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19. Theory of Tempered Ultrahyperfunctions. I

By Mitsuo MORIMOTO
Sophia University

(Comm. by Kunihiko KODAIRA, M. J. A., Feb. 12, 1975)

In this paper we consider the tempered ultrahyperfunction which
was introduced by Sebastido e Silva [3] and Hasumi [1] in the name
of tempered ultradistribution. We will give some precisions on the
work of M. Hasumi. The same idea was developped in [2] for the
Fourier ultrahyperfunction.

§ 1. The basic spaces H(R"; O’) and H(R"; K’). Let K'CR" be a
convex compact set. Put kg (x)=sup {K&,&>; £ e K'}, (&, &) being the
canonical inner product of R* X R*. Remark hy (x)=F|x|,|2|=|x,|+|x,]|
+ -« +|x,| for K’'=[—FK,k]". Let H,(R"; K’) be the space of all C~
functions f on R* such that exp (% ())D?f(x) is bounded in R™ for any
multi-index p. D? denotes the partial differential operator
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We define in H,(R"; K’) seminorms
(1) |.f lx-,»=sup {exp (hg.(x))| D?f(2)|; |[p|<k, ® € R"}
for #=0,1,2, .... With these seminorms, the space H,(R"; K’) is a
Fréchet space. If K] and K} are two convex compact sets in R* such
that K;C K/, then the canonical injection
(2) H,(R"; K)=—H,(R"; K))
is continuous.

Let O’ be a convex open set of R*. We define
(3) H(R"; O’)=lirIg goljoj H,(R"; K),

y D=1y Ds +++yDr)y |D|=D1+D2+ -+ +Dn.

where K’ runs through the convex compact sets contained in O’ and
the projective limit is taken following the canonical injections (2). If
O and O; are two convex open sets in R* such that O,COj, we have
the canonical injection: H(R"*; O))=——>H(R"; O)).

For a convex compact set K’ of R*, we put
(4) H(R"; K’)=l£{m i;ld H,(R"; K"),

g

where K” runs through the convex compact sets such that K’ is con-
tained in the interior of K7 and the inductive limit is taken following
the canonical mappings (2). If K] and K; are convex compact sets in
R™ such that K/C K}, then we have the canonical injection: H(R"; K})
=—>H(R"; K}).

Theorem 1. Let O’ be a convex open set in R* and K’ be a convex
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compact set in R*. Then the space H(R"; 0’) is an FS space and the
space H(R"; K') is the inductive limit of FS spaces.

Proof. Choose a sequence of convex compact sets K/, such that
K,,cK,., and O'=Jz_, K. For any integer m>0 and f e C™(R"),
put | flln=/lfllx;.m- Then clearly || flin.2[f|ln. Put

Xn={f € C™R"); || f]ln< oo}
Then we can show easily that X, is a Banach space and that the
mapping X,,,,—X,, is compact. As we have H(R"; O0’')=1im proj X,
the space H(R"; 0’) is an FS space. The second statement results
from the equality:

H(R*; K))=lim ind H(R"; O"),

0’DK’
where O’ runs through the convex open sets containing K’ and the
inductive limit is taken following the canonical injections. q.e.d.

Theorem 2. Let D(R™) be the space of all C* functions on R"
with compact support. Then D(R") is dense in H(R"; O) and in
H(R"; K).

Proof. Fix a function a(x) e D(R") such that a(x)=1 for |z|<1,
a(x)=0 for |#|>2 and 0<a(x)<1. If fe H(R"; O') (resp. H(R"; K')),
then f,(x)=a(x/m)f(x) e D(R*) converges to f in the topology of
H(R"; O’) (resp. of H(R"; K’)) as m tends to co. q.e.d.

Corollary. The space H=H(R"; R") is dense in H(R"; O') and in
H(R"; K').

§ 2. Spaces of distributions of exponential growth. For a linear
topological space (over the field C) X, we denote by X’ the dual space
of X. Thanks to Theorem 2 and Corollary, we have two inclusion
relations:

H(R"; O)CcH C9'(R™),

H'(R"; KYCH C9'(R"™).
It means that a continuous linear functional on the space H(R"; O’) or
on H(R"; K’) is considered as a Schwartz distribution on R*. Hasumi
[1] studied the space H=H(R"; R") and its dual space H’. He denotes
H’ by 4., and determined it as the space of distributions of exponential
growth on R*. (See also ZieleZzny [4].) The next theorem generalizes
Hasumi’s results:

Theorem 3. A distribution T ¢ 9'(R™) belongs to H'(R"; O) if
and only if there exist a multi-index p, a convex compact set K'CO’
and a bounded continuous function F' such that
(5) T'=D*[exp (hg () F(2)].

A distribution T belongs to H'(R*; K') if and only if for any ¢>0 there
exist o multi-index p, and a bounded continuous function F, such that
(5) T=D>[exp (hg () +¢|z)F (2)].
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§ 3. The Fourier image of H(R"; 0') and H(R"; K’). For
f e HR"; 0) we put

(6)  FrO=0 - [ 7@ exp (=ie, D)dnda, - da,

where <{z,>=x{+ L+ - - + 2.8, € C*. The Fourier transforma-
tion & f of f is a function defined for ¢ for which the right hand side
of (6) has a meaning. To describe the Fourier images, we introduce
some spaces of holomorphic functions.

We will use the notation T(A)=R" X i4 for a subset A of R*. For
a convex compact set K’ of R", ,(T(K")) is, by definition, the space of
all continuous functions ¢ on T(K’) such that ¢ is holomorphic in the
interior T(K’) of T(K’) and that £Pe(0) is bounded in T(K’) for any
multi-index p, where {P={Pg- - - (2 for {=(§,, &, + - -, o) and p=(p,, ps,
cee,Dn). We put
(7) |l *=sup {|¢*oQ)|; € T(K"),|p|<k}  for k=0,1,2, .. -.
Endowed with these seminorms, the space §,(T(K’)) is a Fréchet space.
If K{CK; are two convex compact sets, we have the canonical injection

(8) Do(T(KD))=—D:(T(KY).
Let O’ be a convex open set in R*. Put
(9) Y(TO))= lirlg CI%I;OJ‘ 9:(T(K")),

where K’ runs through the convex compact sets contained in O’ and
the projective limit is taken following the restriction mappings (8).

Hasumi [1] considered the space $=H(T(R™) and proved the
Fourier transformation establishes a topological isomorphism of H
onto . As the first step of generalization of Hasumi’s results, we
can show easily the following proposition.

Proposition 1. If fe H(R"; O), the Fourier transformation Ff
of f belongs to the space H(T(0)).

Let ¢ e $(T(0)). Then, by the Cauchy integral theorem, the
integrals

I. . ._[Rn o(&+1n) exp (— iz, & +ip>)dede, - -d&,
=I. . .LWM o(0) exp (—idx, )AL dS, - - de,

are independent of 7€ O’. Hence we may put for e 0’
10)  Fop(x)=Q2rx)"" J . .IR” (& +1yp) exp (—ix, E+ipd)dEdE,. - - de,

and call it the Fourier transformation of ¢ € $(7(0")).
Proposition 2. The Fourier transformation F defined by (10)
maps H(T(0)) into HR™; —0O’). Moreover we have
(1) FGEN@)=f(—x)  for fe HR"; D),
(1) F(G)QD=0(—0) for ¢ e H(T(0)).
From Propositions 1 and 2 we can conclude the following theorem :
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Theorem 4. The Fourier transformation (6) establishes a topol-
ogical tsomorphism of H(R"; O") onto H(T(0")) and the inverse mapping
18 gtven by

10)  Fp@=@n " [+ ole+in) exp (o, ¢+in)dsds, - s,

where pe 0.

Let K’ be a convex compact set in R*. We define
(12) @(T(K’))=li}{r}, i}(l,d D.(T(K"),
where K” runs through the convex compact sets such that K’ is con-
tained in the interior of K’ and the inductive limit is taken following
the restriction mappings (8).

For ¢>0 we will denote by K’ the e-neighborhood of K’, namely,
K,=K'+{¢c R*;|¢|<e}. K!isa convex open set such that K/DK’. As
we have

13) H(R"; K')=lim ind H(R"; K))
e>0

and

(14) H(T(K")=lim ind H(T(K?)),
e>0

we can conclude the following theorem from Theorem 4.

Theorem 4’. The Fourier transformation F defined by (6) estab-
lishes a topological isomorphism of H(R"; K’) onto H(T(K’)). The
inverse mapping F is given by (10').

Corollary. The space H(T(0)) is an FS space and H(T(K')) is the
wnductive limit of FS spaces.

Via the Fourier transformation, Corollary to Theorem 2 gives the
following Runge type theorem.

Theorem 5. The space H=H(T(R™)) is dense in H(T(0") and in
S(T(K")).

§4. The dual Fourier transformation. For T e H'(R"; O)
(resp. H'(R*; K’)), we define the dual Fourier transformation &,T as
a continuous linear functional on H(T'(—0) (resp. H(T(—K"))) by the
formula
18) (Z.T,)=(T, %) for ¢ € $(T(—0")) (resp. H(T(—K"))).

As a consequence of Theorems 4 and 4/, we have the following theorem.

Theorem 6., The dual Fourier transformation (15) gives topol-
ogical isomorphisms

(16) G, HR"; 0)-(T(-0)
and
(16" Gy HR"; K- (T(—-K")).

We will define, in the forthcoming papers, the Fourier transfor-
mation of T ¢ H'(R*; O’) and T ¢ H'(R"; K’) without use of the duality.
It will turn out to be identical with the dual Fourier transformation.
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