
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD874509

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; JUN 1970. Other
requests shall be referred to Army Aviation
Materiel Labs., Fort Eustis, VA.

USAAVLABS per DTIC form 55



o 

>- 

r^ 

S 

USAAVLUS TECHNICAL REPORT 70-6A 

THEORY OF STRUCTURAL DYNAMIC TESTING 
USING IMPEDANCE TECHNIQUES 

VOLUME I 

THEORETICAL DEVELOPMENT 

William G. Flannely 

Alex Berman 

Roger M. Bamsby 

June 1970 

U. S. ARMY AVIATION MATERIEL LABORATORIES 
FORT EUSTIS, VIRGINIA 

CONTRACT DAAJ02-68-C-0106 

KAMAN AEROSPACE CORPORATION 

BLOOMFIELD, CONNECTICUT 

rhi»   !■•■  imrnt i*  »ubii*. i t.i sp»-« lal 
. .purl  i untrul«.     tn-i  <■,*. )i  t i .instnitt.il 

i>. mri-inn govrrnnwrvlH „r (nr^tRn 
natmn-tl* mav  be   n^j'lf .m'^   wilh 
»nor j|>l>f"vAl  L»1   U.S,    Vrciv   A     .ilu-n 

M.it.-ri-l I «borati  rim,    Forl  Funtu, 

—^ / 

KV n. 

ccp   11 efo 

j t--. 
V- c 

15 



Disclaimers 

The findings in this report are not to be construed as an official Depart- 
ment of the Army position unless so designated by other authorized 
documents. 

When Government drawings,  specifications,   or other data are used for 
any purpose other than in connection with a definitely related Government 
procurement operation,  the United States Government thereby incurs no 
responsibility nor any obligation whatsoever; and the fact that the 
Government may have formulated,  furnished,  or in any way supplied the 
said drawings,   specifications,   or other data is not to be regarded by 
implication or otherwise as in any manner licensing the holder or any 
other person or corporation,   or conveying any rights or permission,  to 
manufacture,  use,  or sell any patented invention that may in any way be 
related thereto. 

Disposition Instructions 

Destroy this report when no longer needed.    Do not return it to the 
originator. 

! icctssiw hr 

ICFSII Vh n SOTTIM Gl 

OS BUfT SECTIM fer 

j'j-l"10ll!! ro D 

u' ■' ii IC» m 

i 

•(         
J'.CTJUMTIQU'iiVUIMILm t--'-'■ 

■.(,    I MAIL. M/a iPttlfi! 

^ 



DEPARTMENT OF THE ARMY 
MEAOOUANTERS US ARMY AVIATION MATERIEL LABORATORIES 

FORT EUSTIS. VIRGINIA 23604 

Conventional methods of structural dynamic analysis are Intuitive In 
nature.  Equations of motion are obtained from an assumed model that, 
at best, has only a reasonable comparison to the actual structure. 
Because of their Intuitive foundation, conventional analyses leave much 
to be desired with regard to the adequacy of proposed "fixes" or the 
dynamic effects of modifications such as gun pods, radar units, and 
external stores. 

This contract was Initiated to develop a theory of structural dynamic 
testing which could be used to determine, directly from measurable teat 
data, the equations of motion, elgenfunctions, and natural frequencies 
of a complex structure such as a helicopter. Within the framework of 
the Idealized assumptions, the following major goals have been achieved: 

• Theory derived and proven - an exact method for Identifying the 
parameters in n equations of motion of an n-degree-of-freedom 
linear structure was developed and shown to be theoretically 
correct. 

• Theory shown to be numerically sound • the method of Implementing 
the theory was designed to eliminate ill-behaved matrices and 
excessive sensitivity to experimental or measurement error. 

• Theory found to be experimentally practical - precisely controlled 
statistical computer experiments demonstrated that the theory is 
operable using measured input data of the type comnon to helicopter 
structural testing and with errors in excess of the accuracy of 
available testing equipment. 

A second contract has been awarded with the principal objectives of 
determining the adequacy of the chosen n degrees of freedom and the 
applicability of the theory of nonsymnetrical, three-dimanalonal structures. 
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ABSTRACT 

It is shown that the mass, stiffness and damping parameters 
in Lagrange's equations of motion of an n-degree-of-freedom 
damped linear elastic structure can be determined directly 
from impedance-type test data without prior assumption of 
an intuitive mathematical model.  The damping is assumed to 
be such that the modal vectors are orthogonal with respect 
to damping. 

A method is derived for determination of the exact modal 
eigenvector of the dominant mode at any forcing frequency 
by iteration on the damped impedance measurements in matrix 
form.  A similar eigenvalue equation yields the vector in 
the inverse transpose of the modal matrix; this vector, 
called the gamma vector, is identified with the dominant 
mode.  The generalized masses, stiffnesses and damping terms 
are related to the mass, stiffness and damping matrices of 
the equations of motion through products of the gamma vec- 
tors. 

Using the gamma vectors, obtained by iteration on teat data, 
the natural frequencies and other modal parameters are 
determined. Natural frequencies which are not visible in 
response plots may be determined by this method. 

Computer experiments were conducted to test the sensitivity 
of the theory to errors in input data. 

The work performed under this contract is reported in two 
volumes. This volume contains the theoretical development, 
application of the theory and computer experiments demon- 
strating the theory's practicality. 

Volume II documents the computer program. 
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INTRODUCTION 

Because of the severe rotor-induced excitations, helicopter 
structures and helicopter components must be designed to 
withstand heavy dynamic loadings. The weight, performance, 
structural integrity and overall mission effectiveness of a 
helicopter are affected, in part, by the capability of the 
design engineer to predict and control the dynamic response 
of  the  fuselage  and mechanical  components. 

Although most of  the  dynamic analysis   of  a  helicopter  takes 
place after the  first  static test  ship  is  built,   the  heli- 
copter dynamicist conventionally works with  intuitively based 
equations of motion,   or mathematical models  as  they  are  often 
called,   and relies on  structural dynamic  testing for corre- 
lation and trial  and error improvement purposes. 

To obtain the equations of motion,   the  dynamicist must reduce 
the physical  structure to idealized elements which lend them- 
selves to analytical  treatment.     This  process of abstraction 
requires skill and  judgment and necessarily  involves  consider- 
able uncertainty.     When,   after modifying  the analysis or 
changing the assumptions upon which it  is  based,  the  analytical 
predictions of  structural response eventually agree with  the 
test results,   the dynamicist can use his mathematical model 
to  indicate  structural  changes which might  cure an undesir- 
able dynamic condition. 

This report  shews  that  sufficient  information can be obtained 
from impedance-type  shake testing of an n-degree-of-freedom 
helicopter to determine  the linear,   structurally damped 
equations of motion directly from the  test  information, 
without further  idealizing the helicopter  structure.     The 
only input  information required  in this  theory  is measured 
mobilities  and the  approximate  frequency of  the n-th mode. 
The moda_ eigenvectors   (mode shapes),   "undamped" natural 
frequencies  and damping  coefficients  can  also be determined 
with this  theory using the measured mobilities,  as  these 
quantities  cannot always be approximated directly  from the 
dynamic responses. 

When the equations  of motion can be determined from test 
data in helicopter engineering practice,   the dynamicist can 
avoid most of  the uncertainties of present-day analytical 
prediction of  structural dynamics.     The  interface between 
analysis and test,   which is now largely at  the output end 
of both,  will begin to disappear  as  the  abstraction of 
theoretical analysis  and the physical  reality of testing 



blend more into a single engineering method  for defining 
the helicopter structure and predicting its performance. 
With the consequent increase  in the reliability of dynamic 
prediction, the end-product  helicopter will be produced with 
less  engineering  lead  time,   the user will be  justified in 
placing greater confidence  in the integrity of the ship, 
the  effects of desired  changes will be more  rapidly evalu- 
ated,   the number of  trial  and error  fixes  should be dras- 
tically  reduced» and the  analyst can  improve his  intuitive 
creati.on of mathematical models by one-to-one comparison of 
his  idealized parameters  in  the equations of motion with 
those  actually determined  from the helicopter. 

The work reported herein has  not eliminated  all  idealized 
assumptions:   retained  are  the assumptions  that the  structure 
has  a  finite number of degrees of freedom and that the 
structure can be described by second-order  linear differen- 
tial equations in which the dissipative term is proportional 
to amplitude.    All assumptions,  or prior knowledge,  of the 
magnitude of damping or the magnitudes or distributions of 
mass  and stiffness have been eliminated. 

Methods  for determining equations of motion  from test data, 
a task referred to as  System Identification,  must be numeri- 
cally as well as algebraically manipulatable.    Many theo- 
retically sound procedures,   such as techniques  for reversing 
the dominance of extreme eigenvalues in matrix iteration,  are 
usually numerically impractical on a useful  scale even with 
a computer.    System Identification theories,   to be practical 
in engineering,  must be workable with a reasonable degree of 
experimental error.     This  is a most stringent requirement. 
To test the sensitivity to  input error of the technique 
described in this report,   a  series of computer experiments 
incorporating experimental  errors was  carried out. 



THEORY 

ASSUMPTIONS 

It is assumed,   for the sake of rigor,  either that the 
structure is describable as an n x n linear mathematical 
model, which is tc say,  among other  things,  that it has as 
many degrees of  freedom as there are measured points of 
interest on the  structure   (i.e., the order of the response 
or "mobility" matrices) ,  or that the modes which are 
ordinarily above the  n-th mode,   for  n points of interest, 
have negligible effect on the response of  the n-th mode. 
Violations of  this assumption,  which is more common than 
than not,   in nature,  plague all  lumped parameter analyses. 

It is also assumed that the mass and stiffness matrices 
are symmetrical and invariant with frequency.     It is 
expected but not assumed that both are positive definite, 
that is,  that the stiffness matrix can give rise to only 
a positive potential energy and the mass matrix can yield 
only a positive kinetic energy unless all motions or dis- 
placements are  zero.    An exception in the case of the 
stiffness matrix would be for a system with one or more 
of the six rigid-body degrees of  freedom unconstrained,   in 
which instance  the stiffness matrix would be neither positive 
definite nor negative definite.     This case is neither ex- 
cluded nor considered in this report. 

The theory is also based on the assumption that the damping, 
if any,  is such that the modal eigenvectors   (mode shapes) 
are orthogonal with respect to the damping.    It is not 
necessary that the damping be small.     This assumption re- 
garding damping is both necessary and sufficient for the 
derivation of all the fundamental principles of this approach. 
However,   for purposes of calculation, we can choose to rep- 
resent this damping in any of several accepted fashions 
which do not violate the orthogonality assumption.     Beginning 
with Soroka-'-,   it has been common for aeroelasticians  to 
represent structural or hysteretic damping as a nondimensional 
constant multiplying the stiffness divided by the  forcing 
frequency which puts the damping terms in phase with the 
velocity   (essential for energy dissipation and therefore 'i 
necessity for  all types of damping  terms)   but proportional 
to the displacement.     Many structural dynamicists,   on the 
other hand,  prerer to consider the damping proportional to 
velocity   (viscous damping)  but nevertheless defined as a 
modal property   (see  Raney)2.    The derivations presented 
here use Soroka's representation of structural damping 



with the  coefficients assigned uniquely to each mode. 
This choice was made  to reflect most closely the current 
practices in helicopter aeroelastics work. 

Other representations which  could have been used  include a 
damping coefficient proportional to the generalized mass and 
a coefficient proportional to any linear combination of the 
generalized mass  and generalized stiffness.     Some of these 
representations might be  found to be approximations of 
Coulomb  or  "non-orthogonal"  viscous damping  sufficiently 
accurate  for engineering purposes if  and when there is an 
accumulation of  experience  in the identification of mathe- 
matical model  lumped parameters of helicopters or other 
structures. 

It  is  not assumed that the modes are necessarily  all separated 
so that  their  existence  could be determined from a visual 
examination of any or  all driving-point or  transfer plots; 
in other words,   the  procedure can reveal modes which are 
completely masked.     This  follows  from the  condition,  dis- 
cussed  in the derivation,   that the dominant eigenvalue must 
be greater than   (not necessarily greater  than the sum of 
all)   the eigenvalues  of  the other modes. 

DERIVATION 

Dexivation of  the Modal Expressions  for Mobility 

The equations of  motion of  a  linear  system are 

[m]{y} +   [cHy}  +   [k] {y}  =  {f} (1) 

Assume  a steady-state  solution of the  form 

l'\ /   *  \      i^t ,      rr1 r c X      itOt (y) = iyle   and if} = {f}e 

to give 

fjamlu) - ilk])   +   [c]]{y} =  (f) or   (jlz^l   +   [zIJw)]Hy> 

E   [z(W)]{y} =   {f} (2) 

z..,   v   is called  the  Element  Impedance   (measured at w)   in 
i: (uO 

this work,   and  it  is  seen  from the above  equation that 

z..   =   9f /3y_ 
ID i       J 



-T       T Premultiply Equation  (2)  by   [♦]      (♦)     and poitroultiply by 

[*][♦]"    where   (♦]   is the matrix of modal vectors.     Then 

[*rTrj(mT[m][<nu) - imT{k) m) + .♦)T(cim]Kj"1 - izi 
(3) 

The diagonal   generalized mass  matrix   is given by 

M =   [*lT[m] [♦] (4) 

and the diagonal  generalized  stiffness matrix by 

=   mT[k) [M (5) 

Assume that 

W- 
[<I>]T[cl[*]   = ifgul (6) 

such as would be  expected from structural damping  in a 
lightly damped structure.     Equation   (3)   now be con-.-s 

t2U)l -  " l^fjO^-ilC) ^(«r1 (7) 

Define the i-th modal impedance as 

^i 
Z., . = l(V. CJ - — 1.) +   , 
1 (u)    J  '1     U) l 1      u 

and substitute  into Equation   (3)   to give 

KJ1*1"1 
[z(w)] =   [*]   TU,,^ lit]   J 

The mobility is defined by Y. . = 9y./9f • and is equal to 

the ratio of the velocity phasor along the coordinate i to 
the external force phasor along the coordinate j when no 
other forces are externally applied. 



IY] = ray/afj « [af/ay]"1 = [z]"1 (9) 

Therefore, from Equation (8) it is seen that 

IY, J - I'l'jl-T--! I*]1 i- [#j| Y" .J [<I.]T       (10) (W)J - l^|7 

The modal mobility of the i-th mode measured at ta  is 

_* 

Y*    = Y*R   + -iY*    -   I - Zi^) ri(u) ~ xi(u) 
+ J^Kw) '" *    " (z*   .2 

'Kw)    i(ü3)' 

(z*R   )2+ (z*1   )2 " (^i)2
+ (V-^)2 

i(a))      i(a)) 

. 11 A      
9i L/_2!V——— 

(ID 

Figures 1 and 2 illustrate the influence of the i-th mode 
on the real and imaginary mobilities measured at w.  It is 
seen that the magnitude of the real modal mobility drops 
sharply as the forcing frequency gets further from resonance; 
three orders of magnitude in less than two octaves for 
g ■ .10.  From Equation (10), we write the real mobility, 

(Y^.J = [*][Y*^)Jt*]T d2) (w) 

and we note that because the real modal mobilities of modes 
far removed from the forcing frequency become negligible, 
compared to nearby modes, the real mobility matrix at any 
frequency is usually significantly affected only by modes 
in the vicinity of thn forcing frequency.  Looking at this 
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Figure 1. Dimensionless Plot Showing the Influence 
of the i-th Mode on the Mobility at w 
for g = .10. 



Figure 2.Diinensionless Plot Showing the Influence 
of the i-th Mode on the Mobility at w 
for g = .10. 



another way,   any measured real mobility matrix reflects  the 
influence of  only the most dominant modes  in  that  frequency- 
of-measurement region.     Therefore,   it is numerically im- 
practical  to use the real mobility matrix measured at only 
one  frequency  to determine parameters other  than those 
associated with neighboring modes. 

Figure  1 shows  that  the  effect of  the i-th mode on imaginary 
mobility measurements  far below Q.   is negligible.     However, 
the effect on imaginary mobility matrices asymptotically 
approaches a  constant with  increasing frequency   above fi.. 
An  imaginary mobility matrix contains the effect of all1 

lower modes  in proportion to,   cr greater than,   the magnitudes 
of  their generalized masses.     Therefore,   it  is  numerically 
impractical  to use imaginary mobility matrices  to determine 
properties  associated with natural  frequencies  far above 
the  forcing  frequency. 

Were  it not  for these  characteristics of  the modal mobility, 
it would be possible  to determine  the system parameters  from 
the n equations  in n unknowns obtained from mobility matrices 
measured at any two forcing frequencies.     However,   the pre- 
cision of measurement which would be required  to do this for 
most systems   (say,  six or neven significant figures for a 
decade frequency range)   is  impossible to achieve.     The mode- 
by-mode approach derived below avoids this problem. 

Derivation of  the Dominant Mode Eigenvalue Problem 

Equation   (10)   may be written 

■w = m|>J mT = f^ C^v*1!      (131 

where {(j)} is a column in [$] and N is the order of the 
matrices.  Define ,_, _ r^i'T ard write Equation (8) as 

"W1 = 'z(U)' = mr7r-l[r]T 'I, 7^{Y)i{Y,i (14) 

T i where   {y}   is  a  column  in   [T] .     Note  that   {y].{<t>}-   =   &■   by 
definition of  the inverse. 1       -^ 1 



Similarly, 

N 

iYwrl""?=i^~{Y,i{Y,i 

lY'"'rl=?=i^~lYli{Y,i (15) 

*          T       1 T Each matrix Y.. v{(|)}.{(J)}. and —^  {Y}.{Y}- in Equations 

1(0)) 

(13) and (14) is of rank one, but the summation of as many 
of these successive modal matrices as the order N of the 
matrix is a nonsingular matrix. 

Consider an imaginary mobility matrix measured at a frequency 
w. which is high enough to be significantly influenced by all 
N modes; w. would usually be in the vicinity of or above the 
N-th mode.  Take the inverse of this matrix and postmultiply 
by a real mobility matrix measured at any frequency w. : 

*R Y 

i(wh) 

becomes  the  eigenvalue problem 

It is seen that because   [(^.{y}-   =  <S-/   Equation   (16) 

y*R 
ifu,) [5fL)1'l<)1(^-^ri-wi 

tit     i i(a)h) 
(17) 
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*R     *I Among the quotients Y..  v/Y..  , there will be one quotient, 
i (OJj^ )  i (U)^ ) 

*R    *I say YjV X/YJ, W which is greater than any other:  this J d ( UKJ ' a (u^)' 

is the dominant mode.  If Equation (17) is multiplied by 

N 
an arbitrary vector (x) " I      a.{Y}. and the multiplication 

i=l 1 

is iterated in the conventional manner, the process will 
converge on the eigenvector and eigenvalue of the dominant 

*R    *I mode.  The eigenvalue Y, .  v/Y,.  x is not presently used ddu^r d(ü)h)       
r 

in this theory. The eigenvector is the gamma vector of 
the dominant mode, (Y)J-  Usually, the dominant mode natural 
frequency will be the nearest natural frequency to the 
forcing frequency u. . 

If the dominant mode is removed from Equation.(17) , then 
the iterations will converge on the next most dominant mode. 
Removing the dominant mode from the real and imaginary 
matrices of Equation (16), we write 

X ^(ü^) ^ k k / 

-[,f(v1'1[Y(v,'^<vly<%'I1(*}a{*jS 

y«R 

dd^) h k 

Y*R 

Yd(uh, 

Y*R 
Yd(.k) 

iT/diT;di 

(Y) {^
T 

d      d 
1 

*I 
Yd(V 

Y*1 
Yd(Wh) 

(Y)   {Y}T
rYR      1+    d((^)    r   w   ,T 

d       dl-Y(a)1,)J
+ -*1   {Y}d{Y}d k Y, . d(u,h) 

= Kh)rl-7^{Y}^}Td)tY(V] 
Y
d(a)h) 

/ k 

(18) 
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But 

as can be seen from Equation (13) .  Therefore, 

('V1 - WM„ ,H.). ^iX^ d+l ldli(wh)
J ^ Jd 

Y*R Xcl+l(a)k) 

" Z*l {Y}d+l        (20) 
xd+l(wh) 

where the subscript d+l designates the second most dominant 
mode in the segment of the frequency spectrum defined by the 
eigenvalue. 

The transpose of Equation (16) is an eigenvalue problem, 
the eigenvector of which is the modal vector ((t>)d' The 
eigenvalue of Equation (16) is identical to the eigenvalue 
of its transpose. The modal vector {$)*  is obtained upon 
convergence after iterating using the transpose of Equation 
(16). 

Determination of Modal Parameters 

It follows from Equation (13) that the modal mobilities are 
given by 

K*)]  = = [riTiY(u))][r] (21) 

and,   therefore,   the orthogonality condition for gamma 
vectors  is 

The modal  impedance  of the  i-th mode at w.   is 

12 
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*        Yi(w.)  g^ 1 
zi(co.) =7^—h°^f+i*i"j -h:*i> 

3
 I  1(0).)' J ^ 

3 

It follows that 

ri (^|)  _  ./}^[Yi(a).)J{Y}i 
*■ 

-Y. 
Z*I    -     „ 
i(w.)   i *    12   ,  m „        v2 . , "   T        ,2 

l(w.)      tY^ilYi(a).) J1 :]i      1YV l(üJ.)Jmi 

and 

Y*^  . r .TM 
Z*R    =  j^LJ   =  (Yl^K^jiY^ 
l(Wj)   '^(co.)'2   ^^I^^HY)^2" M^.jHY)/ 

(22) 

Then 

*I *I ?     2 
Wv,Z.,  . - w.Z.,  .  =7J7.(üJV,  - w. ) (23) 
h i (üJh)    j i(tü.)   (i v h    j   ' 

and 

2*1        2*1 2     2 
j     h i(u. )   h ] i( '.)   ui  h    j 

Dividing Equation (24) by (23), we obtain the natural fre- 
quency of the i-th mode: 

*I *I u.Z.,  , to, Z. ,  . 
2  «i         ] i(u)h) -  h IUK) 

1   %    ^ h  a)hZ^  , - w.Z*.  , 
h 1 (U3h) J   i (w.) 
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From Equation   (23),  we  find  the generalized mass of the i-th 
mode: 

i?i = 

*I *I 
ajhZi(a>h)   -  wjZi(u,j) 

5 J w,      -  w, (26) 

The generalized  stiffness  is  found from Equation   (24)   or  by 

*i  =  "i2?i <27) 

The damping coefficient for the i-th mode is most readily 
given by 

*R 

9i = Hi (28) 

which follows directly from Equation (7), and may also be 
obtained by 

2   Z.7 . 
to.   \ i (w. ) (CO.     \  HCO. 

(29) 
i(<0 

J 

Using a measurement of real mobility taken precisely at . 
resonance, we may calculate the damping coefficient from 

9i = ^R Yi(fi.)"iTi (30) 
i 

This follows from Equation (11). 

Parameters of the Mathematical Model 

T Premultiply Equation (4) by [T]   and postmultiply b^ [T] 
to obtain 

N m       N 
[ir.j   = EI^MYMY}?  = E      Iml* (31) 

i«l x      *      x      i-1        1 

14 



In similar fashion, 

N „   N 

i=l 1      1      1  i=l   1 

Set - (d] ■ (c) and note from Equation (6) that 

N T  N 
(d] = L gX{Y}i{Y}

1
i =  E Id].        (33) 

i=l ^^ ^   ^^   ^^   i=l  1 
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METHOD OF APPLYING THE THEORY 

SUSPENDING THE AIRCRAFT 

It is immaterial at this point in the research how the 
aircraft i? suspended except that it is important, of 
course, that the manner of support does not cause the 
aircraft to dynamically couple with other structures such 
as that of the hangar, the floor, or the ground.  If a 
relatively stiff suspension like the landing gear is used, 
then the ship should be parked on a pad of sufficiently 
high impedance that, for the frequency range tested, it may 
be considered infinite; then the landing gear component 
impedance terminates at ground. 

Soft suspension may, of course, be used to simulate the 
aircraft in free flight, and this is the common procedure. 
However, as shown previously in the derivation, the imag- 
inary mobility at every frequency is affected by the modes 
of all lower natural frequencies, no matter how low.  It 
follows that the conventional criterion for free flight 
simulation (that the suspension natural frequency must be 
very low compared to the lowest flexural natural frequency) 
is a necessary condition but not a sufficient condition for 
free flight dynamic simulation in any dynamic test. No 
further consideration is given to this question in this 
report. 

TEST SETUP 

Choosing the Points 

The dynamicist selects n "points of interest" on the struc- 
ture.  These correspond to the points he would use in a 
conventional analysis and include the points at which the 
major forces of flight would be applied and the points at 
which response is of greatest consequence to the mission 
of the aircraft.  For example, the hub and the pilot's seat of 
a helicopter would certainly be among the points of interest. 

A motion transducer (e.g.,accelerometer) is placed at each 
of the n points of interest and is oriented in the direction 
of motion for which the equations are to be written. A 
unidirectional exciter is placed at one of these points of 
interest and is oriented so that the line of action of the 
impressed ^rce coincides with the principal direction of 
the transducer at that ;.oint.  The shaker provides the ^nly 
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external for^e excitation (restraint reaction forces are not 
considered jjtcitation), and only one shaker is used. 

The aircraft is excited over a frequency spectrum encompassing 
as many modes as there are points of interest.  The time 
rate-of-change of frequency should be slow enough in the 
frequency bands of interest so that the dynamic response is 
essentially in a steady state.  The force and the motion of 
the n selected points are recorded. 

The test is repeated for force excitation at each of the n 
points of interest, forcing at only one point each time. 

Recording the Data 

Although it would be possible to completely automate the 
procedure from the taking of test data through identification 
in the computer, a large amount of equipment and data storage 
would be required.  Fortunately, by including a few manual 
steps, the procedure can be carried out with a minimum of 
present state-of-the-art measurement equipment and data 
storage devices. 

The first step is to run a complete frequency sweep of the 
structure, with the shaker at only one position, and record 
or observe the responses at each of the n instrumented points. 
By noting the changes in the phase meter reading versus fre- 
quency or plotting the quadrature readings for several of 
the n responses in the manner of Kennedy and Pancu^, the 
engineer can determine the approximate natural frequencies 
of the first n modes. 

He then takes measurements of n responses and the force in 
a relatively narrow frequency bandwidth around each natural 
frequency and at a high frequency w. which is above or 
slightly below the n-th mode.  The shaker is moved to 
another of the n points and a similar set of measurements 
is recorded.  This process is repeated until the structure 
has been excited at each of the n points of interest.  The 
data obtained are digitized and put in the form of a real 
and an imaginary mobility matrix for each selected frequency. 

It is not necessary to digitize and store all the information 
at once.  The only two mobility matrices that must be stored 
in the computer throughout the identification process are 
the real and imaginary n x n mobility matrices for w. . 
All other data can be digitized, put into matrix form, and 
provided on demand for computation after which they can be 
discarded. 
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THE IDENTIFICATION PROCESS 

Figure 3 illustrates the logic steps in the identification 
process (it is not a flow chart for a computer program). 
The first step is to obtain the imaginary mobility matrix 
at the high frequency u. .  Then take the real and imaginary 
mobility matrices at any frequency and iterate, using 
Equation (17), to obtain the gamma vector of the dominant 
mode at the chosen frequency.  From Equations (22) and (25) , 
an estimate of the identified natural frequency Ü.  of the 
dominant mode is determined. 1 

If the identified natural frequency ß. is acceptably close, 
in terms of a chosen criterion, to thl forcing frequency 
at which the mobilities were measured, then the modal 
parameters are calculated and stored.  If the forcing fre- 
quency is not acceptably close to the identified natural 
frequency, then the mobilities at another frequency in that 
range are taken and the calculation repeated.  The forcing 
frequency may be considered acceptably close to the natural 
frequency when the calculations at several successive fre- 
quencies yield the same identified natural frequency and 
gamma vector within very small percentage deviations. 
"Acceptably close", as will be shown later in this report, 
might be 20 percent above or below the natural frequency 
depending on the accuracy desired and the number of fre- 
quencies at which measurements were taken.  However, with 
modern recording equipment, there is little excuse for not 
having measurements within a cycle or two of the natural 
frequency, particularly as the sweep can be nearly continuous 
along a band containing the natural frequency. 

When the modal parameterö of the dominant mode in the chosen 
frequency bandwidth are calculated, the calculations move on 
to the next measured bandwidth and so on until n modes have 
been covered. 

Although the choice of the first bandwidth to be considered 
and the choice of the first forcing frequency within that 
bandwidth are completely arbitrary in the theory, it would 
be logically simplest to begin with the lowest measured fre- 
quency in the lowest bandwidth and progress successively 
upward in frequency. 

When all n modal mass matrices, damping matrices, and 
stiffness matrices are calculated, they are summed according 
to Equations (31), (32), and (33) to give the coefficients 
in the equations of motion. 

18 



****>   ^]%)
]
'   

[Y
(%)

] 

1 READ ^t)1'1^)1 

I 
ITERATE TO 
OBTAIN {y}. 

(AND {(j)}i) 

CALCULATE 
—i 

CALCULATE 
[m]*,[k]*, 

[d]J 

GO TO NEXT 
FREQUENCY 

BAND 

wn I 

|    CALCULATE           1 
n 

|     [m] =   Z 
i= 
n 

[m]t 

1 

1     [k] =   Z 
i= 
n 

[klH 
1 

1     [dl 
—     V 

i= 
td]i 

=1         1 

Figure 3.  Chart of Identification Procedure, 
19 



TESTS  OF THE THEORY 

COMPUTER EXPERIMENTS 

Advantages  and Disadvantages 

A  series of  computer  experiments was  designed to test 
the practicality  of  this  theory,  within  the  limitations 
of  the assumptions,   both  in terms of  the numerical operation 
on a computer and   in terms of unavoidable experimental error 
in measuring mobility.     The computer experiments offer very 
significant advantages  over laboratory  experiments at this 
stage of research.     Computer experiments  allow use of a 
control model  for which  the exact answers are known,   thereby 
making  it possible  to evaluate the  accuracy of  the  identified 
parameters.     The  computer experiments can be conducted with 
complete knowledge  of  the types  and magnitudes of  input 
errors,   something which would not be known in a  laboratory 
test.     Because  the  computer experiments  can be run at very 
low cost and at very high speed,  more  information per dollar 
can be determined  and  the experiments can use a more com- 
plicated type of  structure than would be practical  in 
laboratory experiments  designed  to  test  the  theory. 

The major disadvantages to computer experiments are that 
they must be based on certain analytical assumptions and 
that they cannot, of course, simulate the degree of reality 
that physical experiments reflect. Computer experiments 
cannot prove that an engineering theory is practical but 
they can prove that it is impractical, should that be the 
case,   in a most  efficient and informative manner. 

Simulated Test  Data 

A  9000-pound-gross-weight helicopter  stiffly  suspended at 
its main landing  gear  and tail gear was used as the analytical 
test model.     The El  and mass parameters  shown in Table  I 
are based on the  parameters of  the Kaman UH-2  single-rotor 
utility helicopter,   which  is  structurally typical of  heli- 
copters of  its  class. 

The relatively  stiff  supports at the  landing gear  stations 
simulate  a  jack-type  suspension resting  on concrete pads 
which have  essentially  infinite ground   impedance over  the 
frequency range  tested.     When identification has been com- 
pleted,   the  jack  stiffnesses  can be  subtracted directly  from 
the  stiffness matrix  to give  the  stiffness matrix of  the 
free body.     This   can  be  accomplished by  replacing the 
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diagonal term at the support locations by minus one times the 
sum of the off-diagonal terms in the row or column.  The 
chosen stations, or points of interest, were selected to 
include the pilot's seat, main rotor hub station, main and 
tail gear, tail rotor and significant mass concentrations 
on the helicopter. 

The helicopter was represented as an elastically continuous 
Bernoulli-Euler beam in transverse bending with 1/EI varying 
linearly between the stations listed in Table I and with up 
to 5 percent structural damping.  The masses were concentrated 
as shown in Table I.  The mobilities of this beam were cal- 
culated over the frequency spectrum and statistically polluted 
with errors to simulate test measurements. 

|       TABLE I.  MASS AND STIFFNESS PARAMETERS 
REPRESENTATION OF HELICOPTER 

OF BEAM 

i                                                           i 

Station 
(in.) 

Stiffness 
EI   2 (lb-in.  x 107) 

Masses 
(lb) 

Spring Rate    } 
to Ground 
(lb/in.)      1 

1  0 350 11.2 - 

60 350 2840.0 | 

140 3000 2530.0 10,000       j 

180 5700 2000.0 1 

220 5600 1205.0 1 

260 3600 203.0 ~ 

300 2600 65.6 i 
340 1600 46.0 - 

400 650 92.0 10,000 

460 500 115.0 1 
1 
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ERRORS USED 

Types 

Measurements of the complex mobilities will be subject to 
experimental errors of various types such as errors in 
calibration/ errors due to the capacitive reactance of 
loads, errors resulting from mismatching of equipment, 
errors due to extraneous signals, and errors due to random 
noise. Some errors will depend on such variable environ- 
mental conditions as temperature and humidity. 

In general, all errors can be divided into two classes: 
"random" or "accidental" errors which, in a large number 
of replicated measurements, are likely to be negative as 
often as positive; and "systematic" or "bias" errors which 
bias the arithmetic mean of many measurements. Both types 
of measurement errors have been incorporated in this study. 

There is no definitive probability distribution for errors 
of each type in impedance testing practice. Private dis- 
cussions with several authorities in the fields of impedance 
testing yielded estimates of maximum accidental error ranging 
from plus or minus a few percent to plus or minus 10 percent. 
Estimates of maximum accidental phase angle error were 
vaguely stated either as plus or minus a few degrees or 
plus or minus 1 degree. Proper test conditions were assumed. 

It would have been reasonable to have assumed the accidental 
measurement errors to be distributed according to the Gauss- 
Laplace law but, to simplify the calculations, the authors 
distributed the accidental error in a purely random manner 
using a random number computer subroutine. The resulting 
rectangular distribution of accidental error between the 
selected limits is very conservative compared to the cus- 
tomary definition of the limits at three standard deviations 
from the mean of a Gaussian curve. 

Magnitudes 

Using the very limited information available, the authors 
selected an 8 percent bias error on the absolute value of 
the amplitude/force ratio as reasonably representative of 
the bias error that could be expected in an impedance test 
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on a helicopter. An accidental error of plus or minus 8 
percent on the absolute value of the amplitude/force ratio 
distributed randomly was considered to be a conservative 
representation of the accuracy attainable.  An accidental 
error in phase measurement randomly distributed between 
plus and minus 2 degrees was judged to be within the present 
state of the art. 

No bias error on phase angle was used because analysis 
showed that phase bias has a negligible effect in the 
operation of this theory. 

In the course of the study, computer experiments were run 
on the developed impedance theory using errors ranging from 
plus or minus 2 percent to 10 percent randomly distributed 
on amplitude/force, bias errors from 2 percent to 10 percent 
on amplitude/force, and randomly distributed phase errors 
from plus or minus 1 degree to plus or minus 5 degrees. 

Bias Phase Error 

Wv A real driving point mobility measured at a  frequency wh 
greater than the n-th natural frequency may be expressed as 

YR « 2_ 
kka),        w. 

n-1     ß. ? i       ^     2 + 1  fi   \      ^kn 
i-i^h2 ki   ^nVv WL 

(M n 
(34) 

and the  imaginary driving point mobility as 

w. 

Y - — kkco 

-1 
,   n-1 4). . '     ,   /cü,   \ ß 

h   whi=ifi     ^n,,2/ 2, 

n 

(35) 

It is seen that each of the first n-1 terms in Equation (34) 
is less than each corresponding term in Equation (35) by one 
or more orders of magnitude for values of g equal to or less 
than 10 percent.  Unless w, is within only a few percent of 
the n-th natural frequency, the last term in Equation (35) 
will be larger than the last term in Equation (34) . There- 
fore, we can expect the real driving point mobilities at w. 
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to be  substantially smaller  than the  imaginary driving  point 
mobilitiess.     In general,   this  relationship will hold true 
for  the off-diagonal terms  also. 

If the phase angle a is in error by a constant small amount 
e, the measured imaginary mobility at high frequency can be 
expressed  as 

Yklu)h measured =   'Y!klwh  sin(a +   e)   "  Ykla)h 
+   GYklcüh   (36) 

R I 
But Y, T        is  small compared  to Y, ,      ,   and e  is a  small 

klto. r kl<Jüh 

number  in   the  neighborhood of   .05   radian.     The  difference 
between  the exact  imaginary mobility at high frequency 
and that  calculated with a  small phase angle error   is  the 
product of   two  small numbers.     Thus,  we can conclude  that 
high  frequency  imaginary mobility  is negligibly affected by 
phase  error. 

However,   a bias  phase angle  error can have a very  significant 
effect on  the magnitude of  the  real mobility elements.     The 
kl-th measured  real mobility  is  given by 

YJS O  =   |Y|, , (a +   e)   =  YJ*.     -   eY^ (37) klu) measured       '   'klw cos klu klto 

Because e is a bias phase error which is the same for every 
element.   Equation   (37)   can be written in matrix form as 

[YR] ,   =   [YR]   -   efY1] (38) w measured or w 

Premultiplying  Equation   (38)   by  the  inverse of  the   imaginary 
mobility  matrix measured at high  frequency,   w.    gives  the 
following  expression for the  eigenvalue problem of   interest: 

I   j-ljyR] =   [yI   ]"1[YR]   -   e[YI   ]"1[YI) (39) 1   co, L
(JO

J
 measured co, co w^ co 

But the eigenvectors of the first term and the eigenvectors 
of the second term are identically gamma.  The eigenvalues 
of Equation (39) are not used in the theory, and the eigen- 
vectors are the same whether or not the bias phase error e 
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is zero.  Bias phase error has therefore not been included 
in the computer experiments. 

THE GAMMA VECTOR 

As shown in Figure 3, the gamma vector is calculated by 
iteration using Equation (17) at each frequency of measure- 
ment u. .  Figure 4 shows the manner in which the elements 
of the gamma vector vary versus frequency when calculated 
from input mobility data having 8 percent bias error and 
+8 percent random error on absolute amplitude and +2° random 
phase angle error.  The frequency range covered in Figure 4, 
1 to 30 cps, shows a performance that is typical throughout 
the entire range from 1 to 1400 cps.  Three of the ten 
stations were eliminated from the plot of Figure 4 for pur- 
poses of clarity. 

We notice in Figure 4 that the elements of the gamma vector 
become very nearly equal to the exact elements of the gamma 
vector of the dominant mode in the vicinity of a natural 
frequency.  Only in those frequency bands where the degree 
of dominance of any one mode is eclipsed by the error range 
of the data do the magnitudes of the gamma vector elements 
fluctuate wildly.  As can be seen in Figure 4, these bands 
are narrowly confined: e.g., 4 to 6 cps, 13 to 16 cps. 

Figure 4 does not clearly show how close to the exact gamma 
vector the calculated gamma vector becomes at a forcing 
frequency near the natural frequency.  Therefore, Figures 5 
through 14 show comparisons of the exact gamma vector of 
each mode to the gamma vector calculated at the nearest 
forcing frequency to the natural frequency.  The input 
mobility data is from a randomly selected case having the 
error ranges mentioned above. 

In Figures 4 through 14, the gamma vectors are normalized 
on the largest element.  It is evident from the derivation 
that the manner of normalization of the gamma vector is 
entirely arbitrary in this theory. 

NATURAL FREQUENCIES 

For each gamma vector that is obtained, the natural frequency 
of the dominant mode is calculated using Equation (25). 
Figures 15 through 17 snow the exact natural frequencies as 
lines parallel to the ordinate lines and parallel tc the ab- 
scissa.  The calculated values of natural frequency cluster 
closely about the true value except in narrow bands between 
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Figure 5.    Gamma Vector of  the First Mode 
Calculated at 3 cps Using Mobility 
Data With Error Ranges of 8% Bias 
and +8% Random on Amplitude and +2° 
Random on Phase Angle.    The Damping 
g is  5%. 
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Gairaua Vector of  the  Second Mode 
Calcal^te-  at  9 cps Using Mobility 
Data   With .^i-ror Ranges of   8% Bias 
and  *H% Random on Amplitude and +2° 
Random on Phase Angle.     The Damping 
g  is   5%. 

28 



+1.0 

EXACT 

CALCULATED 

-1.0 
100 

Figure 7. 
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Gamma Vector of the Third Mode 
Calculated at 21 cps Using 
Mobility Data With Error Ranges 
of 8% Bias and +8% Random on 
Amplitude and +2° Random on 
Phase Angle.  The Damping g 
is 5%. 
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Gamma Vector of the Fourth Mode 
Calculated at 40 cps Using Mobility 
Data With Error Ranges of 8% Bias 
and +8% Random on Amplitude and +2° 
Random on Phase Angle.  The Damping 
g is 5%. 
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Gamma Vector of the Fifth Mode 
Calculated at 100 cps Using 
Mobility Data With Error Ranges 
of 8% Bias and +8% Random on 
Amplitude and +2° Random on 
Phase Angle.  The Damping g 
is 5%. 
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Gamma Vector of the Sixth Mode 
Calculated at 150 cps Using 
Mobility Data With Error Ranges 
of 8% Bias and +8% Random on 
Amplitude and +2° Random on 
Phase Angle.  The Damping g 
is 5%. 
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Gamma Vector of the Seventh Mode 
Calculated at 190 cps Using 
Mobility Data With Error Ranges 
of 8% Bias and +8% Random on 
Amplitude and +2° Random on 
Phase Angle.  The Damping g 
is 5%. 
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Figure 12. Garrana Vector of the Eighth Mode 
Calculated at 310 cps Using 
Mobility Data With Error Ranges 
of 8% Bias and +8% Random on 
Amplitude and +2° Random on 
Phase Angle. The Damping g 
is 5%. 
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Gamma Vector of the Ninth Mode 
Calculated at 550 cps Using 
Mobility Data With Error Ranges 
of 8% Bias and +8% Random on 
Amplitude and +2° Random on 
Phase Angle.  The Damping g 
is 5%. 
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of 8% Bias and +8% ^ndom on 
amplitude and +2° Random on 
Sase Angle. The Damping g 
is 5%. 
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the modes, such as at 5 cps where neither the first nor the 
second mode is clearly dominant. 

Figures 15 through 17 illustrate the process of identifica- 
tion which is examined in this report.  Consider that we 
know that there are ten modes between 0 and 1500 cps, but 
we do not know precisely the values of these natural fre- 
quencies.  At 1500 cps we measure a ten-by-ten matrix of 
mobilities which we call [Y.  . 1. 

(uh) 

We take the ten-by-ten mobility matrix measured at 1 cps 
and determine the gamma vector which we use in Equation (25) 
to predict the first natural frequency at 3.24 cps.  Now we 
take the measured ten-by-ten matrix of mobilities at 3 cps, 
the closest frequency to 3.24 cps for which we have measure- 
ments, and predict the first natural frequency to be 3.15 
cps.  Because the forcing frequency in this case, 3 cps, is 
very close to the predicted natural frequency, we accept 
3.15 cps as the correct value.  The gamma vector determined 
from the data taken at 3 cps is considered to be the first 
mode gamma vector. 

Similarly, using data at 6 cps, we predict a natural fre- 
quency at 9.289 cps, so we take the data at 9 cps and predict 
the natural frequency to be 9.102 cps.  The gamma vector 
found at 9 cps is then accepted as the second mode gamma 
vector. This process is continued throughout the range. 
It would have been possible to begin at any arbitrary fre- 
quency rather than calculate the modes in sequence, but 
there seems to be no advantage in so doing.  Note that the 
calculations pertaining to any given mode are independent 
of the calculations pertaining to the other modes. 

With a little care and some confirming calculations at 
additional frequencies, we will avoid the confusion that 
might result from operating at "crossover" frequencies 
such as at 5 cps. 

Table II shows a possible sequence of calculations of the 
natural frequencies.  In these experiments, mobility data 
were measured in simulation at once every cycle per second 
between 1 cps and 30 cps, once every 10 cycles per second 
between 30 cps and 400 cps, and once every 50 cycles per 
second between 400 cps and 1400 cp . 
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\         TABLE II. NATURAL FREQUENCY PREDICTIONS USING MOBILITY 
DATA WITH 8 PERCENT BIAS ERROR, +8 PERCENT   | 
RANDOM ERROR AND +2° RANDOM PHASE ERROR      1 

I                                                              I 

■Forcing Frequency at 
Which Measurements 

Were Taken 
!     (cps) 

Predicted Natural 
Frequency 

(cps) 

Exact Natural 
Frequency  j 

(cps)    j 

1 

1       3 3.24 
3.15 3.14    j 

i        6 
|       9 

9.29 
9.10 9.10    I 

I                14 

1       21 
20.80 
20.80 20.80 

I                40 
i      50 

41.10 
41.20 

4i. n 

i      70 
100 

101.90 
101.30 101.40    ! 

\             130 
150 

153.30 
154.90 154.90    | 

1      180 
1     190 

190.10 
190.10 190.10    | 

1      250 
310 

314.10 
309.30 309.40 

i     450 
1      550 

560.70 
561.90 562.30    j 

900 
1250 
1150 

1231.60 
1147.50 
1145.20 1145.10    | 

i            - - ., ...     _....,           .    ,_1 
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IDENTIFICATION OF DAMPING COEFTICIBNT 

Th« itruotur«! damping coefficient if d«t«rmin«d using 
Equation (29).  If th« itructur« has a type of damping 
such as viscous damping which cannot b« rapvasanted using 
a scalar multiplier, then the damping term may be Approxi- 
mated by identification of a different damping coefficient 
for each mode. However, in the test case used in this 
study, we employed the conventional representation of 
structural damping as a scalar multiplier of the stiffness 
matrix in phase with the velocity. 

Table III shows the identified values of damping coefficient 
for each of the modes of s structure with a constant 5 per- 
cent structural damping coefficient. The input mobility data 
had an 8 percent bias error and a +6 percent random error on 
amplitude *nd a +2* random phase error. 

TABLE III. IDENTIFIED STRUCTURAL DAMPING COEFFICIENT USING 
MOBILITY DATA WITH 8% BIAS AND -»-8% RANDOM ERROR 
ON AMPLITUDE AND +2° RANDOM PHASE ERROR.  EXACT 
VALUE OF DAMPING COEFFICIENT IS .050. 

i                                                         ■ 

Exact Natural 
Forcing Frequency at 
Which Measurements   Identified Value 

Frequency 
(cps) 

Were Taken          of Damping 
(cps)           Coefficient       i 

3.14 3 .051 

9.10 9 .050 

20.80 21 .049 

41.10 40 .050 

101.40 100 .048 

154.90 150 .045 

190.10 190 .050 

309.40 310 .049 

562.30 550 .048 

1145.10 1150 .049 
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IDENTiriED MASSES AND STIFFWESSES 

Figur« 18 shows th« idtntifled mma»  matrix obtalnsd using 
a typical oasa of input mobility data pollntad with 8 par- 
osnt random and bias srror on amplitud« and 2* random phasa 
«rror. Comparison with th« axact mass matrix, shown in 
Plgura 19, shows raasonably olosa agraamant. Tha idantifiad 
mass matrix is fully populated, but th« off-diagonal tarms 
ars all of small magnitude. 

Tha question naturally arisas whathar by pura chanoa tha 
random «rrcrs in this randomly s«l«ct«d cas« so fell as to 
yield an unusually accurat« identificaticn. To statistically 
study the effects of random input error, the computer was 
programmed to make identifications from 25 simulated rep- 
licated tests with errors of +8 percent random and 8 percent 
bias on amplitude and +2* phase angle error in the input 
mobility data. 

In Figures 20 through 30, the exact value of the identified 
parameters is shown as a circle, the mean of the identified 
parameters as a short horizontal line, and the range of six 
standard deviations (+3 standard deviations) as a vertical 
line. 

The mean value is the "expected value".  It is most probable 
that the identified parameters from any one test will fall 
close to the mean.  The probability of the magnitude of any 
identified parameter falling at or beyond the extremities 
of the vertical line is less than three parts in 1000. 

In Figure 20, the range of error in the identification of 
the diagonal masses remains small over three orders of 
magnitude.  The off-diagonal stiffness terms, urlike the 
off-diagonai mass terms, are not very small.  Therefore, 
all the stiffness terms are shown, column by column, in 
Figures 21 through 30. 

The mean of the identified values of the parameters is 
quite close to the exact value except when the value of 
the parameter is quite low.  In general, these plots show 
that the error spread increases as the numerical significance 
of a parameter value (as compared to the maximum in the row 
or column) decreases.  This is not a surprising finding. 

Considerable care should be exercised in examining the 
plots.  First, the logarithmic scale exaggerates the 
statistical spread below the mean.  Secondly, the scales 
differ among various plots to magnify the numerical data. 
The ordinate scale of Figure 29, for example, is an order 
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of magnitude lower than the ordinate scale of Figure 28. 

It would appear from an examination of Figures 20 through 
30 that the best identifxcation would be obtained by taking 
the mean value of many identifications of a parameter, but 
computer experiments have shown that such is not the case. The 
"best identification" of a system's parameters requires not 
only that the value of each parameter approximate the "true" 
value, but that the values of all the parameters be mutually 
consistent as a set which describes the physical system.  It 
was found through computer experiments that the mean values 
of identified parameters, each of which closely approximated 
the true value, collectively produced poor results in an 
attempt to reproduce the mobility data from which they were 
derived.  On the other hand, parameters identified from one 
consistent set of mobility data (i.e., from one test) produced 
excellent results in reproducing the response even though 
most of the individual values were each poorer approximations 
of the true values than were the means of the identified 
parameters from many tests.  The lack of consistency (or 
compatibility) in the system of equations formed using the 
means of the identified parameters was more important than 
the accuracy of the approximation of each term. 

The conclusion is that statistical improvement in system 
identification from test data can be achieved by using the 
mean mobility data from replicated tests.  The averages of 
the identified parameters from many tests should not be 
used; the data from many tests should be averaged and one 
set of consistent parameters identified using the averaged 
data. 

REPRODUCTION OF RESPONSE 

For an identification process to be satisfactory as an 
engineering tool, the equations of motion formed from the 
identified parameters should, when solved, yield a mobility 
response that approximates the actual response of the heli- 
copter.  As noted above, parameters which are accurate are 
not necessarily consistent.  Only a consistent set of iden- 
tified parameters will yield the mobility responses from which 
they were obtained. 

Figures 31 through 41 show the magnitudes of the identified 
parameters of two specific cases from the sample population 
of 25 cases used in generating the data of Figures 20 through 
30.  Figures 31 through 41 illustrate the parameter values 
that might be identified from two separate tests in which 
there is 8 percent random and bias error on amplitude and 
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2°  random error on phase.    These  two sets of identified 
parameters were  used ac the parameters  in the linear 
equations of motion to generate mobility frequency responses. 
Figure 42 shows how closely each of these cases,  along with 
a third case,  approximates the exact response of the hub 
station to an excitation at the hub.     It  is interesting to 
note that gross differences in the  identified values of off- 
diagonal stiffness terms,   such as  in Column One   (Figure 32) 
or in Column Five   (Figure 36) ,  do not have a detectable 
effect on the mobility response of Figure  42. 

The accuracy of  the responses shown in Figure 42 for hub 
station driving point represents the  sort of accuracy that 
has also been found for hub to pilot's seat responses.    All 
the peaks and antiresonances evident in the exact response 
are evident in all the identified responses»  and all occur at 
or very near the exact frequencies. 

Figures 43 through 45 show the accuracy of response repro- 
duction with three other levels of input data error from 
arbitrarily selected cases.    The remarkably accurate re- 
production of response for all levels of error from 2 percent 
to 10 percent indicates that the consistency of the iden- 
tifications from individual tests is relatively insensitive 
to error. 

Examination of  this data leads us to the hypothesis that 
consistent,  but inaccurate,   identifications might be quite 
satisfactory for accurate predictions of the response of 
the helicopter to various forces and that consistency, 
rather than accuracy,  of identified parameters might be 
the important factor in accurate determination of loads 
from accelerometer data on a mobility-calibrated aircraft. 

When the identified parameters are used in equations of 
motion to reproduce the mobility response,  the statistical 
distribution of mobility in values in the reproduced response 
is not the same as the distribution of error in the input, 
or measured,  mobilities.    Figures  46 through 53 show the 
error spread j n the reproduced mobilities in comparison to 
the error spread in the corresponding measured mobilities, 
the latter of which is shown shaded.     The sample population 
of mobility and phase consists of approximately 85 values 
of frequency across the spectrum. 

Case  5C,   for  example,  represents one test in which the 
measured mobilities are polluted with 5 percent bias error 
and +5 percent random error on absolute amplitude and +1° 
random error on phase.    Figure 46 shows the distribution of 
amplitude error,   at all measured frequencies,   for the 

58 



10.00 

1.00 

t 
$ 

$ 

X 

A SAMPLE CASE 9B 

7 SAMPLE CASE 9C 

O EXACT 

INPUT TEST DATA ERRORS: 
AMPLITUDE +8% RANDOM, 
8% BIAS; PHASE +2° 
RANDOM 

CM 
U 
w 

3 s 

§ 

.10 

0 
V 

I 1 I X 1 
100 400 500 200      300 

STATION (IN.) 

Figure 31.  Two Sample Cases of Mass Identification. 

59 



10- 

X 
8 
A 

I 
A 

^10' 

9 
A 

A 
O 

A SAMPLE CASE 9B 

V SAMPLE CASE 9C 

0 EXACT 

INPUT TEST DATA ERRORS: 
AMPLITUDE +8% RANDOM, 
8% BIAS; PHASE +2P 
RANDOM 

o 
7 

wio- 

H 
D 

O 
W 
CQ 
< 

s 
A 

10' 
1A. 

100 200 300 400 500 

STATION (IN.) 

Figure 32.  Two Sample Cases of Stiffness Identification. 
Column One, 

60 



10' 

2   5 

a 

CO 

H 

t 

^   4 

w 

10' 3U. 

X 8 

8 

A SAMPLE CASE 9B 

V SAMPLE CASE 9C 

O EXACT 

INPUT TEST DATA ERRORS 
AMPLITUDE +8% RANDOM, 
8% BIAS; PHASE +2° 
RANDOM 

8 

O 

V 

1 J. 
100 200       300 

STATION(IN.) 

400 500 

Figure 33. Two Sample Cases of Stiffness Identification, 
Column Two. 

61 



10' 

10' 

o t 

A SAMPLE CASE 9B 

7 SAMPLE CASE 9C 

0 EXACT 

INPUT TEST DATA ERRORS 
AMPLITUDE +8% RANDOM, 
8% BIAS; PHASE v20 

RANDOM 

110* 

S 
s 

8 

? 
ll 

10 1 1 
100 200       300 

STATION (IN.) 

400 500 

Figure 34.  Two Sample Cases of Stiffness Identification. 
Column Three. 

62 



io' 

io6 

IO5 

h 
• ♦ 

L A SAMPLE CASE 9B 

U ▼ SAMPLE CASE 9C 

L ! 

0 EXACT 

▼ INPUT TEST DATA ERRORS 

I 
AMPLITUDE 4-11 RANDOM, 
81 BIAS; PHASE 4-2* 
RANDOM 

L_ 

L 
« 

r 
▼ 

l- 
l 8 

i 

0 
L— 
U 
L ▼ 

FA 

I ▼ 

r 

* 
Li_ i _ _J_ 1  _ i           l 4 

10 0       100      200       300      400        500 

STATION (IN.) 

Figure  35.     Two Sample Cases of Stiffness Identification. 
Column Four. 

63 



10 

1 

2 
\ 

io6 

(A 
W 
W 

3io5 

> 
u 

CQ 
< 

9 

A 

10 

9 

4LJL 1 
100 

A SAMPLE CASE 9B 

7 SAMPLE CASE 9C 

0 EXACT  " 

S 
INPUT TEST DATA 
ERRORS: AMPLITUDE 
+8% RANDOM, 8% 
BIAS; PHASE +2° 
RANDOM 

V 

6 

I 

i 
200 300 

STATION   (IN.) 

400 500 

Figure   36. Two Sample Cases of Stiffness Identification. 
Column Five. 

64 



10 7C- 

9 8 

9 

« 10' 

w 
w 
W 
z 
b 
H 
En 
W 

E-i 
2 

W 

o 
W 10! 

s 
w 

O 
to 
PQ 
< 

i 

10 
1 1 

s 
A SAMPLE CASE 9B 

V SAMPLE CASE 9C 

O EXACT 

INPUT TEST DATA 
ERRORS: AMPLITUDE 
+8% RANDOM, 8% 
BIAS; PHASE +2° 
RANDOM 

0 
A 

V 

O 

1 1 
100 400 500 

Figure 37. 

200      300 

STATION (IN.) 

Two Sample Cases of Stiffness Identification. 
Column Six. 

65 



2 
M 
\ 
OQ 

CO 
w 

s 

ä 
o 
w 

H 

O w 
m 
< 

10' . 

* A SAMPLE CASE 9B 
- 

1 
V SAMPLE CASE 9C 

■" 8 0 EXACT 

INPUT TEST DATA 
- ERRORS:  AMPLI- 

©TUDE +8% RANDOM, 2 8% BIAS; PHASE 
+2° RANDOM 

106 

- 7 1 

105 

■ 

m 

f 

8 
A 

,.4 

m 

1 1 1 1 
100 200       300 

STATION UN.) 

400 500 

Figure 38. Two Sample Cases of Stiffness Identification. 
Column Seven. 

66 



EH 
2 

10 

i 
$ 

H3 10 

w 

« 

W 

o 
w 
3 

w 
EH 

^1 
O w 
s 

A 

O 
io- 

A 
O 

10* 
1 X 

A SAMPLE CASE 9B 

7 SAMPLE CASE 90 

0 EXACT 

INPUT TEST DATA ERRORS: 
AMPLITUDE +8% RANDOM, 
8% BIAS; PHASE +2° 
RANDOM 
 I 1 

100 400 500 

Figure 39. 

200      300 

STATION (IN.) 

Two Sample Cases of Stiffness Identification. 
Column Eight. 

67 



10 

S 
w 
w w z 
b 
H 
EH 
W 

EH 
Z 

W 

W 

O 

W 

W 
EH 
D 

O w 
m 
< 

io- 

10 

10" 

ft 
V 

5 

o 
A 

i 

8 

6 

A 
7 

A SAMPLE CASE 9B 

7 SAMPLE CASE 9C 

O EXACT 

INPUT TEST DATA ERRORS; 
AMPLITUDE +8% RANDOM, 
8% BIAS; PHASE +2° 
RANDOM 

1 1 
100 200 300 

STATION   (IN.) 

400 500 

Figure   40.     Two Sample Cases of  Stiffness  Identification. 
Column  Nine. 

68 



10° r 

2 
H 

CQ 

w  10 

I*. 

H 

5 - 

g 

w 

fa 
o 
w 
3 
gio4 

pa 

O 

s 

. 

. A SAMPT.F. CASE 9B 

■ V SAMPLE CASE 9C 

• 
0 EXACT 

INPUT TEST DATA ERRORS: 
■ AMPLITUDE +8% RANDOM, 

8% BIAS; PHASE + 2° 

• RANDOM 

8 S 

• s 
— A 1 

• V 

■ 0 
V 

- A 

■ A 0 
_ A 

■ 

V 

■ 

A 

■ 
O 

i   v 1 1 i 
io- 

Figure  41. 

100 200       300 

STATION (IN.) 

400 500 

Two Sample Cases of Stiffness Identification. 
Column Ten. 

69 



r 

u 
en « 
U 

Q 

w m 
in 

(N 
m 

<a 

o 
o 
o 

o 
o 

tn 
u 
0) 

0) 

I 
u 
id 
a* 

0) 

4-» 
c 
(1) 

M 

x: 
•H 

04 (0 

I 
w 
a 

A   s 
CM 

H 

2 

Ml   I   I    I     I L In i I I i   i 
I 
o o 

{aDHcxj-ai/s, o) NOiiLYHaiaoov 

in 
I o 
H 
X 

CM 

(tJ 
3 

§■ 

§ 
U 
b 

TJ 
a) 
ß 

•H 
«3 
4J 
ja o 

x 
33 

-P 

C 
•H 
0 

CM 
0) 

" c 
•H 

G 
O 
CU > 
M  -H 
<D   U 
x a 

Q) 

-H 

70 



u 

u 
z 
w 
D 
o 
s 
In 

O 
z 
H 

o 

en 

0) 
■p 

i 
ITJ 

-a 
0) 

■H 

•H 

c 

in 
c 
0 

•H 
+J 
(0 

O1 

H 

£ 
0 • 
M  XI 

s 
01 4J 
c  <d 

■H 

c 
•H 
o 

ja 
o 
0) 

c 
o 
tn 
0) 

D*  > 
•H 
u 

K  Q 

n 

0) 

•H 
in 

(aoaoj-ai/s.D)  NOiiVHTiaoov X 

71 



u 
CO CQ    U    Q 

in   in   in 

in i i I i  i—i 

o 
o 
-H • 

Q) 
4J 
Q) 

1 
U 

% 
•H 
\u 
■H 
4J 
C 
0) 
t) 
H 

o JC 
o ■P 

rH •H 

W tn 
CU C 
U 0 

•H 
4J 

>^ id 
u 3 
2 D1 

W W 
D 5 g 

§ 2 -9 
fe fcs 
o •0 
z OJ   -P 
H C   fl 
u •H      , 
« « -y o +J   c 

o b ü  -H 
rH 

F
i
g
u
r
e
 
44

. 
 
R
e
s
p
o
n
s
e
 
O
 

D
r
i
v
i
n
g
 
Po
 

I 

(aoaoj-ai/s, D) NOIJiVHa^a^DV 

in 
I 
o 

X 

72 



o 
o 
o 

o 
o 

01 

0) 
+J 

u 
id 

-0 
<D 

■H 
U-l 
•H 

c 
0) 
T! 
H 

x: 

■H 

CJ UJ 

c 
0 

>< 
u 

8 

•H 
4-) 
m 
3 
cr 
w 

i 
o Ut 

0 F
O

R
C

IN
 

0) 
C 

(0 

o 
0) 
in 
c 
0 
(X 
in 
0) 
K 

in 

0) 

3 
0> 

XI 

PC 

RJ 

4J 
c 

•rH 

o 
a« 

cr 
c 

(aOHOJ-Ql/F.D)   N0Il\fyTI3D3V 

73 



amplitude at the hub station due to forcing at the hub sta- 
tion in this one simulated test and rerun of the identified 
equations. Figure 47 shows the distribution of phase error 
for the same case. 

Figures 50 through 53 display the data for response at the 
pilot seat station due to forcing at the hub station. 

In general, there is a greater central tendency in the re- 
produced response than in the measured input data.  This is 
a result of the averaging effect of the identifier.  In 
Figures 46 and 50, the bias effect is noticeably diminished 
in the rerun distribution.  The greater spread in the rerun 
error results, of course, from the fact that the measured 
data has "white" random spread between absolute limits while 
the rerun data is spread in a more Gaussian-like manner. 
The mode of the rerun mobilities is closer to the actual 
value than the bias of the input in Figures 46 and 50 and 
no worse than the bias in Figures 48 and 52. 

It is practical to use the mean of the mobilities determined 
by rerunning each of many identifications and, as noted pre- 
viously, practical to make one identification from the mean 
of measured mobilities.  However, as previously discussed, 
it is not practical to operate with the mean of identified 
parameters.  Averaging mobilities is beneficial; averaging 
parameters is not. 
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ADDITIONAL OBSERVATIONS 

SWEEPING OUT THE DOMINANT MODE 

Equation (20) describes a method of removing the dominant 
mode from the mobility eigenvalue equation, Equation (17), 
so that iteration will converge on the next most dominant 
mode. It is not necessary to use Equation (20) in a prac-
tical helicopter situation because mobilities will be 
measured throughout the frequency spectrum and, as demon-
strated, each mode will be dominant at some frequency even 
if the driving point mobility shows no peak in that frequency 
band. 

Equation (20) was, however, experimented with in the computer 
experiments and, as expected, the accuracy of the second 
most dominant mode calculation was substantially worse 
than the calculation of the dominant mode. It was judged 
that reasonable measurement errors in the mobility matrix 
would make calculations of successively less dominant modes 
than the dominant and second dominant numerically impractical. 

Additional complications attended using Equation (20) for the 
second dominant mode. In whatever sequence the calculations 
proceed regarding frequency, there is quite a good chance 
that the second dominant mode at any frequency is a mode 
which was already calculated as the dominant mode in a pre-
vious calculation rather than being the nearest uncalculated 
mode. At frequencies "between modes" where dominance is 
seriously confounded by measurement errors, wild variations 
may be found in the calculated values of the second dominant 
mode. 

Because the use of Equation (20) is unnecessary, and because 
of the confusion that might result from such calculations, 
Equation (20) was not used in the identification process in 
the computer experiments. The numerical results of computer 
experiments on Equation (20), being of no value to the 
engineering implementation of the theory, are not presented 
in this report. 

DETERMINATION OF MODE SHAPES 

Using Only Mobilities 

It was mentioned in the Derivation of the Modal Eigenvalue 
Problem that iteration on the transpose of Equation (16) 
converges on the normal mode eigenvector. The normal modes 
are not used in this theory of identification; therefore, 
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none were calculated in the computer experiments.  However, 
the accuracy with which the normal modes could be calculated, 
using the transpose of Equation (16), should be the same as 
that attending the calculation of the gamma vectors.  As can 
be seen from Figures 5 through 14, a high degree of accuracy 
can be achieved allowing the assumptions upon which this 
study is based. 

With Known Masses or Stiffnesses 

There are situations in helicopter engineering in which the 
analyst has a legitimately high degree of confidence in the a 
priori determination of either stiffness or mass.  For ex- 
ample, in -i very light structure containing many highly 
concentrated loads which can be weighed on a scale (such as 
many widely separated packages of heavy, concentrated elec- 
tronic gear in a structurally light boom), the engineer can 
rely reasonably well on the lumped mass matrix obtained from 
Weights Department data.  In other situations, a very re- 
liable stiffness distribution might be available from use of 
an advanced finite element technique (such as the generalized 
quadrilateral technique used on homogeneous bodies of rev- 
olution like long tapered shafts) while the mass is clearly 
distributed, leaving the accuracy of the lumped mass matrix 
questionable. 

When either the mass or the stiffness matrices are so reliable 
that the parameter can be considered "known" , then the engi- 
neer can obtain either the dominant gamma vector or normal 
mode vector from the mobility matrix without obtaining a 
mobility matrix measurement at any other frequency. 

From Equation (15)/ 

1^,1 =^1<l.,l*ii,*1I (15) 

and  from Equation   (31) , 

N 
[m]     =     Z      "»    .   r      i      r      -.T (31) 

i = l l{Y}i{^i 

Postmultiplying Equation   (15)   by  Equation   (31)   gives 

N 

fY(.)1[ml = vr=1^xYiU){^iiY}i (40) 
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Therefore, 

^"""♦'k-lÄj^'k (41) 

The  left-hand eigenvector of Equation   (40)   is  obtained by 
iteration on the  transpose. 

™"M
]{

'h'*lA*M
{
'h (42) 

it is therefore also easily seen that 

'""'i^H^k'VM^^'K 

lkl[v:5U)l(v)k = ak2fkYkU){^k 

tYtplkll*!k= ^A'.)    k 
. *. i 

'kl[Y^)'(V1k- nk^kVkU)(Ylk (43' 

Equations (41) through (43) give four additional eigenvalue 
equations each for determination of the normal mode vectors 
and the gamma vectors by iteration.  The authors feel that 
the eigenvalue equation formed by multiplication of the 
mobility matrix and the damping matrix would not be reliable 
in actual engineering practice for determination of the modal 
and gamma vectors because of the lack of reliable a priori 
damping parameters and the generally small numerical sig- 
nificance of damping. 
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INCOMPLETE SUMMATIONS 

Equations (31) through (33) show that the physical parameters 
are equal to the sum of n n x n modal parameter matrices over 
the n modes of an n degree-of-freedom system.  Each modal 
parameter matrix, [m]* for example, is of rank 1 and the 

sum of q of these, where q < n, is of rank q.  The sum of 
q modal parameter matrices will not, in general, approximate 
the physical parameter matrix even when n - q = 1.  The 
reason for this is that the generalized parameters,)^. and 
X i'   ^0 not necessarily become small for higher modest In 

fact, the generalized stiffness usually grows larger with in- 
creasing natural frequency.  The sum of the first nine modal 
stiffness matrices in this study has no resemblance to the 
physical stiffness matrix, but the addition of the tenth modal 
stiffness matrix causes the sum to approximate the physical 
stiffnesses very precisely. 

Table IV shows the values of the generalized parameters mode- 
by-mode.  The generalized mass and stiffness in Table IV were 
obtained by normalization on the modal eigenvector, not by 
normalization on the gamma vector as done in the identifica- 
tion program, and these values should be used only with a 
gamma matrix which is the unnormal!zed inverse of a normalized 
modal eigenvector matrix.  However, Table IV illustrates the 
point that the scalar modal multiplier for stiffness grows 
larger, in this typical case, with increasing natural fre- 
quency and that the generalized mass does not L oome negligible 
for the higher modes. 

T It should be noted that the matrix {yl^yh in Equations (31) 

through (33) are not idempotents and the vectors are not the 
eigenvectors of mass or stiffness. Neither are the general- 
ized masses or generalized stiffnesses eigenvalues, of course, 
of their respective matrices.  It follows that the gamma 
vectors are not orthogonal except with respect to the mo- 
bility matrix at any frequency, as shown in Equation (21). 
Any matrix of the form r   •,   ,   -.T  when raised to any integer 

power p is, of course, equal to the matrix to the first 
power multiplied by the p-th power of the scalar , -.Tr | . 

Equations (31) through (33) superficially resemble the 
expression of a matrix in terms of the summation of prin- 
cipal idempotents in this respect, and in the fact that 
cross products of the gamma vectors do not occur.  No 
relationship exists between the gamma vectors and the 
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eigenvectors of the mass matrix irrespective of the stiffness 
matrix, and vice versa. 

INFLUENCE COEFFICIENTS 

The influence coefficient matrix may be analytically expressed 
as the inverse of Equation (32) . 

'i i 

_,.        2 
Note  in Table  IV that the value of ^.^    grows  larger with 

increasing natural  frequency;  therefore,  the scalars of 
Equation   (44)  will become small  for the higher modes.   For 
example,   in Table  IV,    it is seen that the contribution of 
the tenth mode to the influence coefficient matrix  is  less 
than one one-thousandths the contribution of the first mode. 

It is possible,   therefore,  to approximate the influence co- 
efficient matrix quite accurately term-by-term by summing 
Equation   (44)   over  less than the full n modes , and this 
approximation will hold for the  fully populated influence 
coefficient matrix.     If the calculations for the summation 
of Equation   (44)  over p < n modes were exact,  then the 
resulting influence coefficient matrix would be singular. 
However, measurements are not exact , and therefore  it  is 
very unlikely that the approximate  flexibility matrix will 
be singular;   it might even be well conditioned.     It will 
have the fault of not containing  information about the 
higher modes.     However accurate, within reason, any measured 
influence coefficient matrix might be,   the stiffness matrix 
obtained by inverting it should be regarded as having ab- 
solutely no physical meaning unless the order of the matrix 
is trivially small. 

IDENTIFICATION OF DIAGONAL MASSES WITH ONLY A FEW MODES 

If it is known,  or can be reasonably assumed,  that a diagonal 
mass matrix  is a satisfactory representation of the  inertial 
terms in the equations of motion of the helicopter ,   then the 
physical masses may be identified via this theory using only 
the first few modes. 
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TABLE IV. SCALAR MODEL PARAMETERS OF BEAM 
REPRESENTATION OF HELICOPTER           | 

1                                                   1 

Mode 

Natural 
Frequency 

(cps) 

"i 

Generalized 
Mass-Normalized 

Modal Vector 
(Ib-sec^/in.) 

Ti 

Generalized 
Stiffness-Normalized 

Modal Vector 
(lb/in.) 

Vi2 

I 3.144 8.1375 3.176 x 103 

II 9.103 4.5545 1.49 x 104       | 

III 20.791 .4952 8.48 x 103       j 

IV 41.121 1.662 1.111 x 105      j 

r 101.35 .7054 2.86 x 105       | 

k/i 154.897 .0338 3.20 x 104       | 

k;ii 190.12 .3504 5.00 x 105       i 

VIII 309.35 .6856 2.59 x 106       | 

IX 562.277 .3258 4.07 x 106       1 

X 1145.31 .2970 1.54 x 107       | 
.__._.   1 
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For physical masses which are only diagonal, the following 
holds: 

N N   N 

kk   . , (i'ki    . , . , ti,ki,ii       (45) i=l i=l j=l      J 

This  leads  immediately to  the  fact  that 

N N 
Z    ^i^ki1        Yii   =   0 (46) 
i=l     1  K1j=i     31 

for diagonal mass matrices.     Equation   (45)  may also be  ex- 
pressed as 

2    q N 

i=l • * —      i=l'A '^k 
mkk = z_5i^ki + L^i^iLJji (47) 

The first term obviously converges monotonically to the 
physical diagonal mass and the  second converges  to  zero 
when q = N.     The  second term is  likely,   in many cases,   to 
converge more or  less nearly monotonically also because  of 
the relatively  large  first generalized mass and  increasing 
changes  in sign of  the gamma vector with  increasing modes. 

Table V shows a close approximation  to  the ten actual diag- 
onal masses  summing Equation   (47)   over only three modes  for 
the specimen used in this  study.     The convergence  is dramatic 
compared to that obtained using  the  first  summation of 
Equation   (45).     As  this matter  is beyond  the scope of  this 
study,   the  subject is not being pursued  further  in this 
report. 
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TABLE V.  APPROXIMATLONS OF DIAGONAL MASSES BY 

mkk- 
q 
i 
i=l 

N 
Z 

j = :1
^iYkl YJi 

1                                           1 

ßtation k 

Exact 
Masses , 
(lb-secz /in .) 

Mode 
I 

Approximate 

Modes 
I + II 

Masses 

Modes 
I + II + III 

1   1 .029 .046 .025 .029     | 

2 7.337 9.322 7.020 7.352     \ 

3 6.540 5.760 6.783 6.482 

4 5.179 3.741 5.361 5.193     | 

5 3.129 1.784 3.172 3.161 

6 .527 .222 .511 .532 

7 .170 .047 .153 .170 

8 .119 .016 .095 .116     | 

1   9 .238 -.016 .145 .227 

10 .298 -.081 .123 .300 

l                     . 1 
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IMPEDANCE AND MOBILITY 

NETWORK  THEORY AND   IMPEDANCE 

All systems which can be described by a set of  second-order 
linear differential equations with constant coefficients  can 
be depicted as  a  "network"   or  "circuit"  of intersecting  lines. 
The dependent variables are   "potentials"  and are a property 
of the points of   intersections.     The  independent variables 
are  "flows"  and  are a property of the  connecting  lines. 
Given the  system  in a  steady  state,   the  ratio of  the dif- 
ference between  the  sinusoidal maxima of  the potentials  at 
adjacent  intersections of  a  line   (or  element)   and the  sinu- 
soidal maximum of the flow through that element may be termed 
the absolute value of the   "component  impedance".     As  there 
will be a phasing  between  the potential difference  and the 
flow,   the component  impedance will be  a complex quantity  and, 
in general,   will  be a function of  frequency. 

In many  systems,   such as electrical circuits and simple 
spring-mass-damper  chains,   the  component  impedances are 
physically measurable quantities directly and obviously 
identified with physical entities  such as resistors,  masses, 
capacitors,   dampers,   etc.     In more  complicated  systems  such 
as beams,   for example,   the component  impedances are associated 
with combinations of  the material properties of  sections of 
the  system such as  the product of the modulus of  elasticity 
and  second moment of area   (El)   divided by the  cube of  length. 
All  linear  structural systems,   no matter how complicated,   can 
be mathematically duplicated  in terms of dynamic response by 
a network of  springs,  masses  and dampers. 

The component  impedance between points  i  and  j  or a network 
where  i / j  is minus one   times  the  partial derivative  of 
the  flow phasor  from i to ground with respect to  the poten- 
tial phasor at  j.     This partial derivative is here  called 
the  "element  impedance"  and  is  the  ij-th term  in the matrix 
of  impedances   in  the equations  of motion.    The component 
impedance between point  i  and ground   is  the  sum of  the 
element  impedances of the   i-th row in the equations of 
motion. 

In  linear dynamic  structures,   the  flow phasor  to ground  is 
an impressed  force  and the potential  phasor   is,   by convention, 
the  sinusoidal velocity  at a point. 
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MOBILITY OF A NETWORK 

In complex assembled systems, such as helicopters, it is 
generally only possible to measure the "response" of the 
total system.  The "response" of a complete system may be 
defined as the partial derivative of the potential phasor 
at point i in the system with respect to the flow phasor 
to ground at point j in the system.  In structural dynamics 
this is the complex value of the steady-state sinusoidal 
velocity phasor at point i on the structure to the force-to- 
ground phasor at point j when the force at point j is the 
only external force on the structure and is termed "mobility" 

The response of any linear system of n components is an 
n x n matrix of the partial derivatives of the potential 
phasor at j with respect to the grounded flow phasor at i. 
The frequency-dependent terms in the equations of motion 
form an n x n matrix of the partial derivatives of the 
grounded flow phasor at j with respect to the potential 
phasor at i.  Clearly, then, the equations of motion are 
related to the response by the inverse of a matrix because 
a partial derivative is related to its reciprocal only by 
the inversion of the matrix of the partials. 

NETWORKS IN MATRIX FORM 

It is fundamental to Network Analysis that the performance 
of the entire network is given by the inverse of the matrix 
of the element impedance terms formed from the components 
of the network.  When networks are expressed in matrix form 
it is usually unnecessary to draw the network diagram. 
Kirchoff's Laws, Norton's Theorem, Thevenin's Theorem and 
other such rules are merely special cases of the matrix 
expression of a circuit or network. 

IMPEDANCE MATRICES 

Impedance matrices are lambda matrices .  In structural 
dynamics, impedance matrices are lambda matrices of the 
second degree.  The response or mobility matrix is the 
inverse of the impedance matrix and is not a lambda matrix. 
In general, the inverse of a lambda matrix is not a lambda 
matrix, and therefore the mobility matrix cannot be ex- 
pressed as a polynomial in forcing frequency.  For this 
reason, we cannot draw a mobility or response network in 
which the components are coefficients of the p-th power of 
the forcing frequency; therefore, we find the network of 
response of no obvious oractical value. 
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MATRIX INVERSION AND PHYSICAL RELEVANCE 

If [z'j is approximately equal to the exact impedance matrix 

[z], it does not follow that [z1]   is approximately equal to 

[?.]      .     To prove this, expand [z] in terms of its principal 
idempotents^and let the n-th eigenvalue be small compared to 
the other eigenvalues.  Let 

n-1 T T 
[z'J = .v   A {ß} (BK + (\  + c){ß} (ßK  [z], .,111    n       n   n 

whore t is considered of the order of magnitude of ■ .  Then 

-1  h   1        T 
[z]   1  =  L       f- {3).{ß}f 

i=l  i   1  1 

is not approximately equal to [z1]   because the smallest 
eigenvalue of [z]   is the largest eigenvalue of , !"!• The 

conditioning of a matrix which approximates an exact matrix 
does not necessarily indicate whether the inverse of the 
approximate matrix will approximate the inverse of the exact 
matrix.  For the inverse of an approximate matrix to approxi- 
mate the inverse of the exact matrix, it is necessary but not 
sufficient that the approximate matrix be well conditioned. 
Herein lies one of the chief difficulties in obtaining mathe- 
matical model parameters from test data. 

THE MEASUREMENT OF MOBILITY AND IMPEDANCE 

At a given frequency, 

[z]{y} = {f} 

If [z]   is of order n, and n different force vectors are 
applied, then the mobility matrix is given by 

[Y] : [z]"1 = [y] [f]"1 

However, if any column of [f] is a linear combination of 
tue other columns, the matrix will be singular.  One way 
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to insure that [fj is both nonsingular and well conditioned 

is to make [f] a diagonal matrix: that is, to apply only one 
force at a time and at a different station each time.  This 
is a practical way to measure mobility because excitation 
force is generally an independent variable in structural 
testing. 

It is impractical to measure impedance directly from 

[z]   = ffHy]"1 

because the velocity phasor matrix is generally ill condi- 
tioned except at high frequency. 
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CONCLUSIONS AND OBSERVATIONS 

1. In an n-degree-of-freedom structurally damped linear 
system,  the mass,   stiffness and damping matrices of 
Lagrange's equations  of motion,   the  natural   frequencies, 
mode  shapes,   generalized masses  and generalized stiff- 
nesses can be  obtained directly  from impedance-type 
test data. 

2. The  identification of  these parameters  can be obtained 
with sufficient accuracy to accurately reproduce the 
measured response using  input data having errors that 
are within  the  state-of-the-measurement  art. 

3. The mean of replicated measurements can be used to 
identify a practical mathematical model.     However,   the 
mean of replicated parameter identifications  should not 
be  used because  they can give a model which  is not con- 
sistent within  itself. 

4. Bias phase error has negligible error on the  identifi- 
cations. 

5. The eigenvectors of the product of a mobility matrix 
and the inverse of another mobility matrix are the 
modal eigenvectors. 

6. The  first eigenvector of the product of a mobility 
matrix measured at frequency u and an  imaginary mobility 
matrix measured near the n-th mode,   for matrices of 
order n,   is  the eigenvector of the mode which is domi- 
nant at frequency u. 

7. Real mobility matrices  are generally  ill-conditioned. 
The higher the  frequency at which an imaginary mobility 
matrix is measured,   the better the  conditioning. 

8. The  accuracy of  identification of  far off-diagonal 
parameters  is  less  important  to model  response than 
the accuracy of identification of diagonal and near- 
diagonal parameters. 

9. If  the elements of a matrix A approximate  those of a 
matrix B,   the elements of the  inverse of A will not 
necessarily approximate  the elements of the  inverse 
of B regardless of   how well conditioned A might be. 
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10. Diagonal masses in a ten-degree-of-freedom model have 
been accurately identified using only data from three 
modes. 
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