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Theory of Static Structural Properties, Crystal Stability, 

and Phase Transformations: 'Application to' Si and Ge 

M. T. Yin t and Marvin L. Cohen 

Department of Physics, University of California, and 

Materials and Molecular Research Division, Lawrence 

Berkeley Laboratory, Berkeley, California 94720 

Abstract 

We demonstrate that not only the 

static structural properties but also the 

crystal stability and pressure-induced 

phase transformations in solids can be 

accurately described employing an ab initio 

pseudopotential method within the local 

density-functional formalism. Using atomic 

numbers of constituent elements and a sub-

set of crystal structures as the only input 

information, the calculated structural pro-

perties of Si and Ge are in excellent 

agreement with experiment. 
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I. INTRODUCTION 

In this paper, we present an ab initio microscopic study 

of the static structural properties and other important 

structural properties including crystal stability and phase 

transformation of Si and Ge. Part of the results have been 

1 
previously reported. The method is based on a pseudopotential 

approach and uses the local density-functional approximation
2 

which has also been used in all-electron calculations of static 

3 
structural studies of metals. 

We choose Si and Ge as our prototypes since they are the 

most studied semiconductors experimentally. Both have the 

(cubic) diamond structure and are found to undergo a semiconductor-

4 
metal phase transformation under pressure. Using the x-

ray diffraction technique, the transformed phases have been 

determined 
5 

to be of the tetragonal B-tin form. These struc

tural transformations are accompanied by a large volume decreaseS 

(22.7% for Si and 20.7% for Ge). Because of the difficulty. 

in accurate pr~ssure calibration, there has been some scattering 

of the data for the transition pressures.
6 

The transition 

pressures were first measured
4 

to be 150 kbar for Si and 105 

kbar for Ge. The more recent values are 125 kbar for Si7,8 

and 100 kbar for Ge. 
9 

In addition to the diamond and B-tin phases, a hexagonal 

diamond phase has been made lO for Si at room temperature and 

atmospheric pressure using a sequence of high-pressure and 

high-temperature treatments. This phase is semiconducting 

and has the same density as the (cubic) diamond phase. The 

) 

o 
o 
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axial !atio is 1.65, very close to the ideal value of 1.633. 

Since this form has not been found in nature and no large 

crystals have been prepared,10 it is ~etastable with respect 

to the diamond phase. A similar structural form has not been 

found in Ge. There are other metastable phases of Si and Ge 

10 11 
(a bcc form,with 16 atoms per unit cell for Si and Ge and 

,-.. 12 
a tetra gonal form with 12 atoms per unit cell for Ge )i these 

will not be considered in the present study. 

There are interesting relations between the general phase 

transformation in semiconductors and other crystalline properties. 

Jamieson has related
5 

the transition pressure (P
t 

) and the 
;..../ 

atomic volume change (~V) in the phase transformation to the 

fundamental 'energy gap (E
g

), and he ,obtained an empirical rule 

-of P
t 

~V = Eg/2 for Group IV elements and iso-row III-V 

compounds. Although this rule is less accurate when later 

refined experimental data is considered, the trend is still 

correct. This is consistent with the physical picture that 

the bigger the energy gap is, the more stabilized the structure 

is. Phillips13 has suggested that ionicity may be an important 

parameter in characterizing the phase transformation. He noted 

that the rocksalt structure becomes more favorable as the high-

pressure phase with increasing ionicity. The covalent counterpart 

';:. of the rocksalt structure, that is, the simple cubic structure, 

is included in the present study. 

Pressure-induced phase transformations in tetrahedrally 

coordinated semiconductors have previously been studied using 

14 
information from electronic structures. Van Vechten observed 
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that t~e difference in total energy between the semiconducting 

diamond phase and the metallic j3-tin phase is approximately 

equal to 1/8 of the difference of the band structure energies 

15 
between the free-electron gas and the Penn model evaluated 

at the experimental transition volume of the diamond phase. 

This, however, can only be regarded as an empirical relation. 

If accurate eigenvalues obtained from self-consistent band 

structure calculations are used for the band structure energies, 

the aforementioned relation no longer holds. A perturbative 

16 
pseudopotential theory has been used to calculate the thermo-

dynamic parameters involved in the phase transformation. While 

good agreement with experiment was found in this approach, 

the error in energy incurred in the perturbative treatment 

especially when applied to the covalent phase may be of the 

order of the energy differences involved in the phase trans for-

mations (about a few tenths of an eV per atom) .. Besides, the 

theory introduced a potential parameter which is adjusted to 

fit the zero-pressure experimental volume. The sensitive depen-

dence of the theory on that parameter is illustrated in a recent 

17 
study on the pressure-induced phase transformation of ZnSe 

using a self-consistent pseudopotential theory. Without adjust-

rnent of the potential parameter, the rocksalt structure of 

ZnSe is calculated to be more stable than the zincblende structure 

in contradiction to the experimental observation. The theoretical 

results become consistent with experiment only after the parameter 

is adjusted to fit the experimental zero-pressure value. 

In the following sections, we will first briefly discuss 
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18 
the ab initio pseudopotential approach to the total energy 

for 

calculations (Sec. II). The procedures A pseudopotential 

construction and total energy calculation are described in 

Sec. III. The results for Si and Ge, which will include Ca) 

static structural properties, (b) crystal stability, (c) pressure-

induced phase transformation, and (d) electronic structures, 

are presented and compared with experiment in Sec. IV. Final 

conclusions are given in Sec. V. We examine the accuracies 

of 'the calculated quantities with regard to various approxima-

tions used in the calculation in the appendices. 

II. THEORY 

In the present study, we use the ab initio pseudopotential 

approach
1 

within the local-density-functional formalism.
2 

This 

19 
approach has been shown to reproduce all-electron results 

faithfully. By focusing attention on the valence electrons 

which play a dominant role in the determination of structural 

propeties, we are spared the computation of core states. 

A plane wave basis set is used to represent the (pseudo) 

valence wavefunctions. Such a basis set describes the charge 

density in the valence region to the same degree of accuracy 

for different crystal structures. In other words, the basis 

-
is not biased toward a particular crystal structure which is 

usually difficult to achieve in other choices of basis sets. 

Furthermore, the angular dependence of the charge density is 

well accounted for, and there is no need for a spherical averag-

ing procedure of the charge density which may introduce appreci-

able error in describing highly directional covalent bonds. 
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The structural properties of solids are studied primarily 

through comparisons of total energies of systems under investiga-

tion. It is advantageous to perform the total energy calcula-

t
' , 20 
lons ln momentum space. The total energy is given by 

The individual contributions can be interpreted as: the elec-

tronic kinetic energy, the electron-core interaction energy, 

the electron-electron Coulomb energy, the electronic exchange 

and correlation energy, and the core-core Coulomb energy (the 

Ewald energy) respectively. Since the effect of core elec-

trons are included in the pseudopotentials, the term "electrons" 

used in this paper refers to the valence electrons only. The 

prime in the second, third, and fifth terms on the right-hand 

side of Eq. (1) denotes that these terms are reduced finite 

quantities: because of charge neutrality, the infinite contri-

butions arising from the long-range Coulomb interaction cancel 

with one another and, thus, are excluded from these three terms.
20 

EXC[pJ is a functional of charge density p(r). In the local 

density-functional approximation, 

where sxc(p(:» is a function of p(r). 

The individual terms (per cell) in Eq. (1) are given by: 

(2 ) 

(3 ) 



E' 
ec 

1 

I ze
2 

d:} + °GG' n r 

E' 
H 

E 
xc 

= 

c 00 

n L 2 
c 1 p (G)I 2 4 7Te 

"2 
G~O _ 1 ~12 

n 
= 2

c L p*(G)e: (G) 
G - xc_ 

, and 

E' = 1 ~ Z Z e 2 {47T ~ [_1_ cos [G. (t -T ,)] 
cc "2 s,s' s s' n L 1 G 1 2 . - - s - s 

c G#O -

The symbols n., k., and~i are respectively the occupation 
1. 1. 

......-... . 
number, the crystal momentum, and the (pseudo) wavefunct1.on 

in the momentum representation of state i. N is the total 

(4 ) 

(5 ) 

(6 ) 

number of cells in the system; nc is the cell volume, and t and 

G are the direct and reciprocal lattice vectors. Z :: L Zs' 

and Z and T are the core 
s _s 

the sth atom in the basis. 

s 
charge and the position vector for 

The symbol P(G) is the Fourier 

transform of the (pseudo) valence charge density, and V (k . +G ,k . +G' ) ps _1. _ _1. _ 

is the Fourier transform of the superposition of core pseudopo

tentials in momentum representation. The prime in the t summation 

in Eq. (7) excludes the t = 0 term when T = T " and n is 
-s -s 

a parameter controlling the convergency of the Ewald summations.
2l 

The momentum-space formalism is closely related to the 

plane wave method for the calculation of electronic structures. 

The Schrodinger equation used in the plane wave method can 
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be easily derived variationally from the expression for the 

total energy in Eqs. (1)-(7). Using the resulting eigenvalues 

E. IS, we obtain an alternative expression for the total energy 
~ 

where 

and 

E = ! L n.E. - E' + ~Exc + E' 
tot- N. ~ 1 H cc 

t.E 
xc 

~ 

= n ~ p*(G) [E (G) - V (G)] 
c G - xc - xc -

(8 ) 

(9 ) 

v 
xc = (10 

The double summation over G's in Eq. (4) is absorbed in the 

simple summation of the eigenvalues of the occupied states. 

III. CALCULATIONS 

A. PSEUDOPOTENTIAL CONSTRUCTION 

The ab initio pseudopotentials ofSi (Ge) are generated 

through the Hamann-Schluter-Chiang method
22 

using the 3s23pO.53dO.5 

(4S24pO.54dO.5) reference configuration. The r values (in 
c 

a.u.) chosen are 1.17, 1.35, and 1.17 (1.17, 1.36, and 1.36) 

for the s, p, and d components of the pseudopotential of Si (Ge). 

The reference configuration has a partially filled d orbital 

for the generation of the d pseudopotential. The nonlocal 

(angular-momentum-dependent) pseudopotentials of Si and Ge 

are shown in Fig. 1. The d pseudopotential of Ge is more repulsive 

than that of Si because the 4d orbital of Ge has one mode and 

is more extended than the 3d orbital of Si. The repulsive 

d pseudopotential of Ge pushes the d pseudo-orbital away from 

,. 



.. 

-9-

the core to simulate this effect. The Wigner interpolation 

23 . 
formula for the exchange and correlation energies is used 

for the present study. 

The pseudopotentials thus generated are examined in the 

atomic limit. They are capable of reproducing the corresponding 

all-electron excitation energies and eigenvalues to within 

a few mRy and wavefunctions (outside the core region) to within 

1% for atomic configurations over a wide energy range (about 

2 Ry) above the atomic ground state. Examples are given in 

Table I and Fig. 2. Such agreement is a prerequisite for the 

solid state calculations using the pseudopotential approximation
18 

in which the interaction between the valence electrons and 

the atomic cores is approximated by pseudopotentials. 

B. TOTAL ENERGY CALCULATIONS 

For the present study, the total energy as a function 

of volume was calculated for seven crystal structures: the 

fcc, bcc, hcp, (cubic) diamond (CD); hexagonal diamond (HD) , S-tin, 

and simple cubic (sc) phases. The first four phases encompass 

80% of the observed elemental crystal structures. The HD phase 

is very similar to the CD phase. The S~tin phase is observed 

as a high-pressure form for Si and Ge. The simple cubic struc-

ture is a covalent counterpart of the NaCl structure. The 

;... ideal axial ratio (cia = 1873) is used for hcp and the HD structures. 

Several cia ratios are used for the S-tin structure. 

For each crystal structure of Si or Ge, we calculate the 

total energy at six to fifteen different values of atomic volume 

ranging from 0.55 to 1.13 times the experimental value of 
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the diamond phase· (n t)' For each value of atomic volume, 
exp 

the one-electron Schrodinger equation is solved iteratively 

to self-consistently24 at which point the input and output 

screening potentials are- identical to within 10-4 Ry, and E
tot 

is stable to within 10-5 Ry. The wavefunctions are expanded 

in a plane wave basis set with a kinetic energy cutoff (E ) 
pw 

·of 11.5 Ry. Note that E is kept constant for different atomic 
pw 

volumes and different crystal structures. In this way, the 

~ 

smallest wave length of the plane waves used in the finite 

plane wave expansion is approximately the same; namely, the 

spatial variations of wavefunctions are accounted for to similar 

accuracy. Furthermore, ~ is a measure of the k-space potential pw . 

cutoff, that is, the extent to which the pseudopotential is 

sampled in k-space. If E is kept constant, the k-space poten
pw 

tial cutoff is practically the same for different atomic volumes 

and different crystal structures. This facilitates meaningful 

comparisons of total energies. 

The number of sampling kpoints
25 

used in the Brillouin 

zone summation of the electronic density and total energy is 

increased until E
tot 

converges to the desirable accuracy as 

described below. For both the CD and HD phases, the calculation 

yields semiconducting systems, and the absence of Fermi surfaces 

allows fast convergence for E
tot 

with respect to the number 

f I , k 't T (') , 1 k 't 25, th o samp 1ng p01n s. en S1X spec1a p01n s 1n e 

irreducible Brillouin zone (IBZ) for the CD (HD) phase are 

sufficient to achieve 0.3 mRy/atom convergence for E
tot

' 

The other five phases are all found to be metallic in 

,. 
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our calculation. A large number of k points are needed to 

account for the effects of the Fermi surface. The term most. 

sensitive to the finite number ·of sampling kpoints in the 

total energy calculation [Eq. (8)] is the Brillouin zone summa-

tion of valence eigenvalues. A few sampling methods have been 

examined. They are: (i) .the linear tetrahedronmethod
26 

in 

which the Brillbuin zone is divided into tetrahedra. The eigen-

values are assumed to vary linearly within each tetrahedron, 

and this enables an analytic integration inside the tetrahedron. 

(ii) the discrete sampling method in which the Brillouin zone 

summation is done in a straightforward manner using special 

k 
. 25 

po~nts. (iii) the interpolation method in which the eigen-

values of a set of sampling k points are calculated directly. 

from solving the Schrodinger equation, and the eigenvalues 

of a much larger set of k points are interpolated and used 

for the Brillouin zone summation. The interpolation can be 

carried out through a Fourier series expansion of the eigenvalues. 

We find that the convergence of the total energy with respect 

to the number of sampling k points is slow using the linear 

tetrahedral method. The errors come mainly from the lineariza-

tion assumption. The convergence is faster if the discrete 

sampling method is used and even faster if the interpolation 

method is used. 

As a numerical example l the convergent errors (in units 

of Ry/atom) caused by the finite number of sampling k points 

in the total energy calculation of the fcc phase of Si at atomic 

volume 0.75 $texpt are 0.05 Ry/atom using 20 k points in IBZ 
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by the linear tetrahedron method and 0.005 Ry/atom and 0 .. 001 

Ry/atom using ten k points in IBZ by the discrete sampling 

method and the interpolation method respectively. The results 

presented in the following sections are obtained using the 

discrete sampling method.
27 

For a convergence of 0.001 Ry/atom 

in total energy, the number of sampling k points in IBZ are 

24, 35, 70, 36, and 60 for the S-tin, sc, bccf hcp, and fcc 

phases respectively. 

IV. RESULTS 

A. STATIC STRUCTURAL .PROPERTIES 

The static structural properties such as lattice constant, 

cohesive energy, and bulk modulus can be obtained from the 

calculated total energies as a function of volume for the observed 

crystal structure. We have calculated total energies of the 

cubic diamond structure of Si and Ge for 15 atomic volumes 

ranging from 0.55 to 1.13 Q t. They are then least-sqaures 
exp 

28 
fitted to Murnaghan's equation of state, 

B V [(V /V) B ~ ] 
Etot (V) = B ~ .. B ~ 0 _ 1 + 1 + constant, (11) 

where Bo and B~ are the bulk modulus and its pressure derivative 

at the equilibrium voluem V. This equation of state has been 
o 

examined and found to be quite accurate for quite a few crystals 
28 b 

under moderate compression. -......,; The minimum total energy (E ) min .1 

the equilibrium lattice constant, and the bulk modulus are 

readily deduced from the fitted parameters in the equation 

29 
of state. The cohesive energy is then the difference between 
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the crystal energy which is the sum of E. and the zero-point 
ml.n 

vibration energy and the total energy of the isolated pseudoatom" 

with spin-polarization effects 30 included. 

The calculated lattice constants, cohesive energies~ and 

~ bulk moduli are compared with experiment 31 ,32.,33 in Table II. 

The agreement is very good. These results also compare well 

with other ab initio calculations. 34 There have also been 

microscopic calculations of the static structural .properties 

of Si (Ref. 35) and Ge [Ref.·35(a)] using pseudopotentials 

which are empirically fitted to the observed excitation spectra. 

These results are somewhat sensitive to the fitted pseudopoten-

tial, and the comparisons with experiment are not as good as 

the ab initio results. It is interesting to note that the 

band structures of ab initio calculations within the local 

density-functional formalism cannot be used directly to compare 

with the excitation spectra; for example, the calculated indirect 

gap of .Si is smaller than the experimental gap by a factor 

of two (see Sec. IV D). 

The least-squares fit to the Murnaghan's equation of state 

has a rms error of about 10-4 Ry/atom. Other functional forms 

of the equation of state such as a polynomial form of the total 

energy as a function of the lattice constant, the volume, or 

their reciprocals have also been examined. The equilibrium 

lattice constant and E
min 

are rather insensitive to the functional 

form of the equation of state. The variations are 10-3 i and 

10-4 Ry/atom respectively. In contrast., the bulk modulus (B ) 
o 

has a variation of about 10%., and its pressure derivative 
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can vary by a factor of two. The calculated values of B~ are 

3.2 for Si and 3.7 for Ge using Murnaghan equation of state 

which compares well with the experimental values
33 

of 4.2 for 

Si and 4.6 for Ge in view of the large theoretical uncertainty. 

The above results are calculated using a plane wave kinetic .' 

energy cutoff E of 11.5 Ry except for the cohesive energy. 
pw 

to be discussed later. At this Epw' the lattice constants 

converge to better than 1%, and the cohesive energies and the 

bulk moduli converge to about· 5% (Appendix A). The dependence 

of the cohesive energy of Si onE is shown in Fig. 3. As 
pw 

E increases, the variational freedom of the wavefunctions 
pw· 

becomes larger which gives rise to a lower total energy and 

a larger cohesive energy. The cohesive energy converges rapidly 

when Epw is larger than 10 Ry. The calculated cohesive energies 

(per atom) for the case Epw = 11.5Ry are 4.67 eV and 4.02 eV 

for Si and Ge respectively as compared to the almost fully 

converged values of 4.84 eV and 4.26 eV using Epw = 20 Ry (Table II). 

The differences in cohesive energy .between theory and experiment 

are 0.21 eV for Si and 0.41 eV for Ge. The pseudopotential 

approximation
18 

accounts for errors of the order of 0.05 eV. 19 

The remaining portion of the errors seems to come from the 

local-.densi ty ... functional approximation
2 

and the functional 

form of the exchange-correlation energy, especially for the 

t · 1 1· 36 a omlC ca cu atlons. Even with the spin~polarization effect 

included in the fashion described in Ref. 30 in the atomic 

calculations, the calculated iohization potentials of atoms 

30 
differ from the experimental values by a few tenths of an eVe 



-15-

Comparison of various energy contributions to the total 

energy between an isolated atom and a crystalline atom for 

III 
Siand Ge are given Table /\. The term Epot is the sum of 

E' , EH', and E' [Eq. (15»). The term E , is the energy 
ec cc sp1n 

~ gain resulting from spin polarization of the atom. It is calcu-

lated by taking the total energy difference between the spin-

polarized and the unpolarized pseudoatoms with the valence 

2 2 the 
configuration s p where the form ofAexchange~correlation energy 

proposed by. Gunnarsson and LUndqvist
30 

is used. The term E 'b 
V1 

is the zero-point vibrational energy estimated from measured 

phonon frequencies. 37 As the crystals form, the electrons 

become localized to form chemical bonds, which gives rise to 

an increase in electronic kinetic energy (E
k

, ) and decreases 
1n 

in potential energies (E and E t). We note that both E 
xc po xc 

and E t are essential in stabilizing the crystal. In the 
po 

absence of either one, the crystal would become unstable. The 

contributions from E , and E 'b tend to favor the isolated 
sp1n V1 

atom, but their effects are not dominant. 

Shown in Fig. 4 are contour plots of pseudo valence charge 

densities of Si and Ge in the (110) plane. Because of the 

norm-conserving property of ab initio pseudopotentials, the 

pseudo valence charge distributions are expected to faithfully 

reproduce real valence charge distributions outside the core 

region, and there is no need for core orthogonalization. The 

t 1 t f S ; d G 1 k th "1 38 con our p 0 s or ~ an e 00 ra er S1m1 ar. The contour 

lines in the bonding region are elongated along the bonding 

direction, which agrees with the experimental valence charge 
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density of Si synthesized39 from the x-ray data. 40 

We have calculated the x-ray structural factors of Si 

and Ge by adding the core structural factors to the valence 

structural factors obtained in crystalline calculations. The 

core structural factors are obtained from atomic calculations 

with the valence configuration of s2p2. They differ from the, 

corresponding results using valence configuration sp3 by at 

most 0.006 e/cell, which demonstrates the inertness of the 

core elec1i,rqns as the valence configuration changes. A compari-

son between calculated x-ray structural factors with experiment
40

-
42 

IV 
for Si and Ge are given in Table

A
. The agreement is very 

good. We note that the (222) reflection, which is forbidd"en 

in a simple superposition of atomic charge densities, is well 

accounted for. Our results agree well with other ab initio 

. 34b 43-45 
calculat10ns.' The smaller values of the (222) reflection 

obtained in Ref. 45 may be due to the limited number of Gaussian-

type orbitals used in the wavefunction expansion. 

B. CRYSTAL STABILITY 

IIIB 
As described in Sec. ,total energies at several different 

lattice constants are calculated for seven crystal structures: 

the fcc, bcc, hcp, sc, CD, HD, and s-tin phases. These data 

are then least-squares fitted to the Murnaghan equation of 

27 
state. The fitted total energy curves as a function of atomic 

volume for the seven phases of Si and Ge are shown in Figs. 

5 and 6. The minimum total energy per atom (E . ), the relative 
m1n 

total energy difference ~E . 
m1n 

CD 
(= E. - E . ), and the corre-

m1n m1n 

sponding atomic volume (V . ) for each phase ofSi and Ge 
m1n 

,; 
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are given in Table V . We note that the value of E controllirig 
pw 

the plane wave expansion is 11.5 Ry. For this value, the differ~ 

ence ~E. between phases has already converged to 0.001 eV/atom 
m1.n 

while the absolute 
VIA 

eV/atom (Sec. A ). 

magnitude of E. converges to only 0.02 
m1.n 

Here we neglect the contribution from the 

zero-point vibration which has only small effects on the results 

to be reported. 

The values for the 8-tin phase given in Table VI .and Figs. 

5 and 6 are calculated using the experimental axial ratioS 

(0.5516 for Si and 0.5512 for Ge). Total energy calculations 

.have also been done for 8-tin phases of different axial ratios 

(to be discussed in detail in the next subsection). From these 

calculations of the total energies of the seven phases l we 

find that the CD phase has the lowest E. and iS I thus, the 
m1.n 

most stable phase among the seven phases of Si and Ge. This 

is in agreement with experimental observation. 

Compared to the CD phase, the HD phase has similar tetra-

hedral bonding character and differs only in the positions 

of the third nearest neighbors. It is expected that total 

energies for the two phases should be very close. Our calcu-

lations are not only consistent with this observation but they 

also show that the CD phase is more stable by a small energy 

~ difference (0.016 and 0.015 eV/atom for Si and Ge). The contour 

plot of valence charge density of the HD phase of Si at n t 
exp 

is shown in Fig. 7. The charge distribution is quite similar 

to that of the CD phase (Fig. 4). 

For both Si and Ge, the other five phases are metallic 
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and have E. a few tenths an eV per atom higher than the CD 
m~n . 

phase. The ordering of phases as E. increases is B-tin, 
m~n 

sc, bcc,hcp, and fcc. The V . 's (normalized to ~ t) of 
m~n exp 

the metallic phases of Ge are larger than those of Si. This 

results from the filled 3d bands· in Ge which exert a Pauli-

type repulsion on the valence electrons having d-like character 

as manifested by the more repulsive d pseudopotential of Ge 

(Fig. 1). This effect is more appreciable in the metallic 

phases than in the sp3-bonded CD and HD phases. 

Values of ~E. of a few metallic phases of Si and Ge 
m~n 

have been estimated from thermodynamical data. They are (in 

units of eV/atom) 0.46 and 0.53 for the bcc and hcp phases 

of Si
46a 

and 0.29 and 0.37 for the S-tin and fcc phases of 

Ge46b respectively. These empirical values compare very well 

with our results (Table V). We note that the crystal stability 
in Ref. 35c 

of Si has been reported~ using a pseudopotential empirically 

fitted to excitation spectra. The diamond phase was found 

. 
to be more stable than the S-tin, bcc, hcp, and fcc phases. 

However, the ~E . 's between phases reported in Ref. 35c differ from 
m~n 

the present results and the thermodynamical1yderived results. 46a 

Since the structural properties of Si and Ge are qualita-

tively similar, we will concentrate on the results of Si in 

the following discussion. The contour plots of valence charge 

densities of the CD phase and the five metallic phases of Si 

at 0.751 ~ t are shown in Fig. 8. exp (The contour plot for 

the HD phase is not shown because it is quite similar to that 

of the CD phase.) The maximum valence charge density between 
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nearest neighbors is a useful scale to gauge the covalent character: 

the CD and HD phases have large values of maximum valence charge 

density- and, thus, strongly covalent character. Next come 

the S-tin and sc phases. The bcc, fcc, and hcp phases have 

" the least covalent character. Notice the ~xistence of prominent 

bond charge in the CD (as well as HD), S-tin,and sc phases. 

The valence charge distribution around the atoms in the 

close-packed phases are reminiscent of the valence charge dis-

tribution in the atom. In fact, the charge density resulting 

from a superposition of atomic valence charge densities has 

similar peak positions and values. 

of the charge density so obtained47 

In Fig. 9, contour plots 
are. 

shown in the (110) plane 

for the bcc phase of Si at 0.751 n t and its difference from 
exp 

the corresponding self-consistent result (see Fig. 8). As 

the crystal forms, there is small charge pile-up between nearest 

neighbors. This effect becomes bigger as the covalent character 

increases. We note in passing that the charge distribution 

in the close-packed phases is quite spherically symmetric around 

the atoms, and this supports the use of spherical averaging 

procedures for close-packed crystals in some band structure 

48 
methods such as the augmented-plane~wave method. 

It is instructive to compare the contributions to the total 

energy [Eq. (1 )] for different phases. The comparison of 

the individual energy contributions between the CD and the 

HD phases of Si and Ge at n
expt 

are shown in Table VI. The 

energy terms Ekin , Eli I and E~c favor the CD phase while Exc 

and E' favor the HD phase. The signs of EH'I E' , and E' 
cc cc ec 
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can be explained qualitatively by the observation that the 

distance to the third nearest neighbor is longer in the CD 

phase than in the HD phase. The values of EH' and E' are close, 
cc 

and they are almost cancelled by E' . A slightly more localized 
ec 

charge distribu~ion in the HD phase (see Figs. 4 and 7) seems 

to be the reason for the larger absolute magnitudes of Ek' 
l.n 

and Exc for the HD phase. (The computational error in the 

differences of the various energy contributions and the. total 

energies is about 0.0003 Ry/atom.) Since the total energy 

differences are of the same order as or even smaller than· the 

various energy terms, all energy terms are important in determining 

which of the CD and HD phases is more stable. 

Incidentally, the structural relation between the cubic 

ZnS and hexagonal ZnS phases of ionic semiconductors is the 

same as that between the CD and HD phases of covalent semicon-

ductors. The difference in Ewald energy (E~c) between the 

hexagonal form and the cubic form is reduced (in favor of the 

hexagonal form) by 0.0007 Ry/atom for the III-V compounds and 

0.003 Ry/atom for the II-VI compounds with respect to the covalent 

counterpart at the measured Si volume. These values are comparable 

to the total energy difference between the CD and HD phases 

of Si and Ge. The favorable gain in the Ewald energy seems 

to be the reason why stable hexagonal ZnS structures are found 

in the II-IV compunds, for example, CdS, ZnS, and ZnSe. 

The individual contributions to the total energy for the 

diamond, sc, S-tin, bee, hcp, and fcc phases of Si (at 0.751 

Si G 
0expt) and Ge (at 0.742 0e:pt) are given in Table VII. Note 
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that the change of the energy contributions between different 

phases correlates quite well with the nearest-neighbor distance, 

which in turn is closely related to the coordination number. 

The coordination numbers are 4, 6, 6, 8, 12,- and 12, and the 

... relative nearest-neighbor distances at the same atomic volume 

are 1,1.155, 1.159, 1.260, 1.296, and 1.296. for the diamond, 

sc, S-tin, bcc, hcp, and fcc phases respectively. (The S-tin 

phase has four nearest neighbors and two second nearest neighbors 

at a 6% larger distance.) As the coordination number becomes 

smaller, the nearest-neighbor distance will usually become 

smaller if the atomic volume is kept the same. This causes 

a larger charge pile-up between nearest neighbors and a more 

localized valence charge distribution (Fig. 7). Thus, E
k

. -
~n 

and EH' will increase; E and E I will decrease; and the sum 
- xc. ec 

of these four terms [called the electronic contribution (Ee)] 

will decrease. The Ewald contribution (E~C)' however, will 

usually increase because of the larger electostatic potential 

energy between neighboring atomic cores. In other words, the 

electronic contribution favors phases of low coordination numbers 

while the Ewald contribution favors phases of high coordination 

numbers. Here the bcc, hcp, and fcc phases are regarded as 

one entity because their energy contributions are very close. 

The total energies of the phases depend on the detailed 

balance between the electronic and the Ewald contributions. 

At the particular atomic volumes of Si and Ge (Table VIIr), 

the relatively high Ewald contribution causes the total energy 

of the diamond phase to be larger than those of other phases. 
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Consequently, a phase transformation will occur before the 

diamond phase of Si or Ge, which is the most stable phase at 

zero pressure, is compressed to such small volumes. This topic 

will be discussed in the next subsection. 

C. PRESSURE-INDUCED PHASE TRANSFORMATION 

It is a well-known thermodynamic theorem that the phase 

transformation occurs when the Gibbs free energy 

G - E
tot 

+ PV - TS (12) 

becomes equal between the two phases. By applying this theorem 

to the zero-temperature case considered here, it is easily 

shown that the pressure-induced phase transformation occurs 

along the common tangent line between the Etot(V) curves of 

the two phases under consideration and the negative of the 

slope of the common tangent line is the transition pressure 

Although the HD phase of Si or Ge has the second lowest 

Emin' the common tangent between the HD and the CD energy curves 

either does not exist or has a slope much larger than that 

between the B-tin and the CD energy curves. Consequently, 

the HD phase is not the phase the CD phase will transform to 

under pressure. Since the HD energy curve lies slightly higher 

than the CD energy curve, the HD phase is a metastable phase 

having an equilibrium volume very close to that of the CD phase 

(Table V ). The HD phase of Si has been experimentally observed
lO 

to be metastable. Our calculated equilibrium volume for the 

h .. 11 . h . 10 HD P ase ~s ~n exce ent agreement w~t exper~ment. 
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As can be seen from Figs. 5 and 6, the phase -transformation 

to the S-tin phase has the smallest transition pressure among 

the possible pressure-induced phase transformations from the 

CD phase of Si or Ge. Thus our claculations show that under 

increasing hydrostatic pressure, the CD phase of Si or Ge will 

transform to the S-tin phase among the six possible choices 

for the transformed phase. 

With increasing .applied hydrostatic pressure, the crystals 

of Si and Ge will follow the path 1+2+3+4 as shown in Figs. 

5 and 6. The phase transformation occurs along the path 2+ 

3. This segment represents a mixture of these two phases. 

The initial and final transition volumes (V~ and V~) are deter

mined from the tangent points. The calculated transition volumes 

and transition pressures of Si and Ge are given in Table IX 

1 . h h . 1 1 5,7-9 a ong WJ.t t e experJ.menta va ues. The agreement 

for the transition volumes are excellent. The differences 

between theory and experiment are only a few percent. The 

transition pressures have a larger discrepancy. While the 

calculated transition pressures are for zero-temperature, the 

experimental transition pressures were measured at room temper-

ature. 7- 9 Using the phase diagrams shown in Ref. 49, we 

estimate that the transition pressure may change by <±15% 

,... from room temperature to 0 K. In addition, possible superstress 

effects may cause the measured value to be higher than the 

theoretical value and the theoretical value itself has a large 

uncertainty (Appendix C). Thus, the agreement of the calculated 

transition pressures with experiment is considered to be quite 
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satisfactory. 

There is an interesting structural relationship between 

the CD phase and the S-tin phase. Shown in Fig. 10 is a ball and 

stick model of the diamond crystal structure in dashed cubic 

cells. A tetragonal unit cell can equally well be chosen to 

represent the crystal structure as indicated by solid lines 

in Fig. 10. The space lattice of the diamond crystal structure 

is then body-centered. tetragonal with an axial ratio (cIa) 

of 2. The observed S-tin phases belong to the same lattice 

class but with a much smaller axial ratio [0.552 for Si (Ref. 5), 

0.551 for Ge (Ref. 5), and 0.546 for the real S-tin (Ref. 31)]. 

Calculations have been carried out for several s-tin structures 

of Si and Ge with axial ratios varied within 20% of the observed 

values. The calculated total energy curves of Si for the diamond 

phase and the S-tin phases with axial ratios 0.45S, 0.4BS, 

0.552, and 0.621 are shown in Fig. 11. The energy curve with 

axial ratio 0.46 lies above the other curves. As the axial 

ratio increases, the energy curve moves downward. After the 

axial ratio reaches the value 0.55, the energy curves moves 

upward again. It is clear from Fig. 11 that the transformed 

S-tin phase under hydrostatic pressure has axial ratio close 

to 0.55. When we vary the axial ratio within 5% of the value 

0.55, the calculated total energy curves differ from each other 

by less than 0.4 mRy/atom and are essentially indistinguishable 

from the curve (i) if drawn in Fig. 11. Consequently, the theore

tical estimate of the axial ratio of the pressure-transformed 

S-tin phase of Si is 0.55 ± 5%. A similar treatment has also 
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been done for Ge. The calculated axial ratio is also 0.55 ± 5%. 

These values agree quite well with the experimental values
5 

of o. 552 ( S i) and O. 551 ( Ge) . 

It is instructive to analyze the individual energy contribu-

tions to the total ~nergy as the axial ratio of the B-tin phase 

varies. Figure 12 shows the individual energy contributions 

and total energy of the B-tin phase of Si as a function of 

the axial ratio at a fixed atomic volume (0 71 Q ) The . expt· 

minimum of the Ewald energy (E' ) has an axial ratio of 0.5445 
cc 

at which the second-nearest-neighbor distance is very close 

to the nearest-neighbor distance and the effective coordination 

number is six instead of two or four. It is a rule of thumb 

that the Ewald energy favors high coordiantion numbers and 

evenly distributed atoms in the crystal. The total energy 

also has a minimum close to the axial ratio 0.55 and it is 

a shallow minimum. We may argue that the Ewald energy E' plays 
cc 

a dominant role in determing the equilibrium axial ratio. The 

electronic contribution E serves as electronic screening and 
e 

reduces the effect of the Ewald contribution. This is supported 

by the fact that the observed axial ratios are very close to 

the minimum axial ratio of the Ewald energy. We note that 

the minima of Ekin and Eli and the maxima of E~c and Exc are 

also in the vicinity of axial ratio 0~55, which are related 

to the fact that the valence electrons are more uniformly distributed 

around that axial ratio. 

In contrast, the Ewald contribution does not favor the 

diamond phase. Figure 13 plots the Ewald constant, which is 
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proportional to the Ewald energy for a fixed volume, as a function 

of the axial ratio. While the observed s-tin phase is in the 

vicinity of a local minimum, the diamond phase corresponds 

t 1 1 
. 50 

o a oca maxlmum. This unfavorable Ewald contribution 

is more than compensated by the electronic contribution (E ) 
e 

for the diamond phase at n t as indicated in Fig. 14 in which 
exp . 

we plot the differences between various contributions to the 

total energy of the diamond and the S-tin phase (cia =0.552) 

of Si as a function of atomic volume. Figure 14 also shows 

that Eec and Exc favor the diamond phase and Ekin and Eli favor 

the S-tin phase. When the atomic volume decreases under pressure, 

the system becomes more metallic and the stabilizing effect 

of the electronic contribution (~Ee) for the diamond phase 

becomes weaker with respect to the opposing Ewald contribution 

(~E~C). At the transition pressure, the gain in Ewald energy 

becomes so favorable relative to the S-tin phase that the phase 

transformation occurs, i.e., the Ewald contribution is the 

driving mechanism for this diamond-S-tin phase transformation. 

D. ELECTRONIC STRUCTURES 

In this subsection, we present the results of electronic 

structure calculations for the diamond phase of Si and Ge at 

nexpt · 
31 

The electronic structures of Si and Ge shown in Figs. 

15 and 16 are calculated using a plane wave basis set with 

a kinetic energy cutoff (E ) of 11.5 Ry at which point the 
pw 

overall convergent error of eigenvalues is about 0.05 eVe The 

s-like antibonding conduction state r
2

, has a large convergent 

error. It changes from 3.39 eV to 3.29 eV for Si and from 
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1.01 eV to 0.73 eV for Ge when E is increased from 11.5 Ry 
pw 

to 20 Ry. For Epw = 20 Ry, the overall convergent error of 

eigenvalues is 0.01 eV. (The Schr5dinger equation is solved 

self-consistently for each E .) 
IX pw 

In Table f. we listed the eigenvalues at r, X; and L of 

Si and Ge calculated using E = 11.5 Ry and 20 Ry. These 
pw 

values agree quite well with other ab initio calculations. 34c,45,51-53 

In particular, the differences in eigenvalue between our results 

and the all-electron LAPW calculation52 of Si are only about 

0.1 eV. 

Since the density-functional formalism was developed 

only for ground-state properties, the calculated eigenvalues 

do not correspond directly to elementary excitations. Nevertheless, 

a comparison of the calculated values. with experimental excitation 

spectra may provide some clue to the construction of a fundamental 

theory for elementary excitations. The density of states for 

Si and Ge are displayed in Figs. 17 and 18. The peak positions 

54-56 
agree quite well with the angle-integrated photoemission spectra. 

In Table X , we compare our results with experiments at critical 

points. It seems that the calculated results can explain the 

peak positions in the photoemission spectra rather well with 

an overall error of about 0.3 eV. 

On the other hand, the comparison with the optical measurements 

shows large errors. The calculated indirect gaps are 0.48 eV 

from r to 0.85X for Si and 0.47 eV from r to L for Ge. The 

experimental values are 1.17 ev
57 

from r to 0.82X 58 for Si 

and 0.74 eV from r to L
59 

for Ge. While the calculated positions 
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in the Brillouin zone for the valence band maximum and the 

conduction band minimum are in good agreement with experiment, 

the magnitudes of the energy gaps are underestimated. This 

seems to be a general phenomenon in the ab initio density-

functional calculations. The calculated direct gaps are 2.54 eV ~ 

(r
25

,+r
15

) for Si and 0.73 eV (r
25

,+r
2

,) for Ge. Again, these 

values are lower than the experimental values of 2.74 eV for 

Si 60 and 0.89 eV for Ge,61 but by a smaller amount (0.2 eV). 

IV. CONCLUSIONS 

In summary we present an extensive microscopic study of 

the structural properties of two group-IV elemental crystals: 

Si and Ge~ employing an ab initio pseudopotential method
18 

within . 

the local-density-functional formalism.
2 

Using atomic numbers 

of the constituent elements and a subset ofc~ystal structures 

(diamond, hexagonal diamond, l3-tin, sc, bcc, hcp, and fcc) 

as the only input information, the calculated structural properties 

are in excellent agreement with experiment. They included: 

(i) the static structural properties such as lattice constants~ 

cohesive energies, and bulk moduli; (ii) the crystal stability 

such as the determination of the most stable phase; and (iii) 

properties of pressure-induced phase transformation. 

In particular, our calculations show that the diamond 

phase of Si and Ge is the most stable phase among the seven 

phases under consideration and it will tranform to the l3-tin 

phase under hydrostatic pressure. The transition volumes, 

transiton pressures, along with the axial ratio of the final 

l3-tin phase in the pressure-induced phase transformation agree 
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very well with experiment. We also show that the Ewald energy 

is the driving force for this pressure-induced diamond-S-tin 

1 
phase transformation.· The present results. along with the results 

of lattice dynamical properties demonstrate that not only the 

static structural properties of crystals but also the other 

important structural properties of the crystal stabilitYI phase 

transformation, and lattice dynamics can be accurately described 

from first principles within the local-density-functional formalism. 
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APPENDIX A 

In this appendix, we give the results of the convergence 

test of the static properties with respect to the kinetic energy 

~ 

cutoff (E ) for the plane wave basis set (Table XI ). The 
pw 

lattice constant converges quite fast, e.g., it has already. 

converged to within l%atE
pw 

= 4.3 Ry for Si. At Epw = 11.5 Ry, 

the lattice constants converge to better than 1%, and the cohesive 

energies and the bulk moduli converge to about 5%. 
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APPENDIX B 

In this appendix, we discuss the accuracy of the pseudopo-

tentia1 approximation in which an ab initio pseudopotential 

is used to simulate the interaction between the valence electrons 

and the atomic core. Shown in Fig. 19 is another ·ab initio 

pseudopotential of Si generated
22 

using a reference configura

tion of 3~23EO.53dO.5, and r values (in a.u.) of 1.35, 1.56, 
c 

1.56 for the ~, E, and d component of .the pseudopotential. 

While the pseudopotentials shown in Fig. l(a) and Fig. 19 are 

quite different, the calculated equilibrium lattice constant, 

the cohesive energy, and the bulk modulus differ by only 0.5%, 

1%, and 2% respectively. We have also tested other generation 

62 . 
schemes . for ab initio pseudopotentials and obtained sim~lar 

results. This demonstrates that the structural properties 

do not depend appreciably on the pseudopotentia1 generating 

scheme and the parameters used in the scheme as long as the 

generated pseudopotential is capable of reproducing all-electron 

atomic results for a wide range of atomic configurations (see Sec. III). 

We also note that the pseudopotential approximation works best 

for cases in which the valence wave functions do not overlap 

appreciably with the core wavefunctions as in the present case. 

When the overlaps are not negligible (as in the case of Na), 

significant error will result 63 from the fact that v
xc 

(p)' [Eq. (10) ] 

is a nonlinear function of the charge density. It has been 

Shown
63 

that such errors can be eliminated by including core 

charge effects in the treatment of the exchange-correlation 

potential and energy. 
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APPENDIX C 

In this appendix, we examine the variation of the calculated 

structural properties with respect to the furtctional form of .. 

E [p]. If the exchange-correlation .form (EHL) proposed by xc .. . xc 

Hedin and Lurtdqvist (HL~S used in the calculation of the 
A 

static properties of Si, the resulting lattice constant decreases 

by 1%, and the cohesive energy and the bulk modulus increase 

by 5% as compared to the corresponding results using theWigner 

form EW . 
xc 

The variations in the lattice constant and the cohesive 

energy can be qualitatively explained directly from the different 

functional forms of E [pl. In the zeroth-order approximation, 
xc 

the exchange-correlation contribution to the total energy per 

atom is Z E (p) where Z is the number of .valence electrons 
v xc v 

and p the average valence charge density. compared with the 

wigner form of E
xC

' the HL form decreases faster as ~ increases, 

viz. it favors high charge density and small lattice constant. 

This also leads to a larger cohesive energy calculated using 

the HL form because the overall valence charge density of the 

crystal is larger than that of isolated atoms. 

As for the study of crystal stability, llE\nin between the 

CD and the HD phases varies by less than 10-3 ev/atom when 

different E 's are used. This is because both phases have 
xc 

almost the same equilibrium atomic volume and similar valence 

charge distributions. The difference llE. between the other . . ml.n 

five phases and the CD phase is lowered by about 0~02 eV/atorn 

when EHL is used instead of EW. This results from the fact 
xc . xc 
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that these five phases have smaller equilibriurnatomic volume 

and that EHL favors small atomic volume. Such variations in 
xc 

LlE. do not effect our conclusions about the crystal stability. 
m~n 

Since EHL favors small atomic volume, the ca.lculated transixc .. 

tion pressure for the diamond-s-tin phase transformation using· 

EHL is 10% smaller than that using EW. The transition volumes 
xc· . . xc 

have only small variations, they'decrease by 1% when EHL is 
xc 

used instead of EW . 
xc 

f . f 30 . f [] . d Other unct~onal orms 0 E phave also beenexam~ne , 
xc 

the results are similar to those discussed above. It should 

be noted that the expression of E [p]inEq. (2) is itself 
xc 

an approximation (the local-density-functional approximation 2 ). 
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TABLE I. Eigenvalues and excitation energies of the pseudoatom for different atomic 
configurations of Si and Ge. Energies are in Rydbergs. The method in Ref. 22 is 
employed to generate the pseudopotentials using s2pO.5dO. 5 reference configuration 
and Wigner correlation. 23 The values in parentheses are deviations from the corre
sponding all-electron results. 

Configuration Eigenvalues Excitation energy (6E
tot

) 

s p d 

Si 

3s 2 3p2 -0.7994 -0.3126 0 
(-0.0014) (-0.0006) 

3s1
3p3 -0.8538 -0.3543 0.4932 

(-0.0008) (-0.0004) (0.0006) 

3s13p2.53dO.5 -1.0226 -0.5048 -0.0380 0.7030 
(-0.0008) (-0 ~ 0006) (0.0001) (0.0009) 

3s23po.53dO.5 -1.4851 -0.9420 -0.3364 (0.0009) 
(0.0000) (0.0000) (0.0000) (0.0000) 

3s2
3pO -2.0948 -1.5154 1.7640 

(0.0028) (0.0024) (0.0005) 

Continued on the following page. 
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J t l 

Ge 
-

4s 24p2 0.8350 0.3061 0 
(-0.0015) . (-0.0008) 

4s1
4p 3 0.9202 0.3533 0.5582 

(0.0001) (':"0.0006) (0.0000) 

4s
1

4p
2

4d
1 

1.2155 0.6075 0.0607 1. 0238 
(0.0017) (0.0003) (0.0000) (0.0004) 

4s 2
4pO 2.1342 1. 4745 1. 7218 

(0.0030) (0.0026) ·(0.0002) 
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TABLE II. Comparison of calculated and measured 

static properties of Si and Ge. 

Lattice Cohesive Bulk 
constant energy modulus 

0 

(A) (eV/atom) (Mbar) 

Si 

calculation 5.451 4.84
b 

0.98 
experiment 5.429

a 
4.63 0.99

c 

Ge 

calcl,llation 5.655 4.26
b 

0.73 
experiment 5.652

a 
3.85 0.77

c 

a 
Ref. 31 (0 K) 

b Ref . 32 (0 K) 

c Ref ;, 33 (77 K) 
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TABLE III. Comparison of various energy 
contributions (in units of Ry/atom) to 
the total energy between the (pseudo) 
atom and the crystal for Si and Ge . 

atom crystal . diff. 

Si 

E
kin 

2.518 3.015 0.497 

Exc -1.926 -2.381 -0.455 

Epot -9.095 -8.555 -0.460 

E ' . spJ.n 
-0.058 0 0.058 

EVib 0 0.005 0.005 

E
tot 

-7.561 -7.916 ~0.355 

Ge 

E
kin 

2.511 2.844 0.333 

E -1.910 -2.312 -0.402 
xc 

Epot -8.135 -8.438 -0.303 

E . 
spJ.n 

-0.056 0 0.056 

E 'b 0 0.003 0.003 
VJ. 

E
tot 

-7.590 -7.903 -0.313 
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TABLE IV. Comparison of calculated x-ray structure 

factors for Si and Ge with experiment (in units of 

electron per primitive cell). 

Si Ge 

Theory Expt.
a 

Theory Expt. 
b 

000 28.00 (28.00) 64.00 (64.00) 
111 15.13 15.19 38.85 39.42 
220 17.23 17.30 47.26 47.44 
311 11. 28 11. 35 31. 24 31. 37 
222 0.34 0.38 0.28 0.27 
400 14.76 14.89 40.47 40.50 
331 10.11 10.25 27.37 27.72 
422 13.22 13.42 35.84 36.10 
333 8.92 9.09 24.26 24.50 
511 8.96 9.11 24.28 
440 11.88 12.08 32.14 32.34 

a Refs. 40 and 41 

b 
Ref. 42 

" -, 
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TABLE V. The volumes at the minimum structural energies (V . , normalized to measured 
mln 

free volume), the minimum energies (E . ), and ~E. (= E, - Ed~amond) for the seven 
mln mln mln mln 

plausible structures of Si and Ge. 

Hexagonal 
Diamond Diamond B-tin sc bcc hcp fcc 

Si 

v. 1. 012 1. 015 0.773 0.808 0.736 0.723 0.733 
mln 

E . (Ry) -7.9086 -7.9074 -7.889 -7.883 -7.870 -7.868 -7.867 
mln 

~E . 
mln 

(eV) 0 0.016 . 0.27 0.35 0.53 0.55 0.57 

Ge 
-

V. 1. 003 1.003 0.802 0.839 0.795 0.805 0.816 
mln 

E . (Ry) -7.8885 -7.8874 
mln 

-7.870 -7.866 -7.856 -7.855 -7.854 

~E . (eV) 0 0.015 0.25 0.31 0.44 0.45 0.46 
mln 
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TABLE VI. Comparison between various contributions to the total energy of the 

cubic diamond (CD) and the hexagonal diamond (HD) phase at Q t (Ref. 31). The 
exp 

energies are in units of Ry/atom. 

sum of Ek' , E I E', and E' 
1n xc H ec 

Si 

CD HD 

Ek' 3.0001 3.0007 
ln 

E -2.3782 -2.3784 
xc 

E' 
H 

0.5322 0.5435 

E' 
ec 

-0.6632 -0.6861 

E 0.4909 0.4797 
e 

E' 
cc 

-8.3995 -8.3871 

E
tot 

-7.9086 -7.9074 

\ 

E is the electronic contribution which is the 
e 

Ge 

CD-HD CD HD CD-HD 

-0.0006 2.8295 2.8311 -0.0016 

0.0002 -2.3096 -2.3100 0.0004 

-0.0113 0.5471 0.5587 -0.0116 

0.0229 -0.8920 -0.9156 0.0236 

-0.0112 0.1750 0.1642 -0.0108 

-0.0124 -8.0634 -8.0516 -0.0118 

-0.0012 -7.8884 -7.8874 -0.0010 

.. 

o. ~. 
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TABLE VII. Comparison of various contributions to the total energy (Eq. 1 

for the diamond, sc, a-tin, bcc, hcp, and fcc phases of Si (at 0.751 n~!Pt) 

and Ge (at 0.742 n
Ge 

t). The energies are in units of Ry/atom. E ·is the exp . e 

electronic contribution, which is the sum of Ek' ,E , E
H
', and E' . 

1n xc ec 

diamond 

Si (0.751 n t) 
exp 

Ek' 1n 

E 
xc 

E' 
H 

E' 
ec 

E 
e 

E' 
cc 

E
tot 

3.4195 

-2.5366 

.4200 

0.073 

1.3764 

-9.2394 

-7.8630 

sc S-tin bcc 

3.1081 3.0674 2.9896 

-2.4379 -2.4283 -2.4037 

.1121 .0842 .0332 

1. 0698 1.1928 1. 4199 

1. 8520 1.9162 2.0390 

-9.7330 -9.8046 -9.9085 

-7.8809 -7.8884 -7.8695 

Continued on the following page. 

hcp 

2.9855 

-2.4033 

.0351 

1. 4229 

2.0397 

-9.9075 

-7.8678 

fcc 

2.9855 

-2.4035 

.0356 

1.4235 

2.0412 

-9.9079 

-7.8667 



Ge ( 0 . 742 n t ) 
- exp 

Ek' In 

E 
xc 

E' 
H 

Ei 
ec 

Ee 

E' 
cc 

E
tot 

3.2103 

-2.4651 

.4237 

-0.1138 

1.0551 

-8.9034 

-7.8483 

,. 

2.9414 

-2.3713 

.1266 

.8225 

1.5191 

-9.3791 

-7.8600 

-48-

2.9035 2.8468 2.8470 2.8456 

-2.3507 -2.3378 -2.3380 -2.3377 

.0955 .0451 .0477 .0477 

.9421 1.1395 1.1373 1.1401 

1.5803 1.6935 1. 6940 1.6957 

-9.4481 -9.5482 -9.5472 -9.5476 

-7.8678 -7.8546 -7.8532 -7.8518 
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TABLE VIII. Comparison of the calculated and measured 

transition volumes (Vtd,S) of the diamond andS-phases, 

their ratios (VtS/Vtd)1 and the transition pressures (P
t

) 

for Si and Ge. The volumes are normalized to the measured 

31 
zero-pressure volumes. 

Si 

calculation 

experiment 

deviation 

Ge 

calculation 

experiment 

deviation 

a Ref . 5 

b Refs . 78 

c 
Ref. 9 

V d 
t 

0.928 

0.918
a 

1.1% 

0.895 

0.875
a 

2.3% 

V
t 

S 

0.718 

0.7l0a 

1.1% 

0.728 

0.694
a 

4.9% 

V S/V d 
t t 

0.774 

0.773
a 

0.1% 

0.813 

0.793
a 

2.5% 

P
t 

. (kbar) 

99 

125
b 

-20% 

-4% 
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TABLE IX. Eigenvalues of Si and Ge in eV at r, X, and 

L calculated using E 
pw 

= 11.5 Ry and 20 Ry which cor-

respond to about 180 and 400 plane waves respectively. 

The energies in eV are measured from the valence band 

maximum (r
25

,). 

Si Ge 

E 
pw 

11. 5 Ry 20 Ry 11. 5 Ry 20 Ry 

r
1 

11. 95 -11.93 -12.48 -12.48 

r
25

, 0 0 0 0 

c r
15 

2.54 2.53 2.53 2.55 

c r
2

, 3.39 3.29 1. 01 0.73 

rC 
1 

7.66 7.63 6.45 6.41 

Xl -7.80 -7.78 -8.58 -8.57 

X
4 

-2.92 -2.88 -3.08 -3.04 

XC 
1 

0.62 0.61 0.71 0.73 

XC 
3 

9.99 9.97 9.53 9.54 

L
2

, -9.57 -9.52 -10.39 -10.36 

L1 -7.01 -7.00 -7.42 -7.41 

L
3

, -1.23 -1. 20 -1.41 -1. 39 

L
C 
1 

1.52 1.48 0.51 0.47 

L
C 
3 

3.37 3.31 3.67 3.70 

c 
L

2
, 7.48 7.48 6.96 6.99 



-51-

TABLE X. Comparison of the peak positions in the calcu-

lated valence-band density of states with those in angle-

integrated photoemissionspectra. Energies in eV are 

measured from the val'ence band maximum. 

Si Ge 

Theory Experiment . Theory Experiment 

r 1 
-11. 93 -12.4 

a 
-12.48 -12.6 

a 
± 0.6

b 
± 0.3

b 
-12.5 ± 0.6 -12.8 ± 0.4 

L21 -9.52 -9.3 ± 0.4
b 

-10.36 -10.6 ± 0.9,ga 
-10.5 ± 0.4 

L1 -7.00 -6.4 
a 

-7.41 -7.7 ± 
a 

± 0.4
b 

0.2
b 

-6.8 ± 0.2 -7.4 ± 0.2 

1:1 -4.52 -4.7 ± 
-4.4

c 
0.2a ,b. -4.51 -4.5 ± O.2a ,b. 

X
4 

-2.88 -2.5 ± 0.3
b 

-3.04 3.2 ± 0.2
a 

L3 1 -1.20 -1.2 ± 0.2
c 

-1.39 -1.1 ± 0.2
a 

. -1.4 ± 0.2
c 

a 
Ref. 55 

b 
Ref. 54 

c 
Ref. 56 
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TABLE XI Convergent test of the static pro- . 

perties of Si and Ge with respect to the kinetic 

energy cutoff (Epw) of the plane wave basis set. ~ 

E (Ry) lattice cohesive bulk 
pw 

constant energy modulus 
0 

(A) (eV latom) (Mbar) 

Si 

3.5 5.467 1. 84 1. 76 
4.3 5.386 2.56 1. 29 
6.0 5.394 3.45 0.97 
8.0 5.439 4.11 1. 01 

11.5 5.451 4.67 0.98 

Expt. 
a 

5.429 4.63 0.99 

Ge 

6.0 5.551 2.41 0.89 
8.0 5.599 3.24 0.79 

11.5 5.655 4.02 0.73 

Expt. 
a 

5.652 3.85 0.77 

a 
Refs. 31, 32, and 33 

u 
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Figure Captions 

Fig. 1 Ab initio core pseudopotentials of (a) Si and (b:, Ge 

generated
22 

using the reference valence configura

tion of s2p O.Sd O.S. The letters s, p, and d denote 

the nonlocalpseudopotential for angular momenta 

1 = 0, 1, and 2 respectively. The dashed line de

notes the Coulomb potential of a (fictitious) point

like atomic core. 

Fig. 2 The comparison between the pseudo (solid lines) and 

the corresponding all-electron (dashed lines) rarlial 

wavefunctions for the configurations 3s
2

3P2 and 

3s
1

3p
2

3d
l 

of Si. 

;. Fig .. 3 Convergence test of the calculated cohesive ener~fY 

(E
coh

) 9f 

off (~pw) 

Si with respect to the kinetic energy cut-

of the plane wave basis set (N is the . pw 

approximate number of the plane waves in the basis 

set) . 

Fig. 4 Contour plots of the valence charge density in the 

(110) plane of the cubic diamond (CD) phase of S:. 

and Ge at Q t (Ref. 31). The charge density iL in 
exp 

units of electrons per atomic volumewith.a contour 

step of 1. The black dots denote the atomic posi-

tions and straight lines denote the atomic chainH . 

Fig. S Total energy curves of the seven phases of Si as a 

function of the atomic volume normalized to Q 1 
exp: 

(Ref. 31). The dashed line is the common tangen1: 

of the energy curves for the diamond phase and the 
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S-tin phase (cia = 0.552). 

Fig. 6 Total energy curves of the seven phases of Ge as a 

function of the atomic volume normalized to n
expt 

(Ref. 31). The dashed line is the common tangent of 

the energy curves for the diamond phase and the S-

tin phase (cia = 0.551). 

Fig. 7 Contour plot of the (valence) charge density in the 

(2110) plane of the hexagonal diamond phase of 5i at 

n . t (conventions of Fig. 4). 
exp . 

Fig. 8 Charge density contour plots of six phases of 5i at 

0.751 n t (conventions of Fig. 4). 
exp 

Fig. 9 (a) Contour plot of the charge density of the bcc 

phase of 5i at 0.751 n t constructed from a super
exp 

position of pseudoatomic charge densities. (b) Con-

tour Blot of the difference between Figs. 8(d) and 

9(a) (conventions of Fig. 4). 

Fig. 10 The ball-and-stick model for the diamond crystal 

structure. The dashed lines denote the cubic unit 

cells and the solid lines denote the tetragonal unit 

cell. 

Fig. 11 Total energy curves of the diamond phase a~d the s-

tin phases with axial ratios (i) 0.55~ (ii) 0.621, 

(iii) 0.488, and (iv) 0.458 as a function of the 

atomic volume normalized to n t' The dashed line 
exp 

is the common tangent of the energy Curves for the 

diamond phase and the S-tin phase (i). 

Fig. 12 Individual energy contributions of the S-tin phase 

.. 
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of Si as a function of the axial ratio at a fixed 

atomic volume of 0.71 n t' exp 
(The contribution 

E' has a constant 2.285 subtracted out.) 
ec 

Fig. 13 Ewald constant of the a-tin phase as a function of 

axial ratio (cia). 

Fig. 14 Differences between various cotitributions to the 

total energy of the diamond phase and the B-tin 

phase (cia = 0.552) of Si as a function of atomic 

volume (normalized to n
expt

)' 

Fig. 15 Electronic structure of Si. The numbers refer to 

the conventional indices for symmetry group repre-

sentations. Energies are measured from the valence 

band maximum (r
25

). 

Fig. 16 Electronic structure of Ge. Conventions of Fig. 15. 

Fig. 17 Density of states of Si in units of state/eV-atom. 

Energies are measured from the valence band maximum. 

Fig. 18 Density of states of Ge. Conventions of Fig. 17. 

Fig. 19 Ab initio pseudopotential of Si generated22 using 

1.35, 1.56, and 1.56 a~u. for Yc values ofs, E, and 

3. components. 
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