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Abstract

A theory of the analysis of nonlinear systems is developed. The central problem is
the mathematical representation of the dependence of the value of the output of such
systems on the present and past of the input. It is shown that these systems can be con-
sidered as generalized functions, and that many mathematical methods used for the
representation of functions of a real variable, particularly tables of values, polynomials,
and expansions in series of orthogonal functions, can be used in generalized form for
nonlinear systems.

The discussion is restricted to time-invariant systems with bounded inputs. A defi-
nition of a continuous system is given, and it is shown that any continuous system can be
approximately represented, with the error as small as may be required, by the methods
mentioned above. Roughly described, a continuous system is one that is relatively
insensitive to small changes in the input, to rapid fluctuations (high frequencies) in the
input, and to the remote past of the input.

A system is called an analytic system if it can be exactly represented by a certain
formula that is a power-series generalization of the convolution integral. This formula
can represent not only continuous systems but also no-memory nonlinear systems.
Methods are derived for calculating, in analytic form, the results of inversion, addition,
multiplication, cascade combination, and simple feedback connection of analytic systems.
The resulting series is proved to be convergent under certain conditions, and bounds are
derived for the radius of convergence, the output, and the error incurred by using only
the first few terms. Methods are suggested for the experimental determination of ana-
lytic representations for given systems.
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I. INTROD CTION

1.1 NONLINEAR SYSTEMS

At the present time the most useful methods for mathematical analysis and design of

electrical systems are based on the theory of linear systems. The techniques of analysis

and design of linear systems have been well developed, and they are used not only for

perfectly linear systems but also for almost linear systems.

Many communication and control devices are not nearly linear. Sometimes nonlin-

earity is essential to the operation of a device, sometimes it is undesirable but unavoid-

able, and sometimes a nonlinear component, although it is not essential, may give better

results than any linear component that might be used in its place. Sometimes nonlinear-

ity is avoided, not because it would have an undesired effect in practice, but simply

because its effect cannot be computed. There has therefore been an increasing effort to

develop methods of analysis and design for nonlinear devices.

It is appropriate to note here the relation between linear and nonlinear systems. A

nonlinear system can be almost linear, but there is no such thing as a linear system that

is almost nonlinear. The linear case is a limiting case of nonlinearity, and it is an

especially simple, not an especially difficult, limiting case.

We should expect, therefore, that any theory or technique that is adequate for general

nonlinear systems must be equally adequate for linear systems. The word "nonlinear" is

appropriate only to special techniques; a general theory, applicable to both linear and non-

linear systems, should not be called "nonlinear," but "general." However, the designation

"nonlinear" will be used in this report to indicate the breadth of the theory, with the

understanding that it is not to be interpreted literally as excluding the special linear case.

1.2 HISTORICAL BACKGROUND

Much of the effort to develop techniques of nonlinear system analysis has been prima-

rily associated with a number of Russian schools. In this connection Poincare, although

he was not a Russian, must be mentioned, as well as Liapounoff, Andronov and Chaikin,

Kryloff and Bogoliuboff. A great deal of this work was summarized by Minorsky (1) and

published in 1947. This earlier research was directed principally toward the solution of

nonlinear differential equations and the investigation of the properties of their solutions.

Fruitful as this work was, its scope is limited, and it has played no part in the author's

research.

The author's research is based on the representation of nonlinear systems by

expressing the output directly in terms of the input. The roots of this approach might

be historically traced to Volterra (2), who included a theory of analytic functionals in his

"Lecons sur les fonctions de lignes" in 1913. In 1923, Wiener (3) brought the theory of

Brownian motion to bear on the problem of defining an integral over a space of functions,

and included a discussion of the average of an analytic functional. In 1942, Wiener

brought Brownian motion and analytic functionals together again (4). The later paper
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contains the first use, in the representation of nonlinear systems, of the formula that

forms the basis of Section IV of this report, and, in fact, it seems to be the first attempt

at a general formula for the representation of nonlinear systems. Some other work along

the same lines was done more recently by Ikehara (5) in 1951, and by Deutsch (6) in 1955.

In recent years Wiener developed a general representation method for nonlinear sys-

tems that is based on the properties of Brownian motion, but does not employ the formula

that he used in 1942. This theory differs from the 1942 report in that it attacks the gen-

eral nonlinear problem rather than the specific problem of noise in a particular class of

systems. The method has been presented in unpublished lectures and described, although

not in its most recent form, by Booton (7) and by Bose (8, 9). Theoretical approaches

related to this method have been developed by Singleton (10) and by Bose (9). The repre-

sentation formula developed by Zadeh (11) is similar in its basic orientation.

1.3 -SYSTEMS AND FUNCTIONS

One of the central problems in the analysis of nonlinear systems is the finding of a

good representation formula. Such a formula must be able to represent, either exactly

or with arbitrarily small error, a large class of systems; and it must also be convenient

for use in calculations involving systems.

There is, however, a representation problem in a more fundamental sense. It is

necessary to relate the idea of a nonlinear system to more fundamental concepts. This

implies an abstract representation, whose generality is not limited by any concession

to computational convenience. With such a representation at hand, representation for-

mulas designed for computational needs can be more easily apprehended.

This abstract representation is found in the general concept of a function. A function,

abstractly defined, is a relation between two sets of objects, called the domain and the

range of the function, which assigns to every object in the domain a corresponding object

in the range, with every object in the range assigned to at least one object in the domain.

It may be said that a function is any relation of the form "plug in x, out comes y"; the

set of all x that can be plugged in is the domain, and the set of all y that can come out

is the range.

This definition implies no restriction on the nature of the objects x and y. We may

have, for example, an amplifier chassis with an empty tube socket: every tube that can

be inserted in the socket will give us a different amplifier. Therefore, we have a func-

tion; the domain of this function is the set of all tubes that can be inserted in the socket,

and the range is the set of all amplifiers that can thus be obtained.

We are most familiar with functions whose domain and range are sets of real num-

bers. Such functions are called "real-valued functions of a real variable"; for conven-

ience, we shall call them "real functions." In general, any function whose range is a

set of real numbers is called a "real-valued function." A real function is usually repre-

sented by a letter, such as f. The equation y = f(x) means that y is the element of the

range which f assigns to the element x of the domain. Note that f(x) is not a function,
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but a value of the function f; that is, an element of the range.

A nonlinear system with one input and one output is a function according to this defi-

nition. For every input in the set of inputs that the system is designed to accept, the

system produces a corresponding output. These inputs and outputs can themselves be

represented by functions. If we assume that the inputs and outputs are electric signals,

they can be described by real functions: To every real number t there is assigned a

corresponding real number f(t) that represents the value of the input or output at time t.

A nonlinear system can therefore be represented by a function whose domain and range

are sets of real functions. Although such a function is conventionally called an "operator"

or a "transformation," it will be referred to in this report as a "hyperfunction" to empha-

size the fact that it is a function. A hyperfunction (or the system it represents) will be

denoted by a capital script* letter; the equation g = H(f) states that g is the real function

that represents the output of the system H when the input is the signal represented by the

real function f.

Most of the discussion in the following sections deals specifically with time-invariant

systems. Such systems can be represented by a kind of function that is simpler than a

hyperfunction - a function whose domain is a set of real functions and whose range is a

set of real numbers. Such functions are conventionally called "functionals."

The argument will be simpler if we consider only physically realizable systems, that

is, systems in which the value of the output at any time does not depend on future values

of the input. If the system H is physically realizable and time-invariant, then the output

at a particular time t can be determined without knowing either the value of t or the

time at which each value of the input occurred; it is sufficient to specify, for every non-

negative number T, what the value of the input was T seconds ago. This input data can

be expressed by the real function u, u(-r) = f(t--) for T D 0, where f represents the input

in the usual form. To each function u there corresponds a unique real number h(u), with

the property that the value of the output of the system is h(u) whenever the past of the

input is represented by u. The function h is a functional according to the definition given.

For a specified input f, the function u will be different for different t and will be desig-

nated as ut if t is to be specified; as t changes, ut changes, and the value of the output

changes with it. If the system H is not physically realizable, but is still time-invariant,

the only change that is necessary in this argument is to define U(T) for all T, negative as

well as positive.

For the most part, we shall consider systems for bounded inputs only. A real func-

tion f, representing an input, will be called bounded(R) if If(t) I R for all t. The set

of all real functions u, U(T) defined for Tr 0, that are bounded(R), will be called PBI(R).

(PBI stands for Past of Bounded Input.) All these real functions will be assumed to be

* Editor's note: With the permission of the author, the script letters originally used
(i. e., J', i, X, etc.) have been replaced with the corresponding typed letter and iden-
tified by an underline.
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Lebesgue measurable; in practice this is no restriction, since some tricky mathematical

work is required to prove the existence of functions that are not Lebesgue measurable.

Such "improper functions" as impulses or infinite-bandwidth white noise are not really

functions, and thus their measurability is questionable, but they are excluded from con-

sideration as possible inputs on the ground that they are not bounded.

We shall always consider two real functions f and g to be equivalent if

b [f(x) - g(x)] dx = 0 (1)

for all real numbers a and b, since two such functions are indistinguishable by any

physical measurement process.

1.4 REPRESENTATION OF FUNCTIONS

The central problem of computationally convenient representation can now be treated

with some perspective. We have to find convenient representations for certain kinds of

functions, namely, functionals and hyperfunctions.

Suitable methods can be derived by generalizing the familiar methods used for the

representation of real functions. These include: (a) miscellaneous designations for

special functions, e.g., algebraic, trigonometric; (b) implicit functions; (c) tables of

values; (d) polynomials, including power series; and (e) expansions in series of orthog-

onal functions. The last three are methods of approximate representation, or represen-

tation as a limit of successive approximations. All the methods mentioned in section 1. 2

are particular forms of generalizations of these methods.

Several classes of specially designated systems, that is, method (a) of the preceding

paragraph, are already well known. Perhaps the most important is the class of linear

systems, whose special representation by means of the convolution integral has been

found particularly convenient. No-memory systems (the value of whose output at any

time depends only on the value of the input at that time), differential operators (not dif-

ferential equations, but such direct statements as "the output is the derivative of the

input"), and integral operators [among which are the integral operators of Zadeh (11)]

are also specially represented.

An implicit function, method (b), is an equation that does not give f(x) directly in

terms of x, but specifies a condition jointly on x and f(x) so that for any x there is a

value for f(x) that will satisfy the condition. A differential equation is exactly this sort

of condition: given any input f, it is necessary to go through a process called "solving

the differential equation" in order to obtain the output g. The methods devised by the

Russian schools for obtaining such solutions are all special methods, restricted to cer-

tain kinds of equations and certain kinds of inputs, just as the methods of solution for

implicit real functions are all special methods.

Approximation methods (c), (d), and (e) are more generally applicable, since they
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do not require special forms for the representation of the functions, although they do

require that some conditions be satisfied. For the methods that will be discussed, a

sufficient condition for arbitrarily close approximation is that the function that is to be

represented be continuous and have a compact domain. The interpretation of these con-

ditions for systems will be discussed in Section II. The methods themselves will now

be briefly described.

A table of values (c) is conceived of here as being used in the simplest possible man-

ner, that is, without interpolation. In the construction of the table a finite set of x. is

selected from the domain, and for each selected xi the corresponding f(xi) is tabulated.

In the use of the table, for any given x the nearest tabulated x. is selected and the cor-

responding f(xi) is taken as an approximation to f(x). Owing to the way in which the table

is used, its construction can be modified. First, since each tabulated xi is actually used

to represent a set of neighboring x's, the entry in the table may be a designation for this

set instead of a particular x i in the set. Second, since each tabulated f(xi) is used to

approximate a set of f(x), the tabulated value need not be a particular f(xi) but may be

simply a value that is representative of this set of f(x). Either of these schemes can be

translated into a method for the approximate representation of functionals by replacing

x by u and f by h. The modified scheme is then a general description of Singleton's

method for approximating nonlinear systems by finite-state transducers (10). Bose's

method of representation (9) also employs the device of a finite table of values. Another

method involving tables of values is given in Section III.

An abstract definition of a polynomial (d) will be given in Section IV, as well as the

particular form of polynomial representation that was also used by Wiener (4),

Ikehara (5), and Deutsch (6). For our present purpose, it is sufficient to note that the

sum of a constant, a linear system, and products of linear systems (obtained by using

the same input for all systems and multiplying and adding the outputs) is a polynomial

system. The formula used in Section IV is somewhat more general than this, and has

been found to be convenient for the computations that are required in systems analysis.

Expansions in orthogonal functions (e) will be discussed in Section V. These methods

give promise of being convenient for the measurement of nonlinear systems in the labo-

ratory, and their advantages can be combined with the computational convenience of poly-

nomials by using expansions in orthogonal polynomials. The generalization of these

methods from real functions to systems is quite interesting. As we know from the theory

of real functions, expansion of a function in orthogonal functions involves integration over

the domain of the function. Integration over a set of real numbers is a familiar process,

but how can we integrate over a set of functions? Definition of such integrals was the

essential problem that Wiener (3) attacked in 1923, and at that time it was a difficult

problem. Now, however, probability theory offers a solution: on a statistical ensemble

of functions, which is just a set of functions with probabilities defined on it, an ensemble

average (expectation) is equivalent to an integral. This is the essential reason for the

introduction of probability in the methods of Booton (7) and Bose (8), as well as in the
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method of Wiener described by Booton and Bose; these can be interpreted as methods

of expanding a nonlinear system in a series of orthogonal systems.

The following sections discuss some examples of approximation methods, their appli-

cations, and some sufficient conditions for their applicability. Section II deals with con-

ditions of approximability, and the next three sections are devoted to the three general

methods of approximation.

6



II. APPROXIMATIONS TO NONLINEAR SYSTEMS

2. 1 TOPOLOGY AND APPROXIMATIONS

The Primary aim of this section is to establish some sufficient conditions for the

approximability of a nonlinear system by the methods that will be described in subsequent

sections. The most important results of this section are summarized in section 2. 7.

The theorems that will be developed are essentially theorems of analysis; in fact, one

theorem of analysis, the Stone-Weierstrass theorem, will be quoted and used without

proof. Most of the mathematical ideas can be found, in the restricted context of real

functions, in Rudin's "Principles of Mathematical Analysis" (12); the Stone-Weierstrass

theorem that he proved is applicable to our purpose. For a discussion of analysis in a

more general setting, especially for a general definition of a topological space, and for a

more appropriate definition of a compact set than is given in Rudin, reference can be

made to Hille's "Functional Analysis and Semi-Groups" (13).

One way in which a topology may be rigorously defined is in terms of neighborhoods.

A topological space is a set of objects x in which certain subsets N(x) are designated as

neighborhoods of specific objects x. [Usually, there is an infinity of objects x and, for

each x, an infinity of N(x).] These neighborhoods satisfy certain conditions that consti-

tute the postulates of topology: first, every x has at least one N(x), and every N(x) con-

tains x; second, if NA(x) and NB(x) are two neighborhoods of the same object x, there

is an Nc(x) with the property that any object in Nc(x) is also in both NA(x) and NB(x);

third, for any object y contained in any neighborhood NA(x) there is an NB(y) with the

property that any object in NB(y) is also in NA(x). (Conventionally, the objects in a topo-

logical space are called "points." This term will not be used in this report because it

suggests a very restricted interpretation of topology.)

It will now be shown that topology as just defined is a mathematical analogue of the

engineering idea of approximation. Practically, approximations occur when we consider

some object (e.g., a number, a position in space, a resistor, a signal, a system) that

is to be used for some purpose, and want to know what other objects are sufficiently

similar to it to be used for the same purpose. We thus define a criterion of approxima-

tion to this object, and consider the set of all objects that, by this criterion, are good

approximations to it. It will be shown that these approximation sets, as neighborhoods,

satisfy the postulates of topology that have been given.

First, every object considered by engineers is usable for some purpose, and thus at

least one neighborhood is defined for it; and for any purpose an object is always a good

approximation to itself. Second, if an object x can be used for two purposes A and B,

two neighborhoods NA(x) and NB(x) thus being defined, we consider purpose C as the

requirement of being sufficiently similar to x to satisfy both purposes A and B; this

defines a neighborhood Nc(x) with the property that every object in Nc(x) is also in both

NA(x) and NB(x). Third, given x and some NA(x), and any y in NA(x), we can consider

purpose B for y as that of substituting for x in the fulfillment of purpose A, and can
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define NB(y) as the set of all objects that are sufficiently similar to y to serve this pur-

pose; then every object in NB(y) is also in NA(x).

These arguments may seem trivial and pointless; actually they establish the relation

between topology and approximations and make the topological foundations of analysis,

and all the theorems that follow from them, applicable to engineering.

For any set of objects, different classes of approximation criteria can often be used,

with the result that different sets of neighborhoods and different topologies are obtained.

However, different sets of neighborhoods do not always lead to different topologies. Two

sets of neighborhoods are said to be bases of the same topology if every neighborhood in

each set contains at least one neighborhood from the other set. This is because the

closed sets, open sets, compact sets, and continuous functions (defined in section 2. 2)

are the same for both sets of neighborhoods.

On a space of real numbers, a neighborhood of a number x is defined by the prop-

erty that y is in N (x) if the magnitude of the difference between x and y is less than E.

In the uniform topology on a space of real functions, g is in N (f) if, for every real

number t, the magnitude of the difference between f(t) and g(t) is less than E; a similar

condition defines the uniform topology on a space of functionals. On a space of hyper-

functions (or, equivalently, systems), we define the uniform topology by the statement

that K is in NE(H) if, for every input f, at every time t, the magnitude of the difference

of the values of K(f) and H(f) is less than E; or, equivalently, K(f) is in N (H(f)) for

every f. A different topology on a space of real functions will be defined in section 2.4.

2.Z SOME TOPOLOGICAL CONCEPTS

A number of topological ideas that are to be used in the discussion of approximations

to nonlinear systems will now be defined. We begin by defining open and closed sets, in

spite of the fact that we shall make no use of them, not only because mathematical tradi-

tion seems to demand it, but also because many writers define topology in terms of open

sets, rather than in terms of neighborhoods.

An open set is a set with the property that every object in the set has at least one

neighborhood that is contained in the set. A closed set is a set whose complement - the

set of all objects in the space that are not in the set - is open. An equivalent definition

is that a closed set is a set that contains all its limit points. When a topological space

is defined in terms of open sets, neighborhoods are usually defined by calling every open

set a neighborhood of every object that it contains.

A limit point of a set A is an object (which may or may not be in A) every neighbor-

hood of which contains at least one object in A other than x. In other words, a limit

point of A is an object that can be approximated arbitrarily closely (i. e., under any

criterion of approximation) by objects, other than itself, in A.

The closure of a set is the set of all objects that are either in the set or are limit

points of the set (or both). In other words, the closure of a set A is the set of all objects

8
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that can be approximated arbitrarily closely by objects in A. In the application of this

concept we shall consider the closure of the set of all systems that can be exactly repre-

sented by some method; the closure will be the set of all systems that can be represented

by this method, either exactly or with arbitrarily small error.

A compact set is defined as follows. A collection of neighborhoods is said to cover a

set A if every object in A is in at least one of the neighborhoods in this collection. A

set is called compact if every collection of neighborhoods that covers it includes a finite

subcollection that also covers the set. If we define a criterion of approximation for every

object in the set A, by choosing a neighborhood for every object in A, this collection of

neighborhoods covers A; and if A is compact we can select a finite set of objects in A

with the property that every object in A is in the chosen neighborhood of at least one of

the selected objects. The importance of this property can be indicated by interpreting

neighborhoods in a slightly different way; that is, by considering a neighborhood of an

object as a set of objects that x can approximate, instead of a set of objects that can

approximate x. (These interpretations are equivalent if the approximation criterion has

the property that x approximates y whenever y approximates x.) Then a compact set

is one that, for any predetermined criterion of approximation, can be approximated by a

finite subset of itself.

Topology is combined with the abstract idea of a function in the definition of a con-

tinuous function. Suppose the range and domain of a function f are both topological

spaces; f is said to be continuous if for every x in the domain, and for any neighborhood

NA(f(x)) of the corresponding f(x), there is a neighborhood NB(x) with the property that

whenever y is in NB(x), f(y) is in NA(f(x)). (Note that NA and NB are neighborhoods in

different spaces.) This is a precise statement of the imprecise idea that a continuous

function is one whose value does not change abruptly; it implies that any approximation

criterion in the range can be satisfied by an appropriate criterion of approximation in the

domain.

2.3 TWO THEOREMS OF APPROXIMATION

In terms of the concepts previously defined, two important theorems on approxima-

tion of functions can be stated. These theorems will be applied to nonlinear systems in

section 2. 4.

The first is a theorem on representation by tables of values. Let f be a continuous

function with a compact domain. Let a neighborhood NA(y) be chosen for every y in the

range. Then there is a finite set of objects x. in the domain, and for each x. a neighbor-

hood NB(xi), such that every x in the domain is in at least one NB(i), and, whenever x

is in NB(xi), f(x) is in NA(f(xi)).

To apply this theorem, we consider functions whose ranges are sets of real numbers

or real functions, such as functionals or hyperfunctions. We choose a positive real

9
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number E as the tolerance for a criterion of approximation, and define neighborhoods

in the range, as in section 2. 1. Suppose some topology is also defined in the domain,

and that with these two topologies the function f is continuous. Then we can select a

finite set of objects x i and neighborhoods N(xi), as indicated in the theorem; we construct

a table of these x i and the corresponding f(xi). Then, for any x in the domain, we can

find in the table an x i with the property that x is in N(xi), and the tabulated f(xi) will

differ from f(x) by less than E.

The proof of this theorem is quite simple. Since the function is continuous,

there is a neighborhood NB(x) for every x with the property that, if x' is in

NB(x), f(x') is in NA(f(x)). The collection of all these neighborhoods NB(x) covers

the domain, and, since the domain is compact, there is a finite set of x. with the

property that the collection of NB(Xi) also covers the domain. This set of x i

fulfills the conditions stated in the theorem, and the theorem is thus proved. Inci-

dentally, we have also proved that if a function is continuous and its domain is

compact then its range is also compact.

The second theorem to be stated here is the Stone-Weierstrass theorem; in effect, it

is a theorem on the approximation of functions by polynomials. It is restricted to real-

valued functions, although the nature of the domain is not restricted. It is similar to the

first theorem in that we assume that the function to be approximated is continuous with

compact domain. The statement of this theorem must be preceded by some preliminary

definitions.

If f, fl, and f are functions with the same domain and A is a real number, then

f = fl + f2 if f(x) = (x)x) + fZ(X) for every x in the domain, f = flf2 if f(x) = f(x) f(x) for

every x in the domain, and f = Afl if f(x) = Afl(x) for every x in the domain. These
definitions, although obvious, are logically nontrivial.

An algebra of functions is a set of functions, all of which have the same domain, with

the property that for every f and g in the set and for every real number A, the functions

f+g, fg, and Af are also in the set.

An algebra of functions is said to separate points if, for every pair of objects x and

y in their domain and every pair of real numbers A and B, there is a function f in the

algebra with the property that f(x) = A and f(y) = B.

The Stone-Weierstrass theorem states that if an algebra of real-valued continuous

functions has a compact domain and separates points, then the closure of the algebra, in

the uniform topology, is the set of all continuous real-valued functions with that domain;

i. e., for any continuous real-valued function f with that domain, and any positive num-

ber E, there is a function g in the algebra such that If(x) - g(x) I < E for every x in the

domain.

The proof of this theorem has been given by Rudin (12); it is too involved to be

repeated here. Although the context of Rudin's proof may suggest that the theorem con-

cerns only functions of a real variable, the same proof is valid for compact domains in

the most general topological spaces.
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a. 4 A SPECIAL TOPOLOGICAL SPACE

The approximation theorems of section 2.3 will now be applied to nonlinear systems.

Specifically, since it was shown in Section I that a time-invariant system can be repre-

sented by a functional, they will be applied to functionals.

The theorems indicate that a sufficient condition for a function to be approximable is

that it be continuous and have a compact domain. These properties depend upon the topol-

ogies on the domain and the range. On the range (which is a set of real numbers) there

is only one useful topology; but on the domain (which is a set of real functions) a fairly

wide choice of topologies is possible. The practical meaning of the theorems depends

upon the topology that is used on the domain; but if the theorems are to have any practical

meaning at all, the topology that is used must imply both a physically meaningful defini-

tion of continuity and the existence of physically significant compact sets.

A topology that meets these requirements has been found. (Further research might

reveal others.) On the space PBI(R), which was defined in Section I as the set of all real

functions u for which lu(T-) R for all in the domain 0 T < o0, neighborhoods NT,(u)

are defined as follows: v is in NT, 6 (u), T > 0, 6 > 0, if and only if

[u(Mr) - V(T)] dT < 6 (2)

for all x in the interval 0 x < T. The topology defined by these neighborhoods will be

called the RTI (Recent Time Integral) topology.

This condition may be alternatively expressed by defining the functions U and V,

U(x) = U (T) dT, V(X) = V(T) dr (3)

Then v is in NT, 6(u) if and only if the magnitude of the difference between U(x) and V(x)

is less than 6 for every x in the interval 0 < x T. Note that if v is in NT, (u), then

u is in NT, (v), and vice versa. It will be seen that for v to be in NT,(u) no condition

need be imposed on the values of these functions for T > T, although for T < T the differ-

ence between U(T) and v(T) need not remain small, but may alternate rapidly between

large positive and negative values.

It will be shown in the next section that the space PBI(R), for any R, is compact in

the RTI topology. We therefore consider a functional h whose domain is the space

PBI(R). This functional is continuous if, for any positive number E, there exist positive

numbers T (sufficiently large) and 6 (sufficiently small) such that if v is in NT, 6(u)

(and v and u are both in PBI(R)), then Ih(u) - h(v) I < E. The functional will then be

called continuous(R), and the time-invariant system H that it represents will also be

called continuous(R). Any system referred to as continuous is understood to be time-

invariant.

11
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In the representation of systems by functionals, the function u represents the past

of the input. We may therefore interpret continuity for nonlinear systems (with respect

to the RTI topology) by the statement that a system is continuous(R) if, for all inputs

that are bounded(R), the value of the output is relatively insensitive to small changes in

the input, to rapid fluctuations (high frequencies) in the input, and to the remote past of

the input.

' It follows from the first theorem of section 2. 3 that a system H that is continuous(R)

can be represented with any desired accuracy by a finite table of values, since the func-

tional that represents it is a continuous function with a compact domain. Let any toler-

ance E be given; then T and 6 are determined according to the continuity condition, a

finite set of real functions u i is selected with the property that the collection of neigh-

borhoods NT, (i) covers PBI(R), and these real functions u i are tabulated with the cor-

responding values h(ui).

It will be shown in section 2. 5 that a time-invariant linear system is continuous(R)

for any R if and only if its impulse response is Lebesgue integrable; this is roughly

equivalent to the condition that its transients be damped and that its impulse response

involve no impulses. The set of all such linear systems, all products of these systems,

all constant-output systems, and all sums of these, is an algebra. The functionals that

represent them constitute an algebra of continuous functionals. It is easy to show that

this algebra separates points. The Stone-Weierstrass theorem then implies that any

functional that is continuous(R), with domain PBI(R), can be approximately represented,

with arbitrarily small error, by a functional chosen from this algebra. Hence, any sys-

tem that is continuous(R) can be approximated arbitrarily closely in polynomial form.

2.5 CONTINUITY AND COMPACTNESS IN THE RECENT TIME INTERVAL (RTI)

TOPOLOGY

This section is devoted to proofs of two statements made in section 2.4: that a time-

invariant linear system is continuous(R), for any R, if and only if its impulse response

is Lebesgue integrable; and that the space PBI(R) is compact in the RTI topology.

The theorem on continuity of a linear system will be proved first. A time-invariant

linear system is represented by the functional h, defined by

h(u) = h(T) (T) dT (4)

where h is the impulse response of the system. Suppose that h is not Lebesgue inte-

grable: this may be so either because

h(T) dTo = 00 (5)

12
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(i. e., h is not absolutely integrable), or because the integral of h is so defined that it

is not equal to the Lebesgue integral (e.g., h involves impulses). It will be shown in

each of these two cases that h is not continuous(R) for any R.

Suppose h is not absolutely integrable. Choose E > 0, and try to find a T and 

with the propertythat if v is in NT, (u) then h(u) -h(v) < E. But we can choose u and

v so that V(T) - U(T) has a constant magnitude less than 5/T, and an algebraic sign that

is always equal to the sign of h(-); then v is in NT, 6(u), but the difference between h(u)

and h(v) is infinite.

Now suppose that h contains an impulse of value A (i. e., A is the integral of the

impulse) at T. Choose E less than 12ARI and try to find a corresponding T and 6.

But if we choose v and u so that their values are equal except on a small interval that

contains T we can have v in NT, 5(u) by making this interval small enough and still

have U(T 0 ) - V(TO) = R, with the result that h(u) - h(v) = ZAR > E. A similar argu-

ment holds whenever the impulse response is absolutely integrable, but not Lebesgue

integrable, since in that case the indefinite integral of the impulse response is not abso-

lutely continuous.

Now suppose that the impulse response h is Lebesgue integrable. We prove that h

is a continuous functional. We consider the domain of the functional to be PBI(R) for any

chosen R, and choose any E > 0. Let p = E/4R. Now construct a step-function h - a
P

real function whose value is constant on each of n bounded intervals and is zero outside

them - so that

I [hp(T) - h(T) d p (6)

The existence of such a step-function can be proved from the fundamental definitions of

the Lebesgue integral; it is obvious if h is continuous. There is a number M with the

property that hp(-) < M for all T, and a number T with the property that hp(r) = 0 for

all T > T. Let 6 = E/6nM.

Let v be in NT, (u) for these values of T and 6. Then for any one of the n inter-

vals, say a < T b, we have

fib dhp(T) U() dT ab hp() (T) d = Jb hp(T)[U(T) - V(T) dT

(7)

< M I [u(T) - V(T)] dT 2M = E/3n

Since there are n intervals,

Ihp(u) - hp(v) </3 (8)

Also, since u is bounded and hp approximates h,

13

,� I" -`----t-�-·�···-�i�- Ir-�i�-- ��:-i--�--.�-------



I h(u) - (u) < pR = E/4

so that as we pass from h(u) to h p(u) to hp (v) to h(v) the changes are all small, and

I(u) - h(v) I < E/4 + E/3 + E/4 < E (10)

and the continuity of h is proved.

We turn now to proving the statement that the space PBI(R) is compact in the RTI

topology. The proof is accomplished by reductio ad absurdum; we assume that the space

is not compact and derive two contradictory conclusions.

We begin by constructing a special set of functions v, k in the space PBI(R). The set

of functions vk for a given n is constructed by dividing the interval 0 T < Zn into 2 2n
n, k _n

subintervals of length n; the value of each function vk is constant on each subinterval
n k

and equal to either R or -R, and is zero for T > 2n .
For each n, the index k will there-

fore run from 1 to 22 .
Since the number of these functions for each n is finite, all

these functions, for all n, can be arranged in an infinite sequence in order of increasing n.

With each vn, k we associate the particular neighborhood N (vn, k) = NT, (Vnk) defined

by T = 2 and = 2-R. It will now be shown that for any n the collection of neigh-

borhoods N (v, k) covers PBI(R). This is equivalent to showing that for any u in PBI(R)

and for any integer n we can construct a function vn k in such a way that the magni-

tude of

x

E(x) =X [Vn, k(T) - (T)] d- (11)

is less than 2 I-nR for every x in the interval 0 x •< 2n .
We construct such a function

Vn, k' starting from T = 0, by the following procedure. Suppose that vn, k(T) has been

determined on the interval 0 < T T . We shall decide whether the value of v is to
o n, k

be R or -R on the interval -r < T TO + 2n. According to our decision, E(T) will either

increase or decrease monotonically on this interval to a value

T +2 n

0 -n
E (T 0+ ) = E(TO) U(T) dT 2 R (12)

o

Since

T +Z-n

1-n -n -n
E(T ) - u() dT < 2 R + 2 R = 3 2 R (13)

0

at least one of these alternatives will make the magnitude of E (TO +2 less than - R.

Since the magnitude of E(TO) is also less than 2 1-n R, and E is monotonic on this

14
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interval, the same bound holds everywhere on the interval. We can continue this con-

struction over the entire length of the interval 0 < T - Zn , and prove that for any n the

collection of N *(vn k) covers PBI(R).

Now suppose that for each u in PBI(R) we specify a neighborhood N'(u); then the

collection of all N'(u) covers PBI(R), and, since we assume that PBI(R) is not compact,

we assume that these N'(u) have been so chosen that no finite subcollection of these

neighborhoods covers PBI(R). We can prove at the outset that there is a countable sub-

collection that covers PBI(R) - that is, a collection that can be ordered in a sequence.

For each u, N'(u) = NT 6(u) for some T and 6. Choose n so large that 2n > T and
- n < 6/2. There is a n k with the property that N*(vn k) contains u, and this N (Vn,k)

is contained in N'(u). Thus, assigning some N (vn k) to every u, we obtain a subcollec-
n, k

tion of the infinite sequence of N (vn k ) . This subcollection covers PBI(R) and can be

arranged in a sequence, and each neighborhood is contained in at least one N'(u). For

each, pick one of the N'(u) that contains it. We thus obtain a sequence N1 (um), m= 1,2,...,

which covers PBI(R).

Now choose m 1 = 1. No finite collection of N'(u) covers PBI(R), so there is some

function w1 in PBI(R) that is not in N'(ul); but, since the collection of N(um) covers

PBI(R), there is an m Z with the property that N'(umz ) contains w1 . Consider next the

collection of N'(um), m = 1, 2,.... m2. This collection does not cover PBI(R), so there

is a w that is not in any of these neighborhoods, but there is an m 3 with the property

that w2 is in N'(um3 ) . Proceed, in this manner, to construct an infinite sequence of wi,

with the property that no finite collection of the neighborhoods N'(um) contains more than

a finite number of them.

We shall now contradict this conclusion by proving that for any sequence of functions

Wi in PBI(R) there is at least one neighborhood N'(um) that contains an infinite number of

w.. Consider the collection of N(vn, k) for n = 2. This collection covers PBI(R) and

contains a finite number of neighborhoods, so that at least one of them, which we shall

call N*(vz), contains an infinity of w i . If we consider only the w. that are contained in
*(v9z, cl 1 

N (v), the collection of N (vn, k ) for n = 3 must contain at least one N*(v 3) that contains

an infinity of these w i . We proceed, in this way, to construct a sequence of neighbor-

hoods N (v.), each of which contains an infinity of w i , including any w i that is contained

in any N (vj) that follows it in the sequence.

We now define the functions Vj,

x
Vj(x)= Vj (T) dT (14)

It can be shown that for every x the sequence of numbers Vj(x) forms a convergent

sequence, so these functions Vj have a limit function Vo . It can also be shown that VO

is absolutely continuous, and that the magnitude of its derivative does not exceed R, so

there is a function vo in PBI(R) with the property that

15



x

Vo(X) =Jo (-r) d (15)

It will be seen that every neighborhood of v0 contains an infinity of wi. Since there is

at least one N'(um) that contains v, and every neighborhood that contains v contains a

neighborhood of vo, the N'(um) contains an infinity of wi. This statement contradicts

our previous conclusion. The assumption that PBI(R) is not compact has led to a con-

tradiction, and we conclude that PBI(R) is compact.

2. 6 HYSTERESIS

Hysteresis is often mentioned as a typical phenomenon of nonlinear systems. Exam-

ination of methods of approximate representation of nonlinear systems leads to a general

impression that these methods fail when hysteresis occurs. However, a general defini-

tion of hysteresis is necessary before this impression can be promoted to the status of a

conclusion. Such a definition will be proposed in this section. It will then be shown that

systems that exhibit the phenomenon of hysteresis are not continuous, in the sense in

which continuity was defined in section 2.4.

The phenomenon of hysteresis is usually understood in terms of a hysteresis loop.

y y

.. --- ,x

(a) (b)

y y

A

_A'

X~~~~~~~~~~~~~~

__X

(c) (d)

Fig. 1. Hysteresis loops. (a) No hysteresis. (b) With hysteresis.
(c) Two systems with hysteresis. (d) Sum of the two sys-
tems in (c).
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A system that exhibits hysteresis is contrasted with a system in which the instantaneous

value of the output, y, is uniquely determined by the instantaneous value of the input, x,

as in Fig. la. This is a typical no-memory system.

A system with hysteresis is then considered as one that, for a given value of the

input, may have one of several different output values. The system is, at any time, in

one of several states, the state depending not only on the value of the input, but also on

previous states of the system; the state depends, however, only upon the order, and not

upon the time, in which these previous states were passed through. A graph repre-

senting such a system is shown in Fig. lb. (For the sake of simplicity, the sides of the

loop are made vertical.) When x changes, y, if the graph indicates more than one pos-

sible value, assumes the value nearest to the value it had most recently. The vertical

parts of the loop can therefore be traversed only in the indicated direction.

In the system of Fig. lb the state of the system can be determined from the input

and output values, but this is not always true. Consider the system of Fig. Id, which

is formed from the two systems of Fig. lc by applying the same input to each, and adding

the outputs. If the two loops of Fig. c were of the same height, points A and A' of

Fig. Id would indicate the same input and the same output, but would represent different

states.

In such simple cases as these, we can say that the output of a hysteretic system

depends on its past history, whereas the output of a nonhysteretic system does not. But

this statement is not sufficient in a general context, when the output of a nonhysteretic

system (e. g., a linear system) also depends on the past of the input. To define hyster-

esis for general time-invariant systems, we use two conditions that may be deduced

from the graphs of Figs. lb and Id, but are meaningful also in a general context.

In a hysteretic system it is possible, first, to specify two inputs, different for t < 0

but equal for t > 0, for which the difference between the corresponding outputs does not

converge to zero as t - oo. Second, it is possible to specify an input for t > 0 in such a

way that for any two inputs, arbitrarily different for t < 0 but with the specified form for

t > 0, the difference between the corresponding outputs always converges to zero as

t - o. (The condition of convergence toward zero is used, instead of equality to zero,

to allow for dependence of the output on the finitely remote past of the input.)

Any system that is continuous(R) is an example of a system that does not satisfy the

first condition, since, for any E, we specify T as in the definition in section 2.4, and

the outputs for t > T must differ by less than E. An example of a system that satisfies

the first condition, but not the second, is an ideal linear integrator.

We can prove, by using the principle of superposition, that a linear system must be

nonhysteretic. If two inputs are different for t < 0 and both are zero for t > 0, then

adding to each input a specified component for t > 0 can only add to each output a com-

ponent that is the same for both outputs, and cannot change the difference between the

outputs. Hence if a linear system satisfies the first condition for hysteresis, it cannot

satisfy the second.
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A system capable of subharmonic response to a sinusoidal input satisfies the first

condition of hysteresis, since two inputs that are equal for t > 0 may give rise to sub-

harmonic outputs in different phase. If, in such a system, the output tends to zero when

the input becomes and remains zero, the second condition is satisfied and the system is

hysteretic.

Since a hysteretic system is not continuous, it cannot be approximated arbitrarily

closely, in the uniform topology, by continuous systems. However, for some hysteretic

systems and some input ensembles, it may be possible to find continuous systems that

approximate the output with arbitrarily small error except for an arbitrarily small prob-

ability of large error. The reason is that the second condition in the definition of hys-

teresis implies that events can occur in the input that make the system forget what

happened before them. For some ensembles and inputs there can be a positive probability

of such an event occurring in a bounded time interval, and this probability will approach

unity as the length of the interval increases; thus a system whose output depends effec-

tively on a finite portion of the past of the input may be made to approximate the output

with arbitrarily small probability of large error.

2.7 SUMMARY

The principal ideas and conclusions are outlined in this section. These ideas form

the foundation of the methods of representation that will be discussed in subsequent

sections.

The input to a system is represented by a real function f; the value of the input at

time t is f(t). The output is similarly represented by a real function g. If f is Lebesgue

measurable, and If(t) I < R for all t, then f is said to be bounded(R).

A nonlinear system H is a function. It assigns to every input f (in a specified set)

a corresponding output g = H(f).

A time-invariant system H can be represented by a functional h. The value of the

output at time t is determined from the function ut, defined by ut(T) = f(t-T), T 0; then

h(ut) = g(t). If f is bounded(R), then ut is an element of the set of functions called PBI(R).

A topology is a scheme of approximation criteria; a neighborhood is a set of approxi-

mations satisfying some criterion. On the space PBI(R) we define the RTI topology by

the condition that, for T > 0, 6 > 0, the function v is in the neighborhood NT 6(u) of the

function u if and only if

[U(T) - V(T)] d < 6 (16)

whenever 0 x -T.

A time-invariant system H, considered only for inputs that are bounded(R), is said

to be continuous(R) if, for any E > 0, there exist T > 0, 6 > 0 (T sufficiently large, 6

sufficiently small) such that if u and v are in PBI(R) and v is in NT, (u), then

Ih(u) -h(v) < E.

18



If H is continuous(R), then for any E > 0 there is a finite set of functions u. in PBI(R),

and a neighborhood NT, (ui) of each ui, such that every u in PBI(R) is in at least one of

these neighborhoods, and if u is in NT,6(ui), then h(u) - h(ui) I < E.

If H is continuous(R), then for any E > 0 there is a polynomial system H , consisting

of a sum of a constant, a linear system with Lebesgue integrable impulse response, and

products of such linear systems, such that, for any input that is bounded(R), the values

of the outputs of H and H never differ by more than E.

19

___� ·_ �I ___^·__�^l�i__ L __L�_�_II·____·_ - ------------- _ rl_ _,_1 __~_ _; Li__ I



III. A DIGITAL APPARATUS

3. 1 THEORY

As an illustration of some of the results of Section II, a description and discussion

of a hypothetical apparatus for the analysis and synthesis of nonlinear systems will be

presented. The apparatus is designed for the laboratory examination of an unknown sys-

tem and the synthesis of an approximately equivalent system. It has not been built

because it does not appear to be practical, but some of its principles are interesting.

The apparatus is based on the approximate representation of functionals by means

of tables of values. To represent a functional h, we tabulate the values of h(u) for a

finite number of real functions u. The functions for which values are tabulated in this

apparatus are similar to the functions vn,k used in the proof of a theorem in Section II.

They are constructed by quantizing time in intervals of equal length q and by making the

value of the function constant, and equal to either R or -R, on each interval. We shall

call such functions quantized functions. They can be represented as sequences of binary

symbols, 1 for value R and 0 for -R.

Given any input function f that is bounded(R), we generate a quantized function f to

approximate it in the sense that J [f(t) - f*(t)] dt is made as small as possible for

every A and B. The value of f* on each q-interval must obviously be determined no

later than the beginning of that interval, without any knowledge of the values f will have

on that interval. We may use a feedback method, and the error of approximation can be

determined by means of an integrator. The input to the integrator will be f - f*, and

the output will be the error signal e,

rt

e(t) = [f(x) - f*(x)] dx (17)
-oo

and, at the beginning of each q-interval, we make the value of f* equal to R, on that

interval if e(t) is positive, and equal to -R if e(t) is negative; if e(t) = 0 we make an arbi-

trary choice.

On an interval of length q, f* will contribute a change of magnitude qR to the value

of e, with sign opposite to the sign of e at the beginning of the interval, whereas f will

contribute an unpredictable change of mangitude that does not exceed qR, so that the

value of e(t) will be kept within the bounds of ±2qR. Then

I [f(t) - f*(t)] dt i = e(A) - e(B)| ~<4qR (18)

This error is attributable partly to quantization and partly to the delay in using the

values of f to determine the values of f*. In deriving from f* an approximation to u t

it is therefore desirable to make use of the fact that f can be predicted up to the end of

the present interval. We define u(T) = f(t: - T), where t;: is the end of the q-interval
t
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containing t. This means that u*(T) is constant on intervals of length q, starting from

T = 0, and the values of u* on these intervals are the values already determined for f*,

beginning with the most recent. Then for all t and all x,

fX [ () - u*(T)] d) < 4qR (19)

Given a system H that is continuous(R), and given E as the desired tolerance for the

output, determine T and to satisfy the continuity definition, and let q = 6/4R. Let n

be the smallest integer that is not less than T/q (i. e., the number of intervals of length

q needed to cover an interval of length T); u need be defined only on the first n inter-

vals of length q, and may be taken as zero for T > nq. Then u* is in N(ut), and

therefore Ih(u*) - h(ut)I < E.

The function u can be represented as a sequence of n binary digits. It must be one

of 2n possible functions u*, each of which is represented by a binary number. For each

number we tabulate h(u*).

In many cases it is not practical to determine in advance the appropriate T and 6

for a given E. In such cases, n and q can be chosen arbitrarily, and if the resulting

error turns out to be too large, it can always be made smaller by choosing q smaller

and nq larger.

3.2 CONSTRUCTION AND OPERATION

Two devices are conceived for the implementation of this theory, an analysis device

(for examining a system in the laboratory) and a synthesis device. The synthesis device

would consist of two parts, one a quantizer to determine u*, and the other a storage

device that contains previously determined values of h(u*) and produces, at every time

t, the value h(u*). The analysis device generates quantized inputs f, so that, at certain

times t, ut has the form of u*, and records the values of the output at these times as

h(u*).

Figure 2 illustrates the quantizer. The interval length q is determined by the fre-

quency of the pulse generator, and n is the number of stages in the shift register. The

shift register holds, at all times, the last n digits of f*, and delivers these, as u*, to
t

the storage unit, which, in turn, delivers the output. The curves in Fig. 2 were calcu-

lated to indicate typical operation of the quantizer.

The analysis device consists of two parts, a generator that generates quantized inputs

and a storage unit to record the output values. In using this device, it is not necessary

to wait for the system that is being tested to return to its rest state before every

sequence of n digits of input because the system is sensitive, within the specified toler-

ance, only to the last n digits of any long input sequence. We can therefore use a long

sequence of digits with the property that every possible sequence of n digits is contained

in it. For example, the sequence 01100 contains the two-digit groups 01, 11, 10, 00 in

that order; similarly the sequence 0100011101 contains all possible sequences of three
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Fig. 2. Quantizer.

digits. Alternatively, we can use a random sequence of digits; the probability is unity

that a random sequence will eventually include all possible sequences of length n. A

random sequence might be generated by using the quantizer with a white-noise input.

The use of random inputs suggests the application of the apparatus to the synthesis

of filters according to statistical criteria (e. g., for an ensemble of inputs consisting of

a signal corrupted by noise, in order to minimize the mean-square difference between

the signal and the output). The functions ut (which represent the past of the input) will,

in general, form a probability ensemble, and for each u t the value d(t) of the desired

output, of which the output g(t) of the system is to be an estimate, will have a conditional

probability distribution. The optimum estimate can be derived by one of many possible

criteria from this conditional distribution. In many cases we can approximate the dis-

tribution of d(t) conditioned on u t by the distribution of d(t) conditioned on the quantized

approximation, u, to ut. We might therefore use a long sample of the input and the

desired output, put the input into the quantizer, and for each u":= record samples of the

corresponding values of the desired output. If the sample is large enough, we obtain

many samples of the desired output for each u>. We estimate the conditional distribution
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from these samples, compute the optimum estimate of the desired output from this dis-

tribution, and record the optimum estimate as h(u*). For some estimation criteria there

may be easier ways to derive the optimum estimate from the samples; the process

described is general.

3.3 EXAMPLE

We now calculate, for a very simple system, the requirements on n and q for syn-

thesis of the system by means of the apparatus described in the preceding section. Con-

sider the linear system with frequency response a/(s+a), that is, with impulse response
-T

ae . This is a lowpass filter with unity low-frequency gain.

For this system,

o0

h(u) = ae -a T U(T) d (20)

The system is continuous(R) for every R. Suppose v is in NT, (u). Then whenever

0 x T, we have

[U(T) - V(T)] d < 6 (21)

Then

h(u) - h(v) = a e a[u(T)> - V(T)]I dTl

Ha ,, e [U(T) - V(T)] dT + af ea-I U(T) I + V(T)I] dT

a e- (U(T) - V(T)V(T)] d- + R e

< a + 2R e -aT (22)

in which we have integrated by parts, using

U(x) = f U(T) dT, V(x) = f V(T) d (23)
J0

Next, having selected E as the tolerance on the output, we choose T and 6 so that

a + 2R e a T E (24)

and set q = 6/4R, n T/q, so that

4qa +-2 aqn E/R (25)

It is difficult to minimize the storage that is required (i.e., to minimize n), but
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some bounds are easy to obtain. T must be greater than (l/a) log (ZR/E), and q must

be less than E/4aR; hence, n T/q must be greater than (4R/E) log (ZR/E), which gives

a lower bound on n (log = natural logarithm). We obtain an upper bound on the minimum
-aTn by finding the n that is required if we arbitrarily choose T and 6 so that a8 = ZR e

We obtain T = (/a) log (4R/E), q = E/8aR, and n (8R/E) log (4R/E).

Iifwe set a tolerance of 10 per cent (R/E = 10), then 120 < n < 300, approximately,
36 90

and the minimum number of stored values required is between 10 and 109

3.4 CONCLUSIONS

For R/E = 10, a set of 11 numbers can be so determined that the output will always

be within E of at least one of them. The requirement of 1036 stored values seems,

therefore, to imply a very inefficient scheme of synthesis. Part of this large storage

requirement arises from the fact that many widely different functions u will have the

same h(u), and this grouping, since it depends on the system, cannot be built into the

apparatus in advance. The same value of h(u) therefore must be stored separately for

many different functions u. However, there are still several sources of inefficiency

that might be corrected.

The inefficiency of the apparatus arises partly from the fact that u* is derived fromt
a quantized approximation to f. This imposes certain constraints on the quantized

approximation to ut. It can be shown that if the quantized approximation u* is derived

directly from ut, so that these constraints are not imposed, we can construct for every

u in PBI(R) a u* with the property that

IJ [U(T) -U*(T)] dTI qR (26)

instead of 4qR. Such a u can be constructed by using n linear filters, of which
th t

the kth filter, k = , 2, ... , n, has an impulse response that is 1 from zero to kn

and zero thereafter, and by quantizing the output of each filter. Then q can be

chosen to be four times as large for the same T and 6, and, in the example of
9 23

section 3.3, the minimum number of stored values will be between 10 and 10

[Although the quantized output of the kth filter has k + 1 possible values, and hence

2n(n+l)I conceivable combinations of values, only 2 n of these combinations are

possible if the input is bounded(R).]

There is another source of inefficiency that might be removed. Although data on the

past of the input have been taken only from a bounded interval of the recent past, as

much data have been taken from the more remote parts of this interval as from the more

recent parts, and this is unnecessary. We can correct this by making the q-intervals

longer for the remote past than for the recent past. This can be done simply by omitting

some of the filters from the set described. This would effect a further substantial
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reduction in the number of stored values that is required.

The apparatus that is thus evolved, consisting of linear filters with quantized

outputs, is practically similar to, although different in derivation from, the appa-

ratus proposed by Bose (9).
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IV. ANALYTIC SYSTEMS

4.1 THEORY

One of the conclusions of Section II was that any system that is continuous(R) can be

approximated arbitrarily closely by a polynomial system constructed from linear sys-

tems whose impulse responses are Lebesgue integrable. This polynomial system is a

sum of a constant, a linear system, and products of linear systems.

The output of a constant system can be represented by a fixed real number; the out-

put of a linear system can be represented by means of a convolution integral. For a

product of linear systems, whose impulse response functions are k 1, k2 , ... , kn, we have

oo 7o n n
g(t) = f kT) n f(t - Ti) dTl... dn (27)

i= 

where f represents the input and g the output. Or, if we write

hn(1' .... n) = kl(rl) kZ(T2) ... kn(T n) (28)

we have

po0 0o0 n

g(t) = ... hn(Ti...p n) 1 f(t- Ti) dr d n (29)
0-so N-o i= 1

This is, at least in a restricted sense, a system of n t h degree, since multiplying

the input by a constant A results in multiplying the output by A . The function hn (which

is Lebesgue integrable) will be called the system function.

The sum of two n t h degree systems is an n t h degree system whose system function

is the sum of the system functions of the summands. Therefore, the representation of

a polynomial system requires only one term of each degree:

g(t) = h + h(T) f(t-r) dT + hZ(rT1 , Z) f(t - T1) f(t - T2 ) dld Z 2
o00 o0

+ ... + ... J hN (T,. .,N) f(t- Ti) dTl...dN (30)
XO -i0)= 1

Any continuous system can be approximated arbitrarily closely in this form.

The domain indicated in these integrals has been chosen as (-0o, oo) so that physically

unrealizable systems can also be represented. For a physically realizable system, each

system function hn will have the value zero whenever any of its arguments is negative,

and the integrals can then be taken on (0, o).

For convenience in certain computations, we define the system transforms Hn by

Hn(SI ... Sn) = ... hn(lT , T n) exp(-slT 1-. -Snrn) d .d (31)
-oo -oo
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(in particular, Ho = ho). Since the system functions are absolutely integrable, these

transforms can be defined as Fourier transforms, with s i = j wi, and as such they will

always be well defined. Alternatively, if the system is physically realizable, they can

be defined as Laplace transforms, with si > 0. If the system transforms are known, the

system functions can be determined (at least theoretically).

The scope of this formula will be extended in two ways. First, we form a power

series by allowing an infinity of terms; second, we relax the condition of Lebesgue inte-

grability to a condition of absolute integrability that permits impulses in the system func-

tions. By using impulses, we can approximate some no-memory systems, even though

such systems are never continuous(R).

Having extended the scope of the formula, we must impose some restrictions on the

system functions in order to guarantee that the formula will specify a unique output for

every input in a well-defined set. We define the norms of the system functions by

ihn = ... I hn(T 1 ... Tn) dl...d,- n (32).

(in particular, Ilhol = Iho ). We then require that all these norms be finite and that the

power series

o00

BH(x) = Z lh n xn (33)

n=O

have a nonzero radius of convergence RH. Then, if the input is bounded(R) for any R

less than RH, all the integrals will converge absolutely, the series will converge abso-

lutely, and the output will be bounded(BH(R)); that is, the value of the output will never

have magnitude greater than BH(R). The function BH will be called the bound function

of the system H, and RH will be called the radius of convergence of the system. A sys-

tem that can be exactly represented in this form, with these conditions, will be called

an analytic system.

The system functions of an analytic system are not unique; in fact, any hn can be

altered by permuting its arguments l, ... , Tn without altering the system. However,

it can be shown that unique system functions are obtained under the condition that the

system functions be symmetric, i.e., that they be unaltered by any permutation of their

arguments. If a system is specified with unsymmetric system functions, we can replace

each system function by the arithmetic mean of the functions obtained by all possible

permutations of its arguments, and the resulting system functions will be symmetric

and will define the same system.

It can be shown, by using the concept of multilinear functions, that the analytic sys-

tem is a generalization of the power series [cf. Hille (14)]. A function f of n arguments

is called a symmetric n-linear function if it is symmetric and if it is linear in each argu-

ment. We are interested in two cases, the familiar case in which the arguments are
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real numbers, and the case in which the arguments are real functions. Any n-linear

function of n real numbers x, x., . . xn can be written in the form

f(xl. ..,xn) = Ax 1 2X... X (34)

where A is a fixed number. The function Hn, defined by g = Hn(fl . .. fn), where

g, f . . . fn are all real functions and

g(t) = ... J h (T1i Tn) fi(t - i) dT dT (35)

where hn is a real-valued symmetric function of n real variables, is also a symmetric

n-linear function. Now define a homogeneous function of n t h degree as a function of a

single argument that can be derived from a symmetric n-linear function by setting all

the arguments equal: xl = x = =... =Xn x, or f = f = f f; define a power

series as an infinite summation of homogeneous functions. With real-number arguments,

we obtain the familiar power series; from the n-linear function with real-function argu-

ments we derive the formula that we have used to represent analytic systems.

4. 2 EXAMPLES

Two kinds of examples are to be described here; general analytic systems with par-

ticular kinds of inputs, and particular kinds of analytic systems considered without

restriction on the input (except boundedness).

In the study of linear systems, particular emphasis is placed on two kinds of inputs:

impulses, which place in evidence the physical significance of the impulse response,

and sinusoids (or exponentials), which perform a like service for the transform of the

impulse response. Sums of impulses, or sums of sinusoids, are trivially accounted

for by superposition; but superposition does not hold in nonlinear systems.

Consider an analytic system whose input is a sum of impulses. Strictly, this is not

permissible, because a well-defined output is guaranteed only for bounded inputs. How-

ever, a formal result can be obtained, and, since laboratory approximations to impulses

are really bounded pulses, the formal result has a practical interpretation. For the

sake of simplicity, we consider an analytic system with only one term, i. e., all the sys-

tem functions except one are zero; a general analytic system is a sum of such systems.

Let the input f to such a system be

M

f(t) Am8(t T) (36)

m=l

th
that is, a sum of M impulses, with the m impulse having the value A and

m
occurring at time Tm Then the output g of the system is given by
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M M

g(t) = Z ... E AmA A . A h (t-Tm ... t (37)

ml=1 m =1
1 n

Each permutation of every combination of n impulses (not necessarily n different

impulses) chosen from the input thus gives a contribution to the output; this output is

equal to the product of the values of these impulses with an appropriate value of the sys-

tem function. The integrals that appear in the general expression for the output have

been, in effect, replaced by sums. If we consider a general input as approximable by

a sum of impulses, then the output at any time is a weighted sum of products of past

values of the input, the weighting being determined by the system functions. The system

functions of an analytic system might therefore be considered as its impulse response

functions.

Now suppose the input is a sum of sinusoids, or, since a sinusoid can be expressed

as a sum of complex exponentials, suppose the input is a sum of exponentials. Thus

M

f(t) = E Am exp(smt) (38)

m=l

Then the output g of the system is given by

M M

g(t) = ... AmAm ... A Hm n( '' smn exp (smm + +S )t
m = m =1

1 n

(39)

Each permutation of every combination of n exponentials (not necessarily n different

exponentials) chosen from the input gives a contribution to the output that is an exponen-

tial with a complex frequency equal to the sum of the frequencies of these exponentials,

and with an amplitude that is equal to the product of the amplitudes of these exponentials

and an appropriate value of the system transform. Since a sinusoid is a sum of two

complex exponentials, each with frequency equal to the negative of the other, these

contributions account for the harmonics, sum frequencies, and difference frequencies

that we know occur in nonlinear systems. The system transform gives, in terms of the

magnitudes and phases of the input sinusoids, the magnitude and phase of each sinusoid

in the output. The system transforms might therefore be considered as frequency-

response functions.

We now consider some special types of analytic systems. First, we consider the

identity system, whose output always equals its input. We shall represent this system

by I. This is a linear no-memory system. All its system functions are zero except

the first, i, which is a unit impulse; hence, all its system transforms are zero except

the first, Il(s) = 1.
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Next, we consider two types of systems that are easy to deal with by methods that

are already in wide use: linear systems and no-memory systems. A linear system is

analytic, with infinite radius of convergence, if its impulse response is absolutely inte-

grable; this impulse response is then its first system function, and all the other system

functions are zero. The first system transform is the frequency-response function of

the linear system, and all other system transforms are zero. Conversely, an analytic

system is linear if all its system functions (or system transforms) are zero except the

first.

A no-memory system is analytic if the value of the output is given in terms of the

value of the input by a power series, and its radius of convergence is the radius of con-

vergence of this power series. If

oo

g(t) = E an(f(t))n (40)

n=0

then the system functions are all products of impulses,

hn(1' . Tn) = a6(T) 6(T 2 ) ... 6(T ) (41)

which indicates that the value of the output at any time is independent of past values of

the input. The system transforms are all constants,

Hn(5l. * . ) = a (42)

which indicates that if the input is a sum of sinusoids, the amplitude and phase of the

output sinusoids are independent of the frequencies of the input sinusoids. Conversely,

if the system transforms of an analytic system are all constants, the system is a no-

memory system.

4.3 COMBINATIONS OF ANALYTIC SYSTEMS

Because engineering, at the practical level, consists largely of putting things together

and making them work, analysis and synthesis have become important parts of the theory

of linear systems, and they may be expected to be important in the theory of nonlinear

systems as well. Analysis is generally easier than synthesis, and it may be that the

best way to develop a good theory of synthesis is to develop first a good theory of analy-

sis. An approach to the analysis of nonlinear systems is proposed in this section and

elaborated in subsequent sections.

In the fundamental approach we begin with analytic systems and interconnect them in

several ways, with the object of determining when the result of this interconnection con-

stitutes an analytic system, and, whenever it does, what its system functions or system

transforms are. Many practical systems can be described as combinations of linear and
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no-memory systems, which can be easily represented in analytic form. For such sys-

tems, this approach may be, for some purposes, an adequate method of analysis. We

begin with some simple forms of interconnection: sums, products, and cascade com-

binations.

The sum H + K of two systems H and K is constructed by tying their inputs together,

so that the same input is applied to both, and adding their outputs. Thus, Q = H + K if

and only if, for every input f, Q(f) = H(f) + K(f).

If the systems H and K are analytic, a trivial calculation gives the result that the

system functions of Q are

q (T I. .Iv n
) =

hn(T ... Tn) 
+ kn( 1 ..... n (43)

and the system transforms of Q are

Qn (SI * . Sn) = Hn(S, * . Sn) + Kn(S 1 Sn) (44)

But these results are not sufficient to show that Q is analytic, since we still have to

show the existence of a bound function and a nonzero radius of convergence. However,

this is not difficult. It follows from Eq. 43 that

l qn 1l < Ihn II + Ilk Il (45)

and from this bound on the norms of the system functions of Q we can determine an

upper bound on the bound function,

BQ(x) BH(x) + BK(X) (46)

and a lower bound on the radius of convergence,

RQ > min (RH, RK) (47)

Note that if H is a system of degree N (i.e., all system functions after the N t h are

zero), and K is a system of degree M, then the degree of Q will not exceed the larger

of the two numbers N, M.

Almost as easily treated is the product HK of two systems, constructed by tying the

inputs together and multiplying the outputs: Q(f) = H(f) K(f). If H and K are analytic, a

straightforward calculation of the output of their product, after terms of like degree are

collected, yields

n

qn(TI' . ) = h.i(T 1 ... Ti) kn-i(Ti+l' .. . Tn) (48)

i=O

and
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n

Qrt 1' *-'Sn). EHiISl,.,s i ) Kn-i(si+ .....sn ) (49)

i=O

From this, we determine that

n

I n 11 -< 1 h 1 kn-i (5 )
i=O

from which it follows that

BQ(x) < BH(x) BK(x) (51)

and

RQ - min (RH, RK) (52)

If H is a system of degree N, and K is a system of degree M, then the degree of Q

will not exceed N + M.

The cascade combination H * K of two systems H and K is formed by applying the

input to K, using the output of K as the input to H, and taking the output from H. Then

Q = H * K if and only if, for every input f, Q(f) = H(K(f)). Note that H * K and K * H are

not the same, although in special cases (e. g., linear systems) they are equivalent.

The system functions and system transforms of Q are given by formulas that are

derived, as in the product case, by a straightforward computation of the output, in which

terms of like degree are then collected. These formulas are rather complicated in the

general case, although they can be expressed fairly simply in certain almost general

cases.

The first step in the calculation of qn or Qn is to determine, for every positive inte-

ger i, all possible permutations of combinations of i non-negative integers whose sum

is n. In each permutation these i integers will be called mj, j=1, 2, ... , i. The system

function qn is given by a convolution-like integral involving hn and kml km ... km:

00 00 00 i

qn(l .... n) = .. .hi(x 1 , ... xi) km (* T( ) -- X j , .. )Xi...)dx ... dx
i=0 -0o -0

(53)

The order of the subscript indices on the T's is immaterial, because permutation of the

arguments of a system function does not change the system it characterizes; hence they

are not indicated. The only important point to remember is that there should be one of

each, from 1 through n, and the T's might as well be indexed in the order in which they
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appear when the km. are written in order of increasing j. The second summation sign

J
in this formula indicates a summation over the set of permutations indicated at the

beginning of the paragraph.

The system transforms Qn are given by

i

Qn(S* Sn) = E H i(I a' * i) K s (54)
j=I ji=0

where . is the sum of the m. arguments of K In this formula, as in formula 53, the
J 3 m'

second summation is over all permutations of i numbers mj whose sum is n, and the

s-variables may be indexed 1, . ...,n in any order.

In the general case an infinite summation is required for the determination of each

system transform or system function. However, when i is greater than n, every com-

bination of mj must contain at least one mj that is equal to zero. Therefore, there are

two special cases in which each qn can be determined as a sum of a finite number of

terms: when H is a system of finite degree, and when K ° = 0.

In many practical systems it is possible to obtain a description in which the compo-

nents are analytic systems with zero constant terms, by first solving for the particular

case of zero input to determine the operating points, and then measuring all variables

with respect to these operating points. If both systems in a cascade combination have

zero constant terms (i. e., Ho = Ko = 0), then for the first few system transforms of the

cascade combination we obtain

Qo = 0

Q 1(s) = H1 (s) K1 (s)

Q2 (sl, s2 ) = H(S +S 2 ) K(s, s) + H2 (Sl, s 2 ) K 1 (s1 )K 1( 2) (55)

In analytic systems, as in linear systems, the solution of the cascade problem

involves integration in the time domain, but does not involve integration if the solution

is expressed in the frequency domain.

To determine bounds on norms, bound function, and radius of convergence, in the

general case, we obtain

Iqnll < I lIIhill F IkmjI (56)
i=O j=1

from which it can be shown that

BQ(x) < BH(BK(x)) (57)
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and

RQ > min (RK , solution of BK(x) = RH) (58)

The resultant system Q will not always be analytic; there might not be any nonzero

radius of convergence if K is greater than RH. However, the same conditions that

ensured that the system functions and system transforms of Q could be computed by a

finite summation will also ensure the analyticity of Q.

If the components of a cascade combination are of degree N and M, respectively,

the degree of the resultant system will not exceed NM.

In all cases, sum, product, and cascade, the bounds on the bound functions are

immediately obvious if they are regarded only as bounds on the output. However, the

bounds on the bound functions provide more information than this. The coefficients of

the power-series expansion of the bound provide upper bounds on the norms of the sys-

tem functions. Furthermore, the formulas for bounds on the bound functions and radii

of convergence remain valid if the bound functions and radii of convergence that appear

in the formulas are replaced by bounds that have been obtained from a previous calcu-

lation.

The bound functions of combination systems do not have to be computed by power-

series methods; they may be computed graphically or numerically. Because the system

calculations must be performed by calculating the system functions or transforms one

at a time, the bound functions provide a useful method for controlling their accuracy.

If, for example, only the first three system functions of a combination system are cal-

culated, a bound on the error can be obtained by subtracting from the upper bound of

its bound function the first three terms of its power-series expansion. The resulting

function gives, for every R, an upper bound on the magnitude of the error for inputs

that are bounded(R).

4.4 EXAMPLES OF CASCADE SYSTEMS

It may often happen in practice that only one system in a cascade chain is nonlinear,

and all the others are linear. In such a chain some fairly simple and easily recognizable

forms are obtained for the solution.

For a linear system L followed by a nonlinear analytic system H (i.e., for the

combination Q = H * L), we obtain

Qn(s . .. ,Sn) = Hn(S1 ... Sn) L1 (S1 ) L 1(S2) ... L(Sn) (59)

For a nonlinear system followed by a linear system (i.e., for the combination

Q = L * H), we obtain

Q(s,,...s_ = L,(s,+s, + +... +s_) H (s,.... , s) (60)
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For a nonlinear system H preceded by a linear system L and followed by a linear

system K (i. e., for the combination Q = K · H * L), we obtain

Qn 1(Sl n) s = K(S + sn) Hn(S 1 ... sn) L(s 1 ) * L 1 (sn ) (61)

In the particular case in which the nonlinear system H is a no-memory system, so that

each system transform H n is a constant An, we have

Qn(sl, Sn) = AnKI(Si+ + Sn) L(s1 ) . L(Sn) (62)

This form is so easy to recognize that it can be used for synthesis, since any

analytic system whose system transforms are of this form must be a cascade

combination of linear systems with one no-memory system, or the equivalent of

such a combination.

As an illustration of the solution of cascade combination systems, we consider

an amplitude-modulated radio communication system. We shall suppose that the

carrier and the signal are added in the transmitter, and pass through a nonlinear

no-memory device that acts as a modulator. The output of the modulator passes

through a radiofrequency amplifier, a propagation path, and several radiofrequency

amplifiers in the receiver, all of which are represented by a linear narrow-band

filter. Another nonlinear no-memory device acts as a detector, and the output of the

detector then passes through a sequence of audio-frequency devices, represented

by a linear filter.

The modulator will be assumed to be a second-degree system, whose output y in

terms of its input x is given by

y = m x + m 2 x2 (63)

The radiofrequency channel will be assumed to be linear with frequency-response func-

tion R(s). This filter will be assumed to have zero response at audio frequencies and

at the harmonics of the carrier. The detector is another second-degree device, with

output y in terms of input x given by

y = dlx + d 2 x2 (64)

The audio-frequency channel will be assumed to be linear with frequency-response func-

tion A(s), and the response of this channel will be assumed to be zero at zero frequency

and at radio frequencies.

The fundamental cascade combination formula is then applied three times in succes-

sion to obtain the system transforms of the complete channel:
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Q 0= O

Q 1 (s) = mldlA(s) R(s)

Q2 (S1 , s 2 ) = mdlA(sl + s 2 ) R(s 1 + s) + mld2 A(s + s) R(s 1 ) R(s 2)

Q 3 (s 1 SZ , 3) = m l m2 dZA( l + SZ + s 3 ) R(s 1) R(s 2 + s 3 )

+ mlm2 A(s 1 S + S3 ) R(s + S 2) R(s 3)

9

Q4(s 1 S 4) = mZdA(s 1 +s s ) R(s 1 + s2) R(s3 +s) (65)

and all further system transforms are zero. However, Q1 and the first term of QZ are

zero, since we have assumed that A(s) R(s) = 0, and the two terms of Q3 can be combined

by permuting the variables in one of them. The only nonzero system transforms then

become

Q2 (S 1' S2 ) = mld2 A( + s2 ) R(s 1)R(s 2 )

Q3 (S1 , s 2 , s 3 ) = 2m l m 2 dzA(s l + s 2 + s 3) R (s1 ) R(s 2 + s 3)

2

Q4(S .,s 4) = m 2 d2 A(s l +s 2 +s 3 +s 4 )R(s 1 +s 2 )R(s 3 +s 4 ) (66)

These transforms characterize the complete channel as a nonlinear analytic system.

Now suppose that the input consists of a number of sinusoids, one at the carrier

(radio) frequency, with exponential components at s = ±jwr, and the rest at audio fre-

quencies, s = ±jw)al' fi:Ja2' and so forth. Then no output will be obtained from Q2'

since the only frequencies in the input for which R(s) is nonzero are the positive and

negative carrier frequencies, whose sum is either zero or twice the carrier frequency,

for both of which A(s + s2) is zero.

A nonzero output is obtained from Q3 only when sl is a carrier frequency and s + s 3

is the sum of a carrier and an audio component, and the two carrier frequencies are of

opposite sign; the sum frequency will then be the audio frequency. (For each audio com-

ponent there will be four terms: s either plus or minus, and with either s 2 or s3 as

the audio component.) Therefore Q3 gives the demodulated audio output, which is pro-

portional to the audio input, the square of the carrier-frequency input, the audio-

frequency gain, the square of the radiofrequency gain, the linear part of the modulator,

the second-degree part of the modulator, and the second-degree part of the detector.

Q4 gives a nonzero output only if both s + s 2 and s3 + s 4 are sums of audio- and carrier-

frequency components, and the sum frequency is the sum of the two audio frequencies.

Hence Q4 gives the harmonic and intermodulation distortion components in the output.

These particular results could also have been obtained by more conventional methods
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by assuming the input and then calculating the resulting signals at every point in the

system. What we have done here is to solve the system as a system before specifying

what the input is to be.

4.5 ANALYTIC FEEDBACK LOOPS

An electrical network consists of a number of elements connected by wires.

In many cases, the elements are all two-terminal elements, and each element

can be described as a system with one input and one output, by specifying

either the voltage in terms of the current or the current in terms of the volt-

age. The interconnections are expressed in terms of Kirchhoff's laws, which

equate to zero either a sum of voltages or a sum of currents. These rela-

tions can be expressed by a block diagram or signal-flow graph that contains

two kinds of components: systems and summing points. It appears, therefore,

that a theory of nonlinear network analysis might be built up by using only

two of the three kinds of simple combination described in section 4.3, namely,

sums and cascade combinations.

Such a theory has not yet been developed. In terms of the relation between

systems and functions, as developed in Section I, this theory would be essen-

tially a theory of implicit systems. We might hope for an extension to sys-

tem theory of the fundamental theorem

[cf. Rudin (15)] on implicit functions.

For the purposes of suggesting the kind

of results that such a theory might offer,

and of giving a special case with its
t-.l -- I I - - -PI I I l - I 4 _ +, c a l-l+in o f
UJWI1 U J. .9L L. d[l.dLUd ,l , L1 ULU L..1 VL

additive feedback loops with analytic
Fig. 3. Simple feedback loop.

components is presented in this section.

Another special case, the inverse of

an analytic system, will be discussed

in section 4.7.

Consider the simple feedback loop

illustrated in Fig. 3. This is not such

a special case (as it seems) because,

as Fig. 4 shows, a general feedback

loop can be reduced to two cascade

problems and to a feedback problem

of the simple form.

Assume that this simple loop sys-

tem is equivalent to a system K. Let
Fig. 4. Reduction of general loop to

simple form. the input be f, and the output g = K(f);
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then

K(f) = f + H(K(f)) (67)

or, as a system equation with the notation of section 4. 3,

K = I + H K (68)

where I designates the identity system.

Now suppose that H is an analytic system. We assume that K is analytic, and

obtain a formal solution - we shall determine later whether K is, in fact, analytic. We

shall consider that Ho = 0, since a nonzero Ho represents merely a constant added to

the input, and we do not have to consider this as part of the feedback loop. Then, for

Ko, we obtain

K = H (0 ) Ko + H2 (0, 0) K + H(0, 0, 0) 3 +... (69)

This equation may have many solutions, but it will always have the solution Ko = 0. We

assume, as is often the case in practice, that we are looking for the solution that gives

zero output for zero input, and hence we accept the solution Ko = 0. This allows us to

use the simplified form of the cascade equations which occurs when the constant terms

of both components are zero.

The next equation that we obtain is

Kl(s) = 1 + H1 (s) K1 (S) (70)

from which we determine that

1
K l (s) - H 1(s) (71)

This is the result that would be obtained from an approximate linear analysis. Next we

obtain

K2 (Sl,' 2) H1 (S1 + s 2 ) K2 (S1 , s2) + H2 (S 2 ) K 1 (S1 )K 1 (s2 ) (72)

and, since K 1 has already been computed, this equation can be solved for K2 , and we

have

Hz(s1 ' SzK (S, S ) - H , s (73)
K2z(S s) = (1 - H1 (s 1 + s2))(1 - H 1 (sl))(1 - Hl(s2 ))

This procedure can be continued indefinitely, since all the formulas for higher order

systems transforms Kn, as derived directly from the cascade formula, will contain

Kn only in one term on the right-hand side. Furthermore, since Kn(S1 . .. Sn) appears

on the right, multiplied only by H 1 (s 1 + ... + Sn), the only factors in the denominator
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Fig. 5. Modification of loop for proof of analyticity.

of the resulting expression for Kn will be of the form 1 - H 1, with various arguments.

The form of the solution suggests that the stability of the resultant system K, and

its analyticity as well, might be determined solely from the linear approximation. This

is a conclusion that has been reached, in a somewhat different context, by Poincare

and Liapounoff, and it will now be shown that it is essentially true also in this case.

We begin by separating the system H into two parts, a linear part H', and a part

H" containing no linear term, as shown in Fig. 5. We then solve the linear part of the

feedback loop separately, and obtain a loop with a forward path through the linear sys-

tem K' which is equal to the linear part of K, and a return path through H". The solu-

tion of this loop is the same as the solution just obtained; however, we are not interested

now in the formal solution for the system transforms, but rather in obtaining bounds on

the bound function and the radius of convergence.

For this modified loop we obtain, for an arbitrary input f,

K(f) = K'[f + H"(K(f))] (74)

or, in terms of systems, we have

K = K * (I + H" * K) (75)

Since K' is linear, by superposition Eq. 74 becomes

K = K' + K' * H" * K (76)

The known system K' * H" will now be designated by Q. Then
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K = K' +Q*, K

Therefore,

BK(x) -BK,(x) + BQ(BK(x))

c Ilk1lX + BQ(BK()) (78)

The constant and linear terms of the power-series expansion of BQ are both zero, so

that this equation can be used directly to determine, one at a time, upper bounds on the

coefficients of the power-series expansion of BK; that is, bounds on the norms of the

system functions kn . This procedure is a solution, in power-series form, of

y = Ilk IIx + BQ(y) (79)

and y(x) is an upper bound on BK(x).

A solution can be obtained without using power series by solving this equation for x

in terms of y and graphing the result, as follows

x= (y- BQ(y))/1k 1 (80)

As y increases from zero, x increases from zero, reaches a maximum, and thereafter

decreases, unless the radius of convergence of BQ (which is equal to RH) is so small

that the curve comes to an end before the maximum value is reached. Equation 80 gives

x as an analytic function of y, and investigation of the analytic continuation of this func-

tion in the complex plane indicates that its inverse is analytic in a circle about the origin

with radius equal to the maximum value of x.

Hence the inverse of this function - which can be obtained immediately from the

graph - is the desired upper bound on the bound function BK. The maximum value of

x, which will occur either at the end of the curve (as determined by RH) or at the turning

point, is a lower bound on R K. Thus the resultant system K can be proved analytic if

Ilkl II exists; that is, if the linear approximate solution of the feedback loop has an abso-

lutely integrable impulse response.

Note that the impulse response can be absolutely integrable only if the linear

approximation does not include a differential operator and has only damped tran-

sients. Stability is therefore a necessary, but not quite sufficient, condition for

analyticity.

4.6 EXAMPLE OF FEEDBACK SOLUTION

Section 4. 5 constituted essentially a proof of the existence of the solution to certain

problems and an outline of the method for their solution. In this section the method is

applied to a specific problem, with two changes in the method. First, the feedback loop

is solved without first reducing it to the simple form treated in section 4. 5. Second,
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the result will be proved analytic in spite of the fact that one of its components is not

analytic.

The system to be analyzed is the detector circuit of Fig. 6a, which consists of a

diode and a capacitor. Since the diode is not perfect, no resistor is needed in parallel

with the capacitor. The diode is assumed to have the current-voltage relation

i = A(eB - 1) (81)

and the capacitor has capacitance C.

The relations governing the operation of the circuit can be expressed in the block

diagram of Fig. 6b. The system D is a no-memory system representing the diode

with voltage input and current output; Do = 0 and
0

Dn(S 1 ... n) = ABn/n !
n I ~n (82)

for all other n. The system C is linear, representing the capacitor with current input

and voltage output; C (s) = 1/Cs. The system C is not analytic.

v -

el

(a)

eo

(b)

Fig. 6. Detector circuit. (a) Circuit diagram.
(b) Block diagram. (c) Synthesis of the
approximate solution.
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Letting H = C * D, by a simple application of the cascading formula, we obtain

H = 0 and
0

ABn
Hn(S1 ..... AB (83)

Hn(s sn ) n!C(sl + . +s n ) (83)

Now, if we represent the entire detector system by K, we obtain the system equation

from the block diagram.

K = H * (I - K) (84)

This is not of the same form as Eq. 68, which was treated in section 4. 5, but the same

method of solution is applicable. For the first few system transforms, we obtain

K =0
0o

~~~K 1 (s) ~ = ~~~~~~~AB ~(85)Kl(S) = Cs + AB

AB2 CSs IS

K2 (S' sz) 2(C(s 1 + s) + AB)(Cs1 + AB)(Cs 2 +AB)

and further system transforms can be calculated in succession.

The system transform KZ can be recognized as having the form characteristic of a

no-memory system preceded and followed by linear systems, and the second-degree

approximation to K can thus be synthesized in the form of Fig. 6c from the transforms

given in Eqs. 85.

The solution given is only a formal one, in the sense that it will be valid if K is

analytic, but we do not yet know whether it is analytic. To show analyticity, we view

the circuit from a different point of view. We consider the system with input el, as

before, but with v as the output, and call this system P. Since v = e - eo , we find that

P = I - K. Therefore, K is analytic if and only if P is, and these two systems have

the same radius of convergence. Furthermore, the norms of their system functions

will be the same, except for the first, so that Bp can be used to determine bounds on

the error that results from using only a finite number of terms of the expression for K.

The block diagram for P has the simple form of the loop discussed in section 4.5.

Since C is linear, we find H' and H" by separating out the linear part of D. For the

linear approximation, we obtain

Cs
P 1 (s) = Cs AB (86)

from which we determine that

P1 (T) = 6() - (AB/C) e- (AB/C)T (87)1~~~~~~~~~~~~~~~~~~~~~(7
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and therefore jP1 I = 2. Proceeding as in the previous section, we find that

Q = -P , C * DI", and when we cascade P' and C we see that the troublesome s in the

denominator of C1 is canceled by the numerator of P 1 , so that Q is analytic. From

the formula for the upper bound on the bound function of a cascade combination, we find

BQ(x) _< (eB x _ - Bx)/B (88)

The bound y(x) on the bound function Bp(x) is therefore determined by

x = y- (eBy - 1)/2B (89)

The maximum value of x, which is a lower bound on Rp= RK, is (log 2 - 1/Z)/B = 0.193/B.

The graphical construction of the upper bound on Bp(x) is shown in Fig. 7.

8x= By -(eB
y -

I )/2

0.693

0.193

0.1 0.2

Bx

Fig. 7. Bound on the bound function of the detector system.

This result is somewhat disappointing, in that we would expect a much larger, in

fact an infinite, radius of convergence. The radius of convergence may in fact be infi-

nite, but the method we have used is inherently incapable of indicating an infinite radius

of convergence. It is a conservative method, based essentially on the assumption that

the feedback through the nonlinear terms, which we are unable to compute in general

except to determine a bound on its magnitude, is exerting the greatest possible effort

to make the system unstable. Further research might reveal less conservative tests

for analyticity. At any rate, we have proved that the radius of convergence is greater
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than zero, and have therefore established some validity for the result of the system cal-

culation.

4.7 THE INVERSE OF AN ANALYTIC SYSTEM

If H is a nonlinear system, which produces for every input f in a certain class a

corresponding output g = H(f), the inverse H 1 of H is a system which, for every input

g, produces an output f such that g = (f). Then the cascade combination H * H 1 is

the identity system I.

This does not imply, in general, that H1 H = I, because if H can produce the same

output for two different inputs, H - 1 cannot tell which of these inputs actually occurred.

Generally, we shall say that H has a true inverse only if

-1 - 1
H* H =H *H=I (90)

The inverse of a physically realizable system is not necessarily physically realiz-

able. This is known in the theory of linear systems; the inverse of a simple delay sys-

tem would be a simple anticipator.

Within these limitations, however, there are cases in which system inversion is

important. For example, a two-terminal network might be designated as a system with

current input and voltage output, and we might want to determine its expression with

voltage input and current output. Or, we may have a communication channel in which

the effect of some system component is to be canceled by introducing another component

in cascade.

The problem of determining the inverse of an analytic system is quite similar to the

feedback problem. Designating the inverse of H by K, we have the system equation

H * K = I. As in the feedback problem, an easy solution is possible only if Ho = 0, and

if we then choose, out of the many possible solutions for Ko, the solution Ko = 0, which

will always exist. We then obtain

Kl(s) = /H 1 (s)

K2 (S 1' 2) =
-H 2 (s 1 s2 ) K1 (s 1 ) K 1 (S2 )

Hl(S 1 + Z )

-H (s 1 ,' S)

Hl(s 1 + s 2 ) Hl(s 1) H 1 (S2)
(91)

and further system transforms can be calculated successively. It can be verified that

these terms also satisfy the equation K * H = and it may be surmised that this equa-

tion is satisfied in general, so that K is a true inverse of H, but a general proof has

not been found.

The procedure for proving K analytic by determining bounds on BK(x) and RK is

similar to the procedure for feedback problems. We separate H into a linear part H'
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and a part H" with no linear term. Then

(H' + H") * K = I (92)

The inverse of H' is K', the linear approximation to K. Cascading each side of Eq. 92

with K', we have

K' * (H' + H") * K = K'

K' * H' * K + K' * H * K = K'

K = K' - K' * H" * K (93)

and then proceed as in section 4. 5.

We conclude that if the linear approximation to the inverse of an analytic system has

an absolutely integrable impulse response, then the inverse is analytic.

The same argument shows also that the inverse is physically realizable if its linear

approximation is physically realizable. We have in fact obtained K in the form shown

in Fig. 5, which, if H and K' are physically realizable, describes a physical realiza-

tion of K in terms of physically realizable components.

4.8 MEASUREMENT OF NONLINEAR SYSTEMS

It has been shown that any system that is continuous(R) can be approximated in ana-

lytic form, with error that is uniformly smaller than any preassigned tolerance. The

proof was purely an existence proof that gave no indication of a method for obtaining

an approximation. Although several methods can be used to obtain analytic approxima-

tions to given systems, none of these methods can be used in such a way that a given

tolerance will be guaranteed.

The problem is similar to that of determining polynomial approximations to a real

function. Three methods are available: determination of a polynomial that equals the

given function at selected points, as in the method of finite differences; expansion in a

Taylor series; and expansion in a series of orthogonal polynomials. All these methods

can be generalized and used for systems. The first will be described in this section,

the second in the section 4. 9, and the third will be discussed in Section V.

Consider the time-invariant system H as represented by the functional h, which

gives the value of the output at any time in terms of the past of the input. The finite

difference of h with respect to the real function is defined as

A h(u) = h(u + ) - h(u) (94)

This defines h as a functional, since it specifies a real number for every real

function u for which h(u) and h(u + 4) exist. We can then consider the system As H,

which is represented by the functional h, as the finite difference of H with

respect to 4.
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Finite differences can be taken successively, with respect to the same or different

p-functions:

A h(u)
C. 2

= Z A h(u) a , h(u+ ,)-A h(u)
2 1 1 1

= h(u + 1 + C2 ) - h(u + C1 ) - h(u + C2 ) + h(u)

A h(u)
C.~?3

= h(u + 1 .+ C2 + +3)

-h(u + 1I + 2 ) - h(u + I +. 3) - h(u + +
3)

+ h(u + 1 ) + h(u + C 2 ) + h(u + 3)

- h(u) (95)

The general form for finite differences of any order can be inferred. These forms can

be used for the experimental determination of finite differences.

If H is an analytic system, its finite differences will also be analytic. A straight-

forward calculation, in which terms of like degree are collected, gives the system

functions of the first finite difference, if we assume that the system functions hn are

symmetric, for the first few terms:

A.h 0 = hl(T) (T) dT + h 2 (T1 , T) (T1 ) (T2 ) dT 1 + ...
oo oo

00

A hl(T') = f h2 (T, Ta) (j(T 2 ) dT2

+ 3 i c h3 (T, T2 , T3 ) (T3 ) (T2) dTzdT3 +
oo0 oo-0

(96)= 3_ h 3 (T', T
2 , T

3 ) (T
3
) dT 3 + ...

-oo00

Note that h does not appear anywhere in these equations, and that, in general, h n

appears only in A hn , A hn and so forth. Therefore, if H is a system of degree N,

the N t h finite difference will involve only hN, and this will appear only in the constant

term, so that the N t h finite difference is a constant-output system:

pa) i N

hA.N(T 1 ..... N9)dT
o0 1--

Thus, an experimental determination of Ad .. ,h(O) for all possible combinations

of real functions 1, ... . N is sufficient to determine the highest order system function

hN . When this has been determined, the undetermined part of the system is a system
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of degree N- 1, and therefore all of the system functions can be determined.

In fact, it is not necessary to use combinations of all possible -functions. If, for

example, A ... Nh() is determined for all possible combinations of functions

chosen from some complete normal orthogonal sequence, then we obtain the coefficients

of an expansion of hN in a series of products of these functions.

If we use impulses as the -functions, designating by x a unit impulse occurring at

T = X, then we have

A6 x ** 5 xNh(O) = N! hN(X1 l,., xN) (98)

If we use step functions, designating by SX(T) the value of a function that has value

zero for > x, and value for T X, then we have

ASx... xN (0) = N! . N... d 1 ... (99)

and hN can be determined by differentiating this result.
-ST

If we use exponentials, with the notation e(T) = e , then

AeS * esNh(O) = N! HN(S1 . ., .. SN) (100)

An equivalent result can be obtained by using sinusoids instead of exponentials.

If we have a system that is not analytic with finite degree, we can assume that it is

approximable by an analytic system of degree N and apply the procedure suggested. We

then derive an approximate analytic system that gives the same output as the given sys-

tem for the inputs that were used to determine the finite differences.

The response of a linear system to any input can be determined if we know its

response to a unit impulse, to a unit step, or to all of the sinusoids of a given amplitude.

We now have reason to believe that this can be extended to nonlinear systems in the fol-

lowing way. The response of a continuous nonlinear system to any input can be deter-

mined, at least approximately, if we know its response to all possible combinations of

unit impulses, to all possible combinations of unit steps, or to all possible combinations

of sinusoids of all frequencies with a given amplitude.

4.9 TAYLOR-SERIES EXPANSIONS OF ANALYTIC SYSTEMS

Through the theory of functions of a real or a complex variable we have come to

associate analyticity with differentiability, as well as with representation in a power

series. The differentiation of an analytic system is not only of mathematical interest

[cf. Hille (14)], but also useful in the determination of the system functions of an ana-

lytic system by a Taylor-series method.
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As in vector analysis, for example, when the directional derivative of a scalar func-

tion of position depends upon the choice of a direction in space, an analytic system does

not have a unique derivative. We shall define the derivative of an analytic system in

terms of the functional that represents it, and we shall define it as essentially a direc-

tional derivative.

The derivative of the functional h with respect to the real function is defined as

the limit of a finite difference quotient:

h(u+E ) - h(u)
h,(u) = lim (101)

E-0 E

This derivative h is also a functional. The time-invariant system that it defines will

be called H., the derivative of H with respect to . We can now differentiate h with

respect to a function , and obtain the second derivative h , and successive derivatives

can be defined ad infinitum.

If H is analytic, and its system functions are assumed to be symmetric, then a

straightforward calculation of the derivative shows that the derivative is analytic, with

system functions

h(,n(T, . .. ,Tn) = (n+l) hn+ (T1' ... 'n+L) (Tn+l) d n+1 (102)
00

If is in PBI(M), for any M (that is not necessarily less than RH), then

from which ,it follon (n+ws) Mthat the bound function of H is non+ greater than (103) times the de

from which it follows that the bound function of Hi- is no greater than M times the deriv-

ative of the bound function of H, and its radius of convergence is not less than RH.

It follows from the assumed symmetry of the system functions hn that the higher

order derivatives with respect to different functions are independent of the order of dif-

ferentiation. Since, however, a system is not changed by making its system functions

symmetric, this conclusion is true whether the derivative is calculated from symmetric

or unsymmetric system functions.

Applying the formula (Eq. 102) for the derivative n times, we find that the constant

term of the n t h derivative is

h =n! J 1 n (104)
Thu, n be determined from=Othd

Thus, h can be determined from the values, for u = 0, of the n t h derivatives of H. The

same comment made in the discussion of finite differences applies here also. The

(-functions for which the derivatives must be determined need not be all possible func-

tions, and we can use impulses, step functions, or sinusoids, as in section 4. 8. This
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result can be used as the basis of a Taylor-series method for the measurement of non-

linear systems. It is not hard to show that

h = lim A h(O)/En (105)
· .n 0 E-0 A E ' ' ' n

so that, for the application of the Taylor-series method, we can calculate the higher

order differences as limits of finite-difference quotients, computed for u = 0, instead

of by computing successive derivatives for all u.

The expression for the system functions in terms of derivatives provides a proof of

the statement that the symmetric forms of the system functions are unique.

The Taylor-series method can be used only for analytic systems, since it derives

the system functions from the small-signal response of the system, and therefore deter-

mines the large-signal response from the small-signal response by extrapolation. Its

advantage over the method of finite differences is that it is not restricted to systems of

finite degree. As an experimental method, it has the disadvantage that it involves limits

of observed values, so that many observations may be necessary to obtain each limit,

while the method of finite differences requires only the observation of output values for

specific inputs.

4.10 SYNTHESIS OF ANALYTIC SYSTEMS

Two methods will be mentioned for the synthesis of systems from their analytic

representations. The first, obviously applicable only in special cases, consists in

recognizing already familiar forms in the system functions. It is illustrated in sec-

tion 4.6, in which the second-degree approximation to the solution of a feedback problem

was synthesized in cascade form. Continued investigation of the properties and appli-

cations of analytic representations can be expected to make this method applicable to

an ever-widening class of systems.

The second method is based on the fact that if

n

hn(T, . ., Tn) I i(Ti (106)
i=l

then this term of the system can be synthesized as a product of linear systems; if hn is

a sum of such products, then it can be synthesized as a sum of products of linear sys-

tems. Such a product expression can be obtained by expanding hn in a series of products

of orthogonal functions. However, no investigation has been made for determining the

conditions under which this method can be expected to yield arbitrarily small error.

Neither these methods nor the methods proposed by Wiener and Bose can be consid-

ered satisfactory methods of synthesis. All of these methods are capable of the following

absurdity: we are given a black box, we examine it in the laboratory by applying inputs

and observing the outputs, we assemble several hundred dollars' worth of equipment to

approximate its characteristics, and then open the box and find that it contains a handful

49



of components, the total cost of which is one dollar. An example of this is found in the

detector circuit analyzed in section 4. 6. By no known method of synthesis of nonlinear

systems can we derive, from any expression of the output of this detector in terms of

its input, a synthesis in the form in which the circuit was originally given.

A method of synthesis that meets the criteria implied by the foregoing discussion is

a practical necessity. The discovery of such a method is one of the great unsolved prob-

lems of the theory of nonlinear systems.
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V. ORTHOGONAL SYSTEMS

5. 1 MEASURE AND INTEGRAL

The purpose of this section is to show, in a general way, how the expansion of real

functions in series of orthogonal functions can be extended to indicate a method for

expanding nonlinear systems in series of orthogonal systems. Since the expansion of

real functions by this method involves the process of computing the integral of a real

function, the application of the method to systems will require integration of systems,

or at least integration of functionals. The idea of integration must therefore be extended

from real functions to systems or functionals.

For this purpose it is appropriate to indicate here some of the fundamental ideas of

integration. In this section the relation between integration and measure theory will be

roughly outlined, and it will be shown that the theory of probability plays an important

part in the integration of functionals.

We begin with the integration of real functions. Suppose we have a real function f,

and want to integrate it over the interval (A, B). The integral that we obtain is defined

in geometric terms as the net area between the x-axis, the graph of y = f(x), and the

lines x = A, x = B. This area is obtained, in principle, as the limit of a sequence of

approximations, each approximation being obtained by dividing the area into a number

of strips and estimating the width and the length of each strip. In general, these strips

are parallel to the y-axis.

In the classical definition of the Riemann integral the strips are constructed by

dividing the interval (A, B) into a large number of small subintervals and taking each

subinterval as defining the width of a strip. The length of each strip is estimated as

some value assumed by f(x) on the subinterval that defines its width. The integral is

estimated as the sum of the areas of the strips, and the integral is defined as the limit

of these estimates as the interval (A, B) is divided into smaller and smaller subintervals.

If f is continuous, the range over which f(x) varies on each subinterval becomes arbi-

trarily small as the subintervals are made small, and the estimate of the length of the

strip becomes better and better, so that the limit that defines the integral exists. But

if f is not continuous, f(x) may continue to vary widely no matter how small the subin-

terval is made, and the integral thus defined will not exist.

To get around this difficulty, we redefine the strips in such a way that f(x) can not

vary widely. We divide the y-axis, instead of the x-axis, into subintervals, so that the

length of each strip can be estimated with error that is less than the width of the subin-

terval, and define the width of the strip as the total length of the set of all x for which

f(x) is in the subinterval. If f is continuous, this set of x's will consist of a collection

of discrete intervals, and the total length of this set is simply the sum of the lengths of

these intervals. But if f is not continuous, this set may not be a collection of intervals,

and we are faced with the problem of defining the total length of a set of numbers that is

not an interval and cannot be decomposed into intervals.
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The Lebesgue theory of measure, by providing at least a partial solution to this prob-

lem, achieves the desired generalization of integration. This theory shows how we can

assign, to each of a large collection of sets called measurable sets, a number called its

measure, so that the measure of a set has the properties that we associate with the idea

of total length: the measure of a set is always non-negative, and the measure of the

union of a finite or countable collection of nonoverlapping sets is the sum of the measures

of'the component sets. In particular, the measure called Lebesgue measure has the

property that the Lebesgue measure of an interval is the same as its length. By means

of Lebesgue measure we can proceed to define integration for many functions that are

not continuous: for each subinterval of the range, we multiply the measure of the cor-

responding subset of the domain by some value in the subinterval of the range, take the

sum of these products as an estimate of the integral, and define the limit of these esti-

mates, as the subintervals are made smaller, as the Lebesgue integral of the function.

The point in which we are interested here is not that the Lebesgue integral is defined

for functions whose Riemann integral is not defined, but rather that the theory of inte-

gration in terms of measure can be used to define integrals of functions that are not real

functions. Consider any real-valued function, whose domain may be a set of any kind of

objects. Divide the range of the function into subintervals, and for each subinterval con-

sider the subset of the domain on which the value of the function lies in that subinterval.

If, to every such subset of the domain, we can assign a number that we can call its meas-

ure, then we can proceed, just as in the case of the Lebesgue integral, to define the inte-

gral of the function.

The problem now is to define a measure on a set of real functions, and the solution

comes from the theory of probability. A probability ensemble is a set of objects, in

which we assign to every subset - or at least to certain subsets - a number called the

probability of that subset. The probability of the whole ensemble is unity; the probability

of every subset is non-negative, and does not exceed unity, and, in fact, probability has

all the properties that are required of a measure.

Therefore, if we have a real-valued function whose domain is a probability ensemble,

we can define an integral of that function. We divide the range of the function into sub-

intervals, and for each subinterval we multiply some value in that subinterval by the

probability that the value of the function will lie in that subinterval. We add these prod-

ucts over all subintervals to obtain an estimate of the integral. It will be seen that by

this process we have obtained an estimate of the ensemble average, or expectation, of

the value of the function. An integral, defined in terms of probability measure, is simply

an ensemble average.

To define the integral of a functional, all we need is an ensemble of real functions u.

The integral of the functional is then the ensemble average of the value of the functional

for this ensemble of u. The integral of a time-invariant system can then be defined if

we have a stationary ensemble of inputs f. The stationariness of the ensemble implies

that the ensemble of functions ut, ut(T) = f(t-T), will be the same for every t, and the
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integral of the system is defined as the integral, for this ensemble of u, of the functional

that represents it; that is, the ensemble average of the value of the output of the system.

In many practical situations, the stationary ensemble of inputs is prescribed by the appli-

cation for which the system is being considered.

5.2 EXPANSIONS IN ORTHOGONAL SYSTEMS

Every time-invariant system can be represented by a functional, and every stationary

ensemble of functions f corresponds to some ensemble of functions u, which is the same

as the ensemble of functions ut for any t. Therefore, we shall do all our mathematical

work in terms of functionals; and the results can be translated immediately in terms of

systems by the fact that the average of the value of a functional will equal the average of

the value of the output of the system that it represents.

Suppose we have available in the laboratory a bank of nonlinear time-invariant sys-

tems Q., and suppose we also have an unknown time-invariant system H that is to be

approximated as a linear combination of the systems Qi. Representing these as func-

tionals, we shall determine real numbers c i with the property that the functional

N

h* = ciqi (107)

i-=l

is an approximation to h. The error of approximation will be the output of the system

E = H - H*, represented by the functional

N

e = h - h* = h - ci i (108)

i=l I

We shall obtain an approximate representation of H in terms of the systems Qi

This representation may be useful in two distinct ways. If the systems Qi are easy to

construct, then we have a way of constructing H or an approximation to it. If the sys-

tems Qi have convenient mathematical representations, we obtain a convenient mathe-

matical representation of H.

Suppose that the criterion of approximation is that the mean-square value of the

error, for a particular stationary ensemble of inputs, be as small as possible. We shall

designate the mean or expectation of the value of a functional by an integral sign, to

show that our mathematics is analogous to the mathematics of real functions. Then we

must determine the numbers c. so that

= / (h - *)

N N N

- h2 z_ 2 c C hq'i + c= c aqij (109)

i=1 i=1 j=1
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is a minimum. At the minimum value, the partial derivatives

N

ac- e ·=-2 fhqk + qk

=-2 eq k (110)

must all be zero. The condition for minimum mean-square error is therefore that, for

every k,

feqk=0 (111)

It is possible to implement this scheme in the laboratory. The output of each of the

systems Qi is passed through an adjustable-gain amplifier, which provides for the adjust-

ment of c i , and the outputs of these amplifiers are added to construct the system H*.

The output of H* is subtracted from the output of H to obtain the error system E. Now

we must multiply the output of each of the systems Qi by the output of E and obtain the

ensemble average of this product. If the ensemble of inputs is ergodic, this ensemble

average will equal a time average, and (as Wiener has suggested) we might combine the

multiplication with the estimation of the time average by using an overdamped electro-

dynamometer. Then we have a bank of N meters, and we must adjust the N gain con-

trols so that each meter is made to read zero.

In the general case this may be a troublesome procedure, because the adjustment of

a single gain control may change the readings of all the meters. However, if the sys-

tems Qi are such that

fqiak ( if ik 112)
O, if i k

then

eqk = fhqk - ck (113)

so that the reading of the k t h meter is affected only by the k t h gain control, and the

appropriate adjustment can be made quite simply. Furthermore, if the meters and the

gain controls are appropriately calibrated, we can perform the adjustment by setting

each gain control to zero, reading each meter, and then setting

Ci = hqi (114)

which will give the desired approximation immediately.
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The condition imposed on the systems Qi can be expressed in a terminology that is

conventional for the analogous situation in the theory of real functions. We shall say

that the systems Qi are all normalized, and that all are orthogonal to each other. The

set of systems will be called an orthonormal, or normal orthogonal, set. The approxi-

mation obtained by this procedure will be called an expansion in orthogonal systems.

Since these conditions were imposed in connection with a particular ensemble of inputs,

we shall speak of systems normal and orthogonal with respect to a particular input

ensemble.

If the systems Qi, as given, are not normal and orthogonal with respect to the par-

ticular input ensemble that we intend to use, we can construct, by means of a well-known

procedure, a set of linear combinations of them that are normal and orthogonal. This

procedure can be described by supposing that we have already constructed a set of n

normal and orthogonal systems, and we have a system Qn+1 that is not normal or orthog-

onal to these n systems. We are to construct a linear combination of these n + 1 sys-

tems which is normal and orthogonal to the first n. We do this by constructing, with

the use of the first n systems, a minimum-mean-square-error approximation to Qn+l'

The system whose output is the error of this approximation is orthogonal to the first n

systems, and if it is not equivalent to zero, then we can normalize it by multiplying it

by an appropriate constant. (If it is equivalent to zero, then every linear combination

of the n + 1 systems can be also obtained with the first n, and the additional system --

is of no use to us.)

In general, then, all we need to obtain minimum-mean-square-error approximations

is a bank of nonlinear systems, some adjustable-gain amplifiers, and some product-

average meters. The given systems can be orthogonalized and can then be used to obtain

orthogonal expansions of any given system.

How close can these approximations be made ? Can the mean-square error of approx-

imation be made arbitrarily small by using a large enough bank of nonlinear systems Qi?

For systems that are continuous(R), considered only for ensembles of inputs that are

bounded(R), we have a ready answer. We begin with a sequence of linear systems Ki,

with impulse response functions ki, such that there is no function u not equivalent to

zero for which

f U(T) ki(T) dT = 0 (115)

for all i. (The sequence of systems whose impulse responses are the Laguerre func-

tions has this property.) Then we form a sequence of nonlinear systems consisting of

a constant-output system, these linear systems, and all products of combinations of

these systems. The set of all linear combinations of these nonlinear systems is an

algebra that separates points (cf. section 2. 3), and therefore any system that is contin-

uous(R) can be approximated arbitrarily closely by such linear combinations, in the

sense that for any positive number E there exists a linear combination of these systems
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whose output never differs from the output of the given system by more than E. It follows

immediately that the mean-square error can thus be made less than E. The method of

orthogonal expansions will yield approximations with mean-square error that is as small

as can be obtained, so that, by using a sufficiently large number of systems, the mean-

square error can be made arbitrarily small.

This does not imply that the method of orthogonal expansion can be made to yield

approximations with uniformly small error. However, it is easily seen that the proba-

bility of an error of magnitude greater than any number A cannot exceed (E/A) z if the

mean-square error is E or smaller, so that we have (for the ensemble with respect to

which the expansion was made) an almost uniformly small error in a statistical sense.

An expansion made with respect to one input ensemble will have small error, although

not minimum error, when some other input ensembles are used. Consider two ensembles

of inputs, E 1 and E, consisting of the same set of inputs with different probability dis-

tributions. Suppose that the system H has been approximated by means of an orthogonal

expansion with respect to El, so that (if we attach the ensemble designation to the inte-

gral sign) we have

e < (116)

1

If the probability of any subset in ensemble E 2 is never greater than M times the proba-

bility of the same subset in E1, then obviously

e < M6 (117)

z

Then by making the mean-square error that is measured with E 1 sufficiently small, we

can make the mean-square error that is measured with E 2 as small as may be required.

Thus a small mean-square error in one ensemble implies a small mean-square error

in another ensemble. Furthermore, even under the looser condition that every set with

zero probability in E 1 must have zero probability in E2, we can conclude that with input

ensemble E Z there must be small probability of large error, even though no bound on the

mean-square error can be set. There is reason to believe that, if the system that is to

be approximated is continuous, even this condition can be relaxed, and that there may

be orthogonal methods of deriving approximations with uniformly small error. (It is

known that such methods exist for the approximation of real functions.)

Some of the preceding discussion is applicable to the expansion, in orthogonal sys-

tems, of systems that are not continuous (for example, hysteretic systems). In this

case, if the nonlinear systems _~ are continuous (as they will be if they are products of *

linear systems with Laguerre-function impulse responses), an approximation with

uniformly small error cannot be obtained. However, it may be possible to obtain
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approximations with small mean-square error, perhaps even arbitrarily small. At any

rate, the smallest mean-square error that is possible with a continuous approximation

can be approached.

5.3 FILTERING AND PREDICTION

The same method can also be used in minimum-mean-square-error filtering and

prediction problems, if the joint ensemble of input and desired output can be produced

in the laboratory. We proceed precisely as though the desired output had been obtained

as the output of a system to which the input was applied. The results of the preceding

section then imply that, with any bank of nonlinear filters Qi that is adequate to approxi-

mate a continuous system with arbitrarily small mean-square error, we can come arbi-

trarily close to any performance that can be achieved with a continuous filter.

Note that there may be, in some problems, no optimum continuous filter, if the opti-

mum filter is not continuous. (A heuristic illustration is found in the theory of real

functions: there is no minimum-mean-square-error continuous approximation to a

square wave, although zero error can be approached.)

c

57

·_ ��11 II*-1--- -I·-CI.I --̂--li*_-l__I_ _*.·1. I�YL·Y·UXIII·--�-I -TC--I�LII·-·�-s�l··----LIIII�-·--�IIPII



References

1. N. Minorsky, Introduction to Nonlinear Mechanics (J. W. Edwards Press, Ann Arbor,
Michigan, 1947).

2. V. Volterra, Lecons sur les Fonctions de Lignes (Gauthier-Villars, Paris, 1913).

3. N. Wiener, Differential-Space, J. Math. Phys. 2, 131-174 (1923).

4. N. Wiener, Response of a non-linear device to noise, Report 129, Radiation Labora-
tory, M.I.T., April 6, 1942.

5. S. Ikehara, A method of Wiener in a nonlinear circuit, Technical Report 217,
Research Laboratory of Electronics, M.I.T., Dec. 10, 1951.

6. R. Deutsch, On a method of Wiener for noise through nonlinear devices, IRE
Convention Record, Part 4, 1955, pp. 186-192.

7. R. C. Booton, Jr., The measurement and representation of nonlinear systems,
Trans. IRE, vol. CT-1, no. 4, pp. 32-34 (1954).

8. A. G. Bose, The Wiener theory of nonlinear systems, Quarterly Progress Report,
Research Laboratory of Electronics, M.I.T., Oct. 15, 1954, p. 55.

9. A. G. Bose, A theory of nonlinear systems, Technical Report 309, Research Labo-
ratory of Electronics, M.I.T., May 15, 1956.

10. H. E. Singleton, Theory of nonlinear transducers, Technical Report 160, Research
Laboratory of Electronics, M.I.T., Aug. 12, 1950.

11. L. A. Zadeh, A contribution to the theory of nonlinear systems, J. Franklin Inst.
255, 387-408 (1953).

12. W. Rudin, Principles of Mathematical Analysis (McGraw-Hill Publishing Company,
New York, 1953).

13. E. Hille, Functional Analysis and Semi-Groups, Colloquium Publications, Vol. 31
(American Mathematical Society, New York, 1948).

14. Ibid., p. 65 ff.

15. W. Rudin, op. cit., p. 181.

u,

58

_ _-_ _ ~


