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The effect of a single substituted impurity spin on the spin-wave spectrum of an insulating 

anti ferromagnet is investigated. The linear spin-wave theory of the impurity state is developed 

for a spin Hamiltonian including an intersublattice Heisenberg exchange term and an anisotropy 

energy ferm of the form, - DSz2. Green's function techniques are used. Both the cases of a 

ferromagnetically and antiferromagnetically coupled impurity spin are studied. In the numerical 

calculations we confine ourselves to the body-centered cubic and MnF2 (rutile) -type lattices, 

which are topologically equivalent to each other in the present Hamiltonian. Numerical results 

both of the conditions under which the s, p, d and f type localized modes appear and of the 

energies of these localized modes are presented for various combinations of the four parameters, 

lY(=IJ'I/J), 8(=S'/S), o (=D/Jz) and O'(=D'/JZ). HereJ and Dare respectively the exchange 

and anisotropy constants of the host and S is a magnitude of its spin. J', DI and S' are associated 

with the impurity, and z is the number of nearest neighbors. It is shown that we can expect 

localized modes in the anisotropy energy gap as well as above and below the spin-wave energy 

continuum for suitable values of the parameters. The results are applied to discuss an Mn2+ 

impurity in the antiferromagnetic FeF2• The zero point contraction of the impurity and its 

nearest neighboring spins is calculated in the antiferromagnetic impurity case. It is found that, 

as a function of lY and 8, the nearest neighboring spin contraction has an oscillatory behavior. 

§ 1. Introduction 

The magnetic impurity problem is one of a class of problems concermng 

the effects of impurities on the continuous energy spectra of elementary excita

tions in solids. Here we are concerned with the effect of an impurity on the 

magnon spectrum. The impurity problem for spin-wave excitations in magnetic 

materials has been studied extensively in recent years. In 1963 Wolfram and 

Callaway/) Takeno,2) and Li and Zhu3
) examined independently the effect of a single 

substituted impurity spin on the spin-wave spectrum of a Heisenberg ferromagnet 

with nearest neighbor interactions only. They treated the case in which an im

purity spin has a spin different from the host spins and interacts ferromagneti

cally with its nearest neighbors by an exchange integral different from that 

between nearest neighboring pairs of host spins. The corresponding problem for an 

antiferromagnetically coupled impurity spin in an otherwise ferromagnetic material 

was developed later by Ishii, Kanamori and Nakamura. 4
) For a physical interpre

tation of the above theories the reader is referred to reference 5). 

*) Present address: Department of Physics, Faculty of Science, Kobe University, Rokkodai, Kobe. 
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1196 T. Tonegawa 

The main purpose of the present paper is to discuss theoretically the 'local

ized spin-wave modes in a Heisenberg antiferromagnet with a single substituted 

impurity spin. The case which we consider is a simple Heisenberg spin Hamil

tonian with an intersublattice exchange interaction only, plus an anisotropy term 

of· the form - DSz 
2

• Both the cases of a ferromagnetically and antiferromagneti

cally coupled impurity spin will be studied. The spin as well as the exchange 

and anisotropy constants of the impurity may differ from those of the host. 

The spin-wave approximation is introduced by reducing the Hamiltonian to quad

ratic terms in the Holstein-Primakoff6) Boson creation and annihilation operators. 

The method of diagonalizing this Hamiltonian is similar to that used by Ishii 

et a1. 4
) In numerical calculations we confine ourselves to the body-centered cubic 

and MnF2 (rutile) -type lattices, which are topologically equivalent to each other 

in the present case. 

In reference 5) the present author and Kanaillori dealt with the general 

aspects of the present problem and. gave a part of the numerical results for the 

special case where anisotropy is absent. Here we discuss the problem in more 

detail and include'the -DSz
2 term. When anisotropy is present, there is a gap 

in the spin-wave frequency continuum around zero frequency. We consider the 

modes which appear in this gap as well as the more familiar modes analogous 

to those which occur in the D = 0 Case. Numerical results of the localized spin

wave problem are applied to discuss an Mn2
+ impurity in the antiferromagnetic 

crystal FeF2• We also discuss the zero point contraction of the impurity spin 

and its neighbors. Recently the same problem was also studied independently 

by Lovesey.7) Some of the results in the present paper overlap those obtained 

by him. 

In § 2, we develop the formulation for the spin-wave impurity problem in 

an antiferromagnet with a single substituted impurity spin. In § 3, numerical 

calculations both of the criteria for the appearance of the various types of lo

calized modes and of their energies are presented in detail. Applications of the 

results to a real substance are then given in § 4. Section 5 is concerned with 

the theoretical study of the zero point contraction of the impurity and its nearest 

neighboring spins. The last section (§ 6) is devoted to concluding remarks. In 

the Appendix, we discuss the analytic~l forms of the Green's functions and give 

some relations among them which are used in the text. We further discuss the 

method of numerical calculation of the Green's functions and present tables of 

the results. 

§ 2. Formulation of the spin-wave impurity problem 

in an antiferromagnet 

We treat a simple two-sublattice antiferromagnet with a single substituted 

impurity spin. The basic Hamiltonian is given by 
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Theory of Spin- Wave Impurity States in an Antiferromagnet 1197 

!J£=2J~ ~ SrSj-l_p+2J' ~ So'Sp 
j(+O) p p 

(2·1) 

-where Sj and S~ denote the atomic spins associated with the j-th and l-th atoms, 

respectively. The sum over j runs over sites of the up sublattice, and it is 'as_ 

sumed that the nearest neighbors of j, j + p, are on the opposite sublattice and 

thus point in -the negative z direction. The sum over l runs over sites of the 

down sublattice. We further assume that the impurity spin is at the origin of 

coordinates (j= 0) .and thus belongs to the sublattice formed by the positive 

spins. The first term in Eq. (2 ·1) represents the antiferromagnetic exchange 

interaction between nearest neighboring host spins (J>O) , and the second term 

represents that between the impurity spin and its nearest neighbors. We treat 

both the J'>O case (antiferromagnetic impurity) and the J' <0 case (ferro

magnetic impurity). When JI is positive the impurity spin is parallel to the 

positive z direction, and whe.I?- J' is negative it is parallel to the negative z 

direction. The last three terms represent the uniaxial anisotropy energies of the 

host and impurity spins. The signs of D and D' are taken as positive. *) 

(A) The antiferromagnetic impurity case (J'>O) 

Following the Holstein-Primakoff formalism6
) for -a t~o-sublattice antiferro

magnet, we introduce the Boson creation and annihilation operators, a/, b~*, aj 

and b~, and expand the Hamiltonian keeping terms up to second order:**) 

!J£=2JSz{ ~ a/aj+ ~ b~*b~} +2JS(z-1)L: b/bp 
j(+O) l(+p) p 

+ 2J' Szao * ao + 2J' S' ~ b p * b p 
p 

+ 2JS ~ (ajb j + p + a/b1~-p) 
J, p 

(N~v) 

+ 2J' (SS'y/2 ~ (aob p + ao*bp *) 
p 

+ 2DS{ ~ a/aj+ L: b~*b~} + 2D' S' ao*ao. 
j(+O) l 

(2·2) 

Here Sand S' are respectively the magnitudes of the host and impurity SPl11S, 

and z stands for the number of nearest neighbors. The commutation relations 

among the Boson opera tors are 

*) The treatment which follows is also applicable for DI <0, as long as the z aXIS remains a 

stable direction for- the impurity spin. 

**) In the Hamiltonian of Eq. (2·2) the anisotropy energy terms do not vanish for the spin 

whose magnitude is one half. This situation comes from the fact that we take here the linear spin

wave approximation. This contradiction can be avoided by regarding D and Df in Eq. (2,2) (and 

thus those which will appear hereafter) as (2S-1) /2S times Din Eq. (2·1) and (2S' -1) /2S' times 

Df in Eq. (2·1) respectively. 
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1198 T. Tonegawa 

(2·3) 

and all other commutation relations are zero. By use of a method similar to 

that of Ishii et al.,4) this quadratic Hamiltonian can be diagonalized straightfor

wardly. We consider a new operator c>. which is given by 

(2·4) 

A set of secular equations which determine the eigenvalues E>. and the coefficients 

T/ and T~>' is obtained by the following equation: 

(2· 5) 

With the use of Eqs. (2·2), (2·3), (2·4) and (2·5) the secular equations 

become as follows: 

{-E>. + 2S(Jz+D) }To>'-2JS ~ T:-
p' 

= - 2Sz (J' - J) To>' - 2 (D'S' _. DS) To>' + 2 (J' ylss' - JS) ~ T~, , 
. p' 

(2·6a) 

(2·6b) {-E>. + 2S(Jz+ D)} T/ - 2JS I.: T/+ p' = 0, 
p' 

(j=/=O) 

{- E>. -2S(Jz+D)} Tp>'+ 2JS L: Tp>'_p' 
p' 

=2(J' S'-JS)T/-2(J' ylss' -JS)To\ 
(2·6c) 

{-E>.-2S(Jz+D)}T~>'+2JSI.: T/'"_p'=O. 
p' 

(l=/=p) (2·6d) 

Note that Eqs. (2· 6a) and (2· Gc) show the perturbatio,n of the periodic nature 

of the system. If the eigenvalue, E'}.., obtained from these secular equations is 

positive, then we may identify the operator c'}.. with the annihilation operator 

associated with the resulting mode such that 

(2·7) 

where \0) is the ground state wave function of the system .. If the eigenvalue 

E'}.. is negative, on the other hand, the annihilation operator may be defined by 

c'}.. * which is the Hermitian conjugate of the right-hand side of Eq. (2·4). In 

both cases the excitation energy is positive, and it is the absolute value of E'}... 

Now, we introduce the crystal Green's -functions defined as follows: 

(2·8a) 

(2·8b) 

(2·8c) 
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Theory oj Spin- Wave Impurity States in all Antijerromagnet 1199 

(2·8d) 

Here N is the number of spins in the sublattice, R j and R~ the lattice vectors 

connecting the origin with the j-th and l-th sites respectively, and k the wave 

vector. The summation with respect to k is taken over the first Brillouin zone. 

E1~, Pk± and qk± are defined by 

(2·9) 

(2 ·10a) 

(2 ·10b) 

where 

(2 ·11) 

Note that E1~ is just the spin-wave spectrum in a pure antiferromagnet. The 

solutions of the set of secular equations (2· 6a, b, c, d) may be written as follows :*) 

T j = VaG (j, 0; E) + ~ VpG (j, p; E), (2 . 12a) 
p 

T~= VaG (l, 0; E) + ~ VpG (l, p; E). (2 ·12b) 
p 

Equations (2· 6b) and (2· 6d) are automatically satisfied by these T j and T~. 

Furthermore, by substituting Eqs. (2 ·12a, b) into Eqs. (2· 6a, c), we can get the 

following new z + 1 secular equations: 

V a[l+ {2(J'-J)Sz+2(D'S'-DS)}G(0, 0; E) 

-2(J' Jss' -JS)zG(p, 0; E)] 

+ ~ V p' [{2(J' -J) Sz+ 2(D' S' -DS)}G (0, p; E) 
p' 

-2(J' Jss' -JS)~ G(p, p"; E)] =0, 
p" 

V a[ -2(J'S'-JS)G(p, 0; E) +2(J'JSS'-JS)G(0, 0; E)] 

+ ~ V p,[opp,-2(J'S'-JS)G(p, p'; E) 
p' " 

+2(J' Jss' -JS)G(O, p; E)] =0, 

(2 . 13a) 

(2 ·13b) 

which determine Va, Vp and the eigenvalues E. In deriving Eqs. (2 ·13a, b) we 

have used the fact that, in cubic lattices, G (p, 0; E), G (0, p; E) and ~p,G (p, 

p'; E) are independent of the direction of the nearest neighboring vector, Rp. 

Equations (2·13a, b) are the basic secular equations which determine the nature of 

*) Hereafter the subscript A will be omitted, 
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1200 T. Tonegawa 

the spin-wave impurity state m an antiferromagnet with an antiferromagnetically 

coupled impurity spin. 

Now, we will find solutions of Eqs. (2 ·I3a, b) . If we combine Eq. (2 ·I3a) 

with the equation obtained by summing Eq. (2 ·I3b) over p, the following equa

tion, which determines the energy'of the solution for non-zero 'Vo and ~p 'Vp, can 

be obtained: 

[
, 1 

D/F(e) =T(O, 0; 0; e) -1 + -e-(a-1 + po" -0) 

+ {ap+a-2- (ap-I) (pOl-a)} (e-I) 

where 

+ (ap-l) (1+0) (e-lY] 

+ap+a-l- (ap-I) (po"-o) 

+ (ap-l) (1+0) (e-l) . 

=0, 

a= IJ"I/J, p=S" /S, o=D/Jz, o"=D" /Jz, 

e=E/2S(Jz+D), 

T(m, m'; 0; e) =2S(Jz+D)G(m, m'; E), 

(In = j, l; m' = j', l') 

(2 ·14) 

(2·15) 

(2 ·16) 

(2 ·17) 

and where we have used the relations among the Green's functions which' are 

given in the Appendix [see Eqs. (A· 3a, b)]. We can easily show that, for 

this solution, the 'V/s are independent o£ p in cases of cubic lattices. In other 

words, the solution with non-zero 'Vo and, ~p 'Vp' is of s type character. As is 

shown in the Appendix, the dimensionless Green's functions, T's, are functions 

of a as well as e. This is explicitly indicated in Eq. (2 ·17). 

The other solutions can be obtained by putting 'Vo = L: p 'Vp = ° III Eq. (2 ·13b). 

The set of secular equations for these solutions' thus becomes 

~ 1»[opp,-2(J'S'-JS)G(p, p'; E)] =0. 
p' 

(2 ·18) 

The discussion which has been developed thus far in. this section can be 

applied to all cases of cubic lattices. Hereafter we shall confine ourselves to 

the body-centered cubic lattice. In this lattice there exist eight nearest neigh

boring vectors which are specified by Rp = (nx;a/2, nya/2, nza/2), where Inx;l, Inyl 

and I n z I are equal to unity and a is the lattice constant. If we use the sym

metry property that G (p, p'; E) depends only on IRp - R p' I, then seven types of 

solutions can be derived from Eq. (2 ·18). Three of these solutions are of the 

P:lJ> Py a'nd pz typ~s. These three' P type modes are degenerate, with energy de

termined from 
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Theory oj Spin-IV ave Impurity .States ill an Alztijerromagnet 1201 

Dp(e) =1- cr/9---:-1 {T(111, 111; 0; e) +T(111, 11-1; 0; e) 
(1 + 0) z . 

-T(111, 1-1-1; 0; e) -T(111, -1-1-1; 0; e)} 

=0 . (2·19) 

Three other solutions are of the dyz , dZJJ and d JJy types. These d type modes 

are also degenerate. The energy is determined from 

Da(e) =1---'- a{1 ___ 1 {T(111, 111; 0; e) -T(111, 11-1; 0; e) 
(1 + o)z . 

-T(1IL 1-1-1; 0; e) +T(111, -1-1-1; 0; e)} 

=0. (2,20) 

Lastly, there is an jJJYZ type· solution. The energy of this f type mode is a root 

of the equation 

Di(e) = 1- a@-~1-{T(111, 111; 0; e) -3T(111, 11-1; 0; e) 
(1 + O')z 

+3T(111, 1-1-1; 0; e) -T(111, -1-1-1; a; e)} 

=0. (2·21) 

As seen from Eqs. (2 ·19), (2·20) and (2·21), the energIes of the p, d and f 
modes are independent of the value of D'. This is because the impurity spin 

does not participate in the precessional motion. Numerical analysis of Eqs. (2 ·14) 

(for the body-centered cubic lattice), (2 ·19), (2·20) and (2·21) win be given 

in the next section. 

(B) The ferromagnetic impurity case (J' <0) 

In the present case an impurity spin points in the negative z direction. The 

quadratic Hamiltonian thus becomes 

S{=2JSz{ L; a/aj+ L; bL*b{} +2JS(z-1)L; b/b p 
H+O) lCTP) P 

+2IJ'ISzao*ao+2jJ'IS' ~ b/bp 

P 

-2IJ'1 (SS'//2 L;(aob/+ao*bp ) 

P 

Introducing a linear combination of Boson operators defined by 

c"l>.=To"l>.ao*+ L;T/aj+L;TL"I>.b/ 
. I(TO) f 

(2·22) 

(2.23) 
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1202 T. Tonegawa 

and using a method similar to that in the antiferromagnetic impurity case, 'we 

can diagonalize the above Hamiltonian (2·22). The resulting equation which 

determines the energy of the s type mode in this case is given by 

D/(e) =T(O, 0; 0; e) [ __ I_(a+ l+po' +0) 
1+0 

+ {ap-a-2+ (ap-l) (po' +o)} (e-1) 

+ (ap-l) (1+0) (e-lyJ 
+ap--'-a-l+ (ap-l) (po'+o) 

+ (ap-l) (1+0) (e-1) 

=0. 

(2·24) 

This equation is valid for all cases of cubic lattices. In the next section we 

will solve Eq. (2·24) numerically for the body-centered cubic lattice. The equa

tions for other (p, d and f) modes are the same as those in the antiferro

magnetic impurity case. 

§ 3. Numerical calculations and discussion 

In this section we give the numerical analysis of Eqs. (2 ·14), (2 ·19), (2·20), 

(2·21) and (2·24) which determine the energies of the various types of localized 

modes. We can easily show that all of D(e) 's approach unity as e tends to 

± 00. This fact will be used later when we discuss the criteria for the existence 

of the . localized spin-wave modes. 

(A) The case. 0 = 0' = 0 

Now, .let us discuss the case where 0 and 0' are equal to zero. In this case 

the spin-wave energy band extends from c = 1 to e = -1 [see Eqs. (2·9) and 

(2 ·16)]. First we look for the solutions of Eq. (2 ·14). Careful examination 

of the e-dependence of D/ F (e) shows that Eq. (2·14) has one solution at most 

in the region e> 1 and also in the region e< -l. Thus the criterion for the 

appearance of the localized So mode*l with the energy e> 1 (above the spin-wave 

energy continuum) is D/F (1) <0, or more cOIiveniently, 

a-1>0. (3 ·1) 

(Remember here that DsAF (e) goes to unity as e~ + 00.) Here we have used 

the fact that the Green's function T(O, 0; 0; e) has the asymptotic form - [(1+0)/ 

2n2] . vi (e + 1) / (e -1) . [log (e2 -1) r atl e 1= 1+ 0 • Note that the condition (3 ·1) is 

independent of p. Similarly the localized Sl mode*l appears below the continuum 

*) Hen;after the s modes with positive and negative energies in the anti ferromagnetic impurity 

case are called the So and Sl modes, respectively. As regards the physical distinction between these 

two modes see reference 5); . 
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Theory of Spin- Wave Impurity States in an Antiferr01~2agnet 1203 

on the negative energy side (8< -1) when DsAF ( -1) <0. This is equivalent 

to 

l+a-ap<O. (3·2) 

Next we discuss Eq. (2·24). Calculation shows that Eq. (2·24) has no 

solutions in the region 8>1. On the other hand, it has one solution at most in 

the region 8< -1. Thus the s type mode in the ferromagnetic impurity case 

can be localized only below the spin-wave energy continuum under the condition 

D/( -1) <0, or 

1-a-ap<0. (3·3) 

This s type mode is in some sense an amalgam of the So and S1 modes in the 

antiferromagnetic impurity case. *) 

Finally we consider Eqs. (2 ·19, 20, 21). From these equations we can show 

that for each of the p, d and f modes one localized mode at most also appears 

only below the spin-wave energy continuum on the negative energy side. The 

criteria for the appearance of these localized modes are Dp ( -1) <0, Dd ( -1) <0 

and D f ( -1) <0 for the p, d and f modes respectively. Since all of the linear 

combinations of rep, p'; 0; 8) which appear in the brackets of Eqs. (2·19,20, 

21) diverge as 8 approaches -1 from the negative infinite side, these three con

ditions coincide and are gIVen by 

ap-1>0. (3·4) 

The boundary curves 111 the a-{3 plane for the appearance of the various types 

of localized modes, which were discussed above, may be found in Fig. 1 in refer

ence 5). It is worth mentioning that for {3<1 we have no localized S1 mode 

in the antiferromagnetic impurity case. All other localized modes, on the other 

hand, may appear for any value of p. In Figs. 1 and 2 we give the iso-energy 

curves of the localized So and S1 modes, which are obtained from Eq. (2 ·14) 

(the antiferromagnetic impurity case).W e also give the iso-energy curves of 

the s type localized mode in the ferromagnetic impurity case in Fig. 3, and 

those of the p, d and f type localized modes in Fig. 4. These iso-energy curves 

are obtained from Eqs. (2·24, 19, 20, 21), respectively. In the numerical calcu

lations we hav,e used the values listed in Table I in the Appendix. The method 

by which these values are calculated is discussed in detail in the Appendix. 

As seen in Fig. 1, the energy of the localized So mode at p = ° is a (= 2J' Sz/ 

2 JSz) , which is the value expected in the molecular field approximation. (As 

was discussed in reference 5), in the So mode most of the spin-wave amplitude 

is associated with the impurity spin.) This result is quite natural, since the 

coefficient of the aob p and ao *b / 'terms in the Hamiltonian of Eq. (2·2) is 

aJ7J /z in the unit of 2JSz and thus these terms vanish when (3 = o. Therefore, 

*) See reference 5). 
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2 

Fig. 1. Iso-energy curves of the localized So mode 

which occurs above the band (8)1) in the anti

ferromagnetic impurity case for 8 = 8' = O.The 

numerical figures denote the energy, E, of the 

localized So mode. The boundary curve for the 

appearance of this localized mode is also given; 

it is shown by the dotted curve. 
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4 -5 

'-
.......... _---

---------------------------------
°O~~--~2~~--~4--~--6~~==~8~===$=.~IO. 

Fig. 3. Same as Fig. 1 for the localized s mode 

below the band (8< -1) in the ferromagnetic 

impurity case. 
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Fig. 2. Same as Fig. 1 for the localized Sl 

mode below the band (8< -1) in the anti

ferromagnetic impurity case. 

Fig. 4. Same as Fig. 1 for the localized p, d 

and f modes below the band (8<-1). 

when fj = 0, the impurity spin precesses independently of its neighboring spins 

under the effective magnetic field, 2J'Sz/2JSz. For fj=l=O the result differs from 

the molecular field approximation, and thus the energy of the localized So mode 

depends on .fj. This dependence is, however, rather weak provided a and fj are 

not too large. This point has also been discussed by Lovesey.7) The excitation 

energy of the localized s mode in the ferromagnetic impurity case is also a when 

fj = 0 (see Fig. 3). This shows that the nature of this localized mode for suf

ficiently small values of fj resembles that of the localized So mode in the antiferro

magnetic impurity case. Finally we note that for fixed a a:nd fj the excitation 

energies of the localized p, d and f modes are relatively close with the p mode 

always lowest, followed by. the d and f modes in that order. 

(B) The case 0>0 and 0'>0 

In this case there exists a gap III the spIll-wave energy continuum, the range 
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of which can be calculated from Eqs. (2·9) and (2·16) to be Icl<Cb=J20+IP/ 

(1 + 0) . For now we confine ourselves to the localized modes which appear in 

this gap. First we discuss the S type localized modes in the antiferromagnetic 

impurity case. From Eq. (2·14) we can easily show that D/F' (0) >0. (Equal

ity is achieved only when a = (30' = 0.) Thus, by examining the c-dependence 

of D/F' (c), we can conclude that one localjzed So mode with energy, O<c<co, 

appears in the gap under the condition that*) 

D/F'( +co) = -a(3· (1V -1)· {J2cf=t&2_(30'} 

+a{o· vV + J2e+0
2
·1V + I} 

- {o· W + J20+()'2·1V + I}· {JZ6'-+02_(30'} 

<0, 

,v here W IS defined by 

T(O, 0; 0; + co) =, (1 + 0+ JZ(f=t-()2) . (1 + 0)' W. 

(3·5) 

(3 ·6) 

Thus, W is the value of r (0, 0; 0; 0) and was calculated by Watson8
) as 1.3932. 

Similarly we can get the follmving equation for the criterion for the appearance 

of the localized S1 mode in the region - co<c<O: 

D/F' (- co) = a(3· (W -1) . { J2cf+c¥ + (30'} 

+a{o· vV - J20+02. W + I} 

+ {o· 1V - J2(f=t-e-2·1V + I} . {J27T+e2 + (30'} 

<0. (3·7) 

The condition (3·5) IS achieved only 'v hen J27f + 02 - (30'>0. Thus, if 

J20 + 02<(30', there are no localized So modes in the gap. The _boundary curves 

of the regions in the a-(3 plane where the localized So mode appears in the gap 

are shown by solid curves in Fig. 5 for representative values of 0 and (30'.**) 

This mode appears in the gap for parameters in the region below each boundary 

curve. In Fig. 6 we show the iso-energy curves of the mode obtained from Eq. 

(2 ·14) and the values listed in Table I for 0 = 0.3 and (30' = 0.0 and 0.1.**) We 

see that when (3 goes to zero the energy of the localized So mode approaches 

(a + (30') / (1 + 0) [= 2 (J! Sz + D'S') /28 (Jz + D) J, as would be expected from the 

argument mentioned earlier about the energy of the So mode in the case 0 = 0' 

= O. We also see that the energy of· this mode in the gap depends weakly on 

(3 if (3 is small. Furthermore, when the values of 0 and (30' are fixed, the mini

mum value of the energy is (30'/ (1 + 0). In other words, even when the impurity

host exchange interaction vanishes (i.e. a = 0), the energy of the localized So mode 

*) The case a = (3o' = 0 is included in this condition. 

**) Boundary and iso-energy;, curves for v<;\lues other tha,n those presented here may be obtaineq 

. from the .author upon request, -, 
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. Fig. 5. Boundary curves for the appearance of localized So modes above the spin-wave energy 

band (.::>1) and in the energy gap (O<c<Eb) in the antiferromagnetic impurity case for rep

resentative values' of 0 (>0) and fjo' (~O). Numerical figures denote the values of fjo'. A 

localized So mode appears above the band for a, fj above the dotted boundary curves. A mode 

occurs in the gap for a, fj below the solid boundary curves. Note that one localized So mode 

always occurs above the band when fjo'> (1 + 0) and also that there is never an So mode in 

the gap when fjo'>Y20+0 2• These critical values of fjo' are therefore just the values at 

which the abscissae become the corresponding boundary curves. 
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Fig. 6. Iso-energy curves of the localized So mode in the energy gap 

(O<E<Eb) in the antiferromagnetic impurity case for 0=0.3 and for 

flO' = 0.0 and 0.1. The numerical figures denote the energy, E, of the 

localized So mode. The energy at a=O for fixed 0 and fjo' is given 

by fjo' / (1 + 0). The boundary curves for the appearance of this 

localized mode are also shown by dotted curves, 

IS not zero but /30'/ (1 + 0) . This is because when a = 0 the impurity spm pre

cesses independently under an effective magnetic field which comes from the 

anisotropy energy at the impurity site. The energy, /30'/ (1 + 0), corresponds to 

this effective field. From this fact we ca,n easily understand that the localized 

So mode does not appear in. the gap when /30';> J20-+ 62, or equivalently, when 

(30' / (1 + 0) >Cb. 'On the other hand, the condition (3·7), for the appearance of 
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the localized Sl mode, is achieved only when (]. vV - v20+ (]2. W + 1 <0, or eqUIva

lently, 0> 1/2W (W -1) = 0.9127. Furthermore, even when (] is larger than 

1/2VV (W - 1), the energy of the localized Sl mode is still only just above the spin

wave energy continuum. 

Next we discuss the s type localized modes in the ferromagnetic impurity 

case. From Eq. (2·24) we can show that there exist nO s type localized modes 

in the region of O<S<eb. For the s type localized modes with the energy, 

- eo<e<O, on the other hand, the situation is somewhat complicated, since 

these modes are in some sense amalgams of the localized So and Sl modes of 

the antiferromagnetic impurity case. Now it is convenient to discuss Eq. (2·24) 

by examining the following fo.ur cases: (i) (]<1/2W (TV -1) and /30'> v27T+02, 

(ii) 0<1/2W(vV -1) and/3o' <v2tJ+-7;2, (iii) 0>1/2W(W -1) and /30'~ v2t-+ t2 
and (iv) 0> 1/2W (W -1) and /30'< V20+-(]2. In case (i) we have no s type 

localized modes in the gap. 

In case (ii) one s type mode can be localized in the gap under the con

dition that 

DSF ( - eo) = a/3· (W -1) . {V2}J+(;2 - /30'} 

-a{o· W - V20+~2. W + I} 

+ {(]. vV - V2(f-t-e2
• 1V + I} . {v2(5'-+ -ei - /30'} 

>0. 

(3 ·8) 

For the given representative values of (] and /30' this condition is satisfied in 

the region below the corresponding boundary cur.ves which we indicate by solid 

curves in Fig. 7.*) In Fig. 8 we also indicate some iso-energy curves of the 

localized s mode in this case*). These curves are obtained from Eq. (2·24) and 

the values listed in Table 1. The minimum excitation energy of the localized 

mode for fixed 0 and /30' is 1 - /30' / (1 + 0) I. As /3 goes to zero the localized 

mode energy approaches the function, - (a + /30') / (1 + 0) . Thus it is clear that 

this localized s mode might have a nature similar to that of the localized So 

mode in the antiferromagnetic impurity case. The only difference which we 

note here is that, when the values of 0 and /3(]' are fixed, the region of the ap

pearance of the former mode is much wider than that of the latter mode (com

pare Fig. 7 with Fig. 5). This difference becomes more significant for larger 

(] and smaller /30'. When 0 = 0.5 and /30' = 0, the former mode appears in the 

gap for almost all region in the a-{3 plane except for a very narrow region near 

/3=0. 

In case (iii) one s type localized mode, which resembles the localized Sl 

mode in the antiferromagnetic impurity case, appears in the gap when DsF (- eo) 

>0. I..-astly, in case (iv), we have one s type localized mode in the gap when 

*) See the second footnote on page 1205. 
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Fig. 7 .. Boundary curves for the appearance of localized s modes below the spin-wave energy 

band (c< -1) and in the energy gap (O>c> - Cb) in the ferromagnetic impurity case for 

representative values of 0 [0<0<1/2 W( W -1)] and /10' (>0) [see Eq. (3, 6) for the definition 

of W]. Numerical figures denote the values of /10'. A localized ,s mode appears below the 

band for a, /1 above the dotted boundary curves. A mode occurs in the gap for a, /1 below 

the solid boundary curves. One localized s mode at least occurs below the band when /10' 

> (1 + 0), and this kind of mode never occurs in the gap when /10' > v2f-t 02 for 0 smaller 

than or equal to 1/2W(W-l). These critical values of /10' are therefore just the values at 

which the abscissae become the corresponding boundary curves. 
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Fig. 8. Iso-energy curves' of the localized s mode in the energy gap 

(O>C>-Cb) in the ferromagnetic impurity case for 0=0.3 and for 

/10' = 0.0 and 0.1. The numerical figures denote the energy, C, of the 

localized s mode. The energy at a=O for fixed 0 and flo' is given 

by - /10'/(1 + 0). The boundary curves for the appearance of this 

localized mode are also shown by dotted curves. 

DsF ( - Cb) >0, and two s type localized modes in the gap when D/" ( - Cb) <0. 
These localized modes are amalgams of the localized So and S1 modes. 

Finally we discuss the p, d and f type localized modes, the energies of 
, I 

which are determined from Eqs. (2 ·19), (2·20) and (2·21), respectively. Calcu-

lation shows that there exist no p, d and f type localized modes with the energy, 
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0<8<8 0 , On the other hand, localized modes of these types can occur in the 

range, 0>8> - 8b, \vhen a is sufficiently large. The minimum values of a are 

2.2 for the p type mode, 2.8 for the d type and 3.0 for the f type.*) We can

not expect, however, such large values of a in usual antiferromagnets. This 

completes the discussion of the localized spin-vvave modes 'which occur in the 

energy gap. 

Now we turn briefly to the discussion of the localized modes \vhich appear 

above (.s> 1) and below (.s< -1) the spin-wave energy continuum. The criteria 

for the existence 'of localized modes in these regions are obtained by a method 

similar to that used previously in the discussion of the case a = 0' = O. In the 

antiferromagnetic impurity case, one localized So mode occurs in the region, 8> 1, 

when 

a-I+ (Jo' -0>0, (3·9) 

and one localized Sl mode appears in the region, .s< - 1, when 

- a(J (1 + a + po') + a + 1 + a + (Jo' <0 . (3 ·10) 

When a = 0' = 0, Eq. (3·9) agrees with Eq. (3 ·1) and Eq. (3 ·10) agrees with 

Eq. (3·2). Note that one localized So mode always occurs in the region, 8> 1, 

for values of a and /30' which satisfy the inequality, (Jo' / (1 + 0) (minimum energy 

of the localized So mode) > 1 (the energy at the top of the band). Note also 

that there exist no localized Sl modes in the region, .s< -1, when /3 is less than 

or equal to 1/ (1 + 0+/30'). Several examples of boundary curves in the a-/3 plane 

for the appearance of the localized So and Sl modes, discussed above, are shown 
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Fig. 9. Boundary curves for the appearance of the localized Sl mode below the spin-wave energy 

band (E< -1) in the antiferro~agnetic impurity case for representative values of 0 (>0) and 
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0; 0) (see Table IrA in the Appendix) were employed. 
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1210 T. Tonegawa 

by dotted curves m Fig. 5 and in Fig. 9, respectively.*) Each localized mode 

appears above its boundary curve. It should be noted here that, as can be 

seen from Fig. 5, there are regions in which two localized 50 modes appear; 

one of which is in the gap and the other above the spin-wave energy band. 

Furthermore, from Fig. 9 we can see that, as expected, (30' has much less effect on 

the boundary curves for the localized 51 mode than on those for the localized 50 mode. 

Next we discuss the 5 type localized modes in the ferromagnetic impurity 

case. In the region, 8> 1, we have no 5 type localized modes, as is in the case 

0= 0' = o. In the region, 8< -1, on the other hand, one or two 5 type localized 

modes can occur. When (30'/ (1 + 0) <lone 5 type localized mode appears in 

this region under the condition that 

- a(3 (1 + 0 - (30') - a + 1 + 0 - (30' <0 . (3·11) 

[When 0=0'=0, Eq. (3·11) coincides with Eq. (3·3).J This criterion is illus

trated by dott~d curves in Fig. 7.*) The localized 5 modes appear above the 

boundary curves in the figure. Thus in the present case we have regions where 

a localized s mode exists in the gap and one more exists below the band. 

When we fix the values of 0 and (30', this region is much wider than that in 

which two localized So modes are expected. When (30'/ (1 + 0) > 1, on the other 

hand, one 5 type localized mode appears in the region of 8< -1 if the left-hand 

side of Eq. (3 ·11) is smaller than or equal to zero and two s type localized 

modes appear in the same, region if the left-hand side is larger than zero. 

Finally we discuss the localized p, d and f modes. These modes cannot be 

localized in the region, 8> 1, as in the case 0 = 0' = 0, but can be localized in 

the region, 8< -1, if a(J -1>0. This criterion for the appearance of these three 

modes is again the same as that in the case 0 = 0' = O. 

§ 4. Application: Mn2
+ in FeF2 

Eere we discuss an application to a real substance of the numerical results 

obtained in § 3 for the criteria for the appearance of various localized spin-wave 

modes. Although we have been considering the body-centered cubic lattice, the 

results may be also applied to the MnF 2 (rutile) -type lattice. This is because 

we have limited ourselves to the case where there is' an exchange interaction 

between the body-centered and corner sites only; and, in this case, both lattices 

are topologically equivalent. 

We consider the antiferromagnetic crystal FeF 2 in which an Fe2+ ion with 

spin 2 is replaced by an Mn2
+ ion with spin 5/2. The values of the exchange 

constant, J, and of the anisotropy constant, D, for F eF 2 can be determined from 

the neutron diffraction data of Guggenheiin, Hutchings and Rainford9
) as follows. 

They observed that the spin-wave energies at k = 0 and at the zone boundaries 

*) See the second footnote on page 1205. 
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Theory of Spin- Wave Impurity States in an Antiferromagnet 1211 

are 53 and 79 cm-I respectively. Combining these values, S = 2 and z = 8 with 

Eq. (2 ·9), one calculate the values of J and D for FeF2 to be 1.8 and 5.2 cm-I 

respectively. Thus, in the present case, the dimensionless parameters, /3 (=S' / S) 

and 0 (=D / Jz), are determined to be (3 = 1.25 and 0 = 0.36. In order to proceed 

we assume that the anisotropy constant of the Mn2+ ion in FeF2 is the same as 

that in pure MnF2.*) With this value' of 0.16 cm-\ which is obtained in our 

forthcoming paper/I) the value of (30' (-D'S' / JzS) becomes 0.014. Unfortunately 

we do not have at present information enough to determine the exchange integral, 

J', between the Mn2
+ and its nearest neighboring intersublattice Fe2

+ ions. Thus 

J' is treated as a paramet~r. 

Now we are ready to discuss the Mn2
+ impurity in FeF2 , As can be seen 

from Fig. 5, if the Mn2+ ion in FeF2 has a spin which is antiparallel to spins 

of its nearest neighboring intersublattice F e2
+ ions, one localized So mode can be 

expected above the spin-wave energy band or in the energy gap still on the 

posi ti ve energy side depending on whether eX ( -I J' [/ J) is larger than a bout 

1.3 or smaller than about 1.1. For intermediate values of a, there are no local

ized So modes. Furthermore we can see from Fig. 9 that one localized SI mode 

will exist below the band if a is larger than about 2. We can expect no local

ized SI mode in the gap, because the value of 0 is small. On the other hand, 

if the direction of the spin associated with the Mn2+ ion in FeF 2 is parallel to 

its nearest neighboring intersublattice Fe2+ spins, one s type localized mode is 

expected below the band for a larger than about 0.5 and another is expected 

in the gap on the negative energy side for any value, of a (see Fig. 7). Finally, 

one each of the localized p, d and f modes only appear below the band and 

then only when a>0.8. This condition is irrespective of the direction of the 

Mn2
+ spin. 

The above predictions remain untested as no relevant experimental data have 

yet been reported., 

§ 5. Zero point contraction of spins 

(A) Formalistn 

Now we turn to the discussion of the zero poin,t contraction of spins caus

ed' by a substituted impurity spin in an otherwise pure body-centered cubic anti

ferromagnet. Only the antiferromagnetic impurity case will be treated. 

The ground state expectation values of the z components of spins can be 

calculated straight£or~ardly. The results are as follows: 

for j= 0 (impurity), 

<SoZ)=<OIS'-ao*aoIO)=S'-L: ITo"[2, (5·la) 
" 

*) This assumption seems to be quite good because the anisotropy energy in MnF2 comes 

mainly from the magnetic dipolar interactions between spins.1°) The correction due to the difference 

between the magnitudes of the magnetic moments of Fe2+ and Mn2+ ions is negligible in this dis

CUSSIOn. 
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1212 T. Tonegawa 

for J=I=O (host, up sublattice), 

<S/)=<OIS~a/ajIO)=S~ ~ IT/I\ 

and .for I (host, down sublattice), 

<SLZ)=<OI-·S+bL*bLIO)= -$+ ~ ITL"12. 
. P 

(5 ·lb) 

(5· Ie) 

Here 10) represents, as before, the ground state wave function of the system. 

The sums over !1 and V run over the impurity spin-wave modes whose energy 

eigenvalues are positive and negative respectively. The zero point contraction 

of up (down) spins comes from the impurity spin-wave modes with negative 

(positive) . en·ergy. In other words, the impurity spin-wave modes contributing 

to the zero point contraction of a spin are the modes in which the spin precesses 

unnaturally.*) Hereafter we shall discuss only the zero point contraction of the 

impurity spin, LISa, and that of its nearest neighbors, LiSp, which are given by, 

r~spectively, 

(5·2a) 

and 

(5·2b) 

First consider the zero point contraction of spins resulting from the localized 

spin-wave modes. Only the localized Sl mode, if it exists, can contribute to the 

zero point contraction of the impurity spin. This contribution of the localized 

S1" mode, LlSo
s
\ can be calculated from Eqs. (5· 2a) and (2 ·12a) . If we use the 

dimensionless parameters defined in Eqs. (2 ·15) and (2 ·16), the result becomes 

LIS S1= IT 81
1

2 = (YQ8

1

Y_ 
a a 4S2(Jz+D)2 

(5·3) 

with· 

(5· 4) 

Here we have employed the relation among the Green's functions which is given 

in the Appendix [see Eq. (A·2d)].. cS
1 

is the energy [divided by 2S(Jz+D)] 

of the localized S1 mode which has been discussed in §§ 2 and 3. As V/l is 

independent of p (S1 is an s type mode), V S1 is also independent of p. The value 

of V 81 is calculated from the following equation: 

(aj1-1)-{(aj1-1) (1-C81) . 

(aj1-1) (1+0) (1-C8) -aY!j1- {(aj1-1) 

. - (ay!~ -1)/(1+0)} ·T(O, 0; 0; csJ 
X (1 + 0) (1- cs1) - (ay! j1 -I)} . (1- CS1) . r (0-, 0-;-=-0-; C-S1C---) 

(5· 5) 

*) See reference 5). 
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Theory of Spin- Wave Impurity States in an Antiferromagnet 1213 

Equation (5·5) is obtained from Eq. (5·4) and the equation obtained by summing 

Eq. (2·13b) over p. Furthermore, [Vo
s1/2S(Jz+D)r in Eq. (5·3) is calculated 

from the following equation: 

(V S1Y . 
. 0 • [ (1 + O'YV;l + 2 (1 + a) V S1 {l- (1 + a) (1- csJ Vs) T (0, 0; a; CsJ 
4S2(Jz+DY· 

+ {1- (1+0') (1-csJvsJ2. {~T(j, 0; a; cs) 
j (5· 6) 

= -1, 

which is obtained from Eqs. (2 ·12a, b) and the normalization cOl~dition for the 

amplitude of Sl spin-wave mode. *) Ip. deriving Eqs. (5·5) and (5·6), we used 

again the relations among the Green's functions [see Eqs. (A· 2d) and (A· 2f) J. 
In our discussions we have assumed that the nearest neighboring spins of 

the impurity spin point in the negative z direction. In this case, only the local

ized So mode contributes to the zero point contraction of the nearest neighboring 

spins. (Only when it exists, of course.) We can calculate from Eqs. (2 ·12b) 

and (5· 2b) the zero point contraction of the nearest neighboring spins, .:1S/~, 

due to the localized So mode as follows: 

.:1S So_IT SoI 2= .. (Vosoy (1+0')2{1- (1+0') (l-c )v }2 
P P 4S2(Jz+DY So So 

(5·7) 
X {1- (l-cso)T(O, 0; 0; cso)}2 

with 

- V So /TTso 
VSo - P Z va'. (5·8) 

where cSo is the energy of the localized So mode. Note here that .:1S/o is inde

pendent of p. VSo in Eq. (5·7) can be calculated from the expression which is 

. obtained by replacing CSl with cSo in the right-hand side of Eq. (5·5). Also, 

[Vo
so/2S (Jz +D) ] 2 in Eq. (5·7) can be calculated from the equation obtai~ed 

by replacing VOSl with Voso, cS
1 

with CSo and V Sl with VSo in Eq. (5·6) and chang

ing the right-hand side of the resulting equation to + 1. 

Next we consider the zero point contraction of the impurity spin and its 

nearest neighbors resulting from the impurity, spin-wave modes whose energies 

are inside the energy continuum. In this case it is not convenient to apply the 

method which was used in the discussion of the zero point contraction of spins 

due to the localized modes. Therefore we use here the following method which 

employs a scattering approach. In this method we determine the energies of. 

the impurity spin-wave modes beforehand and then calculate the coefficients, T/ 

*) The normalization condition 2Jjlr/112-2JdrzSl I2= -1 is equivalent to the commutation 

relation [CS1 *, CS1 ] = 1. 
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[Vo
so/2S (Jz +D) ] 2 in Eq. (5·7) can be calculated from the equation obtai~ed 

by replacing VOSl with Voso, cS
1 

with CSo and V Sl with VSo in Eq. (5·6) and chang

ing the right-hand side of the resulting equation to + 1. 

Next we consider the zero point contraction of the impurity spin and its 

nearest neighbors resulting from the impurity, spin-wave modes whose energies 

are inside the energy continuum. In this case it is not convenient to apply the 

method which was used in the discussion of the zero point contraction of spins 

due to the localized modes. Therefore we use here the following method which 

employs a scattering approach. In this method we determine the energies of. 

the impurity spin-wave modes beforehand and then calculate the coefficients, T/ 

*) The normalization condition 2Jjlr/112-2JdrzSl I2= -1 is equivalent to the commutation 

relation [CS1 *, CS1 ] = 1. 
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1214 T. Tonegawa 

and T/". The corresponding method has been developed by Koster and Slater
12

) 

in their studies of the impurity problem of electrons in solids. 

The coefficients, T/r: and T~k"', associated with the impurity spin-wave modes. 

whose energy eigenvalues are EJ.~ (r = + or -), defined by Eq. (2·9), may be 

written as follows: 

T .kr: = _1_ P eik.Rj + V. kr:G (J. 0· E (0)+) 
J VN kr: 0, , kr 

(5·9a) 

+ " vkrG (0 . E (0)+) .L....J p J, p, kr , 
p 

T kr:=_l_ q eik.R~+ v.kr:G(l 0· E(o)+) 
~ V N kr: 0, , kr 

(5·9b) 

+ ~v~rG (l, p; EJ.~+), 
p 

where EJ.~+ = EJ.~ + ir;(r; = 0+) . Pkr: and qkr: are defined by Eqs. (2 . lOa) and 

(2·10b) respectively. When E>. assumes the valueEJ.~, Eqs. (2·6b,d) are auto

matically satisfied by these T/" and T/<r. Furthermore, by substituting Eqs. 

(5·9a, b) into Eqs. (2· 6a, c) and taking E>. = EJ.~, Voh and V p kr can be expressed 

in terms of Toh and T/r. Substituting next the Vokr and v/rthus obtained 

into Eqs. (5. 9a, b), we can express T/r and T~h in terms of Tokr and T/r. 

Finally, from these equations the following set of simultaneous equations, which 

determines To'<r and Tp h, is obtained: 

v
1
N Ph = T/r [1 + {2 (J' - J) Sz + 2 (D'S' - DS)} G (0, 0; EJ.~+) 

+ 2 (J' V SS' -JS) ~ G (0, p'; Ek~+) ] 
p' 

+ ~ T';r[ -2(J' vSS' -JS)G(O, 0; E,~~+) 
p' 

(5 . lOa) 

- 2 (J'S' - JS) G (0, p'; Ek~+) J, 

V
1
N qheikoRp=Tokr[ {2(J'-J)Sz+2(D'S'-DS)}G(p, 0; EJ.~+} 

+2(J'VSS'-JS)~ G(p, p'; EJ.~+)J 
p' (5 . lOb) 

+ ~ r:~r [0 p,p~ - 2 (J' vSS' - JS) G (p, 0; Ek~+) 
p' 

- 2 (J'S' - JS) G (p, p'; EJ.~+)]' 

U sing the symmetry properties of the Green's functions, we can solve these 

simultaneous equations. The results for the case of body-centered cubic lattice 

are 

·1 
(5 ·11a) 
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Theory of Spin- Wave Impurity States zn an Antiferromagnet 1215 

and 

T kr 1 . [J' + D'S' _ Ei~ ] ._1_ 
p DsAF (c)2;+) J JzS 2JSz V N Pkr 

+ ~. 1 . ~_q . {4 (eil~.Bp - e~ik.Rp) =f (r (1) - r (2»)} 
z D p (c )2; +) V N kr '" '" 

where 

+~. 1 . ;Nqkr . {4(eik.Rp+e-lk.Rp) -r",} 
z Da (c)~;+) v 

±~. ___ 1 __ ._1_ . { (1)_ (2)} 

D (
0)+) IN qkr r", r", , 

z f Ckr V 

c)2;+ = Ek~+ /2S (Jz + D), 

r", (1) = ei"'.R ll1 + e'l"'.R1 - 1 - 1 + e'l"'.R- ll - 1 + eik.R-l-U, 

rio (2) = eil".R- 111 + eilo.Rl-ll + ei"'.Rll - 1 + eilo.R-l-l-\ 

(5 ·llb) 

(5 ·12) 

(5 ·13) 

D/F (c), Dp (8), Da (c), D f (c) and r", have already been defined by Eqs. (2 ·14) , 

(2 ·19), (2·20), (2·21) and (2 ·11), respectively. If Rp is one of the four nearest 

neighboring vectors, R 111 , R I - 1- b R- lI- I and R- 1- II, then we take the upper sign. 

in Eq. (5 ·llb). On the other hand, if Rp is one of the other four nearest 

neighboring vectors (R-lIh R I - II, R l1 - 1 and R- 1- I - I), then the lower sign applies. 

T/r (j=l=O) and T~kr (l=l=p) are calculated by substituting the values for Tolor and 

Tp kr from Eqs. (5 ·lla, b) into equations (not given explicitly) which express T/r 

and r~"'r in terms of To lor and Tp lor . 

. Now we are ready to calculate the zero point contraction of the impurity 

spin, LiSocont, and that of its nearest neighbors, LlSpcont, resulting from the impurity 

sIiin-wave modes whose energies are inside the energy continuum. From Eqs. 

(5·2a) and (5 ·lla), LiSocont becomes 

and similarly from Eqs. (5· 2b) and (5 ·llb) we get for LiS/out 

. LiS cont L: IT 10+ 12 
p k p 

1 

=~[~d { (3~'-(1 ~) }2. Im[T(O, 0;0; c+ir;)] 
c a + u + U c I D AF ( .) 12 

7r g c + zr; 
o 

-T(III, 1-1-1; 0; c+ilj) -T(III, -1-1-1; 0; 8+ilj)} 

(5 ·14) 
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1216 T. Tonegawa 

1 

3 ( de 
- z ) /Dd(e+i'l;) /2· Im {r(111, Ill; 0; 8+ir;) -r(lll, 11-1; 0; 8+ir;) 

o 

-T(l11, 1-1-1; 0; 8+ir;) +r(lll, -1-1-1; 0; e+ir;)} 

1 

1 r de . 
--; ) /Df(e+ir;) /2· Im {T(III, 111; 0; e+ir;) -3r(lll, 11-1; 0; 8+ir;) 

o 

+3T(III, 1-1-1; 0; e+ir;) -r(lll, -1-1-1; 0; e+,ir;)} J. 

. Here -we used the cubic symmetry properties 

obtained are, of course, independent of p. 

of the lattice. 

(S ·lS) 

The LiS cont thus 
p 

Finally, the total zero point contraction of 

. of its nearest neighbors, LiSp, are expressed as 

the impurity spin, LISa, and that 

LiSo = LISa cont + LlSa
S

l (S . 16a) 

and 

LiS = AS cont + AS 80 

P IJ p IJ p ' . (S·16b) 

respectively, in the antiferromagnetic impurity case. LiSa
8

\ LiS/o, Lisacont and Lis/ont 

in Eqs. (S·16a, b) are given by Eqs. (S·3), (S·7), (S·14) and (S·lS), respec

tively. Of course, the former two quantities contribute to the zero point con

traction of each spin only when the corresponding localized spin-wave modes 

exist. We can easily show that, when a = /3 = 1 and 0' = 0 (pure antiferromagnet 

case), the above obtained LiSa and LiSp become identical and they agree with the 

expression for the zero point spin contraction in pure antiferromagnets, LiSpuw 

obtained by Anderson13
) and also by Kubo 14

) in the linear spin-wave approxima

tion. In our notation LlSpure is given as follows: 

(S ·17) 

where the summation with respect to k is taken over the first Brillouin zone. 

(B) Numerical calculations and discussion 

Figure 10 indicates the result of the numerical calculation of the zero point 

contraction of the impurity spin, LiSa, in a body-centered cubic antiferromagnet 

with. an antiferromagnetically coupled impurity for the case of 0 = 0' = o. In the 

figure, LISa for various values of a are given as a function of /3. The corre

sponding result for the nearest neighboring spins is shown in Fig. 11. Here we 

considered only the cases in which there are no localized spin-wave modes. 

The numerical integrations for Lisacont and Lis/ont were carried out 'on the NEAC 

2200 electronic computer using Simpson's method. 
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0.15 

0.10 

0.05 

0.00 Il10:::::::....--'--_--1. __ ...1--_-'-__ '-

o 2 3 4 ~ 5 

Fig. 10. Calculated zero point contraction of 

the impurity spin in a body-centered cubic 

antiferromagnet with an antiferromagneti

cally coupled impurity for the case 0=0' 

=0. The contraction· is shown as a func

tion of ~ for various a. Numerical figures 

denote the values of a. The value of the 

contraction in a pure body-centered cubic 

antiferromagnet, 0.0593, is marked by an 

arrow. 

1.00 
~---0.90 

~------ 0.75 

~~-~::::::::::==--~--=:::::---- 0.00 

0.50 

0.05 

0.25 

o.oor.':-'-~-----:2~! -~3--4l::-! -(3-:1:-5-

Fig. 11. Same as Fig. 10 for the nearest neigh

boring spins of the impurity. 

In particular the calculated value 

of LlSo and LISp for the a = /3 = 1 case 

(pure antiferromagnet case), which were 

denoted by LlSpure in the preceding sub

section, IS 0.OS93. This value does not 

coincide with that obtained by Kubo14) 

for the body-centered cubic lattice. This 

is because Kubo's numerical integration 

of the right-hand side of Eq. (S ·17) is 

wrong. Kubo has calculated the same 

integral in another paper15) and obtained 

the value of 0.OS93, with which our 

result agrees. We note here that the zero point contractions of the impurity 

spin and its nearest neighbors which corne from the impurity effect are given 

by LlSo - LlSpure and JSp - L1Spu~e, respectively. 

As seen from Fig. 11, the zero point contraction' of the nearest neighboring 

spins of the impurity has an oscillating property as a function of /3 and also as 

a function of a. Another. point of interest is that, although it might seem strange 

at first glance, the zero point contraction of the nearest neighboring spins ac

tually decreases as /3 increases· from zero for sufficiently small a. This situation, 

however, can be expected also in the result obtained from the simple perturba

tion calculation. This result is given by [a 2/3/ (z -1 + a/3 + zaYJ + [(z -1)/(2z-1 

+ a/3YJ, where z = 8. The initial derivative of the above quantity with respect 

to /3 is negative when a is less than about O.S. Thus our result in the linear 

spin-wave approximation seems to be quite reasonable. 
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1218 T. Tonegawa 

§ 6. Concluding relllarks 

We have developed in the linear spin-wave approximation a theory for the 

spin-wave impurity problem in an antiferromagnet containing a single impurity 

spin. We have considered a simple Heisenberg spin Hamiltonian with an 

intersublattice exchange interaction only; plus an anisotropy energy term of the 

form of - DSz 2; both the cases of· antiferromagnetic and ferromagnetic coupling 

between the impurity and its nearest neighboring host spins have been inves

tigated. In the numerical calculations we have confined ourselves to the 

- bodycentered cubic and MnF2 (rutile) -type lattices, which are topologically 

·equivalent to each other in. the present case. In these lattices the impurity 

spin-wave modes can be classified into s, p, d and f modes. Both the conditions 

under which the modes are localized and the energies of the modes so obtained 

have been examined for various combinations of the four parameters, a (= IJ' II J), 

(3(=S'IS), o(=DIJz) and o'(=D'IJz). 

The results regarding the criteria for the appearance of various types of 

localized modes have been applied to discuss an Mn2
+ impurity in the antHerro

magnetic crystal FeF2• It has been shown that, if the Mn2
+ spin is antiparallel 

to its nearest neighboring intersublattice Fe2+ spins, one each of the localized 

so, S1> p, d and f modes can be expected. The localized So mode appears either· 

above the spin-wave energy band or in the energy gap still on the positive en

ergy side depending upon whether a is larger than about 1.3 or smaller than 

about 1.1. For intermediate values of a, there are no localized So modes. When 

a is larger than about 2, a localized S1 mode occurs; it appears below the band. 

When a>0.8, one each of the localized p, d and f modes appear, also below 

the band. 

On the other hand, if the Mn2+ spin 111 FeF2 is parallel to its nearest neigh

boring intersublattice Fe2
+ spins, we can expect one s type localized mode below 

the band for a larger than about 0.5 and another s type mode in the gap on the 

negative energy side for any value of a. We can also expect one each of the 

localized p, d and f modes below the band when a is larger than 0.8, since the 

appearance of these modes is independent of the direction of the Mn2
+ spin. 

Finally the zero point contraction of the impurity and its nearest neighbor

ing spins in a body-centered cubic antiferromagnetwith an antiferromagnetically , 

coupled impurity has been discussed. Numerical results have been given for 

various cases in which both 0 and 0' are set equal to zero and values of a and 

{3 are chosen in such a manner that there are no localized spin~wave modes. It 
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Appendix 

Green's functions for a body-centered cubic lattice 

(A) Analytical forms of the Green's functions 

For a body-centered cubic lattice with a nearest neighboring intersublattice 

exchange interaction, the analytical forms of the dimensionless Green's functions 

defined by Eq. (2 ·17) are deduced as follows: 

T(j, j'; 0;8) 

= (l+oY(8+1)~ 
n3 

(In.il, In~1 (i=x, y, z): even) (A·la) 

T (j, l'; 0; 8) 

= - (1+0)~ 
re 3 

n/2 

x\\\ cos[(nx-n~)xJ ·cos[(ny-n~)yJ ·cos[(nz-n~)z] 
o 

x cos x· cos y. cos z _ dxdydz 

(1 + oy (1- 8
2

) - cos2x· cos2y. cos 2z ' 

(I ni I: even, I n~ I: odd) (A·lb) 

T(l,j';0;8) 

n/2 

. X \ ~ ~ cos [ (n x - n~) x] . cos [ (n y - n~) yJ . cos [ (nz .....:. n~) zJ 
o 

(In.il: odd, In~l: even) (A· Ie) 
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1220 T. Tonegawa 

T(l, I'; 0; c:) 

= (1+0)2 (c:-l)JL 
n3 

(A·ld) 

Here we have employed the dimensionless parameters defined by Eqs. (2 ·15) 

and (2 ·16). R j and R~ have been taken as the vectors (na;a/2, nya/2, n za/2) 

with even Inil and odd Inil, respectively. (a is the lattice constant.) In deriv

ing Eqs. (A ·la, b, c, d), the cubic symmetry of the lattice was used. 

(B) Relations among the Green's functions 

From Eqs. (A ·la, b, c, d) we can obtain relations among the Green's func- . 

tions. These relations are, for example: 

(c:-l)T(j,j'; 0; c:) = (c:+l)T(j+I,j'+I;o; c:), 

T ( . "., ~ ) 1 - c: r (. ., ~ ) 
},} ; u; - c: := i+8 },}; u; c: , 

~ ~ T (j, p; 0; c:) = _l.- ~ T (p, j; 0; c:) 
z p z p 

= (l+o)oj,O- (1+0) (l-c:)T(j, 0; 0; c:), 

~ F;T(j+P, p'; 0; c:) 

= (l+oY(l-c:)oj,O- (l+oY(l-c:YT(j, 0; 0; c:), 

1 
-~T(l, p; 0; c:) = - (1+0) (l-c:)T(I, 0; 0; c:). 
z p 

(A·2a) 

(A·2b) 

(A· 2c) 

(A·2d) 

(A·2e) 

(A·2f) 

We note here that the vector R j is associated with the lattice point with posi

tive spin, and the vectors R~, R p , Rj+l and Rj+p are associated with the lattice 

points with negative spin. 

As T(p, 0; 0; c:), T(O, p; 0; c:) and (l!z)~p,T(p, p'; 0; c:) are independent 

of the direction of R p , these Green's functions are expressed from Eqs. (A· 2c, 

, d, e) as follows: 

T(O, p; o;c:) = -T(p, 0; 0; c:) 

= (1+0) - (1+0) (l-c:)T(O, 0; 0; c:), 
(A·3a) 

-~- ~ T(p, p'; 0; c:) 
.Z .p' (A· 3b) 

= (1+0)2(1-c:) - (l+oY(l-c:YT(O, 0; 0; c:). 
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The. relations obtained above were used in the text. Note that we can use the 

above mentioned relations as well as others (not given here) to check the accu

racy of any numerical evaluation of the Green's fUl).ctions. 

(C) Method of calculation of the Green's functions 

Here we discuss the method of numerical calculation of the Green's func

tions, T(}, j'; 0; 8+ir;), T(}, l'; 0; 8+ir;), Tez, j'; 0; 8+ir;) and Tez, l'; 0; 8+ir;), 

where r; = 0+. When the energy 8 is outside the spin-wave energy continuum 

[181>1 or 181<.)20+02/(1+0)J, the denominators of the integrands in Eqs. (A·l 

a, b, c, d) are never zero. Thus, in this case, the values of the four Green's 

functions mentioned above are equal to those of T(}, j'; 0; 8), T(}, l'; 0; 8), T(l, 

j'; 0; 8) and T(l, l'; 0; 8), respectively. These can be calculated by numerical 

integration. 

In performing these operations for the special case of T(O, 0; 0; 8) and T(p, 

p'; 0; 8) for energy outside the continuum,. it is convenient to' rewrite these 

Green's functions as follows :*) 

T(O, 0; 0; 8) = - (1+oY(8+1) ·fo((1+oY(f,2-1», 

T(lll, 111; 0; 8) = -(1+oY(8-1) 'fo((1+oY(s2-1)), 

T(lll, 11-1; 0; s) = - (l+oY(s-l)· {2fl((1+oy(f,2-1)) 

= fa ((1 + oY (S2 -I))}, 

T(111, 1-1-1; 0; s) = - (l+oY(s-l)· {4f2((1+oY(s2-1») 

- 4j~ ((1 + 0)2 (S2 -1)) + fo ((1 + oY (s2-1)}, 

+ 6fl.( (1 + oY (f,2 -1)) 

- {I + 8 (1 + oY (S2 -I)} 'fo ((1 + 0)2 (S2 -1» J, 

where 

(A·4a) 

(A·4b) 

(A·4c) 

(A·4d) 

(A·4e) 

(A· Sa) 

(A·Sb) 

The reason is that, if we know the values of fo (t); fl (t) and f2 (t) for t>O or 

*) Note that rep, p'; 0; E) depends only on IRp-Rp/l. 
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1222 T. Tonegawa 

t< - 1, then we can calculate T (0, 0; 0; 8) and T (p, p'; 0; 8) for any set of 0 

such that 0:2:0 and 8 such that 181> 1 or 181 < v 20-+6'2 / (1 + 0) . 

By integrating with respect to x in Eqs. (A· 5a, b, c), the triplet integrals 

are reduced to single integrals as follows: 

1'/2 

~ 1 ( 1. . . F (~ co~ z .... ) dz 
n2 V t J Vt+ cos 2z 2 ' vt+ cos 2z ' 

for t>O, (A·6a) 
a . 

fa (t) = 

for t< -1 , (A·6b) 

for t>O, (A·7a) 

71:/2 

4 1 ( 2 ( n COS Z) 
~ t J COS z . F 2' v- t dz, for t< -1, (A·7b) 

o 

(A· Sa) 

for t>O, 

for t< -1, (A·Sb) 

where F(n/2, K) and E(rc/2, K) are the elliptic integrals of the first and second 

kinds, respectively. The values of fa (t) for t>O and t< -1 and those of fl (t) 

and f2 (t) for t>O have been calculated by Simpson's rule with an interval of 

rc/20; the results are tabulated in Table 1. Combining these values with Eqs. 

(A·4a, b, c, d, e), we can calculate the values of T(O, 0; 0; 8) for 8 and 0 in 

the regions, 181>1 and 0>0, and 181<v20+02/(I+o) and 0>0, and also the 

values of T(lll, 111; 0; 8), T(111, 11-1; 0; 8), T{lll, 1-1-1; 0; 8) and T(lll, 

-1-1-1; 0; 8) for 181>1 and 0>0. These values were used in the text to 

calculate the energies of the various types of localized modes. 

On the other hand, when the energy, 8, is inside the spin-wave energy con

tinuum [1> 181 > v20 + (f2/ (1 + 0) J, the Green's functions are calculated by the 

following different method. First define f(x) and g(x) to be arbitrary regular 

functions subject only to the condition that f(x) = ° always has only one solu-

o tion (non-degenerate), Xo, in the region O<xo<a, and consider the following 

integral: 
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Table 1. Numerical values of the functions, fa (t), fl (t) and f2 (t). These are defined by Eqs. 

(A·5a), (A'5b) and (A·5c), respectively. 

t 

24.00 

19.25 

15.00 

11.25 

8.00 

5.25 

3.00 

1.89 

1.25 

1.00 

0.80 

0.60 

0.45 

0.30 

0.20 

0.10 

t 

-1.1 

-1.2 

-1.3 

-1.4 

-1.5 

-1.6 

-1.7 

-1.8 

-1.9 

-2.0 

-2.1 

-2.2 

-2.3 

-2.4 

-2.5 

Table IA. Numerical values of faCt), fi(t) and f2(t) for t>O. 

faCt) 

0.041453 

0.051618 

0.066126 

0.087936 

0.12314 

0.18627 

0.32109 

0.50014 

0.73877 

0.90917 

1.11630 

1.44915 

1.87321 

2.66973 

3.77208 

6.68214 

fl(t) 

0.020674 

0.025727 

0.032929 

0.043733 

0.061115 

0.092109 

0.15761 

0.24327 

0.35537 

0.43416 

0.52866 

0.67798 

0.86432 

1.20476 

1.66011 

2.80338 

Table lB. Numerical values of fo(t) for t<-1. 

foCt) t 

-1.12042 -2.6 

-0.98929 -2.7 

-0.89157 -2.8 

-0.81367 -2.9 

-0.74937 -3.0 

-0.69508 -3.1 

-0.64847 -3.2 

-0.60795 -3.3 

-0.57234 -3.4 

-0.54077 -3.5 

-0.51258 -3.6 

-0.48723 -3.7 

-0.46431 -3.8 

-0.44348 -3.9 

-0.42445 -4.0 

a 

I = ( (g ~x) dx . 
) f X - ir; 
o 

Using a well-known relation, l/(x-ir;) =P(1/x) +ino(x), we get 

f2(t) 

0.010297 

0.012802 

0.016365 

0.021691 

0.030218 

0.045294 

0.076643 

0.11668 

0.16758 

0.20246 

0.24341 

0.30635 

0.38225 

0.51466 

0.68180 

1.06703 

foCt) 

-0.40702 

-0.39097 

-0.37615 

-0.36242 

-0.34966 

-0.33778 

-0.32669 

-0.31630 

-0.30656 

-0.29740 

-0.28878 

-0.28064 

-0.27295 

-0.26568 

-0.25878 

(A·9) 
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0.80 

0.60 

0.45 

0.30 

0.20 

0.10 

t 

-1.1 

-1.2 

-1.3 

-1.4 

-1.5 

-1.6 

-1.7 

-1.8 

-1.9 

-2.0 

-2.1 

-2.2 

-2.3 

-2.4 

-2.5 

Table IA. Numerical values of faCt), fi(t) and f2(t) for t>O. 

faCt) 

0.041453 

0.051618 

0.066126 

0.087936 

0.12314 

0.18627 

0.32109 

0.50014 

0.73877 

0.90917 

1.11630 

1.44915 

1.87321 

2.66973 

3.77208 

6.68214 

fl(t) 

0.020674 

0.025727 

0.032929 

0.043733 

0.061115 

0.092109 

0.15761 

0.24327 

0.35537 

0.43416 

0.52866 

0.67798 

0.86432 

1.20476 

1.66011 

2.80338 

Table lB. Numerical values of fo(t) for t<-1. 

foCt) t 

-1.12042 -2.6 

-0.98929 -2.7 

-0.89157 -2.8 

-0.81367 -2.9 

-0.74937 -3.0 

-0.69508 -3.1 

-0.64847 -3.2 

-0.60795 -3.3 

-0.57234 -3.4 

-0.54077 -3.5 

-0.51258 -3.6 

-0.48723 -3.7 

-0.46431 -3.8 

-0.44348 -3.9 

-0.42445 -4.0 

a 

I = ( (g ~x) dx . 
) f X - ir; 
o 

Using a well-known relation, l/(x-ir;) =P(1/x) +ino(x), we get 

f2(t) 

0.010297 

0.012802 

0.016365 

0.021691 

0.030218 

0.045294 

0.076643 

0.11668 

0.16758 

0.20246 

0.24341 

0.30635 

0.38225 

0.51466 

0.68180 

1.06703 

foCt) 

-0.40702 

-0.39097 

-0.37615 

-0.36242 

-0.34966 

-0.33778 

-0.32669 

-0.31630 

-0.30656 

-0.29740 

-0.28878 

-0.28064 

-0.27295 

-0.26568 

-0.25878 

(A·9) 
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Table II. Representative values of the Green's functions, r(OOO, 000; 0; s+i'lj) , r(002, 000; 0; s+i'lj) , 

r(022, 000; 0; s+i'lj) and r(222, 000; 0; s+i'lj) [see Eq. (A·la)], for l>s>Y20+02 /(1+0) in 

the case of 0=0 (note, 'lj=0+). Those for -1<s<- Y28+02 /(1+0) are easily obtained by 

using Eq. (A·2b). Also the Green's functions, r(111, 111; 0; s+i'lj) , r(I11, 11-1; 0; s+i'lj) , 

r(111, 1-1-1; 0; s+i'lj) and r(I11, -1-1-1; 0; s+i'lj) [see Eq. (A·ld)], for 0=0 are ob

tained from Eq. (A·2a) and the values listed below. More complete tables are available upon 

request. 

s 
Re[r(OOO, 000; 

O;s+i'lj)] 

0.99 36.155 

0.97 18.046 

0.95 12.949 

0.90 8.1578 

0.85 6.1761 

0.80 5.0460 

0.70 3.7635 

0.60 3.0323 

0.50 2.5486 

0.40 2.1993 

0.20 1.7180 

0.00 1.3915 

s 
I . Im[r(OOO, 000; 

Table IIA. Real parts. 

Re[r(002,000; 

I 

Re[r(022,000; Re[r(222,000; 
0; s+i'lj)] 

i 

-17.955 

I -7.3544 

-4.5611 

I -2.0886 
I 

-1.1439 

-0.64275 

-0.13221 

0.10991 

0.23552 

0.29942 

0.32977 

0.29222 

Table lIB. Imaginary parts. 

Im[r(002,000; 
O;E+i'lj)] 

O;s+i'lj)] O;s+i'lj)] 

1.0243 4.4091 

-1.4974 1.2784 

-1.6755 0.26853 

-1.3854 -0.52005 

-1.0503 -0.66412 

-0.77683 -0.63539 

-0.38267 -0.44428 

-0.12608 -0.23932 

0.04167 -0.07051 

0.14818 0.05411 

0.23954 0.18341 

0.22864 0.19062 

O;s+i'lj)] O;E+i'lj)] 
Im[r(022, 000; . Im[r-(222, OOO~ 

- 6.2779541 ---I--~ 0.39049689 

i- O;E+i'lj)] 
---------'------------' 

0.99 

0.97 

0.95 

0.90 

0.85 

0.80 

0.70 

0.60 

0.50 

0.40 

0.20 

0.00 

I 

39.569079 

15.982229 

10.162400 

5.2354228 

3.4173571 

2.4600328 

1.4632365 

0.94861974 

0.63486698 

0.42398343 

0.15914610 

0.0 

a 

-4.6817745 

0.50552364 

1.2551918 

1.4688946 

1.3463877 

1.1939637 

0.92026529 

0.70047236 

0.52293337 

0.37717565 

0.15486753 

0.0 

( g(x) . g(xo) 
]=p J f(x) dx+zn f'(xo) 

o 

-2.7438408 

-1.4951536 

- 0.27790187 

0.17521994 

0.38125359 

0.51134678 

0.49414261 

0.42341118 

0.33355980 

0.15065845 

0.0 

-1.7108800 

-1.5158429 

-=- 0.85055837 

- 0.39564724 

-0.10079014 

0.21193212 

0.32446843 

0.33530123 

0.29297886 

0.14651806 

0.0 

.cA· iOa) 
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= ({g(X) 
J f(x) 
o 

+ g(xo) .log (~-1)\ + in' g(xo) 
f' (xo) Xo . . f' (xo) 

(A ·10b) 

As the integrand in Eq. (A . lOb) . has been made regular at x = x o, the integra

tion may be performed straightforwardly. 

Now, we calculate T(j,j'; 0; 8+ilj), T(j,l'; 0; 8+ilj),T(l,j'; 0; 8+ilj) and 

T(l, I'; 0; 8+ilj) for 1>181>V20+~2/(1+0). We first change the integration 

variables from the Cartesian coordinates (x, y, z) to the spherical coordinates 

(r, (J, ¢). We next integrate with respect to r and then with respect to (J and 

¢. If we consider the denominators of the integrands in Eqs. (A· la, b, c, d) as 

functions of r, then they each have one single zero in the range of the integra

tion. Thus we can use the method which was mentioned above to perform the 

integration with respect to r. The numerical integration was carried out on the 

NEAC 2200 electronic computer using Gauss' ~ethod with 28 points. We ob

tained the results for the several Green's functions for 0 = 0 for 71 values of 8 

in the interval 0 to 1. Representative values are listed in Table 11.*) Note 

that in this case the Green's functions are complex. The accuracy of the results 

is about 0.1 % for the real parts, and it is much better for the imaginary parts. 

The results were used in the text to calculate the zero point contraction of spins. 

Finally we consider the Green's functions at 8 = ± V20 + 02
/ (1 + 0). Here 

also it is cOJ:?venient to use the spherical coordinates (r, (J, ¢). Since the inte

grands of the expressions for the Green's functions do not diverge even at r = 0, 

we can put Ij = 0 beforehand and use the method of the direct numerical integra

tion. The results for the several Green's functions for 0 = 0 are also given in 

Table II. As before Gauss' method with 28 points was used in the calculation. 

vVe note that the value of T (0, 0; 0; 0) coincides with Watson's valueS) of 1.3932 

within the expected numerical error. 
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