:

$$
A \geq k
$$

and:

$$
\begin{equation*}
k=\frac{x-x^{2} x_{p}}{1-x^{2}} \tag{E.3}
\end{equation*}
$$

intersect (Fig. 1b)

$$
\begin{equation*}
\eta_{3, s}(A)=-\frac{1}{\sqrt{\pi}} \int_{A}^{\beta_{B}} d B \quad e^{-\theta} \quad\left\{\beta-x-\beta \frac{x^{2}}{x_{B}^{2}}\right\}^{\frac{1}{2}} \tag{E.4}
\end{equation*}
$$

where: $0 \leq A \leq \beta_{B} ; \beta_{B}$ is the value of β at which the lines $\beta=X+8 x^{2}$ and $\beta=\Omega x_{B}{ }^{2}$ intersect (point B in Fig. 10a); ve obtain:

$$
\begin{equation*}
\beta_{B}=-\frac{x}{x^{2} / x_{B}^{2}-1} \tag{E.5}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{4, s}\left(\beta_{1}, \beta_{2}\right)=-\frac{1}{\sqrt{\pi}} \int_{\beta_{\overline{1}}}^{\beta_{2}} d \beta e^{-\beta}\left\{\beta-x-\Omega_{G}(\beta) x^{2}\right\}^{\frac{1}{2}} \tag{E.6}
\end{equation*}
$$

Finally:

$$
y_{5, s}=0
$$

We also substitute Eqs. (9.12), (12.2) and (9.14)intoF7. (9.9) to define integrals for expresing current collection:

$$
\begin{equation*}
i_{1, s}(A)=\int_{A}^{\infty} d \beta e^{-\beta}\left(\beta-\chi_{p}\right) \tag{E.7}
\end{equation*}
$$

where:

$$
\begin{gather*}
A \geq 0 \\
i_{2, S}\left(A,=\int_{0}^{A} d B e^{-\beta} \frac{\beta}{x_{B}^{2}}\right. \tag{E.8}
\end{gather*}
$$

where

$$
\begin{align*}
& 0 \leq A \leq \beta_{B} \\
& i_{3, s}\left(\beta_{1}, \beta_{2}\right)=\int_{\beta_{1}}^{\beta_{2}} d B e^{-\beta} \Omega_{G}(\beta) \tag{5.9}
\end{align*}
$$

For the cylinder, substitution of Eqs. (9.13), (9.12), (12 2), (9.14) and (9.11), respectively, together with Eq. (11.5), into Eq. (11.2), allows us to define the following int egrals for the expression of cuarge density:

$$
\begin{align*}
& \eta_{1, c}=0 \tag{E.10}\\
& \eta_{2, c}(A)=\frac{1}{\pi} \int_{A}^{\infty} d B e^{-\beta} \arcsin \left\{\frac{x^{2}\left(\beta-x_{p}\right)}{\beta-\chi}\right\}^{\frac{1}{2}}
\end{align*}
$$

where, once again, we require $A \geq \kappa$ •

$$
\begin{equation*}
\eta_{3, c}(A)=\frac{1}{\pi} \int_{A}^{\beta} d B \quad e^{-\beta} \arcsin \left\{\frac{x^{2}}{x_{B}} \frac{B}{\beta-\chi}\right\}^{\frac{1}{2}} \tag{E.11}
\end{equation*}
$$

where, once again, we require $0 \leq A \leq \beta_{B}$.

$$
\begin{equation*}
\eta_{4, c}\left(\beta_{1}, \beta_{2}\right)=\frac{1}{\pi} \int_{\beta_{1}}^{\beta_{2}} d \beta e^{-4} \cdot-\ln \left\{\frac{\Omega_{G}(\beta) x^{2}}{\beta-x}\right\}^{\frac{1}{2}} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{5, c}(A)=\frac{1}{2} \int_{A}^{\infty} d B e^{-\beta}=\frac{e^{-A}}{c^{-A}} \tag{E.13}
\end{equation*}
$$

We also substitute Eqs. (9.12), (12.2) and (9.14), together with Eq. (11.5), into Eq. (11.4) to define integrals with which to express the current collection for the cylinder. We obtain:

$$
\begin{equation*}
i_{1, c}(A)=\frac{2}{\sqrt{\pi}} \int_{A}^{\infty} d \beta e^{-\beta}\left(\beta-\chi_{p}\right)^{\frac{1}{2}} \tag{E.14}
\end{equation*}
$$

where:

$$
\begin{gather*}
A \geq 0 \\
i_{2, c}(A)=\frac{2}{\sqrt{\pi}} \int_{0}^{A} d B e^{-\beta}\left(\frac{\beta}{x_{B}{ }^{2}}\right)^{\frac{1}{2}} \tag{E.15}
\end{gather*}
$$

where:

$$
\begin{gather*}
0 \leq A \leq \beta_{B} \\
i_{3, c}\left(\beta_{1}, \beta_{2}\right)=\frac{2}{\sqrt{\pi}} \int_{\beta_{1}}^{\beta_{2}} d \beta e^{-\beta}\left(\Omega_{G}(\beta)\right)^{\frac{1}{2}} \tag{E.16}
\end{gather*}
$$

We define η_{n} and i_{n} as representing either $\eta_{n, s}$ and $i_{n, s}$ for the sphere or $\eta_{n, c}$ and $i_{n, c}$ for the cylinder. We are then able to express the charge density and collected current for either species of particle in terms of η_{n} and i_{n}.

For example, if the (Ω, β) plane has the appearance shown in Fig. 3a, we have:

$$
\begin{align*}
& \eta=2 \eta_{5}(0)-\pi_{2}(0)-\eta_{1}(0) \tag{E.17}\\
& i=i_{1}(0)
\end{align*}
$$

This situation corresponds to thet of Fi.g. 8, case 5, in the event that the portions of the locus of extrema shown dotted in this diagram are not present.

If the (Ω, β) plane has the eppearance shown in Fig. 3b, we then have:

$$
\begin{align*}
& \eta=2 \eta_{5}(x)-2 \eta_{1}(x)+\eta_{1}\left(x_{p}\right)-\eta_{2}\left(x_{p}\right) \tag{E.18}\\
& i=i_{1}\left(x_{p}\right)
\end{align*}
$$

This situation corresponds to that of Fig. 8, case 6, with the same qualification as above.

If the (Ω, β) plane has the appearance of Fig. 5 b , we have:

$$
\begin{align*}
& \eta=2 \eta_{5}\left(\beta_{E}\right)+2 \eta_{4}\left(\beta_{\mathrm{H}}, \beta_{\mathrm{E}}\right)-\eta_{2}\left(\beta_{\mathrm{H}}\right)+\eta_{4}\left(0, \beta_{\mathrm{H}}\right)-\eta_{1}(0) \\
& i=i_{3}\left(0, \beta_{\mathrm{H}}\right)+i_{1}\left(\beta_{\mathrm{H}}\right) \tag{E.19}
\end{align*}
$$

If the (Ω, β) plane has the appearance of Fig. 10 b , we obtain:

$$
\begin{align*}
& \eta=2 \eta_{5}\left(\beta_{B}\right)+\eta_{3}(0)+\eta_{3}\left(\beta_{C}\right)-\eta_{4}\left(\beta_{C}, \beta_{H}\right)-\eta_{2}\left(\beta_{H}\right)-\eta_{1}(0) \tag{E.20}\\
& i=i_{2}\left(\beta_{C}\right)+i_{3}\left(\beta_{C}, \beta_{H}\right)+i_{1}\left(\beta_{H}\right)
\end{align*}
$$

Numerous other cambinations of these functions are produced by the various forms of locus of extrema shown in Fig. 8.

We now carry out the integrations indicated in the expressions for η_{n} and i_{n}.

We define the function $g(x)$ in terms of the well-known error integral erf(x) by the following equation:

$$
\begin{equation*}
g(x)=\frac{\sqrt{\pi}}{2} e^{x^{2}}(1-\operatorname{erf}(x)) \tag{E.21}
\end{equation*}
$$

where:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

For large x, the following asymptotic expansion (Ref. 16) is useful:

$$
\begin{equation*}
\operatorname{erf}(x) \simeq 1-\frac{e^{-x^{2}}}{x \sqrt{\pi}}\left(1-\frac{1}{2 x^{2}}+\frac{1.3}{\left(2 x^{2}\right)^{2}}-\frac{1.3 .5}{\left(2 x^{2}\right)^{3}}+\ldots\right) \tag{E.22}
\end{equation*}
$$

We now integrate (E.1) to obtain:

$$
\begin{equation*}
\eta_{1, s}(A)=-\frac{e^{-A}}{\sqrt{\pi}}(\sqrt{A-\chi}+g(\sqrt{A-\chi})) \tag{E.23}
\end{equation*}
$$

If $A=\chi$, we note that $g(0)=\sqrt{\pi} / 2$ to obtain:

$$
\begin{equation*}
\eta_{1, s}(x)=-\frac{e^{-x}}{2} \tag{E.24}
\end{equation*}
$$

Integrating (E.2), we obtain:

$$
\begin{equation*}
\eta_{2, s}(A)=-\sqrt{l-x^{2}} \frac{e^{-A}}{\sqrt{\pi}}(\sqrt{A-\kappa}+g(\sqrt{A-\kappa})) \tag{E.25}
\end{equation*}
$$

In order to integrate (E.4), we note that it can be transformed to:

$$
\begin{equation*}
\eta_{3, s}(A)=-\left(\frac{x^{2} / x_{B}^{2}-1}{\pi}\right)^{\frac{1}{2}} \int_{A}^{\beta_{B}} d B e^{-\beta} \sqrt{\beta_{B}-\beta} \tag{E.26}
\end{equation*}
$$

Integrating by parts, we obtain:

$$
\begin{equation*}
\eta_{3, s}(A)=-\left(\frac{x^{2} / x_{B}{ }^{2}-1}{\pi}\right)^{\frac{1}{2}}\left\{\sqrt{\beta_{B}-A} e^{-A}-e^{-\beta_{B}} \int_{0}^{\sqrt{\beta_{B}-A}} e^{t^{2}} d t\right\} \tag{E.27}
\end{equation*}
$$

Equation (E.6) must be integrated numerically, since $\Omega_{G}(\beta)$ is generated in tabular form by the numerical solution scheme. In order to carry out this integration, we make use of the radial variable s defined in Appendix D, and we note that the functional dependence $\Omega=\Omega_{G}(\beta)$ can be expressed parametrically as $\Omega=\Omega_{G}(s), \beta=\beta_{G}(s)$. Equation (E.6) then becomes:

$$
\begin{align*}
& \eta_{4, s}\left(\beta_{1}, \beta_{2}\right)= \\
& -\frac{1}{\sqrt{\pi}} \int_{s^{\prime}=s_{1}}^{s^{\prime}=s s_{2}} \frac{d \beta_{G}\left(s^{\prime}\right)}{d s^{\prime}} e^{-\beta_{G}\left(s^{\prime}\right)}\left\{\beta_{G}\left(s^{\prime}\right)-\chi(s)-\Omega_{G}\left(s^{\prime}\right) x^{2}(s)\right\}^{\frac{1}{2}} \tag{E.28}
\end{align*}
$$

Making use of Eq. (9.8b), we define:

$$
\begin{equation*}
\alpha_{G}\left(s^{\prime}\right)=\frac{d B_{G}\left(s^{\prime}\right)}{d s^{\prime}}=\left(\frac{1}{2} \frac{d x}{d x^{\prime}}-\frac{x^{\prime}}{2} \frac{d^{2} x}{d x^{\prime} \mid}\right) \frac{d x^{\prime}}{d s} \tag{E.29}
\end{equation*}
$$

Substituting Eq. (9.6), we obtain:

$$
\begin{equation*}
\alpha_{G}\left(s^{\prime}\right)=\frac{1}{2} \frac{d x}{d s^{\prime}}+\frac{\gamma \eta_{n e t}\left(s^{\prime}\right)}{2 x^{\prime} \cdot 3} \quad \frac{d x^{\prime}}{d s^{\prime}} \tag{E.30}
\end{equation*}
$$

We also define:

$$
\begin{gather*}
\epsilon_{G}\left(s^{\prime}\right)=\alpha_{G}\left(s^{\prime}\right) e^{-\beta_{G}\left(s^{\prime}\right)} \tag{E.31}\\
\Psi_{G}\left(s, s^{\prime}\right)=\left\{\beta_{G}\left(s^{\prime}\right)-\chi(s)-\Omega_{G}\left(s^{\prime}\right) x^{2}(s)\right\}^{\frac{1}{2}} \tag{E.32}
\end{gather*}
$$

(E.28) becomes:

$$
\begin{equation*}
\eta_{4, s^{\prime}}\left(\beta\left(s_{1}\right), \beta\left(s_{2}\right)\right)=-\frac{1}{\sqrt{\pi}} \int_{s^{\prime}=s_{1}}^{s^{\prime}=s_{2}} d s^{\prime} \quad \epsilon_{G}\left(s^{\prime}\right) \Psi_{G}\left(s, s^{\prime}\right) \tag{E.33}
\end{equation*}
$$

This integral is now in a form suitable for numerical evaluation; the integrand has been reduced to a function of potential and its first two radial derivatives, enabling the integration to be carried out over the computation net in position space. The form of this integral means that the value of the density contribution $\eta 4, s$ at the position s depends on the form of the potential at every value of the radial coordinate s ' between the locations s_{1} and s_{2}, and not on conditions at sonly.

This means that the overall problem is "global" rather than "local" in nature and cannot be reduced to an ordinary differential equation as long as the distribution function (which is contained in the expression for ϵ_{G}) is poly-energetic in form. This fact substantiates the statement made to this effect in Sec. V.

Equations (E.7) and (E.8) may be integrated to give:

$$
\begin{align*}
i_{i, s}(A) & =\left(A-x_{p}+1\right) e^{-A} \tag{E.34}\\
i_{2, s}(A) & =\frac{1}{x_{B}{ }^{2}}\left(1-(A+1) e^{-A}\right) \tag{E.35}
\end{align*}
$$

(E.9) may be integrated in the same manner as (E.6) to yield:

$$
\begin{equation*}
i_{3, s}\left(\beta\left(s_{1}\right), \beta\left(s_{2}\right)\right)=\int_{s^{\prime}=s_{1}}^{s^{\prime}=s_{2}} d s^{\prime} \epsilon_{G}\left(s^{\prime}\right) \Omega_{G}\left(s^{\prime}\right) \tag{E.36}
\end{equation*}
$$

Equations (E.23) to (E.36) define all of the functions necessary to compute η and i for a spherical probe. As examples of their use, we substitute them in (E.17) and (E.13) to obtain expressions for η and i for the attracted and repelled species, respectively, in the cases where the.locus of extrema does not enter the first quadrant of the (Ω, β) plane. We note once again that this condition is satisfied for the repelled species if the potential is a monotonically derreasing function of radius; this is usually the case. It is satisfied for the attracted species if the decay of potential with radius is nowhere steeper than that for an inverse square potential.

In the spherical case, the unshielded potential varies as the inverse of radius, whereas the asymptotic form of the shielded potential is an inverse square of radius (Sec. XIII). In the cylindrical case, the unshielded potential is logarithmic in radius, and the asymptotic shielded potential varies inversely with radius. In both cases, the effect of space charge on potential will be small out to a distance of many probe radii in the limit $R_{p} / \lambda_{D} \ll 1$. When this effect is present, it tends to steepen the potential gradient; for sufficiently large $\mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}}$, there will exist regions steeper than an inverse square, and expressions (E.17) will not give correct values fór η and i. It is not clear a priori whether these expressions are correct for a finite range of R_{p} / λ_{D} or only in the limit as $R_{p} / \lambda_{D} \rightarrow 0$. The former situation appeurs more likely in the cylindrical case than the spherical, because in the cylindrical case the potential tends to have a shallower form than for the sphere. The computed results (Sections XV and XVI) verify this expectation.

We first use (E.18a) to calculate η for a repelling probe $\left(x_{p}>0\right)$. Substituting (E.23), (E.24) and (E.25), we obtain:

$$
\begin{equation*}
\eta=e^{-x_{-}} \frac{e^{-x_{p}}}{\sqrt{\pi}}\left(\sqrt{x_{p}-x}+g\left(\sqrt{x_{p}-x}\right)\right)+\sqrt{1-x^{2}} \frac{e^{-x_{p}}}{\sqrt{\pi}}\left(\sqrt{x_{p}-\kappa}+g\left(\sqrt{x_{p}-k}\right)\right) \tag{E.37}
\end{equation*}
$$

From(E.3) we note that:

$$
\begin{equation*}
\left(x_{p}-\kappa\right)\left(1-x^{2}\right)=x_{p}-x \tag{E.38}
\end{equation*}
$$

(E.37) becomes:

$$
\begin{equation*}
\eta=e^{-x}-\frac{e^{-x_{p}}}{\sqrt{\pi}}\left\{a\left(\sqrt{x_{p}-x}\right)-\sqrt{1-x^{2}} g\left(\sqrt{\frac{x_{p}-x}{1-x^{2}}}\right)\right\} \tag{E.39}
\end{equation*}
$$

If χ_{p} becomes large, this expression reduces to the faniliar "Boltzmann factor" or thermodynamic equilibrium distribution. At the probe surface, $x \rightarrow 1$ and $\chi \rightarrow \chi_{p}$. We obtain:

$$
\begin{equation*}
\eta_{p}=\frac{e^{-x_{p}}}{2} \tag{E.40}
\end{equation*}
$$

This expression corresponds to a distribution function which is zero for outward-moving particles and Maxwellian for inward-woving particles, as expected for the repelled species at the probe surface. We note that at sufficiently small probe potentials, the difference between this result and the Boltzmann factor becomes too large to be ignored. Lam (Ref. 7) has used an expression of the same form as (E.40) to derive a quasi-neutral solution which gives an approximate relation between current and probe potential then the latter is small enough that no sbeath forms near the probe.

Far from the probe, $x \rightarrow 0$ and we again obtain from (E.39) the Boltzmann factor as a limit. In the fleld-free case, $x_{p}=x=0$, we obtain the geometrical depletion factor due solely to the colid angle subtended by the probe at any radius:

$$
\begin{equation*}
\eta=\frac{1+\sqrt{1-x^{2}}}{2} \tag{E.41}
\end{equation*}
$$

We next substitute ($\mathbf{E} .23$) and ($\mathbf{E} .25$) into (E .17 a) to obtain the shallow-potential form of η for an attracting probe $\left(x_{p}<0\right)$ as follows:

$$
\begin{equation*}
\eta=\sqrt{\frac{1-x^{2}}{\pi}}\{\sqrt{-\pi}+c(\sqrt{-x})\}+\frac{1}{\sqrt{\pi}}\{\sqrt{-x}+c(\sqrt{-x})\} \tag{5.42}
\end{equation*}
$$

The requiremant $k \leq 0$ implies $x / x_{p} \geq x^{2}$. This condition is satisfied in the shallow-potential case.

If we again set $x_{p}=x=0$, we recover the form (2.41).
We now aubstitute Eq. (2.34) into Eqs. (5.170) and (1.18\%) to obtain the currents collected by the probe men current collection is arbital-motion-limited (Sec. VIII). Substituting, we obtain the well-known reaults:

$$
\begin{array}{ll}
1=1-x_{p} & ; \tag{E.43}\\
x_{p} \leq 0 \\
1=e^{-x_{p}} & ; \quad x_{p} \geq 0
\end{array}
$$

The cases of most interest and difficulty are those which depart from the above forms of η and 1 , and for which η and i must be calculated by one of a variety of expressions of which (B.19) is an example.

Functions analogous to those in Eqs. (E.23) to (E.36) are now developed for the cylindrical probe. In general, these expressions are considerably more complicated than those for the sphere.

We integrate Eq. (E.10) by parts to obtain:

$$
\eta_{2, c}(A)=\frac{e^{-A}}{\pi} \text { ars } \tan \left\{\frac{x^{2}}{1-x^{2}} \frac{A-x_{p}}{A-\kappa}\right\}^{\frac{1}{2}}+\frac{x}{\sqrt{1-x^{2}}} \frac{x_{p}-x}{2 \pi} \int_{A}^{\infty} \frac{d \beta e^{-\beta}}{(\beta-x)\left(\beta-x_{p}\right) \frac{1}{2}(\beta-\kappa)^{\frac{1}{2}}}
$$

It is necessary to distinguish two cases: A is greater than either χ_{p} or κ, which usually occurs in the calculation of η for attracted particles, and $A=X_{p}$, which occurs for repelled particles.

We observe that the integrand in (E.44) has branch points at χ_{p} and k on the β axis, and a simple pole at x, which always lies between χ_{p}^{p} and k . For the repelling probe, we usually have $\kappa<x_{p}$. For the attracting probe, this situation may be reversed. Since the range of integration never includes any of the interval between the two branch points, the pole $\beta=X$ is always outside the range of integration.

We replace the variable of integration β in (5.44) by a new coordinate which is so defined that the two branch points are located symetrically about the origin. In order to do this, we define:

$$
\begin{align*}
T & =\left(k+x_{p}\right) / 2 \\
\beta & =\beta-T \\
\mu & =\max \left(\kappa, X_{p}\right)-T \tag{5.45}\\
\theta & =X-T \\
B & =A-T
\end{align*}
$$

We define the integral in Eq. (5.44) as H_{1} and substitute ($\mathbf{E} .45$) to obtain:

$$
\begin{equation*}
H_{1}(B, \infty)=e^{-T} \int_{B}^{\infty} \frac{e^{-\xi} d \xi}{(\xi-\theta)\left(\xi^{2}-\mu^{2}\right)^{\frac{1}{2}}} \tag{E.46}
\end{equation*}
$$

where: $B \geq \mu$ and $\mu<\theta<\mu ; B=\mu$ correaponde to the situation $A=X_{p}$.

In the situation $B>\mu$ we may expand the denominator of Eq. (E.46) as follows:

$$
\begin{align*}
& \left(1-\frac{\theta}{\xi}\right)^{-1}=\left(i 1+\frac{\theta}{\xi}\right) \sum_{j=0}^{\infty}\left(\frac{\theta}{\xi}\right)^{2 j} \tag{E.47}\\
& \left(1-\frac{\mu^{2}}{\xi^{2}}\right)^{\frac{1}{2}}=1+\sum_{i=0}^{\infty}\left(\frac{\mu}{\xi}\right)^{21} \frac{1 \cdot 3 \cdot 5 \ldots . .2 i-1}{2.4 .6 \ldots .21} \tag{E.48}\\
& \left(1-\frac{\theta}{\xi}\right)^{-1}\left(1-\frac{\mu^{2}}{\xi^{2}}\right)^{-\frac{1}{2}}=\left(1+\frac{\theta}{\xi}\right) \sum_{k=0}^{\infty} \frac{P_{k}}{\xi^{2 k}} \tag{E.49}
\end{align*}
$$

where:

$$
\begin{gathered}
P_{0}=1 \\
P_{k}=\theta^{2 k} \sum_{i=0}^{k}\left(\frac{\mu}{\theta}\right)^{2 i} \frac{1 \cdot 3 \cdot 5 \ldots .2 i-1}{2.4 .6 \ldots .2 i} ; k>0
\end{gathered}
$$

Substituting:

$$
\begin{equation*}
H_{1}(B, \infty)=e^{-(\tau+B)} \sum_{m=2}^{\infty} T_{m} F_{m}(B) \tag{8.50}
\end{equation*}
$$

where:

$$
\begin{aligned}
T_{2} & =1 \\
T_{3} & =\theta \\
T_{2 k} & =P_{k-1} \\
T_{2 k+1} & =P_{k-1} \cdot \theta
\end{aligned}
$$

and:

$$
\begin{equation*}
F_{n}(B)=e^{B} \int_{B}^{\infty} \frac{e^{-\xi}}{\xi^{m}} \tag{2.51}
\end{equation*}
$$

By integratins Eq. (1.51) by parte, we derive the following recuraion formula for $\quad>1$:

$$
\begin{equation*}
F_{a}(B)=\frac{1}{E-1}\left(\frac{1}{s^{n-1}}-m_{m-1}(B)\right) \tag{1.52}
\end{equation*}
$$

$F_{1}(B) e^{-B}$ is a well-known trancemenental function called the exponential intogral of B, or $81(B)$ (Eef. 16). From this referance, we bave, for $B<1$:

$$
\begin{equation*}
F_{1}(B)=e^{B}\left(-\ln B-C_{E}+B-\frac{B^{2}}{2.2!}+\frac{B^{3}}{3.3!}-\frac{B^{4}}{4.4!} \cdots\right) \tag{E.53}
\end{equation*}
$$

where C_{G} is Euler's constant; $C_{G}=0.57721566 \ldots$ In the range $1 \leq x<\infty, E I(B)$ may be numerically approximated by a formula given in Ref. 17, page 190.

The power series (E .48) fails to converge for $\xi=\mu$; therefore, the power series representation of the denominator in (c.46) is not uniformly convergent in any interval that includes μ, and the term-by-term integration derived above cannot be used to evaluate (E .46) if $B=\mu$. In fact, the series cannot be used to compute this integral for values of B within a certain neighbourhood of μ becuase convergence is too slow to be useful.

We therefore derive a procedure for integrating the integrand of (E.46) from μ to a larger finite value. We may then use this procedure to evaluate (E.46) as follows:

$$
\begin{equation*}
H_{1}(B, \infty)=H_{1}\left(\mu, B_{0}\right)-H_{1}(\mu, B)+H_{1}\left(B_{0}, \infty\right) \tag{E.54}
\end{equation*}
$$

B_{0} is the smallest value of B for which the representation (E.50) converges with adequate speed. If $B \geq B_{0}$ we evaluate $I_{1}(B, \infty)$ using ($E .50$) only.

In order to derive this procedure, we let $\xi=\mu \cosh 2$ to obtain, from (E.46):

$$
\begin{equation*}
H_{1}(\mu, B)=e^{-(\tau+\theta)} \int_{0}^{K} \frac{e^{-(\mu \cosh z-\theta)}}{\mu \cosh z-\theta} d z \tag{E.55}
\end{equation*}
$$

where:

$$
K=\cosh ^{-1}\left(\frac{B}{\mu}\right)=\ln \left(\frac{B}{\mu}+\sqrt{\frac{B^{2}}{\mu^{2}}-1}\right)
$$

Expanding the exponential in series and noting that $++\theta=X$, we obtain:

$$
\begin{equation*}
H_{1}(\mu, B)=e^{-X}\left\{\int_{0}^{K} \frac{d z}{\mu \cosh z-\theta} \int_{0}^{K} d z+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)!} \int_{0}^{K}(\mu \cosh z-\theta)^{n} d z\right\} \tag{8.56}
\end{equation*}
$$

$=e^{-x}\left\{\left[\frac{2}{\mu \Phi} \arctan \left(\frac{L-\theta / \mu}{\phi}\right)-\arctan \left(\frac{1-\theta / \mu}{\phi}\right)\right]-K+\frac{1}{2}\left[\frac{\mu}{2}\left(L-\frac{1}{L}\right)-\theta K\right]\right.$

$$
\begin{equation*}
\left.+\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{(n+1)!} \mu^{n}\left[R_{n}+R_{0}\left(\frac{-\theta}{\mu}\right)^{n} \sum_{i=1}^{n-1}\left(\frac{-\theta}{\mu}\right)^{1} R_{n-1} \frac{n!}{1!(n-1)!}\right]\right\} \tag{8.57}
\end{equation*}
$$

where:

$$
\begin{aligned}
& L=e^{K} \\
& \Phi=1-\frac{\theta^{2}}{\mu^{2}} \\
& R_{n}=\int_{0}^{K} \cosh ^{n_{z}} d z
\end{aligned}
$$

By integrating by parts, we derive the following recursion formula for R_{n} :

$$
\begin{equation*}
R_{n}=\frac{1}{n}\left(\cosh ^{n-1} K \sinh K+(n-1) R^{n-2}\right) \tag{E.58}
\end{equation*}
$$

For sufficiently large values of μ, it becomes impossible to find a value of B_{0} such that the series in Eqs. (E.50) and (E.57) both converge sufficiently fast to be of use in numerical computation of $H_{1}(B, \infty)$. In such cases, a numerical quadrature routine is used.

In this case, Eq. (E.46) is transformed by use of the relation $\xi=-\ln \omega$ to remove the infinite upper limit of integration. We obtain:

$$
\begin{equation*}
H_{l}(B, \infty)=e^{-T} \int_{0}^{e^{-B}} \frac{d \omega}{(-l n \omega-\theta)\left((l n \omega)^{2}-\mu^{2}\right) \frac{1}{2}} \tag{E.59}
\end{equation*}
$$

In the case $A=X_{p}$, the first term on the right side of (E.44) vanishes; from (E.55), we obtain:

$$
\begin{align*}
H_{1}(\mu, \infty) & =\frac{e^{-\chi}}{\mu} \int_{0}^{\infty} \frac{e^{-\mu(\cosh 2-1+1 / \lambda)}}{(\cosh 2-1+1 / \lambda)} d z \\
& =\frac{e^{-\lambda}}{\mu} P(\mu, \lambda) \tag{E.60}
\end{align*}
$$

where: $\lambda=\mu /(\mu-\theta)$; we note that if either μ or λ is large, the min contribution to the integral is for small $2 . \operatorname{since}-\mu<\theta<\mu$, we aivays have $\lambda>1 / 2$.

Differentiating F, we obtain:

$$
\begin{equation*}
\frac{\partial P}{\partial \mu}=-e^{\mu(1-1 / \lambda)} \int_{0}^{\infty} e^{-\mu \cosh z} d z=-e^{\mu(1-1 / \lambda)} x_{0}(\mu) \tag{8.61}
\end{equation*}
$$

$K_{0}(\mu)$ is the zero-order modified Bessel function of the second kind. For sufficiently large values of μ, the follouing asymptotic expansion is useful (Ref. 18):

$$
\begin{align*}
K_{0}(\mu) & =\sqrt{\frac{\pi}{2 \mu}} e^{-\mu}\left\{1-\frac{1^{2}}{8 \mu}+\frac{1^{2} \cdot 3^{2}}{2!(8 \mu)^{2}}-\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{3!(8 \mu)^{3}} \cdots\right\} \tag{E.62}\\
& =\sqrt{\frac{\pi}{2}} e^{-\mu} \sum_{n} \frac{C_{n}}{\mu^{n+\frac{1}{2}}} \\
P(\infty, \lambda) & =0 \\
\therefore P(\mu, \lambda) & =-\int_{\mu}^{\infty} \frac{\partial P}{\partial \mu^{\prime}} d \mu^{\prime}=\int_{\mu}^{e^{\prime}} e^{\prime}(1-1 / \lambda) K_{o}\left(\mu^{\prime}\right) d \mu^{\prime} \\
& =\sqrt{\frac{\pi}{2}} \sum_{n}^{\infty} C_{n} \int_{\mu}^{\infty} \frac{e^{-\mu^{\prime} / \lambda}}{\left(\mu^{\prime}\right)^{n+\frac{1}{2}}} \tag{E.63}
\end{align*}
$$

Let:

$$
\begin{equation*}
Q_{n}=\int_{\mu}^{\infty} \frac{e^{-\mu^{\prime} / \lambda} d \mu^{\prime}}{\left(\mu^{\prime}\right)^{n+\frac{1}{2}}}=e^{-\mu / \lambda} R_{n} \tag{E.64}
\end{equation*}
$$

Then:

$$
\begin{align*}
& R_{0}=2 \sqrt{\lambda} g\left(\sqrt{\frac{\mu}{\lambda}}\right) \\
& R_{n}=\frac{1}{n-\frac{1}{2}}\left[\frac{1}{\mu^{n}-\frac{1}{2}}-\frac{R_{n}-1}{\lambda}\right] \tag{E.65}
\end{align*}
$$

The asymptotic series $\sum_{n} C_{n} R_{n}$ fails to give a result if either μ or λ is too small; however, the minimal value $\lambda=1 / 2$ is sufficiently large to obtain a result.

Equations (5.45) to (5.55) define the method for numerical evaluation of Eq . (E .44).

The evaluation of $\eta_{3, c}(A)$ is carried out in a similar manner. We integrate Eq. (E.11) by parts, observing that the bracketed quantity in this equation is equal to unity at the upper limit of integration BB. We obtain

We define the integral in Eq. (E.66) as $\mathrm{H}_{2}(\mathrm{~A})$. Once again, we make a change of variables in this integral, as follows:

$$
\begin{align*}
\mu & =\frac{\beta_{B}}{2} \\
\xi & =\beta-\frac{\beta_{B}}{2} \tag{E.67}\\
\theta & =-\chi+\frac{\beta_{B}}{2}
\end{align*}
$$

Substituting, we obtain:

$$
\begin{equation*}
H_{2}(A)=e^{-\mu} \int_{A-\mu}^{\mu} \frac{e^{-\xi}}{(\xi+\theta)\left(\mu^{2}-\xi^{2}\right)^{\frac{1}{2}}} \tag{E.68}
\end{equation*}
$$

We observe that the integrand has branch points at $\xi= \pm \mu$ and a simple pole at $\xi=-\theta$, where $\theta>\mu$. Once again, the pole is always outside the range of integration.

As before, it is necessary to distinguish two cases: $0<A \leq B_{B}$, and $A=0$. We expand the integrand of Eq. (E.68) as follows:

$$
\begin{align*}
e^{-\xi}(\xi+\theta)^{-1} & =\frac{1}{\theta} \sum_{i=0}^{\infty} \frac{(-\xi)^{i}}{i!} \sum_{j=0}^{\infty} \frac{(-\xi)^{j}}{\theta^{j}} \\
& =\frac{1}{\theta} \sum_{k=0}^{\infty} P_{k}(-\xi)^{k} \tag{E.69}
\end{align*}
$$

where:

$$
P_{k}=\sum_{i=0}^{k} \frac{1}{i: \theta^{k}-1}
$$

Substituting, we obtain:

$$
\begin{equation*}
H_{2}=\frac{e^{-\mu}}{\theta} \sum_{k=0}^{\infty} P_{k} \int_{A-\mu}^{\mu} \frac{(-\xi)^{k} d \xi}{\left(\mu^{2}-\xi^{2}\right)^{\frac{1}{2}}} \tag{E.70}
\end{equation*}
$$

We set $\xi=\mu \sin z$ to obtain:

$$
\begin{equation*}
H_{2}=\frac{e^{-\mu}}{\theta} \sum_{k}(-1)^{k} P_{k} \mu^{k} \int_{\operatorname{arc} \sin \left(\frac{A}{\mu}-1\right)}^{\frac{\pi}{2}} \sin ^{k} z d z \tag{E.71}
\end{equation*}
$$

In the case $A=0$, we obtain:

$$
\begin{aligned}
S_{k}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{k_{2} d z} & =\pi ; k=0 \\
& =0 ; k \text { odd } \\
& =\pi\left[\frac{1.3 .5 \ldots \ldots-1}{2 \cdot 4.6 \ldots \ldots k}\right] ; k \text { eve: }
\end{aligned}
$$

For $0<A \leq \beta_{B}$, we may integrate Eq. (E.72) by parts to der ' ie the F^{-} formula:

$$
s_{k}=\frac{\alpha^{k-1} \sqrt{1-\alpha^{2}}}{4}+\frac{k-1}{k} s_{k-2}
$$

where $\alpha=\frac{A}{\mu}-1$
If μ is large or eriy equal to θ, the series in map.

fails to converge rapidly enough to be useful for numerical comput ${ }^{\text {n+ }}$,
$A>0$, numerical quadrature must then be used to evaluate $E q$. (E). $A=0$, we substitute $\xi=\mu \cos 2$ in Eq. (E.68) and re-define $P(\mu, \lambda)$ te

$$
\begin{equation*}
H_{2}(0)=\frac{e^{\mu / \lambda}}{\mu} \int_{0}^{\pi} \frac{e^{-\mu(1 / 1+1-\cos z)} d z}{\frac{1}{\lambda}+1-\cos z}=\frac{e^{\mu_{1} / \lambda}}{\mu} P(\mu, \lambda) \tag{E.;每}
\end{equation*}
$$

where: $\lambda=\mu /(\theta-\mu)$; once again, we note the the integrand gives most of it. contribution for small z if either μ or λ bocmes large. In this case, we have $0<\mu<\infty$ and $0<\lambda<\infty$. Differentiatrag $P(\mu, \lambda)$ with respect to μ as before, we obtain:

$$
\begin{equation*}
\frac{\partial P}{\partial \mu}=-e^{-\mu(1 / \lambda+1)} \int_{0}^{\pi} e^{\mu \cos z_{d z}=-e^{-\mu(1 / \lambda+}+{ }_{0}(\mu)} \tag{E.75}
\end{equation*}
$$

$I_{0}(\mu)$ is the zero-order Bessel function of thanary argument (kef. 18, pages 162-163). This function has the followingesmptotic expansion for large μ :

$$
\begin{align*}
I_{0}(\mu) & =\frac{e^{\mu}}{\sqrt{2 \pi \mu}}\left[1+\frac{1^{2}}{8 \mu}+\frac{12 \cdot 3^{2}}{2!(8 \mu)^{2}}+\frac{1233_{5}^{2}}{3!(8 \mu)^{3}} t \ldots\right] \tag{E.76}\\
& =\frac{e^{\mu}}{\sqrt{2 \pi \mu}} \sum_{n} \frac{C_{n}}{\mu^{n}}
\end{align*}
$$

Since $P(\infty, \lambda)=0$ we have:

$$
\begin{align*}
& P(\mu, \lambda)=-\int_{\mu}^{\infty} \frac{\partial p}{\partial \mu^{\prime}} d \mu^{\prime}=\int_{\mu}^{\infty} e^{-\mu^{\prime}(\lambda / \lambda+1)} I_{0}\left(\mu^{\prime}\right) d \mu^{\prime} \\
&=\int_{\mu}^{\infty} e^{-\mu / \lambda} \frac{\pi}{2 \mu^{\prime}}\left(\sum_{n} \frac{C_{n}}{\mu^{n}}\right) d \mu^{\prime} \tag{E.77}\\
& \therefore H_{2}(0)=\frac{e^{\mu^{\prime} / \lambda}}{\mu} \sqrt{\frac{\pi}{2}} \sum_{n} C_{n} \int_{\mu}^{\infty} \frac{e^{-\mu^{\prime} / \lambda} \frac{\mu^{\prime}}{\prime} n^{\prime} \frac{1}{2}}{\mu^{\prime}}=\frac{1}{\mu} \sqrt{\frac{\pi}{2}} \sum_{n} C_{n} R_{n} \tag{E.78}
\end{align*}
$$

The: K_{n} is defined in Eq. (E.64).
Here we must allow not only for the case of small μ but also For the : Ise of small λ. In either situation the sumation in Eq. (E.78) fails co produce a result because of the way in which μ and λ enter into the recursion turitia (-65).

We first study the case where λ is small compared to unity, but $\omega 10 n 0_{6}^{t}$

If we take the first term in Eq. (5.78), we obtain:

$$
\begin{equation*}
H_{2}(0) \simeq \frac{\lambda}{\mu} \sqrt{\frac{2 \pi}{\lambda}} g\left(\sqrt{\frac{\mu}{\lambda}}\right) \tag{E.79}
\end{equation*}
$$

In the case of small λ, we observe that the integrand in Eq. (E.74) dependsmostly on the numerator in the region in which it gives most of its contribution to the integral, namely the region of small z. In other words, the width of the peak in the integrand depends primarily on μ; the influence of the denominator is small. in comparison. We approximate the denominator, for $\lambda \ll 1$, as follows:

$$
\begin{equation*}
\frac{1}{\frac{1}{\pi}+1-\cos z}=\frac{\lambda}{1+\lambda(1-\cos z)} \simeq \lambda e^{\lambda(\cos z-1)} \tag{E.80}
\end{equation*}
$$

Substituting in Eq. (E.74), we obtain:

$$
\begin{align*}
H_{2}(0) & \simeq \frac{\lambda e^{-\mu-\lambda}}{\mu} \int_{0}^{\pi} e^{(\mu+\lambda) \cos z} d z=\frac{\lambda e^{-\mu-\lambda}}{\mu} \pi I_{0}(\mu+\lambda) \tag{E.81}\\
& =\frac{\lambda}{\mu} \sqrt{\frac{\pi}{2(\mu+\lambda)}}\left[1+\frac{1^{2}}{8(\mu+\lambda)}+\frac{1^{2} 3^{2}}{2!(8(\mu+\lambda))^{2}} \cdots\right]
\end{align*}
$$

For large values of $\xi, g(\xi) \rightarrow 1 / 2$; for small λ and large μ, Eqs. (E.79) and (E.81) can be shown to approach the same limit. We combine
them to obtain the following approximation formula:

$$
H_{2}(0) \simeq \frac{\lambda}{\mu} \sqrt{\frac{2 \pi}{\lambda}} e\left(\sqrt{\frac{\mu}{\lambda}}\right)\left[1+\frac{1^{2}}{8(\mu+\lambda)}+\frac{123^{2}}{2!(8(\mu+\lambda))^{2}} \cdots\right] \text { (E.82) }
$$

If λ is large and μ is small, the Taylor expansion of $I_{0}(\mu)$ can be substituted into Eq. (E.77). This expansion is:

$$
\begin{equation*}
I_{0}(\mu)=1+\left(\frac{\mu}{2}\right)^{2}+\frac{(\mu / 2)^{4}}{(2!)^{2}}+\ldots .+\frac{(\mu / 2)^{2 n}}{(n!)^{2}} \ldots=\sum_{n} c_{n} \mu^{2 n} \tag{E.83}
\end{equation*}
$$

From Eq. (E.77) we have:

$$
\begin{equation*}
P(\mu, \lambda)=\left\{\int_{0}^{W}-\int_{0}^{\mu}+\int_{W}^{\infty}\right\} e^{-\mu^{\prime}(I / \lambda+1)} \pi I_{0}\left(\mu^{\prime}\right) d \mu^{\prime} \tag{E.84}
\end{equation*}
$$

Evaluating the first integral term-by-term, we have:

$$
\begin{equation*}
\int_{0}^{W} e^{-\mu^{\prime}(1 / \lambda+1)} I_{0}\left(\mu^{\prime}\right)-d \mu^{\prime}=e^{-A W} \sum_{n} C_{n} R_{2 n} \tag{E.85}
\end{equation*}
$$

where:

$$
\begin{aligned}
R_{k}=e^{A W} Q_{k}=e^{A W} & \int_{0}^{W} e^{-A \xi} \xi^{k} d \xi \\
A & =1+1 / \lambda \\
R_{0} & =\frac{e^{A W}-1}{A} \\
R_{k} & =\frac{k R_{k-1}-W^{k}}{A}
\end{aligned}
$$

W is an experimentally obtained value of μ chosen such that the series representations ($\mathcal{E} .77$) and ($E .85$) both converge rapidiy enough to be useful. If both μ and λ are small, the series in $E q$. (E.71) is used to compute H_{2} 。

Equations (E.67) to (E.85) define the method for numerical evaluation of Eq. (E.66).

The expression for $\eta 4, \mathrm{c}$ in Eq . (F .12) can be transformed into an integration cuer radius in the same manner as the expression for $7 / 4$, in Eqs. (E.6). This time, we substitute the cylindrical Poisson equmion ${ }^{4}$ (11.3) into Eq. (E.29) to obtain:

$$
\begin{equation*}
\alpha_{G}\left(s^{\prime}\right)=\frac{d x}{d s^{\prime}}+\frac{\gamma \eta_{n e t}\left(s^{\prime}\right)}{2 x^{\prime} 3} \frac{d x^{\prime}}{d s^{\prime}} \tag{E.86}
\end{equation*}
$$

We again define $\epsilon_{G}\left(s^{\prime}\right)$ as in Eq. (E.3l); we define $\psi_{G}\left(s, s^{\prime}\right)$ as follows:

$$
\begin{equation*}
\psi_{G}\left(s, s^{\prime}\right)=\arctan \left\{\frac{\Omega_{G}\left(s^{\prime}\right) x^{2}(s)}{\Omega_{G}\left(s^{\prime}\right)-\chi(s)-\Omega_{G}\left(s^{\prime}\right) x^{2}(s)}\right\}^{\frac{1}{2}} \tag{E.87}
\end{equation*}
$$

Substituting in Eq. (E.12), we obtain:

$$
\begin{equation*}
\eta_{4, c}\left(\beta\left(s_{1}\right), \beta\left(s_{2}\right)\right)=\frac{1}{\pi} \int_{s^{\prime}=s_{1}}^{s^{\prime}=s_{2}} d s^{\prime} \epsilon_{G}\left(s^{\prime}\right) \psi_{G}\left(s, s^{\prime}\right) \tag{E.88}
\end{equation*}
$$

The current collection expressions (E.14) and (E.15) may be integrated by parts to obtain:

$$
\begin{align*}
& i_{1, c}(A)=\frac{2}{\sqrt{\pi}} e^{-A}\left\{\sqrt{A-X_{p}}+g\left(\sqrt{A-X_{p}}\right)\right\} \tag{E.89}\\
& i_{2, c}(A)=\frac{1}{x_{B}}\left[1-\frac{2}{\sqrt{\pi}} e^{-A}(\sqrt{A}+g(\sqrt{A}))\right] \tag{E.90}
\end{align*}
$$

Finally, Eq. (E.16) becomes:

$$
\begin{equation*}
i_{3, C}\left(\beta\left(s_{1}\right), \beta\left(s_{2}\right)\right)=\frac{2}{\sqrt{\pi}} \int_{s^{\prime}=s_{1}}^{s^{\prime}=s_{2}} d s^{\prime} \epsilon_{G}\left(s^{\prime}\right) \sqrt{\Omega_{G}\left(s^{\prime}\right)} \tag{E.91}
\end{equation*}
$$

Equations (E.44) to (E.91) define all of the expressions necessary for computing η and i for a cylindrical probe. As in the spherical case, some special cases are of importance. We first calculate η for a repelling probe, once again under the assumption of a monotonic potential. Substituting Eqs. (E.10) and (E.13) into Eq. (E.18a), we obtain:

$$
\begin{equation*}
\eta=e^{-\chi}-\frac{1}{\pi} \int_{\chi_{p}}^{\infty} d \beta e^{-\beta} \arcsin \left\{\frac{x^{2}\left(\beta-\chi_{p}\right)}{\beta-\chi}\right\}^{\frac{1}{2}} \tag{E.g2}
\end{equation*}
$$

For large χ_{p} we again recover the Boltzmann factor; at the probe surface, $\chi \rightarrow \chi_{p}, x \rightarrow 1$, and we again obtain Eq. (E.40). In the field-free case, $\chi_{p}=\chi=0$, we obtain, for the geometrical depletion factor:

$$
\begin{equation*}
\eta=1-\frac{1}{\pi} \arcsin x \tag{E.93}
\end{equation*}
$$

As before, we may also obtain this result by using the expression for η for attracted particles.

Using Eqs. (E.17b) and (E.18b) together with Eq . (E.89), we obtain, for the orbital-motion-limited currents:

$$
\begin{align*}
& 1=\frac{2}{\sqrt{\pi}}\left(\sqrt{-x_{p}}+g\left(\sqrt{-x_{p}}\right)\right) ; x_{p} \leq 0 \tag{E.94}\\
& 1=e^{-x_{p}}
\end{align*}: \frac{x}{}>0 .
$$

APERTDIX F

Current Collected by a Probe of Large Radius When Repelled Particles

Are at Zero Temperature and Attracted Particles are Maxwellian

We define a radial coordinate x, measured inward from the sheath edge, and two transverse coordinates y and z. In the planar approximation, Poisson's equation reduces to:

$$
\frac{d^{2} \phi}{d x^{2}}=-\frac{\rho}{\epsilon}
$$

At $x=0, \phi=0$ and $d \phi / d x=0$. At the probe surface, $\phi<0$. The distribution function at the sheath edge is a half-Maxwellian consisting only of particles moving into the sheath. Constants of the motion are $E_{x}, \mathbf{v}_{\mathbf{y}}$, and v_{z}.

$$
\begin{align*}
E & =Z \Theta \phi(x)+\frac{m}{2} v_{x}^{2}+\frac{m}{2}\left(v_{y}^{2}+v_{z}^{2}\right) \\
& =E_{x}+E_{t} \tag{Fr}
\end{align*}
$$

E_{t} is the energy associated with transverse motion. The distribution function 1 s:

$$
\begin{align*}
f & =N_{\infty}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \cdot e^{-E_{x} / k T} e^{-E_{t} / k T} ; \tag{F.3}\\
f & =0
\end{align*}
$$

$$
\begin{align*}
& N=\int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{-} d v_{x} d v_{y} d v_{z}=\int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{-} \frac{d v_{x}}{d f_{x}} d f_{x} d v_{y} d v_{z} \tag{F.4}\\
& v_{x}=\sqrt{\frac{2}{m}\left(E_{x}-\operatorname{Ze\phi }(x)\right)} ; \frac{d v_{x}}{d E_{x}}=\frac{1}{\operatorname{2m}\left(E_{x}-\operatorname{Ze\phi }(x)\right)} \tag{F.5}\\
& \eta=\frac{N}{N_{\infty}}=\int_{0}^{\infty}\left(\frac{m}{2 \pi k T}\right)^{\frac{1}{2}} \frac{e^{-E_{x} / k T} d E_{x}}{\sqrt{2 m\left(E_{x}-Z e \phi(x)\right.}} \int_{-\infty}^{\infty} \int_{\infty}^{\infty}\left(\frac{m}{2 \pi \alpha T}\right) e^{-\frac{m^{2}}{2}\left(\frac{v_{y} L^{2}+v_{z} R}{2}\right)} d v_{y} d v_{z} \\
& =\frac{1}{2} \int_{0}^{\infty}\left(\frac{1}{\pi k T}\right)^{\frac{1}{2}} \frac{e^{-E_{x} / k T} d E x}{\sqrt{E_{x}-\operatorname{Ze\phi }(x)}}=\frac{1}{2 \sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-\beta} d \beta}{\sqrt{\beta-x}} \tag{F.6}\\
& =\frac{1}{\sqrt{\pi}} g(\sqrt{-x})
\end{align*}
$$

The quantities β and χ are as defined in See. IX; g is as defined in Appendix E.
We note that $\rho=$ ZeII and define $s=x / \lambda_{D}$ and $y=-x$ to obtain, from Eqs. (F.1) and (F.6):

$$
\begin{equation*}
\frac{d^{2} y}{d s^{2}}=\eta(y)=\frac{1}{\sqrt{\pi}} g(\sqrt{y}) \tag{F.7}
\end{equation*}
$$

Since: y and $d y / d s$ are both zero at $s=0$, it can be shown that Eq. (F.7) has the solutisa:

$$
\begin{equation*}
s=\int_{0}^{y} \sqrt{2 \int_{0}^{y^{\prime}} \eta\left(y^{\prime \prime}\right) d y^{\prime \prime}} \tag{F.8}
\end{equation*}
$$

We define $\sigma_{1}\left(y^{\prime}\right)$ as the square of the denominator in the integrand. Substituting into Eq. (F.8), we obtain:

$$
\begin{align*}
\sigma_{1}\left(y^{\prime}\right) & =\frac{2}{\sqrt{\pi}} \int_{0}^{y^{\prime}} g\left(\sqrt{y^{\prime \prime}}\right) d y^{\prime \prime} \\
& =\int_{0}^{y^{\prime}} e^{y^{\prime \prime}}\left(1-\operatorname{erf} \sqrt{y^{\prime \prime}}\right) d y^{\prime \prime} \\
& =\frac{2}{\sqrt{\pi}}\left\{g\left(\sqrt{y^{\prime}}\right)-\left(\frac{\sqrt{\pi}}{2}-\sqrt{y^{\prime}}\right)\right\} \tag{F.9}
\end{align*}
$$

Examination of the form of g shows that Eq. (F.9) is of order y^{\prime}. When the square root of this expression is substituted into the denominator of (P .8), a singularity occurs in the integrand at $y^{\prime}=0$. We may filininate this aingularity by defining $\sigma_{1}\left(y^{\prime}\right)=y^{\prime} \sigma_{2}\left(y^{\prime}\right)$ and setting $y^{\prime}=z^{2}$. We then obtain:

$$
\begin{equation*}
s=\int_{0}^{y} \frac{d y^{\prime}}{\sqrt{\sigma_{1}\left(y^{\prime}\right)}}=2 \int_{0}^{\sqrt{y}} \frac{d z}{\sqrt{\sigma_{2}\left(z^{2}\right)}} \tag{5.10}
\end{equation*}
$$

We may obtain a power series expansion for $g(\xi)$ as followe:

$$
\begin{align*}
g(\xi) & =\frac{\sqrt{\pi}}{2} e^{t^{2}}(1-\operatorname{er} f t) \\
& =\frac{\sqrt{\pi}}{2} e^{t^{2}}-e^{t^{2}} \int_{0}^{t} e^{-t^{2}} d t \tag{5.11}\\
& =\frac{\sqrt{\pi}}{2} e^{s^{2}}-h(\xi)
\end{align*}
$$

The second term, $\mathrm{h}(\xi)$ may be written as a Taylor series:

$$
\begin{equation*}
h(\xi)=\sum_{m=0}^{\infty} \frac{h^{(m)}(0) \xi^{m}}{m!} \tag{F.12}
\end{equation*}
$$

Repeated differentiation of $h(\xi)$ gives:

$$
\begin{align*}
& h^{(n+1)}=2\left(5 h^{(n)}+n h^{(n-1)}\right) \\
& h^{(n+1)}(0)=2 n h^{(n-1)} \\
& h^{(2 n)}(0)=0 \tag{F.13}\\
& h^{(2 n+1)}(0)=2^{2 n} n!
\end{align*}
$$

Substituting in Eq. (F.12) gives:

$$
\begin{align*}
h(\xi) & =\xi+\frac{2}{3} \xi^{3}+\frac{4}{15} \xi^{5} \ldots=\sum_{n=0}^{\infty} \frac{\xi^{2 n+1} 2^{n}}{1 \cdot 3 \cdot 5 \ldots(2 n-1)(2 n+1)} \tag{F.14}\\
& =\sum_{n=0}^{\infty} \xi^{2 n+1} a_{n}
\end{align*}
$$

For large $\xi, h(\xi) \rightarrow \frac{\sqrt{\pi}}{2} e^{t^{2}}$; the difference between these two quantities becomes small compared with their magnitudes, and Eq. (F.11) cannot be used to give numerical results because of round-off errors.

We therefore use the following form to compute $\boldsymbol{s}(\boldsymbol{y})$:

$$
\begin{equation*}
s=2 \int_{0}^{\sqrt{y_{1}}} \frac{d z}{\sqrt{\sigma_{2}\left(z^{2}\right)}}+\int_{y_{1}}^{y} \frac{d y^{\prime}}{\sqrt{\sigma_{1}\left(y^{\prime}\right)}} \tag{7.15}
\end{equation*}
$$

Eq. ($\mathrm{F}, 9$) y_{1} is an experimentally obtained yalue of y for which neither we obtain the following series form:

$$
\begin{equation*}
\sigma_{2}\left(z^{2}\right)=\frac{\sigma_{1}\left(z^{2}\right)}{z^{2}}=\sum_{n=1}^{\infty} \frac{z^{2 n-2}}{n!}-\frac{2 z}{\sqrt{n}} \sum_{n=1}^{\infty} z^{2 n-2} \theta_{n} \tag{5.16}
\end{equation*}
$$

Equations (P.8) to (F.16) define the numerical solution of Eq. (F.7). The solution gives the number of attracted-species Debye lengths s between the probe surface and the sheath edge as a function of probe potential x_{p} in the planar-sheath approximation. A program that has been used to compute s_{p} by means of the above expressions appears in Appendix I (Progran 3). Humerical values of 8 for various x_{p} appear in the output from this program which is shown in Appendix J.

Since in the planar-sheath approximation, all particles entering the sheath are collected, the increase in collected current as χ_{p} becomes larger depends only on the increase in sheath area. For the sphere, the area of the sheath edge varies as the square of its radius; for the cylinder, it varies directly as radius.

The collected current for the sphere is therefore given by the following expression:

$$
\begin{equation*}
i\left(x_{p}\right)=\frac{I}{I_{0}}=\left(1+\frac{\lambda_{D} s\left(x_{p}\right)}{R_{p}}\right)^{2} \tag{F.17}
\end{equation*}
$$

For the cylinder:

$$
\begin{equation*}
i\left(x_{p}\right)=1+\frac{\lambda_{D} s\left(x_{p}\right)}{R_{p}} \tag{F.18}
\end{equation*}
$$

In cases where λ_{D} is not small compared to R_{p}, the planar approximation will fail to give correct values for the collected current for three reasons. First, the planar form (F.1) of the Poisson equation will fail to closely approximate the spherical or cylindrical formi. Second, the orbital-motion-limited current will decrease below the values given by (F.17) and (F.i8) in terms of sheath edge radius because some of the attracted particles will be able to enter the sheath and orbit out of it again without beirg collected by the probe. Finally, the orbital-motion-limited current itself will over-estimate the current because a certain class of particles entering the sheath will orbit out of it because of barriers created by the potential well itself.

APPENDIX G

Power Series Solution of the Allen, Boyd and Reynolds Equation
Numerical solution of the Allen, Boyd and Reynolds equation (Ref. 6) has been carried out here for reasons which are discussed in Sec.XIII. This differential equation expresses the dependence of potential on radius in the case of a spherical probe at large ion-attracting potential in the limit of zero ion temperature. The solution is carried out according to the method suggested in Ref. 5.

Combining Eqs. (13.12), (13.13) and (13.14), we obtain the Allen, Boyd, and Reynolds Equation:

$$
\begin{equation*}
\frac{1}{\xi^{2}} \frac{d}{d \xi}\left(\xi^{2} \frac{d x_{-}}{d \xi}\right)=\frac{1}{2 \sqrt{\pi}} \frac{i^{*}}{\xi^{2} \sqrt{x_{-}}}-e^{-x_{-}} \tag{G.1}
\end{equation*}
$$

For convenience, we define new variables $s=1 / \xi, y=\chi_{-}$, $A=i^{*} / 2 \sqrt{\pi}$, and obtain:

$$
\begin{equation*}
x^{4} \frac{d^{2} y}{d x^{2}}=\frac{A x^{2}}{\sqrt{y}}-e^{-y} \tag{G.2}
\end{equation*}
$$

The boundary conditions at infinite radius become:

$$
\left.\begin{array}{l}
y=\frac{d y}{d x}=0 \tag{G.3}\\
\frac{d^{2} y}{d x^{2}} \text { finite }
\end{array}\right\} \text { at } x=0
$$

The condition that $d^{2} y / d x^{2}$ remains finite at $x=0$ implies that the right-hand side of (G.2) must be of order x^{4}. As $y \rightarrow 0, e^{-y} \rightarrow 1$ and therefore $A x^{2} / \sqrt{y} \rightarrow 1$.

Let:

$$
y=A^{2} x^{4}\left(1+y^{\prime}\right) ; y^{\prime} \rightarrow 0 \text { as } x \rightarrow 0
$$

Therefore:

$$
\begin{equation*}
y=\sum_{n=4}^{\infty} b_{n} x^{n} \tag{0.5}
\end{equation*}
$$

where:

$$
b_{1}=b_{2}=b_{3}=0
$$

where:

$$
\begin{equation*}
y^{\prime}=\sum_{n=1}^{\infty} a_{n} x^{n} \tag{G.4}
\end{equation*}
$$

$$
b_{4}=A^{2}
$$

$$
b_{n}=A^{2} a_{n-4} ; n>4
$$

Substituting in the left side of Eq. (G.2), we obtain:

$$
\begin{equation*}
x^{4} \frac{a^{2} y}{d x^{2}}=\sum_{k=6}^{\infty} b_{k-2}(k-2)(k-3) x^{k} \tag{G.6}
\end{equation*}
$$

Also:

$$
\begin{align*}
& \frac{A x^{2}}{\sqrt{y}}=\left(1+y^{\prime}\right)^{-\frac{1}{2}} \\
= & 1+\sum_{i=1}^{\infty} c_{i}\left(y^{\prime}\right)^{i} \tag{G.7}
\end{align*}
$$

where:

$$
c_{i}=(-1)^{i} \frac{1 \cdot 3 \cdot 5 \ldots .2 i-1}{2 \cdot 4 \cdot 6 \ldots .2 i}
$$

Substituting for y^{\prime} in Eq. (G.7):

$$
\begin{align*}
\frac{A x^{2}}{\sqrt{y}} & =1+\sum_{i=1}^{\infty} c_{i}\left(\sum_{j=1}^{\infty} a_{j} x^{j}\right)^{1} \tag{G.8}\\
& =1+\sum_{k=1}^{\infty} e_{k} x^{k}
\end{align*}
$$

where:

$$
\begin{align*}
e_{k} & =c_{1} a_{k}+\sum_{i=2}^{k} c_{i} \sum_{n=k-i+1} \delta\left(j_{1}+2 j_{2}+\ldots+h j_{h}-k\right)\left(\frac{1!}{j_{1}!j_{2}!\cdots j_{h}!}\right) a_{1} j_{1} a_{2} \cdot j_{2} a_{n} j_{n} \\
& =c_{1} z_{k}+e_{k}^{*} \tag{G.9}
\end{align*}
$$

and: $\quad \quad(m)=1$ for $m=0 ; \sigma(m)=0$ for $m \neq 0$.
Also:

$$
\begin{align*}
e^{-y} & =1+\sum_{i=1}^{\infty} d_{i}\left(\sum_{j=1}^{\infty} b_{j} x^{j}\right)^{i} \tag{0.10}\\
& =1+\sum_{k=1}^{\infty} f_{k} x^{k}
\end{align*}
$$

where:

$$
d_{i}=\frac{(-1)^{i}}{i!}
$$

and f_{k} is given by an expression identical in form to Eq. (G.9).
Equating coefficients of like powers in Eq. (G.2), we obtain:

$$
\begin{align*}
& e_{k}=f_{k} ; k<6 \\
& e_{k}=f_{k}+b_{k-2}(k-2)(k-3) ; k \geq 6 \tag{G.11}
\end{align*}
$$

Since Eq. (G.2) is invariant upon change of sign of x, it follows that a_{n} and b_{n} must vanish for all odd values of n.

For $k=2$, we obtain, from Eq.(G.11):

$$
\begin{equation*}
c_{1} a_{2}=d_{1} b_{2}+d_{2} b_{1}^{2}-c_{2} a_{1}^{2}=0 \tag{G.12}
\end{equation*}
$$

Therefore a_{k} and b_{k} both vanish for $k<4$, and Eq. (G.9) reduces to:

$$
\begin{equation*}
e_{k}^{*}=\sum_{i=2}^{k / 4} c_{i} \sum_{h=k-4 i+4} \delta\left(4 j_{4}+6 j_{6}+\ldots+h j_{h}-k\right)\left(\frac{i!}{j_{4}!j_{6}!\ldots j_{n}!}\right) a_{4}^{\left.j_{4} a_{6}{ }_{6} 6 \ldots a_{h}{ }_{h},{ }_{(G .13)}\right)} \tag{G.13}
\end{equation*}
$$

We therefore obtain from Eqs. (G.5) and (G.11) a set of recursive relations for defining any b_{k} in terms of $b_{1} \ldots b_{k-1}$ as follows:

$$
\begin{align*}
& b_{k}=A^{2} a_{k-4} \tag{G.15}\\
& c_{1} a_{k}=d_{l} b_{k}+b_{k-2}(k-2)(k-3)+f_{k}^{*}-e_{k}^{*}
\end{align*}
$$

Equations ($G .4$) to ($G .15$) define the power series expansion required to begin the numerical integration of (G.2), according to the method suggested in Ref. 5; the Runge-Kutta numerical integration procedure is used to complete the integration.

Operation of Computer Programs

Programs 1 and 2, both of which are listed in Appendix I along with two smaller programs, constitute tested methods for carrying out the computation involved in this research for the general case and for the case of zero-temperature repellea particles, respectively. Either of these programs produces one result, corresponaing to one given value of each of the input quantities $e \phi_{+} / k T_{-}, T_{+} / T_{-}$, and $R_{p} / \lambda_{D_{-}}$, (where we have again assumed $Z_{+}=1$, $\mathrm{Z}=-1$) in an Average time of about two minutes on the IBM 7094 computer (depending on the values of these parameters), to a relative accuracy in all computed quantities of about 0.002 or better. Most of the results not involving extreme values of the input parameters have relative accuracies better than 0.001.

For program l, these accuracies have been checked by running representative cases (a case consisting of one set of values of the three quantities mentioned above), each with several combinations of computation net spacing Δs and outer boundary position R_{B} / R_{p}, in order to find the innermost boundary position and coarsest net consistent with acceptable results. This procedure is usually carried out at a nondimensional probe potential of ± 25, the largest to be used, since it has been found that the demands by the program for large boundary radius and fine net become more severe as probe potential increases. It is then possible to compute with confidence all cases involving smaller probe potentials and the same values of T_{+} / T_{-}and $R_{p} / \lambda_{D_{-}}$ using the computation net thus determined.

In general, the program becomes more demanding of a large number of points in the computation net at both very large and very small values of $R_{p} / \lambda_{D_{-}}$, and more demanding of a large number of Debye lengths between R_{p} and R_{B} for very large $R_{p} / \lambda_{D_{-}}$. Since the rate of convergence of the program becomes slower as ($R_{B}-R_{p} / \lambda_{D_{-}}$is increased, the cases of large $R_{p} / \lambda_{D_{-}}$have therefore been the most expensive in computation time, particularly for the sphere. In fact, the case $e \phi_{\mathrm{p}} / \mathrm{kT} \mathrm{T}_{-}= \pm 25, \mathrm{~T}_{+} / \mathrm{T}_{-}=1, \mathrm{R}_{\mathrm{p}} / \lambda_{\mathrm{D}_{-}}=100$ consumed about 20 minutes of computation time, the largest value for any case computed. Accordingly, no cases were attempted for the spherical probe at this value of $R_{p} / \lambda_{D_{\text {_ }}}$ for any intermediate values of T_{+} / T_{-}.

When several cases were run for decreasing values of the repelled-species temperature, the attracted-species parameters being held consuant, it was found that the program became more demanding of a fine computation net but it was possible to move R_{B} closer to the probe because of the contraction of the sheath as repelled-species temperature was decreased.

When a sequence of cases of decreasing attracted-species temperatu as run with the repelled-species parameters held constant, only small changes iw computation net requirements were noticed in the case of the cylinder, but 1 the case of the sphere, the required values of net fineness and nuter boundary radius increased rapidly. At the same time, the collected
rent result was observed to become more and more sensitive to small changes 'he form of cie potential until a point was reached where computations do be prictical. This restriction became more severe with increasing probe potential; f'r instance, it proved impossible to compute the ion current collected by the sphe, fur the case er $T_{-}=-25, T_{+} / T_{-}=0.1, R_{p} / \lambda_{D_{-}}=10$.

These findings are in accordance with the prediction deduced from analytical considerations in Sec. XIII. These restrictions proved less severe when calculations were made using the mono-energetic distribution for the attracted species.

Table 4 shows suggested computation net spacings and outer boundary radil to be used with program i, as determined by experience using the program. It was found experimentaily that in most cases the outer boundary was at a large enough radius to produce resuits of the desired accuracy if the net charge density $\eta_{+}-\eta_{-}$was smaller than 0.001 at the boundary.

Figure 11 shows ion and electron charge densities as functions of radius for a cylindrical probe for the case $e \phi_{p} / k T_{-}=25, T_{+} / T_{-}=1, R_{p} / \lambda_{D_{n}}=10$, for various positions of the outer boundary radius R_{B}. The significant feature of this diagram is the fact that in each instance charge separation is seen to occur near the outer boundary. This occurs because of the fact that the assumed relation (8.9) between the potential and its slope at $r=R_{B}$ is only an approximation to the relation that would actually exist at that radius in the infiniteplasma case; the potential adjusts its shape to compensate for this error by increasing its curvature near this boundary. Because Poisson's equation (4.3) is satisfied everywhere, this curvature implies a charge separation near $r=R_{B}$. Since these boundary conditions are derived from the leading term in the representation of the potential for large radii (Sec. XIII), they become more nearly correct as the boundary radius is increased; accordingly, the charge separation near $r=R_{B}$ may be expected to decrease as R_{B} is increased. This behaviour is in fact seen to occur in Fig. 11.

Because of this ability of the solution scheme to locally adjust the potential to compensate for errors in the boundary conditions at $r=R_{B}$, it may be expected that computed values of current collection will approach the limiting value corresponding to an infinite plasma very rapidly as R_{B} is increased. This is in fact the case, and it is of crucial importance in designing a practical solution scheme. Earlier trials with a boundary held at zero potentigl required R_{B} to . jual to many probe radii before the current collection results were observed tc approach a limit with increasing R_{B}. Placing R_{B} at such large distances from the probe resulted in unacceptably large expense in computation time per result; it was evident at that time that a better set of boundary conditions was required before the computation scheme could be made useful.

The remarkabie insensitivity of the solution scheme to errors in the relation between the potential and its slope at $r=I_{B}$ was made use of in carrying out the computation for the cylindrical probe with zero temperature attracted particles, using the boundary conditions for the finite-temperature problem. It has been shown (Sec. XIII) that in the zero-temperature limit, the asymptotic form of the cylindrical-probe potential is no longer proportional to the inverse of the radius but to the inverse two-thirds power of the radius. When computations for this case were carried out using the finite-temperature boundary conditions, experimentation with various values of R_{B} provec the resuit to be so stable that it never became necessary to put the more exact boundary conditions into the program.

The key to this insensitivity to boundary conditions is the fact that the boundary potential is free to seek its own equilibrium value; the strong tendency of the plasma towards neutrality tends to fix the local potential a small distance from the boundary wilile a small amount of charge separation
adjusts the derivative at the boundary; the disturbance in potential shape caused by the presence of the boundary is thus confined to the immediately adjacent region.

In order to initiate a calculation with any one of the programs listed in Appendix I, it is necessary to provide it with appropriate data as indicated by comments included with the program listing. In the case of Program 1 , this data includes the values of the parameters π_{3}, π_{6}, and γ. Depending on which species is used as reference, there are two equivalent ways of specifying these quantities. For example, it is possible to carry out the calculation for the case e $\neq / \mathrm{kT}=-25, T_{+} / T_{-}=0.75, R_{p} / \lambda_{D_{-}}=10$, using as input values $\pi_{3}=-33.33, \pi_{6}^{p}=0.75, \gamma=133.3$. It is more convenient to interchange the roles of ions and electrons and use the values $\pi_{3}=25, \pi_{6}=1.333$, $\gamma=100$.

It is also necessary to specify, as input quantities, two coefficients which determine the magnitude of the mixing function (Sec. V). Choosing values that are too large causes the computation to diverge in an oscillatory manner (Appendix C); choosing values that are too smail causes excessive amounts of computation time to be used before adequate convergence is attained. The fortran subprogram ADJUST (Appendix I) monitors the convergence of the calculations and attempts to correct the mixing function accordingly, thus making some allowance for a poor initial guess.

This subprogram also ends the execution of a case when the accuracy of the computed attracted-species currents and net charge density is sufficient. It uses two criteria for making this decision. The first is the convergence of the current result to an asymptotic value; three computed current values, spaced 10 iterations apart, are stored and used to calculate an asymptotic result, based on an assumed exponential approach to equilibrium; if the third result differs from the asymptote by a relative amount less than 0.001 , the first criterion is assumed satisfied.

It was found necessary to include a second criterion because of the non-monotonic nature of the approach of the current result to its final value. This behaviour is illustrated in Fig. 12, which shows computed current as a function of iteration number for a typical case. This behaviour caused a tendency for the calculation to be terminated prematurely by false indications of approach to an asymptotic result.

Accordingly, convergence is now also tested by comparing the quantity $\eta_{\text {net }}$ computed at the end of a given iteration with the unmodified net charge density $\eta_{+}-\eta_{-}$produced by the next iteration. If the calculation has converged fully, these must agree by definition; the square of the relative difference between them is averaged over the interval $R_{B}-R_{p}$ and iteration continues until this average is less than 0.01 .

During early development of the program, an attempt was made to speed the calculations by storing values of the net charge density distribution over several iterations and projecting the entire distribution ahead to an estimated asymptotic result. This procedure failed because of the sensitivity of the program; it almost inevitably produced a fictitious system of potential barriers more complicated than any of those for which calculation of charge densities had been programmed.

The optimum method of generating each Maxwellian result is normally to begin by computing the corresponding case for mono-energetic
attracted particles, and then to use the charge density distribution resulting from this case as an initial approximation for the Maxwellian case. Since the time per iteration for the mono-energetic case is much smaller than that for the Maxwellian, this procedure usually results in a smaller total expenditure of computer time and produces an extra (mono-energetic) result as a bonus. The first two examples of computer output shown in Appendix J illustrate this procedure.

Program 2, which is used in computing the case of zero-temperature repelled particles., has presented considerable difficulties in operation. This is apparently because as it converges toward a result, it often passes through a set of approximate configurations in which the calculation of a succeeding iterate is highly sensitive to the precise spacing of points in the computation net and resulting inaccuracies in the computation are capable of setting up stable oscillations which prevent convergence from being completed. These difficulties seem to be less severe in many cases if a very coarse or very fine net is used; however, these remedies have the disadvantages of inaccurate results and great expense in computation time, respectively.

In spite of these difficulties, this program has been successfully used to compute spherical and cylindrical probe characteristics for values of $\mathrm{Rp} / \lambda_{D_{-}}$from 0.5 to about 20. Since in this case the planar-sheath approximation (Appendices F, I, J) gives the limiting form of the probe characteristics for large $R_{p} / \lambda_{D_{-}}$, results for values larger than 20 can be obtained by graphical interpolation to a high degree of accuracy.

Computations using Programs 3 and 4 are much simpler to carry out than those using Programs 1 and 2; the operation of these programs may be studied by examining the relevant equations in Appendices F and G, as well as the listing of these programs and samples of their output in Appendices J. and J, respectively.

APPENDIX I

Computer Program Listing

The Fortran II Programs used to make the numerical calculations are as follows:

Main Program 1: used to carry out computations for the general case.
Main Program 2: used to carry out computations for the case of zerotemperature repelled particles.

Subprograms ADJUST, COOKIE, CHARGE, CUBIC, POLATE, CHAMON, CAL, COEFT: used by main programs 1 and 2; COEFT is also used by main program 3.

Subprograms FIRST, SECOND, THIRD, FOURTH, UNO, DUO, TRE, SDFN: used together with main programs 1 or 2 to carry out calculations for spherical geometry.

Subprograms FIRSI, SECOND, THIRD, FOURTH, DYO, CDO, TRY, CORE: Used together with main programs 1 or 2 to carry out calculations for cylindrical geometry.

Main Program 3: used together with subprogram COEFT to calculate the planar-sheath limit of the case of zero-temperature repelled particles as described in Appendix F.

Main Program 4: used together with subprograms POWERS and CHASPH to obtain a numerical solution of the Allen, Boyd, and Reynolds equauton (Ref. 6) as described in Appendix G.

A listing of each of these programs follows:

940 KNOM=KNO-1
MLCL

OA=UPON
$08=10$ - ETA/K
00 108 Juz.
Decarlontrid

Do 195 xEVE2.KNOM

ONAEETAKMMEL $1 / 2: 0$
Da*UP-ETAKKI
OBMAUPM-ETALKM1
OO 191 JaSiJE
OO 191 JaJS:JE
OEL LOATFIJ-K।
DELMAFLOATFIJ-KMLI

JS*KNOM-1

994 karaknoel

194 Povoe4,990-L゙LOATF imCOE

20360 to $126 . z 8 u 1,400 c$

$2600331=1.0$

Page 1
c cursut As specipien oy kit.

315 :Fiol3 304, 204.309
214 YYY(KYT1/YPOS

Go to 308

352 CORMATISH KENDIA.BH MEGOF 9.6 .6 H YDOSEIOF9.4)

73 WRITE OUTPUY TAPE ATA5, YPOS YMEC

c ealculate nev values of met emange oensity.
-1 Do AU 141.0

1Fipi313s0.580.351
350 60 to 348
$351 \begin{aligned} & \text { ruse vines } \\ & \text { co to } 132\end{aligned}$

101mrk?311.312.313
313 LYmaz
80 to 300
311 кTI日KTz

60 Yo 357
36 vinorthy/somerfiel4)

36 © 30 fulv

38 M11=0×10s:11

$2800^{\infty} 281$ 1er,* 211)=0.0
$\mathrm{K} 10 \mathrm{~Hz}=3$
co
70

84 Y11300x10s111

Kin ro
co

 (TO' $36 \times 37 \cdot 282 \cdot 2631 \cdot \mathrm{KINK}$

0010327

30 x(1)11:211)

$60 \quad 10332$

332002 205 $1=1.00$

calculate positive mo negative cmarce densitics.
190 Call Chapge
340 CALL Cmamon
301 IFISENSE LIGNT 111610160
i61 IFISENSE LIGNT 21162.160
162 SeNse LIGNT
SENSE LIGMT
SENSE Licm
co TO 310
160 KEND=KENO
59 Vewerposescrifiple Page 8 YMpryNEG/SCATF(DIU)

319 FORMATI 2 OWU EXECUTION TIMETAL IN MINUTES FT.2) GO TO 1

C KEND = NDUS. DOVELE NUMEETH OOINTS IN NET.
51 if(ta0u-2 cm) 54.58 .58

(\quad MSO $-1+1$

Najintarmpaint
60 To 16
To 16
23 DO 33 I $=5$, mpo A

ERAI-1IR(-ETACI-4)
st Fommatizezumitios

	LITE sense	
	co	101.
61	Scanse	hGer
	60.10	426.880 - Moce
02	3enise	Libmt ${ }^{2}$
	co 10	(26.2801.MCOE
63	SEnse	Licht 3
	co 10	126-280).m00E
64	SENSE	LI¢ला
	$\begin{array}{ll} \text { ENO TO } \end{array}$	126.2801.mODE

```
c
    main mpocanm 2 Page 9
```



```
    OINENSION YYY(10)
```



```
    \ MEG.NDAINT OKT1,KT2,LL,KENO
```



```
    PTEE - MONOImENSIONML PROEE POTENTIAL FOR ATTGACTED PAGTICLES
    MROOYE - PHOWE RAOIUS, DEDYE LENGTM OF ATTRACTEO SPECIES
    IF SMERMS TVE.SHENGE SMEATH SNGE
    If SNERAD =O, RE-USE SNEOGF FRROM PREVIOUS CASE.
    IF SMERND -VE - GENERATE SMEDGE FROM CMILO-LANGMUIR RELATION.
    OTI ANO OTZ ARC COEFFIGIENTS OF .DEGVE. TERM ANO AFARFFIELO. TERM
        INO OIXINGRC COEFFIG
    KT: SPECIFIES AMOUNT OF OUTPUT FOM EACN ITERATION EXCEPT LAST,
    INITIA SEECIFIES WHETNER INITIML CMARGE OENSITY FUNCTIONI ETA
        il
        is me-used.
    INITIA: ' - CMIlu-langmuir sheaph as Sumco.
        CMILU-LANGMUIR SMEATM ASSUMED TO UEGIN IRST
                ITERATIONM PDEVIOUS ETA QE-USED HEGIN SWEATHT LOGE
                    RAOIUS IS RESET.
    INITIA = 3- OREVIOUS ETA RE-USED.
    M IS NUMEEQ OF POINYS IN COMDUTAYION NET.
    NENo is IS OUHLED.
    CNo is maximum mumace or iterations.
    NORINT -GCOTRUT WILL OCCUR AT EVERY NDAINT.TMNET POINT- 
    mCO SPEGIFICS PAQTICLE OIStRIgUTION PUNGTIONS.
    kASE|!
    3 PEAD INPOUT TAPE 5, 4,PTEE,PROUVE.SMERAD,OTIM.OT2M
```



```
    3-00matil415,
    MFIINITIA-2I165,165,160
    *) IFISENSE LIGNT D1167:16S
    GO =ENSE LIGMTT!
    SENSE LIGMT
    65 <110kT1
    **10KT1
    MPINT 22I.KASE
    220 POMmATIzmo UEGIN CASL IS,
    <ASE*KAsc+1
    IFIOTMA1J21,321.320
    320 orf=0r1m
    16 Flmam
    OELTS.1.0.FLM
    M20m+0.123
253 DO 18 I=1 
    FIENI-I
```



```
    x(11:1.0/800(1)
```



```
        Scor!1)=50RTF(1.0-xso(1)
    10 COON111-GOONIET1,OT,00T2)
    G0 TO {20.23.2U1.KSET 
```



```
    294 60 ro (370.370.220,.NSET
COMPUTE POTEMTIAL XIII-MD, AND ITS GRAJIENT OXIOSII-MDI USING
    36 OO 33 1.1.mp
```



```
        <111=0.0
        <0 To 34
    36 Du 30 1-1,m0
    38 vilisoxiostil
        z\1%=P!3
        clmace
280 00201 101,mp
```



```
        z11100.0
        co ro 3*
    202 Do 20e l:1.mp (1)
        204 vilicox103\1)
        21110013
        #1N0%**
```



```
    0121021:1*1
        {
```



```
    325 toces2(mp)/{1.0-x(mp) )
    325+ D 39 t:1:0
        ONIOS(II*OXIDSII+EDGE 00xOSIII
                            Page ll
```

321 ifismeradialou．aOl．acz Page 10
 co TO 401
－ 32 smedcensmeano
401 GO TO 86.2701 MODE
6 HATPE OUTPUT TAPE
7 FORMAT $73 M$ SROERICAL PAOBE CMARACTERISTIC－REPELLEO PARTICLES IAT 2EAO TEWPERATLENE GO TO 9
270 waite output rape et271 poobe charactepistic．REPELLED pagticles iAT zERO TEMOERATURE，
－YRITE OUTPUT TAPE A．10．PTEE ，PROOTE，SMEDGE．OT1．OT2

1 ix1pxe10．3，002F10．7）
 TIMEFCLOCK10．01
101 Ple3．1415927
SOTP141．7724539
say＝1．0／SOTR1
MAD． ME
GUTYA：

OIJ＊PTEE
xsome
MZET：
MIET：Z
：FiNITIA－2）I5．is．is2
112 NoNP－1
No：mp
FACT－GAMOLD／GAMMA＊PTEE／PTOLD
0090 IO1．NP

17 MEN
Walte output pape 6.22 m
22 Fommatish maist
19 GO TO 15
$19 \mathrm{LEN} / \mathrm{M}$
$00211: 2.0 \mathrm{mp}$

5 SENSE LIGMT
SENSE
KENO
GNO
GAMOLDEGAMM

33 EDGE＝－Z（mpl／几oce iximo in

co To $1190.340 \cdot 340$ ．MCD
C COMPUTE NEL CMARGE DENSITY ETADSII－MPI
199 CALL CHAPGE
340 Ciall CHAMON
60 to 341
3a1 1FISENSE LIGNT 11：61016U
161 IFISENSE LIGMT 21162＋160
SE SENSE LIGMT
SENSE LIGHT 2
GO TO 318
160 KENOWKNO人T1シャT1

30 мvK＝1
LYM＝！
 TVKYT13：5．316．3is
KYT：10
316 KrTE10
315 YYY／KYt，eroos
306 TFIKYT－AYKI310：307：310

302 FORMATISH KENDIA，3M $V=10$ FiO．e：
7 ：walie output tape 6．A5，roos

4）DO AD I＝1，mp

IFIMMALT－KENO－GIRPG．300．22
3a0 TFAKENO－1KEND／1010101220．371．220

c Sheatm eote potential genoient is small enough．eno execuiton．
366 NEND：XMINOF：KEND＋BINENOI

```
        ITE OUTDUT tapE 6.363.EmAOR Page 13
        GO ro z28
        USE EUPRENT Yalue ON SM
    345 EROL:ERO
    SMDO-SMO
    Smo-5NEOGE
    kuTr MuTY*
    F\KUTY-31303.386.30
    SG SHEOGE SHO-ERO (5NO-SMLOI/IERD-ERDO)
    IF: SMEDGE-1.0.390.350.360
    305 IFIOXIC,SMP11351.350.352
    352 Dxi=-xSO(MP)=0xIOS(MP)/OxDS(MP)
    O2N1:-ETA(MPIOGANMA
    JSO WRITE OUTPUT TAPE O.3S9,KUTVEEROU,ERD,SHOU,SMD,SMENGE
        FORMAT29M FWOUBLE IN SHEATM EOGE RESET 14,1PSEI2,5,
```



```
        SENSE LIGGTT
        co to 3ia
    349 SHEDGEVSHEDGE-OX1/O2XI
    351 DO 353 L:19m
    1%mP-L
    05(t+1)1354.354.350
    354 1F(0x10S(t1:353.353.355
    353 CONTINNE
```



```
    SHEOGE1.0/Ximo
    60 10 360
    =30 C0 TO (361.362,362,3621.KTi
    362 WRITE OUTPUT TAPE O,363,EHRON,SHEOGE
    303 FORMATISOH RELGTIVE ENGOL IN SHEATH EDGE DOTEMTIAL GRMOIENT FII.EO
    361' KSET.3 NEY SNEATM EDGE RADIUS :PEIO.31
    60 T0 16
    228 IFINENO-KEND-1146.47,44
    47 GO TO 1311,312.311.311:.KTI
    IFimrki311.31t.31J
    313 trmaz %0 90 306
    311 кT10кт2
    IFINENO-KENOI318.318,40
    318 FOTAL*CLOCKITIME,/100.0
    wAITE OUTPUT TARE B.319,TOTAL
    319 ORMAT<2ONU EXECUTION TI年 IN MIMUTES P7.2I
        co to 3
            Page is
```



```
    SUZROUTINE ADJUST MONITORS CONNERGENCE OF THE CALCULATIONS ANO
    IF Kwit=1 ADuUST TAKES NO AcTION.
    IF KWIT:Z ADJUST OAMOS ANV OIVEAGENT OSCILLATIONS.
    is SUFFICIEMT.
        1F KMITHA ANUNST ALSO ATTEMOTS TO COBMECT FOR SLOM OSCILLATION
        SIMEN&ION YCHEKIIOI,DCREKIIOI.ZEMEKIIO
```



```
        COMMON PI,SUTPI,VIPI& SAY,HODE OM,MP,DELTS,GAMMA,PI3,PIS.PIT, YDOS
        MNEG,NPAINT OKT1 KT2,LL_KENO
```



```
        FFKwIT-11220.228.2!
C IF KCHEK - 1 TO 9. STORE VCNEKIKCMEK, AND RETURN
    1) KCHEKOMmOOR SKEND.10
        1FCkEmek12514250.23
        \mathrm{ remektmCNEKinyuse}
    232 1F!KCMEK-81228.121,122
    121 A0.0日
```



```
    122 1FTKCHEK-Iい124,234.228
    *49"E9
        B9#Cg
        C9#YGHEk(91
```



```
    224 410-8,0
        eq0urcrex(10)
        go 2351D2*10
        00238 102.0
        IF!DCNEN11P1237:2370238
    237 F'OCHEK(1+12123.236.236
    z30 iFroCNEK11+1)1236.236.123
    cont Inave
```



```
    SMCMCK=0.0
```



```
        SMCHEKOSMCHK+2CHEN11+1ij2CHEN:1
            IFISNCMEK-8.31123.122.24%:
            #,
        Magalld
        | tf(a00-24m)E4.50.5s
        36 00 52 1:1,M
        K=2M-1+1
        E ETA(KM=ETA(L)
        mozom
        mmatnTozmpeint
        <<splez
    23 00 53 fa3,MP:4
```



```
    EA WRITE OU/#UT TAPE 6.57,M
    3) FORMAT(2\times2Mm=1E)
c RESET SENSE LIGMTS.
    SO LITE=XMOOOIKENO.A)+1
        SENSE LIGHY O
    S1 SENSE LIGHT:
    C)
    S2 GE TC (26,280).MOOE
    *)
    63 SENSE Licm7 J , MOOE
    64 SENSE LIGHT 4,MOOL
        ENO
```

ct
 Lomp－1＋1
ieETA（L） mpatintozmpeint Kspitaz
30
$2300531030 \mathrm{MP} \cdot 4$
ETA（1－1），
E4 HRITE OUNOUT TAPE 6．37．M
c meset sense lights．
so Lite＝xmoof（KEnO．A）＋1 SENSE LGHT U
CO TO（S61．02．63．GA），LITE
G0 to（20，2001．mOOE

in computation met．
\qquad
\qquad

Page 17

s sufficiently aceurate. if so. eno execution.
140 1fjel

$2751 \mathrm{JJ=2}$
 rot-0.0
502671 ml .
POT
 AVGE TOT/(ROP(MP)-1.3'
1FiAVES-0.01001255.255.277

277 13J.2
25560 10
278 WaITE OUTPUT TAPE G.147.KEND.VINT
 NEND=KMIN
GO TO 228

Fino out if there abe oscillayions degaeasing too slomby to ablow attainment or aeouldeo accuracy ilimin ac iperations.
iF 50 . 60 ro 159. IF NOT. GO 70151
34 : $\mathrm{FCAB-491148,148.149}$
148 : $\mathrm{F} 49-A 101151.151 .150$

193 1F189-991152.152.153

154 1F16日- $601155+155 \cdot 156$
155 1Fic9-6115151.151.157
is5 tric9-6103157.157.15

191 watte oufput tape oflto.xend.cipurinvakins:Avge

oscrease mixing fungilon.
159 OT1*JT100.9 כT2:97200.9
17 Cookillefook(1)=0.9
FUNCTION coomient.arl.0721 Page 19
coon $1 E$
E FUNCTION COOKIE IS USEO TO COMPUTE TAE MIVINE FUNCTION.

3 viaj1) 2tacilesmiaci)

2AOESORTFIGAMMAFINIFIPI6.1.01)
60 10 :10U.2N0:.m00e

 aETURN
ENO

Page 18
 12 FOMMATI SMCKENO
31 MEw OV
MAO TO
GO 220
22B RETUNN
ENO
subacutine cmarge Page 20
charce

CAUSE GENEMATION OF CNARGE OENSITIES ETADSII-MDI ANO ETANGIITMP,
C
C
C AND CURRENTS YPOS ANO VNEGHTHIS SUEROUTINE ASSUMES MAXELLIAN
DROGRAM UNEN MCO = 1 .

OIMENSION GXHITIJ), UKHITIJI

CMGAG. BETAG:ALFAG,DSIG.EPSG:TEZ, SM
COMMON PI, SOPDI,VIPI.5AY,MODE,M.MP EEFL TS.GAMMA.DIJ.DIG.DIT.YPOS.
1 YNEG.YPRINT.KTI.KTZ.LELKKEND

25 GN=1
195 GO TO (101.102). Jsion
zetazgamMa
co ro $12 J$
ZETA-GAMMA AP 16
$00170 \quad 1=10 \mathrm{MP}$

omgagitle-Dxiosilict2.0exitleoxps(1)1
G0 90 © $330.3351 .10 B D$

335 GOTO 106
335 YHIVEETAG
60 TO ($480,4 \mathrm{Al} 1 \cdot \mathrm{xBO}$
720 GETAGTMPIEN.0 7
400 Y(MAR): 0.0
400 N(MD)
721 Nwas
NWR
NOMOK
NOM
NOMOK $=0$
IGN:
TCNE:
LCLASSE:
MAOE:

man 1

$05107 \mathrm{Jm20m}$
1*MPR-J
1FCOMGAGITIIOT.107.111
111 Firillichelatili2
CONTINEE
GO TO 294
1121 wit:1
C.0 70 1915.3161,4000

Page 21

316 00 317 I: 10 mo

7 ERSGIHALFAGHIVEIM
GO TO 205
205 DO 200 Jel.iNit i=1N1T+1-A ifromgagilli200.200.201

je1 ircalrag illin203.*40.480
200 continue
$40010=1$ $\sum_{i=1001}=042 \cdot 10$

ifiomatabata05-465
46\# iFIOMGAGIIIA6A,463.463
SONTINEE
CO TO AS
1vitaminuaf(lam-1)
co to
1NitivMINuF
co to 205
462 Klasmaz livanexhinumitam-1
1×10 GO to 273

- Fino the lucation shucn in the net cognoinate system so
 figst QuRDhant.
$203 \mathrm{~L}=1$

namar
1FCOMGAG11+:116471.0.71.470
arl leadit
$\triangle 72$ Lea0:2
473 1F1T-w1117.110.
290 IFramGAG(mp)1290.29:.117
313 1"(Y(m) 1117.312 .312
312 SSTINITSIMP

2te fere Tawniant facima,
7 GO TO 228
 $(1+1)+1.6)$

137 1Ft1-1CR:T-1)330.330, 139
$\mathrm{JACK}=2$
GO TO 136
139 y.epstacti-1
VIOESGGFAG

32S SN1LIESIF-11+CS!

C SEARCM twwan ALONG THE LOCus of EXTREMA TO FINO OUT WHETMER It
 gaiss and choss in the met coomulinate sustem.

 30 io 455

411 WPITE OUTPUT TAPE E,A12,KLUE OKENO
 co TO As 3

* 10×1 amgagit

Ya-bEfAG(1-1)
Yapaxsoli-11

730 Exsallill
Na•OMGAGIL)
Y4.日ETAGH

OEL $34=x 4-x$

SSWINT-SOMA
121 GO TO $1110.119 .1191 . \operatorname{LEAD}$
12160 TO $110+119.11910$
11960 TO 1342.3431 .680

co ro 344
343 YIpaALFAG:1]

SSW(N):SBET
GOTO (474:AT5.A74) WLEAD

4 TS $\operatorname{ssy}(\mathrm{N})=$ soma
LEAO:1
Co TO
SSM(N):SBET
LeAD=3

 1 SSM(N)-SIllil)
BAETAWINI:MAXIF (O.OAEBE:ATINII
60 YO 228
BEETAW(N)

INTHEIVAG
KLASHET
COTM
KLASHE
CO 10296
c SEARCH
fowaru for 4 maximum in the locus or extrema. if one is
found. go to zil.
246 Do 210 Jitinlt
iFiALFAGill)2:0.210.390

391 Do 393 KYス1,KTEST

IFIGLAGIKZ1)210.21C. 302
302 CONTINNF
GOTO
210 CONTINUE
210 CONTHEETAGI!
SCaIrm0.0

 TO THE LOCUS OF EXTHEMA AT SIL' CROSSES THE LOCUS OF EXTDEMA.
211

tKRIta Namar

Cr=OELT SKR(TEN) \#E.BItC

1F1044:135.135.218
Page 24
2186013 (295,4A3.A44).MAR
295 1F11Fv-11401.441.400

- $5 \times 1=x_{1}=x_{3}$

- $1=1+:$
<LUE NKLUE +

60 70.401

lFioy21A37:006.acb
- 1 c 1:1-1

KLUE QKL JE+1
$\mathrm{Na}^{\mathrm{SH}} 12$
60 To 40
st $0 \times 3=x_{3}-x_{1}$
or

Fiovj1-J8.0.90409

35 1: i-1

$5 \mathrm{MaF}=$?
NAO

$\$ 5 \times 121$-censs

man=
NAOH:
introl

215 GO ro 1300.600).ma

namoker
inltel

 To 90 1"t
31600317 l-1.mp

6o 90101
10. nKREO

35 IFINIT1204.204.206
206 20 6030 Jolaln:T
IF (0mGaGI:11200.200.20
207 1F1Y(11123ui200.202

230 IFIOMGAG111. $000 \cdot 400 \cdot 601$

©'2 ifinetaguli-E Gievo.60こ.40J
600 CONTINUE
GO TO 20.
201 NKRENTRO:1
INIT:T-2

603 NKRONMRR 1
INIT:T-2
 ompainkmive 0
co ro

50060 T0 1808,4171 Nate
-19 mmenl
romartion locus of Hakima arrects computation at tmane on more b cocaitions．cxecution peminateol
sense hiont：
sense higmt：

atruan

Do 403 Jititino

341 IFribetagrtolilia3．483．540
aj cowtinere
60 TO $4 B$

 QrPAPe $1.0 / x$
60 to 401

ITINWR1489．489．49n
Gomarot

OmAOMAR1FIOMA．0．O1
－ 60 70（507．93．）Kh

$20 \times 10 \mathrm{Kt}$
00 TO $1160.100 .186+1981, \mathrm{KP1}$
ATINKRIESA．236．237

AB7 HEITE OUTPUT YAPE O．ABB．ATAAB．ATRAD no TO 160
$10000420 \mathrm{~L} 1 . \mathrm{mm}$
RLELENG－xt1LITMSOLL

421 OmspRL
Co ro

$$
90 \text { ro } 420 \quad \text { Pace } 35
$$

451 co 10 1454．asgirmODE

420 CONTIMNE
Co TO（AS6．45TI，MoNe

530 Yst i2．0estrosenteroma

321 IFi日 131496.322 .322

3100326 folion

3E ETAllin－eralli
DFioisi3zje402．40e
329 Berwax！い，
Exyaemert－aetm
GALL Twitho
00 90 720
$322003271014 m$

33 Reruma
ce ro aso

Face 34

 $6010-430$
490 omsomaxifions．0．01
60 To $1510,5111,480$
S10 OMOMANiFiomb，Sil）

0мA－OMA
co TO 32
431 IF

－37 60 to（140．441），mooe

441 GNOLS ： 25
－39 IFTOWE－RLI442．443．4日J
－42 GO TO 1444，4451，moot
（－someinsaitiel －SORTRKSOTLIPIRL－OMRII 1／SONO
 ＇omalli＇
go 90420

443 GO T0 1040．447）．mook

A． 90 to to 220

－35 IF（0mA）448．440．440

440 ：F10mb－ati43u．451．44！
－to co ro cesz．assi．mcoe

$$
\text { Function Call JACR.SA.SO,N(PaNZ, } 36
$$

If Ni＝3，integration war stary off a net point an integramo
becomes Imaginamy outsiue bimit of Intechatione

ga and sh ame limits on integation


```
    Sum00.g
    ju\ck:jack
    OS*5A
    OSB-36
304 MN
```


60 20 1201．20202031．0mel
201 iAESA／OELPSti．1
$14 x=14$
00 YO 205
larsarpeliset：0

60 To 205
（Aasarothisezood
14×14
60 70 209

18xeris
16×18
60 P0 810
207 10－sefoctiseze．

18x＝10

211 o 212 lotax． $18 x$

213 IFiSil－sA121s．ena．214

217 10（MKxX－KEMD－1）320．32：1，320

```
        3)
32O IFINAOSFII
```



```
    FOMMAPI 394 LETAE VS OMCAG GHOSSES ITS TANGENT
    1.9+4 PSIG11:=
    MKAJ=0
215 60 TO (291.293), MOUE
```



```
22 PSIG(11=0.0
#:5 %(1)=0,3
2:5 Y(1)=0.0
214 GO TO 1292,2931.MODE
292 Y(1) ER5G1
293 IFIOMGAG(11)294,315,294
```



```
    lol
225 60 T0 (296.297),MODE
29600 220 IxICx:1AX 
    T0 TO 230
297 00 310 1=14x.10x
```



```
    G0 TO 230
230 Miky=1
    ARInamo:0
    G0 TO :231.232.2331.NNN
231 YA,V(1/A)
    Mag$A=7.
    1F(18x-1A-1,36J.364.026
    IF(18x-14,1325.325.362
```



```
    MAGEA*1SIY
363 CSI*ISA-SIIA)MTDELTS
        CTA0.501Y(1A+1)Y(IA-I)I
        CTGOU50(r|1A+11+Y(14-ib-r(:A)
        YA#Y(1A)+ESI*ICTAECSI*CTEI
        / *0311
CSI=(SA-S|AA+1)1/DELTS
    CTA=S.5*(Y(1A+2)-Y(1A),
    VA=vila+1)+CS|=(CTA+CSI*CTO)
    go to 2at
                            Page 39
247 Sum=0.0
248 If1lam
60 TO 375 
71 IF(18x-1A1 372.372.37.3
```



```
    es1;=15A-5IN|1/OELTS
    CS12=1SB-SIVIN/CELTS
    SumadeLis-csilo+3!)
372 Sum=1vA+Ya)*1so-sA:r2.0
242 SUMnAREAA* AREAD
243 SUM*AREAA+ARE AG
```



```
25100 TO 1345.346.3471:M/KY
G0 ro 275 
go ro 279
347 Sumu gum+C.B*(ARINATARINOS
161 Numa! 10-14
```



```
    60 ro 27s
```



```
    l
```



```
330 lap-1a+3
    3>0.00% 
000 33F 101AN,1
sumesum+stacorlt
878 00 TO (271,872),jack
00 CaL--gum/sath
301 cal m-sum/RI
```


-1mer en. Inope

TMIS suamoutine computes cmarce jens:Ty amolimpl ano collecteo

Locus of exprema enters first oumbrant by crossing omeea axis. ano

COMMON Y.xSLOS.OMOS.

YMEG:NPRINT,KTI $+K T 2,1 L$ OKEND
 60 TO 172.1711, MOLE
72 WRITE OUTPUT TAPE 0,73
73 formariaghe mrong sughoutines asing usej. Execution oeleteo,
EALL EXI
171 NISLINK

1F(516)-SW11:1552.554.534

GO to MBC

so to s6)

56. : Sovtimue

sundoutime secind fagess
 Conolyions.
 jogs we caces itscer in this Jua...4avi, Lint : 3 on el

60 9ater

to to 84 :

 9010 800
250 00 10 istorsellirswo

∞ To 184

Pape 34
sts mesomptiectayl

Page 84
 50 TO 5se

sau comitme

40

-.acriom jvolan,eccy,


```
        Coutvalence,
```



```
    l:1
    gourgmgacrl!
    0,meveAFALC!,
    A0BA
    l
```



```
    12 1Fra-:40.413.,13..019
```



```
    2い बKत****
```



```
        30%%2:
    212 ATH0, clocacinat
```



```
        45%%
                            rane (3)
    125 技*1...0
```



```
    <-1043.2m*:
    |!!.4
```



```
    ***!?%!
```



```
    *10.002:
```



```
    *10n*
    ~110 0.0.010
```



```
J"al*+い青,*
```



```
10 c**%-4,
```



```
    *)
```



```
    4men+40******
```



```
uc covelmer
```



```
4-1****
0e%:0%
```



```
    Cals En!%
100 PLamamuriamu-tneria,
    MLAmamurdAM,##Me
    lomesomTFi,
```



```
    3 Jmaream
    DO 215 N+1.2U
    DO 215 Nat.2 
    MEE.OEE/AMN 
    MEDmCrram
    M,
```



```
    215 comy:nuse
    2:7 sum-sum-3.501tamo
    lol
cau Exit
Prove 99
```

```
t?2 0Not-a-cmpona,
```

```
t?2 0Not-a-cmpona,
```



```
    MinEN
```


100 v.20.00Am

E: 1F
194 ve2.40.00N

Pase 61

0 Ho 0

-nt"Pext

30 : - .0.6.2..

Page as	
This function sempochan is used or eunction ovo ano is celceso ingmogetan euna.	
121	
	C00-0.0
	ge tuan
102	FLNELOGF (xL)

Page 87

TSNH TSOOTHETMMNLOATFIK!

TEFMEDAHMKNCOE
SUMOSUM+TERM

ls continue

OEE-SOM
$C=1.0$
COOCCOEFTISOW/SOL
anzonsolecoo
terimacta
sumateram
OO SOO NAL. 2
LNEN
DEETOEE/

TEMMOTER

sos samasumargm
1Fisamesumisuo.sua,suo
su0 sumasam

333 M1ssel $\begin{gathered}\text { Nat } \\ \text { Nat }\end{gathered}$

50 To 78
 so to 1304.5 illowlsy
 larceo.0

158 4f01, 0+1,0~~LAM

TR

 3 vieolliz isull sutioni)

oumvromashal
oumproeracill
oumiroalfactil

at Mry=0.0

36 rarions
35 oomaxsolthirxso(mpl-1.0 OHTESCOTF (U00) ame-xam/2.0
EXPACEXFT-amu)

41 IF ien-ali30.3u.3i
30 Walte OUTPU: TADE ©. T6.LL, KEMO. Amu. TMETA.AA
Re Tunam

aev.0

1) (FICE日Miaucau.al

00 cos-0.5

TSNOM.getMETAE*:

$=100$
0

∞

uneumatuy

UNuNesmu

510 sumesam
missuz

525 Simassuctrarc

12 ExminanExpr(-a)
4A IF (EXMINA-EXPACAE-z.OE-06140,A4,46
49 raveo.0
actuan
45 alfan/amus 1.0

SNA-coss

TSK-0.50TMETAOME
ANSK10-AMU/TEETA
PMSKKOAMSKI*
sumesnt PoAmski"

TAPTEA
Tthmapeamakroge

as continue
ta simetreassumptreta


```
crum
```

 - mes.

smen anmestioish

exvesenvirpili!
cot-cosptiscri'
ertarilocen/sorm
FVersirtcee ioteorsorp $1-1.0$
criliol-orseptpimy
ssillostrapl

42 ssfliogs(1-1)

© at smi.nNom
conte outmur fact obilo $t=1$
$j=1$
51
1sTEPmax,


```
    remeremut is equat ro tmot of The elecraons.
```

 remeremut is equat ro tmot of The elecraons.
 solutiom via metmeo ourlinte ar memertim mo molmoeltz.
    ```
    solutiom via metmeo ourlinte ar memertim mo molmoeltz.
```



```
    Wimalishaviatzove),N\mp@code{melib,}
```

 Wimalishaviatzove),N\mp@code{melib,}
 gimenslom INTVIIT:
 gimenslom INTVIIT:
 Mavite1
 Mavite1
 FOmatilmelo.3.181
 FOmatilmelo.3.181
 co ro:11-11H1.cSEt
 co ro:11-11H1.cSEt
 AN-Cuamulof=5049070
 AN-Cuamulof=5049070
 G0 70 112
    ```
    G0 70 112
```



```
    karse-kx
```

```
    karse-kx
```



```
        00;136k=1,Kstom
```

 00;136k=1,Kstom
 <y<<)0
 <y<<)0
 ** <Dicios
 ** <Dicios
 c(1):-j.s
 c(1):-j.s
 *O 13 k.2.kstop
    ```
    *O 13 k.2.kstop
```



```
        mptknocim=1,
```

 mptknocim=1,
 IF(AySFiOCKII-vFixr)t35.13.13
    ```
        IF(AySFiOCKII-vFixr)t35.13.13
```



```
    coskingor:
```

 coskingor:
 if Ovoriemy ovemplom 102.142
 if Ovoriemy ovemplom 102.142
 102 iF Oportemy ovegrlom 102.142
 102 iF Oportemy ovegrlom 102.142
 cillarim200
cillarim200
Page 75
Page 75
VT:**\&TERN1

```
    VT:**&TERN1
```



```
    29 Y1=viricnt OVEqFLOM 125.104
```

 29 Y1=viricnt OVEqFLOM 125.104
 IF JuOTiENt OVEqFLOE 125.104
 IF JuOTiENt OVEqFLOE 125.104
 85 rearti
 85 rearti
 M12,N#?
 M12,N#?
 2A MAOKamADK+1
 2A MAOKamADK+1
 Sas02.3
    ```
        Sas02.3
```



```
    *7 Y'1:vy
```

 *7 Y'1:vy
 Y(a)0rz
 Y(a)0rz
 ETamsiagarlsosescotfivil)
    ```
        ETamsiagarlsosescotfivil)
```



```
        ETADSETADSO
```

 ETADSETADSO
 a) almmalpmo
 a) almmalpmo
 C70 1J 170.97),41N
 C70 1J 170.97),41N
 $7 I/CLLOW190,96,96
 $7 I/CLLOW190,96,96
 9> strapjestrap
 9> strapjestrap
 MSM,
 MSM,
 Mapurkaba!
 Mapurkaba!
 Os SOLO.S
 Os SOLO.S
 ALFOLJPALPM
 ALFOLJPALPM
 \
 \
 17% ssoxples
 17% ssoxples
 AVIRIKPI=CMRHNT/SNES
 AVIRIKPI=CMRHNT/SNES
 ETAP(KD)EETAPS
 ETAP(KD)EETAPS
 ETANCRDIEEPANG
 ETANCRDIEEPANG
 KPace+1
 KPace+1
 30 LTNM R2
 30 LTNM R2
 1018016.0011190.100.191
 1018016.0011190.100.191
 do to 200
 do to 200
 lou
 lou
 103 \FEP-STCP/Z.
 103 \FEP-STCP/Z.
 102 %% TO- 20J,
 102 %% TO- 20J,
 losmen
losmen
40 50S+2%es
40 50S+2%es


```
    pulmT : T3,kavs: case 19,
```

 pulmT : T3,kavs: case 19,
 kavse waryk+1
    ```
    kavse waryk+1
```



```
O
```

O
O 25 r1=vi (1125.27.25
O 25 r1=vi (1125.27.25
*-5126,33.38
*-5126,33.38
ETANCPD)SEPANS
ETANCPD)SEPANS
ALDHACEDIAMAPM
ALDHACEDIAMAPM
zTeposTEN

```
    zTeposTEN
```

 Paser
 Paser
 O B11100.4
O B11100.4

-jofosmuan
-jofosmuan
OE MT K0.4.asTOD:2
OE MT K0.4.asTOD:2
*)
*)

<crkioxatk--)!
<crkioxatk--)!
l:(f)
l:(f)

60 70 19
60 70 19

<<cmonaxofika
<<cmonaxofika

IF\1\#\#E110.1020140
IF\1\#\#E110.1020140

2EE0.0.0
2EE0.0.0
z0040.0
z0040.0

145 sulns sumaze-200
145 sulns sumaze-200
A(cinsumacis)
A(cinsumacis)
A(x)=smact
A(x)=smact

Ac(ab=arkieveiny
Ac(ab=arkieveiny
ka(mimala)
ka(mimala)
cotelmak
cotelmak
\$0 50 15x
\$0 50 15x
103 IF ONOT sENT ONEMNLON 130.163
103 IF ONOT sENT ONEMNLON 130.163
comyinue
comyinue
kstomok-1
kstomok-1
1se кр:1
1se кр:1
cky1
cky1
\$NKN-1.0
\$NKN-1.0

MTME=:
MTME=:
240.0.Y(1)
240.0.Y(1)
Mm(1)=3(2)
Mm(1)=3(2)
M111=300
M111=300
M10300
M10300
lol
lol
silisiansia
silisiansia
Sllesiaesia
Sllesiaesia
FLIEG.
FLIEG.
|
|
gslglefacta
gslglefacta
gytMS10FALTN
gytMS10FALTN
TENM10-FLCOClles!)
TENM10-FLCOClles!)
STva=STEP
STva=STEP
S5TAQTS
S5TAQTS
MapST=KP
MapST=KP
MPST:KP
MPST:KP

ENOR4*
ENOR4*
103 Jevo:6
103 Jevo:6
153 V11)VOLD
153 V11)VOLD
\#(z)=YBCO
\#(z)=YBCO
SESSART
SESSART
MCMLDEOSTISISTVD.zivivaNI
MCMLDEOSTISISTVD.zivivaNI

emOLDeETAPS
emOLDeETAPS
emaloetanc
emaloetanc

v2.30:0
v2.30:0
\$
\$
S14S14
S14S14

M
M
v゙Mz+FEmM
v゙Mz+FEmM

FFITESTIAT,40.40
FFITESTIAT,40.40
ABFITES
ABFITES
G YZ.57
G YZ.57

S% MrAakVi+1
S% MrAakVi+1

\#
\#
MESTEETAOS-EPANG-1.0C-D0
MESTEETAOS-EPANG-1.0C-D0
MESTEETAPS-\&FM
MESTEETAPS-\&FM
S0 KYgakVo+2,
S0 KYgakVo+2,

154 Jamk-JANol
154 Jamk-JANol
JAMm - JANM=1
JAMm - JANM=1
STw.55Mereo
STw.55Mereo
G0 10 143
G0 10 143
155 <\$7000x 8700-5
155 <\$7000x 8700-5
I5S <sT00an8700-5
I5S <sT00an8700-5

319 ff(KM-15)3:8,320.320

(KA(13)-KA(14)-KA(15))
318 CONTIMUE
D EFS=EFS+STT\#C(S) \#VFIXY*\#(-KC(S))

- STTEO.O

IF(K-24)300.327.327
32' $K M=K-20$
DO 328 1184.KM. 2
D0 328 12 $=40 \mathrm{KM}+2$
D0 328 13:40kMoz
DO 328 IA*ム,KM.2
DO 328 19a4.KM. 2
16=k-11-12-13-14-15
1F(16-4)328.329.329
329 IF (KM-16)328.330.330

1 KA(12)-KA(13)-KA(14)-KA(15)-KA(16:)
328 CONTINUE
0 EFSEEFS+STTHC(6)*VFIXY*\#(-KC(8))
STT=0:0
IF (K-28) 300, 337.337
337 KMEK-24
DO 338 11=40KM•2
D0 338 12=40KM•2
DO 338 13=4.KM•2
DO 338 14EA.KM. 2
DO 338 15ะ4.KM. 2
DO 338 16*4.KM.2
17=K-11-12-13-14-15-16
IF(17-4)338,339,339
339 IF(KM-17)338,340,340

1 KA(I1)-KA(12)-KA(13)-KA(14)-KA(15)-KA(16)-KA(17)
338 CONTINUE
EFS=EFS+STT\#C(7)\#VFIXY**(-KC(7))
STT=0.0
IF (K-32) 300.347.347
347 KM=K-28
DO 348 1if4oKMo2
00 348 $12=40 \mathrm{KM} \cdot 2$
00 348 13*4.KM.2
DO 348 14EA.KM/2
D0 348 15=4. KM.2
DO 348 16-4. KM 2
DO 348 17=4.KM12
18ak-1:-12-13-14-15-16-17
IF(I8-4)348.349.349 349 IF (KM-IBI348.350.350

1 KMAX-KA(11)-KA(12)-KA(13)-KA(14)-KA(1s)-KA(16)-KA(17)-KA(18) 348 CONTIMNE
D
EFSEEFS+STT\#C(B)*VFIXY**(-KC(B))
STTMO.O
If (K-36) 300.357.357

357 KMaK-32

Page 88
00350 1154.KM. 2
D0 380 12a4okMo 2
00 38e 13a4,KMoz
D0 358 IAEAOKMDR
0038 IBEAOKMIt
00386 16EA0kMo2
00 389 17=40KM12
D0 3ES leanokMo2
19-1K-11-12-13~14-15-14-17-18
IF (19-4) 380.359.389
389 if(KM-19)380.360.340

e tes-karios)
3se CONTIMNE
D EFSAEFSASTTEC(9) WVFIXY\#\#(-KC(91)
0
STT=0.0
RETUN
ENO

APPENDIX J
 Sample Output From Computer Programs

Pages 1 and 2 contain sample output from program 1
Pages 3 and 4 contain sample output from program 2
Page 5 contains the output from program 3
Page 6 contains sample outpuic from program 4

Pye 9

mptine 40 arsut suptrifutiv accumate, vinvo-s. 190800

afme 00 afsuly supficifmity accumart. vime-z.ecof-01

- timbe 140 mesur speptitiviv accunari. vive 1.osef-as

Sphfrical prose characteristic - repelleg paritlefs ay zemo temperature

$$
\begin{array}{ll}
=1.1149 H 26 F \\
1 & 01 \\
\text { All } 1 / R P
\end{array}
$$

 ?. 19405 8.5:96165F-01-3.2301171F 00 1.0919091E 00 3.648BE 7.3683.294F-0i-1.6770283F 00 1.38860950f-01
 $\begin{array}{ll}\text { 3. A44B4 } 8.01215932 F-01-1.8051171 E-01 & 6.8187325 E-01\end{array}$

 $4.311907 .643623 \mathrm{fF}-01-2.3841858 \mathrm{~F}-077.6507767 \mathrm{E}-01$

infrution timp in minutis 0.46

 teappims amolus is l.otive of ofave ifmims

