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19. Theory o Tempered Ultrahyperfunctions. I

By Mitsuo M0MOT0
Sophia University

(Comm. by Kunihiko KODAIRA, M. $. A., Feb. 12, 1975)

In this paper we consider the tempered ultrahyperfunction which
was introduced by Sebastio e Silva [3] and Hasumi [1] in the name
of tempered ultradistribution. We will give some precisions on the
work of M. Hasumi. The same idea was developped in [2] or the
Fourier ultrahyperunction.

1. The basic spaces H(Rn; 0’) and H(Rn; KI). Let KIcR be a
convex compact set. Put h,(x)=sup {(x, ) e K’}, (x, ) being the
canonical inner product of R R. Remark
+... +[x for K’= [--M, k’]. Let H(R K’) be the space of all C
functions f on R such that exp (h,(x))Dvf(x) is bounded in R for any
multi-index p. D’ denotes the partial differential operator

P-(Pl, P2,"’,Pn), [p[--p/p.-t-...+P.x,x x
We define in H(R;K’) seminorms
1 ) ]lf[[,,=sup {exp (h:,(x))]Df(x)]; ]p]<k, x e Rn}
or k=0, 1,2,.... With these seminorms, the space H(Rn;K
Frchet space. If K; and K are two convex compact sets in R such
that KK’., then the canonical injection
( 2 ) Hb(R; K’)=--->Hb(R; K)
is continuous.

Let O’ be a convex open set o R. We define
3 ) H(R; 01)--lim proj H(R;K’),

where K’ runs through the convex compact sets contained in O’ and
the projective limit is taken following the canonical injections (2). If
O and O’ are two convex open sets in R such that OO, we have
the canonical injection" H(R; 0’). H(R; 0).

For a convex compact set K o Rn, we put
( 4 ) H(R’; K’)--lim ind H(Rn; K"),

where K" runs through the convex compact sets such that K’ is con-
tained in the interior o K" and the inductive limit is taken ollowing
the canonical mappings (2). If K and K’ are convex compact sets in
R such that KK’, then we have the canonical injection" H(R;K’O.....H(R K).

Theorem 1. Let 0 be a convex open set in R and K’ be a convex
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compact set in Rn. Then the space H(Rn; 0’) is an FS space and the
space H(R; K’) is the inductive limit of FS spaces.

Proof. Choose a sequence of convex compact sets K’ such that
KK’/ and 0’=0= K’. For any integer m0 and f e Cm(Rn),
put f [[ f [[a,. Then clearly f [I,+ f []. Put

X--{f e C(Rn) []f [[ <: c}.
Then we can show easily that X is a Banach space and that the
mapping X/--.X is compact. As we have H(Rn; O’)=lim proj X,
the space H(Rn;O’) is an FS space. The second statement results
from the equality"

H(Rn K’)= lim ind H(Rn 0’),

where O’ runs through the convex open sets containing K’ and the
inductive limit is taken following the canonical injections, q.e.d.

Theorem 2. Let D(R) be the space of all C functions on R
with compact support. Then )(R) is dense in H(R; 0’) and in
H(Rn K’).

Proof. Fix a function a(x) e (R) such that (x)--1 for xll,
(x)--0 for Ixl>2 and 0<a(x)<l. If f e H(R; 0’) (resp. H(R;K’)),
then f(x)=a(x/m)f(x)e(R) converges to f in the topology of
H(R; 0’) (resp. of H(R;K’)) as m tends to c. q.e.d.

Corollary. The space H=H(R; R) is dense in H(R; 0’) and in
H(Rn K’).

2. Spaces of distributions of exponential growth. For a linear
topological space (over the field C) X, we denote by X’ the dual space
of X. Thanks to Theorem 2 and Corollary, we have two inclusion
relations"

H’(R
H’(R’ KOCH’c.q)’(R).

I means tha a continuous linear functional on the space H(R; 0’) or
on H(R’;K’) is considered s a Schwartz distribution on R. Hasumi
[1] studied the space H=H(R;R) and its dual space H’. He denotes
H’ by A and determined it as the space of distributions o exponential
growth on R. (See also Zieleny [4].) The next theorem generalizes
Hasumi’s results"

Theorem 3. A distribution T e )’(R) belongs to H’(Rn 0’) if
and only if there exist a multi-index p, a convex compact set
and a bounded continuous function F such that
( 5 ) T--D[exp (h,(x))F(x)].
A distribution T belongs to H’(R; KO if and only if for any 0 there
exist a multi-index p. and a bounded continuous function F, such that
(5’) T=D,[exp (h,(x)+[x[)F.(x)].
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3. The Fourier image of H(Rn;o’) and H(Rn;K’). For
f e H(Rn;09 we put

(6) Lf()--(2)-/2 f...f f(x)exp (--i(x, })dxdxz...dx,
J J

where (x, }=xx+ x,.z+... +x, e C. The Fourier transforma-
tion f of f is a function defined for for which the right hand side
of (6) has a meaning. To describe the Fourier images, we introduce
some spaces of holomorphic functions.

We will use the notation T(A)=Rn }(iA for a subset A of Rn. For
a convex compact set K’ of R, (T(K’)) is, by definition, the space of
all continuous functions on T(K’) such that is holomorphic in the
interior T(/’) of T(K’) and that () is bounded in T(K’) for any
multi-index p, where =f5....5 for (5, 2, "’’, ) and p (p,
..,p). We put

(7) llll’;=sup{l()l;eT(K’),lpl<k} for k=0,1,2, ....
Endowed with these seminorms, the space (T(K’)) is a Frchet space.
If KK are two convex compact sets, we have the canonical injection
( 8 ) (T(K))---(T(K)).

Let O’ be a convex open set in R. Put
( 9 ) (T(O’)) lim proj S(T(K’)),

K’ cO"

where K’ runs through the convex compact ses contained in O’ and
the projective limit is taken following the restriction mappings (8).

Hasumi [1] considered the space =(T(Rn)) and proved the
Fourier transformation establishes a topological isomorphism of H
onto . As the first step of generalization of Hasumi’s results, we
can show easily the following proposition.

Proposition 1. If f e H(Rn; O’), the Fourier transformation f
of f belongs to the space (T(O’)).

Let e (T(O’)). Then, by the Cauchy integral theorem, the
integrals

_;"’_;-( +ir]) exp (--i(x, +i})ddz. d

are independent of e O’. Hence we may put for r] e O’

(10) 29(X) (ZTc)-n/21" In.
and call it the Fourier transformation of e (T(O’)).

Proposition 2. The Fourier transformation defined by (10)
maps (T(O’)) into H(R; --0’). Moreover we have
(11) (f)(x)=f(- x) for f e H(Rn 0’),
(11’) ()()=(-) for e (T(O’)).

From Propositions 1 and 2 we can conclude the following theorem"
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Theorem 4. The Fourier transformation (6) establishes a topol-
ogical isomorphism of H(R 0’) onto (T(O’)) and the inverse mapping
is given by

_’" ..[,(+i])_ exp (i(x, +i})dd..(10’) --(x)-(2)-/
where e 0’.

Let K’ be a convex compact set in R. We define
(12) (T(K’)) lira ind (T(K"),

where K" runs through the convex compact sets such that K’ is con-
tained in the interior of K" and the inductive limit is taken following
the restriction mappings (8).

For0 we will denote by K’, the -neighborhood of K’, namely,
K’, K +{ R 1}. K’ is a convex open set such that K’ K’. As
we have

H(R K’)--lim ind H(Rn K’)(13)

and
(4) (T(K’))= lim ind (T(K’)),

>0

we can conclude the following theorem from Theorem 4.
Theorem 4’. The Fourier transformation defined by (6) estab-

lishes a topological isomorphism of H(R; K’) onto (T(K’)). The
inverse mapping is given by (10’).

Corollary. The .space (T(O’)) is an FS space and (T(K’)) is the
inductive limit of FS spaces.

Via the Fourier transformation, Corollary to Theorem 2 gives the
following Runge type theorem.

Theorem 5. The space =(T(R)) is dense in (T(O’)) and in
(T(K’)).

4. The dual Fourier transformation. For T e H’(Rn; 0’)
(resp. H’(R;K’)), we define the dual Fourier transformation !T as
a continuous linear functional oa (T(--O’)) (resp. (T(--K’))) by the
formula
(15) (T, ):(T,) for e (T(--O’)) (resp. (T(--K’))).
As a consequence of Theorems 4 and 4’, we have the following theorem.

Theorem 6. The dual Fourier transformation (15) gives topol-
ogical isomorphisms
(16) a H’(R; O’)o’(T(--O’))
and
(169 H’(R K’)-.’(T(--K’)).

We will define, in the forthcoming papers, the Fourier transfor-
mation of T e H’(Rn 09 and T e H’(R K’) without use of the duality.
It will turn out to be identical with the dual Fourier transformation..
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