
Theory of Stress-Strain Relations in Anisotropic Viscoelasticity 
and Relaxation Phenomena 

M. A. BIOT 

Reprinted from JOURNAL OF APPLIED PHYSICS, Vol. 25, No. 11, pp. 1385-1391, November, 1954 



Reprinted from JOURNAL OF APPLIED PHYSICS, Vol. 25, No. 11, 1385-1391, November, 1954 

Copyright 1954 by the American Institute of Physics 
Printed in U. S. A. 

Theory of Stress-Strain Relations in Anisotropic Viscoelasticity 
and Relaxation Phenomena 

M. A. BIOT* 
Shell Development Conzpany, New York, New York 

(Received March 19, 1954) 

A thermodynamic derivation is given for the representation of a system having viscoelastic or relaxation 
properties by means of a potential and dissipation function familiar in Lagrangian mechanics. This leads to 
modes of relaxation which are used as normal coordinates to derive general expressions for operational 
tensors relating stress and strain. A large variety of phenomena involving interaction of diffusion, chemical 
reaction, heat transfer, mechanical deformation, etc., is included in this theory. 

I. INTRODUCTION 

T HE behavior of systems having both elasticity 
and viscosity under applied forces or exhibiting 

relaxation is usually analyzed by considering a simple 
mechanical model constituted by interconnected springs 
and dashpots. An arbitrary system of this type made 
up of a lattice of points connected by such springs and 
dashpots may be considered as an n degree of freedom 
system which is defined by two quadratic forms, the 
potential energy and the dissipation function. It is first 
shown in Sec. II by applying Onsager’s theorem and the 
thermodynamics of irreversible phenomena that this 
model may represent the behavior of a very wide variety 
of phenomena in the process of their response to external 
action in the vicinity of equilibrium. Such phenomena 
may involve the application of external stresses, 
chemical reactions due to departure from chemical 
equilibrium, heat transfer, etc., and the coupling 
between these phenomena. The present treatment 
therefore includes Zener’s theory of thermoelastic 
damping as a particular case. Also included are 
the effects of a liquid solvent which have been found 
experimentally in rock creep tests. We show that we 
may extend the concepts of potential energy and dis- 
sipation function to cover all these cases leading to their 
treatment by the methods of Lagrangian mechanics. 

Section III derives the existence of modes of relaxa- 
tion, i.e., solutions for which all variables are propor- 
tional to a decreasing real exponential of time. Proper- 
ties of decay constants and other properties of these 
modes such as orthogonality are examined. Use of 
these modes is made in Sec. IV in order to solve for 
the forces or external actions in terms of a limited 
number of external or observed coordinates, and it is 
found that the most general behavior of external coor- 
dinates may be represented by a model made of a 
number of Maxwell type materials plus a spring and a 
dashpot all in parallel. 

Section V deals with the stress-strain relations of a 
continuum and introduces the concept of operational 
tensor as a generalization for the elastic moduli of the 
theory of elasticity. 

* Consultant. 

Section VI deals with the particular form of these 
tensors for special cases of symmetry of the material. 
The possibility of multiple symmetry in the same 
material depending on the strain rate is pointed out. 

The results are also applicable to electric network 
theory and give expression for the direct and cross- 
impedances of a 2K terminal RC network. Extension to 
an LC network is also quite straightforward as it 
amounts to replacing p by p2. 

II. THERMODYNAMIC DERIVATION OF THE 
FUNDAMENTAL EQUATION OF RELAXATION 

PHENOMENA 

We consider a general thermodynamic system with n 
degrees of freedom defined by n state variables qi. These 
degrees of freedom are of a quite general nature. They 
may include coordinates, local temperatures, piezo- 
electric charges, concentrations such as induced by 
chemical or solubility processes, etc. Correlatively we 
assume that the system is under the action of external 
forces in the generalized sense denoted by Q; such that 
Qidqi represents the energy furnished to the system. 
These forces may be externally applied stresses, electro- 
motive forces, or may result from deviations of Gibbs 
and chemical potential from the equilibrium state. No 
external forces are associated with the temperature 
variables. 

We also assume the system to be linear, i.e., that the 
coordinates qi and their derivatives are linear functions 
of the forces Qi. The system includes a large reservoir 
at a constant temperature T and the total system is 
closed, i.e., exchanges no heat with the outside. Under 
those circumstances the entropy and the internal energy 
are quadratic functions of the state variables. 

We define the zero level of the entropy for the state 
where all variables are zero and T is the uniform tem- 
perature of this equilibrium state. Part of the state 
variables will be local temperature increments concen- 
tration increments, etc. Where no forces are applied, 
the entropy of the system in the vicinity of the zero 
level is a maximum and we may write 

. . 

TS=-3 fJ aiiqiqi=- VP (2.0 

where V is a positive definite quadratic form. The 
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constant temperature T is introduced here as a factor 
simply for convenience. When forces are applied this is 
replaced by 

TS= -3 5 a+qiqj+& piQ<a (2.2) 

If the system is displaced from the zero level by ap- 
plying the forces very slowly so that the system is 
displaced reversibly by a succession of equilibrium 
states, expression (2.2) would constantly satisfy the 
conditions that the entropy is a maximum, namely, 

dS/dqi= 0. (2.3) 

We now investigate the significance of the linear terms 
in expression (2.2) for the entropy. We separate the 
system into two parts, a system I to which the forces 
Qi are applied and a system II constituted by the large 
reservoir at the constant temperature T. Conservation 
of energy requires that the total heat absorbed by 
system I is 

dh= d UI - t: Qidqi, (2.4) 

where Ur is the internal energy of I. Hence the reservoir 
acquires an increment of entropy 

i Qidqi 
d&I= -d;+x --+-. (2.5) 

Denoting by Sr the entropy of system I we have for 
the total entropy 

(2.6) 

Now in the vicinity of the origin qi=O, for a reversible 
process in which the forces Qi are constantly in equi- 
librium with the system, we have 

(2.7) 

But at the origin equilibrium requires Qi=O by defi- 
nition, hence at the origin 

We conclude for qi=O, 

Tt= Qi= pi. 
i 

Expression (2.2) for the total entropy becomes 

. . 

TS= -Q 2 a+q,qj+k Q<qia (2.10) 

coordinates which correspond to equilibrium conditions 
of the system under those forces. 

We now apply Onsager’s theorem’ to expression (2.10). 
This theorem is concerned with the case where the 
derivatives X5’/dqc are not zero, i.e., where we have a 
departure from equilibrium. These derivatives are con- 
sidered as forces associated with time rates of change 
of the state variables qi. The theorem states that these 
rates are linear functions of these derivatives and that 
the coefficients constitute a symmetric matrix. We write 

with bij=bj<. Since 

(2.11) 

ias .. 
T C -+= $2 bijQi+ D (2.12) 

aqi 

is proportional to the rate of change of entropy which 
is always positive, we conclude that the quadratic form 
D is positive definite. 

The fundamental relation between forces and state 
variables may therefore be written in the general form, 

i a;jqj+ C bij@j=Qia (2.13) 

These equations may also be written in the familiar 
Lagrangian form 

(2.14) 

We see that I’ plays the role of a potential energy and 
D that of a dissipation function. The system therefore 
is represented by a mechanical model of springs and 
dashpots connecting two by two a lattice of n/3 
spatially distributed points with n indepelident coor- 
dinates and corresponding forces Qi applied at these 
points. For simplicity we shall refer hereafter to the 
state variables qi as coordinates. 

III. RELAXATION MODES AND RELAXATION 
SPECTRUM 

The general equations (2.13) are written for con- 

venience 

with 
(3.1) 

(3.2) 

and the time operator 

p=d/dt. (3.3) 

For studying the properties of these equations it is 

By putting equal to zero the derivatives dS/dqi we 
obtain PZ linear relations between the forces and the 

1 S. R. De Groot, Thermodynamics of Imversible Processes 
(Interscience Publia& pc., New Jf&, 1952). 
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important to treat first the homogeneous equations 

(3.4) 

If p is considered as a parameter we see that the homoge- 
neous equations lead to an eigenvalue problem. An 
algebraic equating for the characteristic values of p is 
obtained by equating to zero the determinant of the 
coefficients A ij, 

A=det(AiJ=O. (3.5) 

For the sake of generality we shall say that this equation 
is of the nth degree and that there are n roots but will 
consider that in addition to possible multiple and zero 
roots some of the roots may be infinite. We denote the 
roots of equation (3.5) by --X,. Let us assume first that 
the roots are all distinct, finite, and different from zero. 
The general solution of the homogeneous Eqs. (3.4) 
is then 

qj=2 +j(8)@‘1_ (3.6) 

To each root --X8 corresponds a solution 

qj’“’ +)p+t (3.7) 

which is called a relaxation mode. That the roots --X, 
are real and negative is easily seen as follows. We con- 
sider two modes 

qjw = $ji(8)+l 
7 

qjm +ji(++r~ 
(3.8) 

corresponding to the two roots --X8, --X,. That these 
solutions are orthogonal is established by the usual 
procedure of substituting each solution in the equation 
then multiplying each equation for the solutions 4j(*) 
by c$$~) and those for 4io) by &cs). Adding each set of 
equations gives the two relations 

Because of the symmetry aij= a+ and hip= bj< the quad- 
ratic forms are the same in both equations, and by sub- 
traction of Eq. (3.9) we find that if X, and X, are distinct, 
this implies 

. . 
2 aij$j(8)4i(T) ~5 bij4j(8)4i(r)=0, (3.10) 

These equations express the orthogonality of the 
modes. It is easily verified that they cannot be satisfied 
if the modes are complex conjugates because of the 
property that the quadratic forms are positive. So the 
modes are real. Moreover if we put s=r in (3.9) we find 

x =g aii$i(8)4j(*) v 

8 =- (3.11) 
ij D’ 

M=det[M]=O. (3.13) 

The relaxation constants X, correspond to a set of 
relaxation times which if a great many degrees of 
freedom are considered may be said to constitute a 
spectrum. The spectrum u, of a subsystem will depend 
of course on the particular subsystem which is con- 
sidered as internal. It is also a consequence of the 
properties of the type of matrices involved that the 
roots crs are located between the roots X, because the 
system defined by the matrix M may be considered as 
the original system of determinant A in which k 
restraints, q1 = q2 = . ’ - qk = 0, have been introduced. 

IV. NORMAL COORDINATES AND GENERALIZED 
FORCES 

We perform a change of coordinates from qi to E,~ by 
the n linear relations 

(4.1) 

where +$a,) is the modal column of the sth relaxation 
mode. The 5’s are called the normal coordinates. The 

where V and D are positive definite forms corresponding 
to the potential energy V and the dissipation function 
D (in which we replace 4; by &(*‘t). Therefore, all 
roots --X8 are real and negative. 

Now these properties are not restricted to the case 
where all roots are distinct, finite, and different from 
zero. In case of a multiple root --X, of multiplicity (Y, we 
may determine QI orthogonal modes corresponding to 
this root. Also, in the case of an infinite root we have a 
mode which is simply a column of constants inde- 
pendent of time. The case of a zero root corresponds to 
a solution of the type 

qi(s) = 4j’“‘t. (3.12) 

This will be further clarified by considering the system 
from the standpoint of normal coordinates in the next 
section. 

In most physical systems a great many variables are 
“hidden;” i.e., we do not observe them. External forces 
are only applied to k coordinates ql. + . qk while the n-k 
others constitute what we shall call the internal system. 
This is expressed by writing Eqs. (3.1) in the form _--_--_--_-- 

N I S I-----r---- T I Jz 
---_--_--_-- 

It 
Ok 
1 

:I _ 0 

(3.13) 

The matrix M represents an internal subsystem of 
n-k degrees of freedom which is of the same general 
nature as the total system with its own n-k relaxation 
constants u8 and modes corresponding to roots -us of 
the determinant of the submatrix [M], 
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Lagrangian Eq. (2.14) then becomes 

dV dD 
c+-g=Z” 

s 8 

x 8. 
Cii(8) =&‘“‘+$” 

(4.2) if x a is a single root and 

(4.11) 

where the generalized normal force %, corresponding to Cij(8) &J.,#., 

the coordinate .& is given by 
(4.12) 

is the summation extended to ail the modes of the 

(4.3) multiplicity (Y if X, is a multiple root. The value of C<j 
is the same exnression as (4.11) and (4.12) corre- 

We normalize the 4j(*) columns in such a way that for 
I \ I 

sponding to the infinite roots, single or multiple. From 
each s these expressions it is seen that the diagonal terms 

2 bi3&(8)&(8) = 1 
Cii(‘) and Ci< are always positive and that the coefficients 

(4.4) are symmetric, i.e., 

except for the case where X,= 00 where we normalize by Cij(8)ZCji(S)) CijZCji. (4.13) 
., 

5 a&i(a)~j(8)= 1. (4.5) In expression (4.10) the summation is extended from 

Then we may write for X,# a, 
j= 1 to j= k over all forces Qj which are taken different 
from zero. The k first equations therefore give the 

V=$? X,&2, 

observed variables ~1 and qk in terms of the forces Qr 
to Q,+ applied to those coordinates. 

D=Q & i,2 
(4.6) Now we would like to solve these equations back and 

express the k applied forces in terms of the observed 
. and for X,= “, coordinates. This is best done by going back to the 

v=+ i .$s2, 
original Eqs. (3.13). 

(4.7) 
We consider the subsystem represented by the 

D=O. 
equation 

The Lagrangian equations for the normal coordinates 
are thus the n equations [I[ 1 M 

!ht1 
=o. (4.14) 

57s 

(p+X&=%, 

f,=Z,, 
(4.8) 

where the last equation corresponds to modes of infinite 
root X,. These are n equations which are quite general 
and may correspond to any case of multiplicity of X, or 
to zero and infinite roots. In the case of a! multiplicity 
of a root X, the corresponding Eq. (4.8) is simply re- 
peated (Y times. 

Equations (4.8) are immediately solved in terms of 
the coordinates 

Es 
is=-- 

p+xs’ 
&=&. 

(4.9) 

With these results we may solve the fundamental Eq. 
(3.1) for the variables qi in terms of the forces Qj. 
Substituting & in (4.1) and using (4.3) for Z,, we find 

qi=5 Qj 
i-1’ 

The summation 2 is extended to all the distinct roots With normal coordinates for the subsystem, the 

This system may be represented by its n-k normal 
coordinates Ely-r. . . fn. The complete % degree of freedom 
system may be represented by these normal coordinates 
and by the k coordinates ql. - -qk. The potential energy 
and the dissipation function for this system may then 
be written 

where i and j vary from 1 to k and s from k+l to n. 
As before we note that if one of the roots us of M is 
infinite, the normalization of the mode can be done in 
such a way that the corresponding .&2 term in the 
dissipation function does not appear while there is a 
term tg2 in the potential energy. In that case, however, 
the condition that D is positive definite also requires 
that all coefficient bi,’ corresponding to that mode 
vanish. Similarly since V is also positive definite if 
there are zero values of ua all corresponding coefficients 
ais’ must be zero. 
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equations for the complete system become All diagonal terms of the matrix Tij are positive. This 
may be seen directly from the expression (4.26) for 
Dii(‘)* AS regards Dii and Di[ they must be positive 
because the ratio Qi/qi and Qi/Qi must be positive for 
p=O and p= 00, respectively. Expression (4.25) of Tij 
shows that any relaxation phenomena may be repre- 
sented by a spring, a dashpot, and a sum of a great 
many elements made up of a Maxwell type material 
corresponding to the operator 

All All, 
I 

= 
Akl Akk 

1 AL k+l’ 
1 .&,k+l’ 

--------__~~--________-------- 

Ak+l, I’ husk ; &+I 

I 
I 
I 

‘4 ’ Ank’ i 0 7&l 

____________________-___------ J L ] 

_----------__-___--___--------lr 1 - 

where Aij=aij+pbii, Aii=aid+pbiJ and f18=p+us 
or 1, depending on whether u’s is finite or infinite. We 
now solve the last n-k equations for ,&. If U#,CO, we 
may write 

k Aej’qj 
Ea= -c - 

i-1 p+a, 
(4.17) 

and, if us= oo, 
k k 

Ed= -C Asj’qi= -C asj’qj. 
i=l i-l 

(4.18) 

We also note that, if us=O, 

fs= -5 b,j’qj. 
i-1 

(4.19) 

Substituting these values of .$ in the first k equations, 
we find 

with 
(4.20) 

8 Ai,‘Aaj’ 
Tij=Aii-_C -. 

p+u, 
(4.21) 

If us is zero or infinite for any particular mode the last 
term is replaced, respectively, by 

Ais’Asj’= Ai,lb,jl, 

Ai,lA,jl/p+a,= Ai,‘ad’. 

All coefficients in (4.20) are symmetric 

Tij= Tji, 

The coefficients may be written 

8 P 
Tij=C -Dij’“‘+Dij+Di/p, 

where 
p+u* 

Dij(8)+i(8)$,jLj(8), 

8 aa'a,j' 
Dij= aij- C -, 

Di/= bij-2 bilbsj’, 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(P/P+uJ%(~). (4.27) 

Such a Maxwell material is represented by a spring and 
dashpot in series. We thus have shown that a mechanical 
model of springs and dashpots in series and in parallel 
may represent a very wide variety of relaxation effect 
involving not only mechanical, but chemical, thermo- 
dynamic phenomena, etc., and coupled effects between 
them. 

V. APPLICATION TO THE GENERAL STRESS-STRAIN 
RELATIONS IN AN ANISOTROPIC CONTINUUM 

We shall apply the previous theory to the formula- 
tion of the stress-strain relations in a viscoelastic 
material or more generally to any material exhibiting 
relaxation effects. We assume the deformation of this 
material under stress to be made of the variation of 
many degrees of freedom both internal and external. 
The internal degrees of freedom may be of mechanical, 
chemical, or other physical nature. In this case the nine 
stress components 

%={; $ ;;} (5.1) 

applied to the faces of an elementary cube of material 
play the role of applied generalized forces Qr. . -Qk 
(k=9) considered in the previous section. The nine 
corresponding observed coordinates q1. . -qk are the 
nine components of the strain tensor, 

G={$ ; 311. 

Because of the symmetry 

(5.2) 

fl.UY = uv,, ePv = evlr (5.3) 

we have only six independent components of these 
tensors. We now apply relations (4.20) and (4.25) to 
this material and write 

ij 

with 
(5.4) 

(5.5) 

This is an operational tensor having the following sym- 
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metry properties : 

pN,ii=pvPLp ,,ii, p,++ii= pijwe (5.6) 

These properties are the same as those of the elastic 
moduli of the theory of elasticity and we may therefore 
treat these operators in a similar way. By solving these 
equations with respect to the strain, we shall obtain a 
similar expression with an operator having the same 
form as in Eq. (4.10). 

In expression (5.5) the summation is extended to all 
internal relaxation constants Q~. Since the solid has a 
great many internal degrees of freedom there may be in 
some cases an almost continuous distribution of relaxa- 
tion modes. This will correspond to a spectrum or 
spectral density distribution of the relaxation constant. 
With a density distribution function -y(a) we may write 

This operational tensor is an analytic function of the 
time operator p. The more general representation of 
the operational tensors Ppvii is therefore a set of 21 
analytic functions of p constituting a symmetric six by 
six matrix. Under the integral, due account must be 
taken of the possibility of degeneracy of the modes in 
evaluating the product D,,Yii(a)y(a). From expressions 
(4.26) we see that we may write 

D,,“i(u) =~PY(u)~~~(u). (5.8) 

VI. SPECIAL CASES OF SYMMETRY 

The operational equations (5.4) may be simplified if 
we introduce the assumption that the material has a 
certain degree of symmetry. We shall discuss two 
examples, the case of cubic symmetry and the case of 
isotropy. 

We proceed as in the classical theory of elasticity, 
where in the present case the operational tensor plays 
the same role as the elastic moduli. The relation between 
stress and strain must remain invariant under certain 
symmetry operations. In elasticity a cubic crystal has 
three elastic constants. Similarly in our case cubic sym- 
metry leads to three operational tensor components. If 
we take the coordinate axes along the cubic axes the 
stress strain relations become 

uzz= 2Qed-Re, 

a,, = 2Qe,+Re, 

urz= 2Qe,,+Re, 
uw = 2Se,, 

(6.1) 

uuz= 2Se,,, 

uzz = 2Se,,, 

with e=e,,+e,,+e,,. The three operators are 

,Q=k PQ”+Q+Q’~, 
p+us 

8 pR8 
R=C -+R+R’p, 

p+us 
(6.2) 

8 ps” 
s=c -+s+sp. 

p+u* 
The quantities Q8, Q, Q’, R”, . . . etc. are characteristic 
constants of the material, and us are the internal relaxa- 
tion constants. The summation may be replaced by 
an integration with a spectral distribution. 

In the case of isotropy the number of operators is 
further restricted. The condition of invariance under 
any rotation implies 

Q=S (6.3) 

and the stress-strain relations for the isotropic case 
become 

uzz= 2QeZ,+ Re, 

a, = 2Qe,+ Re, 

u,, = 2Qe,,-l-Re, 

G= 2Qeq, 
q,z=2QeuZ, 
urz= 2Qe,,. 

(6.4) 

The two operators Q and R are invariants of the form 
(6.2) and are the formal analogs of the Lame constants 
in the theory of elasticity. The case of hydrostatic 
stress is obtained by putting 

~zz=~yy=~zz, 

uzy=u~yz=uzz=o, 
(6.5) 

with 

3~=~zCc+%+u,z, (6.6) 
we find 

u= ($Q+R)e. (6.7) 

The operator fQ+R is equivalent to a bulk modulus. 
The existence of this operator in the general form cor- 
respond to the assumption of bulk relaxation or volume 
creep. This may of course occur at high pressure or for 
porous materials. If $Q+R is a constant, then the 
material obeys Hooke’s law under hydrostatic pressure. 
Denoting by K the elastic bulk modulus this requires a 
relation between the operators Q and R, 

jQ+R= K. (6.8) 

Equations (6.4) are then expressed by means of a single 
operator Q, 

uxx=2QezZ+(K-$Q>e, 

u,= 2Qe,. 
(6.9) 

Very often the assumption is made that the material is 
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incompressible. In this case the operator R is infinite 
and e=O, but the product Re is finite and the limiting 
relation (6.7) is 

a=Re. (6.10) 

It is convenient to introduce this negative hydrostatic 
pressure u in the relations (6.4) and write 

gxx- u= 2Qe,,, 

a,-~= 2Qe,,, 

uzz-u= 2Qe,,, 

uw= 2Qew, 
(6.11) 

the operational stress-strain relations and the theory 
of elasticity with respect to symmetry properties. This 
is the possibility of occurrence of multiple or mixed 
symmetry. If we note that PrYii is written in terms of 
the tensor 

D,,ii(a) Dpyii D1 ” Wtlt (6.12) 

it is not contradictory to assume that each of these 
tensors has its own symmetry. The material would then 
exhibit different symmetries, each of which would pre- 
dominate at various strain rates. 
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