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Introducing the concept of the electronic polaron which is an analogue of the usual lattice 

polaron, we have considered its motion under the influence of a trapping potential, by using a simplified 

model for the electronically polarizable crystal such that the excited states of crystal electrons 

consist of a single exciton band. By a suitable transformation we obtain an expression for the 

Hamiltonian which consists of the following three parts: the first part describes the motion of an 

electron under the potential in an dielectric medium in the classical way, the second part represents 

the energy of the electronic polarization field tbe quanta of which are nothing but free excitons, and 

the last part is the interaction energy between these two parts which causes the production or annihila· 

tion of excitons in the neighbourhood of the potentiai by exchanging energy with the electron. Treating 

the last part as a perturbation, we have calculated the probability (or the ionization of a trapped electron 

by an exciton. After correcting the oversimplification of the model, we have applied the obtained 

result to actual crystals, leading to a conclusion that in alkali·halides the excitons annihilate rather by 

ionizing F-electrons than by spontaneous emission if the density of the P:centers is larger than 1016 

per c.c., in consistence with the experimental results of Apker and Taft on the external photoelectric 

effect. 

§ 1. Introduction and basic idea 

The interaction of a conduction electron with lattice vibrations in an ionic crystal has 

been investigated very actively of late years/)-3) because of its theoretical and practical 

importances, as well as its mathematical interest and difficulty. When the velocity of the 

electron is so slow that no phonon can be emitted, we can visualize the statioJlary state 

of the system by considering the electron, clothed with the polarization or virtual phonons 

around itself, to move freely in the crystal with a self· energy and a corrected effective 

mass both of which are the main subjects of the so·called polaron problem (we are consider

ing only the case of the absolute zero of temperature). On the other hand, when the 

velocity of the electron exceeds some critical value characteristic of the crystal, the stationary 

state description is no longer appropriate; we. should treat the interaction to be responsible 

for the transition of the electron between different states, though in actual crystals such 

as alkali-halides the interaction is so strong that the above statement has only an approxi

mate meaning. 

Now, as is well known, the general polarization consists of two parts: " displacement 

polarization" or lattice polarization as state above on the one hand, and "electronic 

polarization" on the other hand, the latter being more general as it plays a role also in 
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422 Y. Toyozawa 

non-polar crystals where the former does not. A conduction electron in an insulator or a 

semiconductor interacts also with the electronic polarization of the crystal, thus leading 

to the concept of the "electronic polaron "4) analogous to the usual or "lattice polaron" 

stated above. For the ordinary velocities of the electron, the electronic polarization induced 

around it is generally considered to follow the motion of the electron almost perfectly, 

thus it is the usual method of description') to consider the electron as a classical point 

charge imbedded in a medium with a dielectric .constant /Co which is to be identified 

with the optical dielectric constant of the crystal. As we have shown previously,H) this 

d~scription corresponds to the quantum mechanical adiabatic approximation between the, 

conduction and the crystal electrons. In the electronic polaron theory the point charge has 

to be replaced by somewhat spread cloud of charge due to uncertainty principle as in the 

case of a lattice polaron.1) Now, in our case too, there is a critical velocity of the 

electron beyond which the electronic polarization cannot follow the electron, or the stationary 

state description is inappropriate. If there is any analogy or parallelism between the 

electronic and lattice polarizations, the electron with such high velocities can emit quanta 

of electronic polarization. and we have intimate connection between the electronic polaron 

state and the processes such as emission and absorption of these quanta by the electron, 

both of which are to be treated under a unified formulation in the same way as the 

scattering of an electron by lattice vibrations is considered to be nothing but another aspect 

of the lattice polaron problem. 

What is meant by the "quanta of electronic polarization" 

is easy to understand if we consider in analogy with the case 

of an isolated atom. In insulating and semiconducting crystals, 

we should take them as the excitation of filled band electrons 

to the conduction band or the exciton levels if any. It is 

qualitatively inferred from perturbation theory that the narrower 

the energy gap between the filled and conduction band is, the 

more easily the crystal can be polarized. In fact, there is 

substantially an anti parallelism between high frequency dielectric 

constant /Co and the gap energy e for many crystals of different 

types, as is seen from Tab. 1. Roughly speaking the gap energy 

Tab. 1. Gap energies e 

and optical dielectric con

stants "0 of various crystals 

Nael 

MgO 

diamond 

AgCl 

BaO 

Si 

Ge 

e(eV) 

9.6 

6 

5.5 

5 

4.8 

1.1 

0.8 

"0 
2.25 

2.95 

5.85 

4.01 

4 

12.5 

18.5 

e in this case plays the same role as the phonon energy filt) does in case 

polaron, and the relaxation time of the electronic polarization is given by 

of the lattice 

r -- file. 

It is interesting to note that the interaction of the conduction electron with the 

electronic polarization in an insulating crystal is analogous to the interaction of a free 

electron with vacuum polarization 7) which is caused by the virtual creation of pairs of an 

electron and a positron. The most essential difference lies in the circumstance that a 

conduction electron in a crystal, if its velocity is sufficiently large, can emit pairs of 

another conduction electron and a positive hole, while it is impossible for a free electron 

in vacuum to create pairs of an electron and a positron except in the neighbourhood of 
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The Electrollic Polaron and Ionization 0/ a Tmpped Elcctr01l by all Excitoll 423 

a strong field such as is produced by a nucleus, as is evident from the Lorentz invariance. 

Owing to the complexity of the band structures and the lack of the accurate knowledge 

on the band wave functions in actual crystals, it seems very difficult to treat quantitatively 

the in~eraction stated above. In this work we take a model as simple as possible without 

spoiling the most essential aspect of the problem. 

First of all we assume only one exciton band for the excited states of the crystal 

electrons, instead of the series of exciton bands and an ionization continuum. It is true 

that this model is inappropriate to the discrimination between the production of excitons 

and the ionization of filled band electrons to the conduction band*, but it is convenient 

for our present aim, which consists in discussing the electronic polaron problem in connec

tion with the annihilation and production of an exciton by an electron. With this model 

we shall derive, in § 2, the Hamiltonian for the system composed of crystal electrons and 

an additive electron, which has a form characteristic of t.he Hamiltonian for the system 

of a particle and a boson field. 

One of the subjects which are interesting in case of the electronic polaron problem is to 

see whether and how the classical picture of a conduction electron as a point charge in 

a dielectric medium is derived from general formulation. For this purpose it is convenient 

to' consider a fixed charge distribution due to any kind of imperfection which interacts 

with the electron in the field of the electronic polarization. In § 3 we set up the 

Hamiltonian for this system by making use of the result obtained in § 2, and then 

express it in the new variables by a suitable transformation so as to derive the classical 

picture stated above. The new expression thus obtained of the Hamiltonian has diagonal 

elements which correspond to the two independent systems, one for the electronic polaron 

moving under the influence of the potential due to the imperfection with a shielding factor 

1/ /Co' the other for the free excitons or the electronic polarization waves, the origin of 

whose co-ordinates are somewhat modulated near the imperfection. The expression has 

also off-diagonal elements corresponding to the interaction between the two systems in the 

neighbourhood of the imperfection. 

Treating the last term as a perturbation, we have calculated, in § 4, the transition 

probability for the process in which a free exciton annihilates near the imperfection by 

giving its energy to the trapped electron (strictly speaking, the electronic polaron) and 

ionizing it. 

The oversimplification of the model on which we have formulated the above method 

can be corrected by connecting the interaction constant with the oscillator strength of the 

exciton transition so as to be applicable to real crystals. This is done in § 5, the result 

of which tells us, for instance, that in alkali-halides an exciton annihilates by ionizing 

F-center electrons instead of emitting radiation spontaneously if the density of the F

centers is larger than 1016/C.C. This is in accordance with the experimental results by 

Apker and Taft10- ll) on the on.e hand, and explains to some extent, as SeitzlZ) has been 

* For these two processes, Kubo and TakanoB) calculated the transition probabilities, using Wannier's 

wave function9) for the exciton states 
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424 Y. Toyozawa 

expecting, the absence of emission by an exciton from any experiment carried out so far, 

on the other hand. 

§ 2. The electronic polarization as a boson field 

Let us consider an insulating crystal C, and take into account the motion of valence 

electrons only which are responsible for the most part of the electronic polarization, the 

inner electrons and the nuclei being considered as the sources of the potential for the 

former. Denoting the coordinates of the valence electrons by r 1• r 2 • ••• and r N , we can 

set up the Hamiltonian Ho for these N-electrons. In addition to this system we consider 

an extra electron (! to be introduced into the conduction band of the crystal. The 

Coulomb interaction of e with the valence electrons is denoted by 

N 

U ('I" ; 'rl' '1"2'···, TN) = LJ e2/IT-T11. (2 ·1) 
i=1 

and the interaction of e with the inner electrons and the nuclei of the crystal, together 

with the kinetic energy of e itself, is written as Ho. Thus the total Hamiltonian takes 

the form: 

(2·2) 

Now, the system C of Nelectrons, in the one body approximation, has excited states 

in which some of the electrons are excited to the conduction band, but in the next 

approximation, in which the interaction of the excited electrons and their counterparts

the positive holes-is taken into account, we have to consider a series of the exciton bands 

below the ionization continuum stated above. In ionic crystals these exciton bands play a 

very important role in some phenomena. Let us assume, for simplicity, that the excited 

states of the Nelectrons as a whole can be represented by a single exciton band. each 

exciton having an energy c irrespective of its wave number w. Then the eigenstates of 

the system C can be specified by the number n .. of excitons for each 'W, and we can 

write 

= (.6~ + c LJ 11w) If' (- .. , nw.···. nwl.·· ·1'1"1' '1"2'···' TN) . (2.3) ,. 
The above consideration, of course, is valid only when the total number of excitons LJ nw 

w 

is much smaller than N. 

The next procedure is to find the matrix elements of U in the {nw} representation. 

For this purpose we take a tightly bound atomic orbital approximation13l for the wave 

function If'. Denoting the ground and excited states of an isolated atom by ¢q ('I") and 

¢. ('1"), respectively, we construct a normalized Slater determinant 
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The Etectronic Potar01Z and IOllization of a Trapped Eketro1Z by all Exciton 425 

1 

-VN! 

~g(r't-R1) ~g(T2-Rl) .......................... . 

~g(1\-R2) ~g(T2-R2) .......................... . 

(2.4) 

for the state In which the m1-th, m2-th,.·· and l1Zn-th atoms of the crystal are excited. We 

have written '11'1 1' 'fn2•••• instead of Rm» E m2,··· for the sake of simplicity. The over

laps between all pairs of atomic orbitals are neglected. The eigenstates of Ho are such 

that each of the excited positions (for example, m,) propagates from atom to atom with 

a definite wave number, and these excitation waves can be taken as independent of each 

other if the total number 11 of excitons is much smaller than N as has been assumed 

above; because the effect of the coincidence of m t and mj for i ~ j (a collision between 

two excitons) can be neglected for such cases. Thus the normalized eigenfunctions IJf of 

Ho can be written down as follows: 

= {N" n(nw!)} -1/2 ~ ~ ••• ~ exp [~iw. (m"Cl +'I1'1'W2+ ... +'111"" .. ,)] 
'1.0 ml m2 mn 'W tJ 

(2·5) 

~ nw =l1. 
w 

In this .expression the sets of {mW,l' mW,2.···. mw,n,) for atl w's coincide with {11l1• m2, ... 

mn }. as a whole; we have only to allow the latter elements to each wave number, l1w 

elements being assigned to the wave number w. 

Now that the explicit form of IJf is known, we can calculate the matrix elements of 

the Coulomb interaction U. Using (2. I) and (2·5), we have 

= {Nn n (7lw!)} -1/2 {Nn f n (1l~!) } -1/2 

w w 

* In the previous report (letters to the edditor) the author has restricted the values of Ilw to 0 and 

1 only, leading to the Hamiltonian in which the creation and annihilation operators ate those for the Fermions. 

Although it makes no difference so far as the resuits obtained in this work are concerned whether we use 

the Fermion or Boson operators, there is no reason in principle for the restriction of n,,, values. The author 

is indebted to Professor H. Frohlich who hilS kindly suggested to him that the exciton should be trellted as 

II Boson. 
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426 Y. Toyozawa 

x ~ ... ~ ~ ... ~ exp[:L: iw· (m~.1 + ... +m~,,,,,. -m1O ,I- ... -m,.,,,)] 
7111 mn ,"11' 'In I 11. 't/J 

(2·6) 

The last integral is different from zero in 0 the following three cases: 

(i) lZ=Il' and the set (m" m 2•· .. , m,,) as a whole coincides with (m/.m; ... ·, m~/), 

(ii) n+1=n' and the (m!, m 2 ... ·, m,,) as a whole coincides with (m/, m/.···, 

m;_1> m~+l'o", m~/), where j may take anyone of (1, 2,·",,'), 

(iii) The reverse case of (ii). 

In case (i), we have the electrostatic potential at the position l' due to the iV-electrons, 

those which belong to the m1-th, m 2-th,··· or m,,-th atom being excited. Now the charge 

distribution 

has neither a total charge nor a dipole moment, because both wave functions are of atomic 

type and have definite parities. If we take account of the point and dipole potentials 

only, and neglect the potentials of the higher multi poles we can equate the integral in 

(2·6) to that integral in which the ground state wave function rj)o of Ho (no excited 

atoms) is substituted. Then the summation over (m1' m 2•• .. , 1I1n) leads to a non-zero 

value only when the set (m,~""" m:",,,,) as a whole coincides 0 with the set (m,.", "', 

11lw" ) for each w. In the case (i), therefore, we have non-zero matrix elements only 
'W 

when 11w = n~ for all w's, moreover their values are all equal: 

(2.7) 

In case (ii) the integral in (2·6) can be calculated, in the approximation stated 

above, as 

N(N-1)! 
=-~N!-eSOm'3 (1'), (2·8) 

where SOm' (I') is the potential due to the dipole moment J.L located at the m;-th atom, 
OJ 

J.L being given by 

(2·9) 

that is, the dipole-moment for the atomic transition. The summation over m1, m 2,'" and 

111,. (m; being fixed) leads to a non-zero valve only when ll~=1Zw for all w's except the 

wave number to which m; belongs. For the latter wave number we have necessarily 
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The Electronic Polaron and ionization if a Trapped Electron by an Exciton 427 

1l~" = 11", + 1. Paying attention to the fact that j can take any of (1, 2,"', 11,. + 1), we 

see that 

(''', 1tw"", nwl,···1 UI···, llw + 1, .. ·,71,.,,···) 

(2.10) 

Let us now assume more explicit forms for the atomic wave functions ¢9 and ¢e. 

In order that the exciton absorption is permitted optically, ¢9 has to be of different parity 

from ¢e. If ¢? is of the s-type, we have to consider triply degenerate p-orbitals for ¢e, 

which necessarily lead to. three types of excitation waves. As Heller and Marcus14) have 

shown, the approximate eigenstates resulting from this degeneracy are one IOllgitudinal and 

two trallsverse waves for each w, where the "longitudinal" means that the p-state 

which propagates from atom to atom with wave number w should itself be directed toward 

w, the "transverse" corresponding to the p-states directed perpendicular to w. Then 

the summation in (2 ·10), when it is replaced by the integration, vanishes for the trans

verse waves; that is, in this approximation the transverse exciton waves do not interact 

with the extra electron. For the longitudinal waves (2 ·10) can be calculated as 

(-e)/VD ·r·i/w· Vllw +l exp(ho.r), 

where 

r=4r.:ep/ Vvo' (2.11) 

and L 3 , VO and f..L mean the volume of the crystal, the volume of a unit cell and the 

absolute value of f..L given by (2·9), respectively. 

The matrix elements in case (iii) can be calculated as the conjugate complexes of 

those in case (ii), and finally, introducing the annihilation and production operator bw 

and b; for a boson; 

we can express U in the {n.,.} representation: 

U(r; 1'1' 1'2'"'' r N) = Uo(r) + (-e) cp (1') , 

cp(r) =r/ V D· 2)/w{bw exp(iw.'f') -b; exp( -iw.r)}. 
w 

(2.12) 

(2 ·13) 

(2 ·14) 

Uo (1') is the potential energy for the extra electron e when the crystal electrons are in 

the ground state as is seen from the definition (2.7), thus it will be quite evident that 

cp (1') is to be interpreted as the electrostatic potential due to the electronic polarization 

which is caused by the deviation of ljf' (1'1' 1'2"'" r N) from (/Jo (1'1' 1'2'"'' 'joN)' if we~call 
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428 Y. Toyozawa 

to mind the above approximation in which we have taken into account only up to the 

dipole potential. 

The above expression is not altere~, when the situation is reversed such that the 

ground state of the atom consists of triply degenerate p-orbitals all being filled with ele

ctrons and the excited state is of s-type. In either case, after dropping from Ho the 

energy of transverse exciton waves which do not interact with e, we can write the Hamiltonian 

for the system as follows: 

H= {Ho+Uo(r)} + {Eo+c 2::: b~b,w} + (-e)({I(r). (2 ·15) 
w 

The first is the Hamiltonian for the extra electron e under the periodic potential of the 

crystal when the crystal electrons are fixed to the ground state, so that the eigenstates 

constitute the conduction band of the crystal in which the electronic polarizability of the 

crystal is not yet taken into account. If we apply the Wannier-Slater1oformulation for 

the perturbed periodic potential problem, under the assumption that ({I(r) is slowly varying 

perturbation (which is justified for the long wave-length components of ({I(r) in (2.14», 

we can simplify (2. 15) to the form 

H=p~/2m+c 2::: b;,b,,, + (-e) ({I ('r) (2.16) 
, .. 

after dropping the unimportant terms, where m means the effective mass of the conduction 

band, that is: 

{H~+ [IoCr) }¢k(r) =EChk)¢h(r) , 

E(p) =E(o) +p~/2m+ (p4). 
(2 ·17) 

The Hamiltonian (2·16), combined with (2·14), means that the electronically 

polarizable crystal behaves as if it were a Boson field, in regards not only to its proper 

energy structure but also to the interaction with an extra electron. Moreover the interac

tion energy is of the same form as that of the interaction between ~n electron and the 

longitudinal modes of optical lattice vibrations in ionic crystals, which was to be expected 

because both types of polarization are equivalent from the stand-point of macro-scopic 

electrostatics. According to our simplified model, the interaction constant r is to be 

connected with the dielectric constant /Co at high frequencies by the relation 

r~= 2rrc (1-1//C(J)' 

the proof of which is given In the Appendix I. 

(2.18) 

§ 3. The motion of an electronic Polaron under the influence 

of a trapping potential 

The Hamiltonian (2· 16) and (2· 14) obtained in the preceding section show that 

the low-lying energy levels of the system constitute the "electronic polaron" band in 

which the electron moves freely in the crystal accompanied by the electronic polarization 

around itself. While the mathematical structure of the Hamiltonian is the same as that 
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'.the ElectrOllic Polaron and /onizatioll of a. Trapped Electron by aft l,.'zcitoll 429 

for the usual (lattice) polaron, the phonons in the l~tter case are to be replaced by the 

excitons in the former. We are interested, however, mainly in the behavior of the electronic 

polaron in the neighbourhood of the trap, so that we proceed directly to a general case. 

That is, we consider a system composed of three parts: the electronically polarizable crystal 

C, an extra electron e, and an imperfection Q which may be an ion vacancy or an 

impurity ion. If we assume that Q is represented by an extra charge distribution p (r) , 

its interaction VCr) with e is given by a Poisson equation 

LlV('I') =4rrep(r) (e > 0), 

and .the interaction 14 of Q with crystal electronic polarization field is given by 

Lr -J n(t.)tn(r)dr=_r_""£{fJ b -fJ*b*} 
IIp- 1"- T ,y' L3-f;jw w W I·W W , 

where we have used the equation (2 ·14) and the definition of Pw: 

pw= J p(r)exp(i'W·'r)dr. 

(3 ·1) 

(3.2) 

(3.3) 

Combining the above with the result obtained in the last section, the energy of the total 

system can be written down as 

(3.4) 

where we have used the abbreviations 9., He and HI for the first, second and third terms 

in (2.16). 

The third and fourth parts of the expression (3. 4) contain linear terms in the 

polarization co-ordinates bw and b.!, but the most convenient description appealing to our 

intuition is such that in the first approximation the electron clothed with electronic 

polarization moves in the field due to the fixed charge p (r), the latter also polarizing the 

surrounding medium. In order to realize thiS' picture from (3. 4), it is 'a natural method 

to seek an appropriate unitary transformation so that the interaction terms such as Ih and 

Ifp disappear. Such a transformation, for the first time, was used by Bohm and Pines16) 

for th~ interaction of electrons and lattice vibrations in metals, and was applied by Morita 

and Horie2l to the lattice polaron problem in ionic crystals. 

In our case the transformation should be as follows. By a suitable unitary transfor

mation 

p=exp( -is/h) Pexp(iSjfi), 

r=exp (:'-iSjfi) B exp (iSjfi), 

bw=exp (-iSjfi)Bw exp (iSjfi) , 

(3.5) 

we turn from old variables p, r and bw's to new ones P, If, and Bw's, in terms of which 

we now try to express the total Hamiltonian H; 

H=exp( -iSjfi)A exp(iSjfi) 
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Y. 'toyozawa 

=exp (-is/n) {A.+Ao+A1+ Ap+ V(R)} exp(iS/n) 

=A.+Ao 

-i/n.[S, A.+AoJ+A1+Ap 

-1/2n2·[S, [S, A.+AoJl-i/n.[S, AJ+ApJ+ ... 

+ VCIl) -i/Jl'[S, V(R)J+ ... , (3.6) 

where A with any suffix means the transform of the Hamiltonian H with the same suffix, 

and is obtained by formally putting new variables in place of the corresponding old ones 

in the expression H. The operator S is chosen in such a way that the second line in 

the right-hand side of (3.6) vanishes: 

Then the expression (3.6) reduces to 

Now, the equation (3·7) is satisfied by 

+ exp (-iw. R) _____ B_w"'-"' ____ ] 

c + _1_ ( _ 2nw. p+ n2w~) 
2m 

(3.7) 

(3 ·8) 

(3.9) 

Physical. meanings of the two parts are as follows: S1 is an operator by which the electron 

e becomes clothed with electronic polarization, while Sp is that which corresponds to the 

displacement of the origin of the polarization co-ordinates bw , the new origin being the 

equilibrium position of static polarization around the charge distribution p (r) . 

In calculating the commutators appearing in (3·8), we can take advantage of the 

following situation. In the lattice polaron problem there are finite average number of 

thermal phonons for each mode of vibration so far as the temperature is not absolutely 

zero, while in our case the energy of each exciton is so much larger than the thermal 

energy kT that the existence of thermal exciton is out of the question. Even if we treat 

those processes in which excitons are produced or destroyed, as we do in § 4, the total 

number of excitons in the initial or final state is limited to a very few number, while 

the volume L 3 of the crystal is practically infinite. This situation can be expressed 

mathematically by the relations 
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(B!Bw)w=O (II D). 

(BwB:,)w= (1 +B~Bw)w= 1 + 0 (II D), (3.10) 

in which ( )w means the average over all wave numbers w. 

If we take the continuum approximation. that is, make the limit Wo of wave numbers 

tend to infinity, explicit calculations of the commutators become easier, and we get the 

following results: 

-~[Sb AIJ= - e~~~2J \ 1 

2h L w w-c+~I~(-2fi'W.P+h~w~) 
2m 

= -ac sin-I (Plu) I (Plu) 

= -ac-a I6 'P~/2m+ 0 (P4). 

where uand a are defined by 

fi2u2/2m=c, 

and 

=-~(I-~)V(R). 
2 /Co 

(3.11) 

(3 ·12) 

(3.13) 

(3·14 ) 

where the omitted terms contain the products of the second or higher derivatives of VeIl) 

with the second or higher powers of p. and are not of primary importance as far as 

the potential VCR) is rather slowly varying. It is interesting to note that each of the 

cross commutators (3· 13) and (3· 14) contributes a half to the shielding effect 

of the potential VCR) by electronic polarization. The next commutator 

i _ r~1 1 * 
- 2fi[ Sp. ApJ- -s- L32JwlJ,vPw 

(3.15) 

is nothing but the electrostatic energy due to the electronic polarization produced by the 

field of charge distribution P ('#"). Finally the commutator with VCR) is calculated as 

-ilh ·[5. VCR) J= -i/h,[Sl> VCR) J 
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V. Toyozawa 

+ ...... , (3 ·16) 

where we have expanded the operator 51 in power series in P and omitted unimportant 

terms. 

The transformation (3.9) which we have chosen IS the most appropriate one 

especially from the physical point of view, for it gives a Hamiltonian which corresponds, 

in the zeroth approximation, to the classical description of an electron in a dielectric medium, 

as is seen below. Inserting (3 ·11), (3 ·13), (3 ·14), (3 ·15) and (3 ·16) into (3.8), 

we have the Hamiltonian expressed in new co-ordinates: 

where 

+P~/2m"+ II/Co' VCR) 

+c~B!Bw 

1i" + _!r _-">, ___ 1 ____ w .grad VCR) {B exp(iw.R) 
. /L'!'<-...J +.0." 0 w 

In v 'w (c + !:,nv-)- w 
2m +B;exp(-iw.R)}, 

-c8 =-ac 

(3·17) 

(3 ·18) 

means the self-energy of the electron e due to the electronic polarization around itself, and 

me is the effective mass of the conduction electron in which the interaction with the 

electronic polarization is already taken into account, and is given by 

~e = 1:t ( 1 - ~ ) . 
(3 ·19) 

Thus we see that the bottom of the conduction band is lowered by ac from that which 

is obtained if we do not take account of the interaction, while the effective mass of the 

band is given by me instead of m. As the interaction constant a is 0.5 ....... 1 for real 

crystals, the self-energy turns out to be pretty large, but because of the overestimation 

caused by the continuum approximation, the above value should be reduced to about half 

of it. On the other hand, the correction a/6 of the effective mass is of less importance. 

The equation (3. 17) is interpreted as follows. As a result of clothing the fixed 

charge f' (/') and the moving electron e with electronic polarization, there appear in the 

first line two kinds of self-energy, and these dressed units interact with each other, 50 

that the potential V (R) . is shielded by a factor II/Co' leading to the classical description 

as is seen in the second line. Of course, P and R should be interpreted as the 

momentum and the position of the electronic polaron rather than as those of the electron 

itself. The third line corresponds to the free excitons, which could exist independently 

of the motion of the electronic polaron, but for the last term. The last term which is 
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the Electrollic Polaron and Ionization oj a Trapped Electroll by all Exciton 433 

interpreted as the Hamiltonian for the interaction corresponds to the production and an

nihilation of excitons in the neighbourhood of the imperfection Q by exchanging energy 

with the electronic polaron. 

If we consider a trapped state of the electronic polaron as a stationary state problem, 

the interaction term causes the production of virtual excitons in addition to those which 

always accompany a free electronic polaron. As a result the energy of trapping is deeper 

than the value which would be obtained from the Hamiltonian 

This is analogous to the Lamb-shift problem17! in the hydrogen atom, if we replace the 

electronic polarization field in a crystal by the radiation field in vacuum. But in our case 

the Hamiltonian (3 ·17) is only an approximate expression, so that this problem belongs 

to the interest of rather academic nature. Far more interesting and important application 

of (3.17) is the calculation of the transition probability for the processes in which free 

excitons are produced or destroyed in the neighbourhood of the imperfection. We shall 

now turn to one of such problems. 

§ 4. Ionization of a trapped electron by an exciton 

Recently Apker and Taftio)11) carried out a series of very interesting and excellent 

experiments on the external photoelectric effects in alkali-halides. They observed an enhanced 

effect of photoelectric yield in the wave-length region of irradiation which corresponds to 

the first exciton absorption band of the crystaL They concluded that this effect is due 

to the ionization of F-center electrons by excitons. 

On the other hand, it has been generally considered to be somewhat curious that 

no one has observed the emission due to exciton annihilation. From this reason Seitz1Z) 

infers that the excitons annihilate by giving its energy to some kind of imperfection under 

the ordinary conditions of purity. 

Under these circumstances it is highly necessary and interesting to calculate the transi

tion probability for the ionization process of a trapped electron by an exCiton. 

If we assume that the trapping potential VCll) is caused by a point charge ze located 

at the origin, the Hamiltonian (3 ·17) is written as follows: 

H=Ha+H', 

Ha=pz/2m-1/ICo·ze2/R+c 2J B;,Bw, 

(4 ·1) 

(4.2) 

H'= 7/ .~ Q Q Q ·grad -- {Bwexp(iw·.R) +B;'exp(-iw . .R)}, e fi2 1 w (ze2) 

mY L3 w ( fi-zer)- w R 
c+~-

2m 
(4·3) 

where we have replaced me in (3 ·17) by m, because the difference between them IS 

rather smaIL We consider the following two eigenstates of (4· 2) between which transi

tion occurs owing to the perturbation (4· 3) . 
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434 Y. Toyozawa 

(i) Initial state 

excitons: N w = B.~ Bw = 1, Nwl = 0 for all other w'. 

electron : 1 s-state in a Coulomb field, 

(4·4) 

( z' )3/2 1 (Z') ¢t= - v- exp --R , 
an n an 

(4·5) 

where mo is the electron mass, an the Bohr radius and cn= 13.5 ev the energy of the 

hydrogen Is-state. z, is defined by 

Z'=Z/ICO·m/mo· 

The energy of the initial state is given by 

E~=8-cl=8(1-L1) , 

(ii) Final state 

excitons: Nw=o for all w's. 

(4·6) 

(4·7) 

electron: ionized state in a Coulomb field with asymptotic wave number k/Sl 

¢k(R) = 1 exp (ik· R) r(l-iP)exp(.J:....pn)F(iP, 1, ikR(I-cos 8'» 
vD Z 

(4·8) 

= 1 __ exp(.J:....pn)' ~r(I+I-iP) (ZikR)lexp(ikR) 
V La Z 1=0 (zl)! 

xF(l+l-ip, 2l+Z, -ZikR)~(cos(}'), (4·8') 

where F means a confluent hypergeometric function, and the parameter p is defined by 

P-""/a " -..... H/~· (4 ·9) z 

Energy conservation requires that 

(4·10) 

from which we have, by (4·9), the relation 
~--r----+--y 

(4·11) 

Let us now calculate the transition probability. We x 

use the co-ordinates illustrated in Fig. 1: the incident Fig. 1. 

direction of the exciton (I!w) is taken as z-axis, and x-axis is chosen so that the wave 

vector k of the ionized electron lies in the xz-plane. The polar co-ordinates referred to 

these axes are denoted by (R, (), ¢), and the angles kz and kAR are written 00 and 0', 

respectively. 

According to the time~dependent perturbation theory, the transition probability for 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

2
/4

/4
2
1
/1

8
4
1
5
2
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The i!.lectronic Polaron and Ionization 0/ a 'Frapped Electroll by all Exciton 435 

the electron to be emitted in.the direction 00 within a solid angle d!Jo is given by 

W(Oo)dSJo=~IH;;12_1_p(E)d!Jo 
n 47r 

= mkL3 IH.'IVSJ, (4.12) 
(27:') 2113 IJ 0 

where p (E) is the state density of a free electronic polaron with energy E. The matrix 

element n,; can· be written as 

H. ' = ze3r1l2 1 J ,~* cos 0 ex (- iw. B) ,f, "B (4·13) 
'J m V L3 ( 1l2W2)2 'I't R2 P 'l'AfA" 

e+--
2m 

by using (2.12) and (4·3). Putting. (4·5) and (4·8') into the integral, then making 

use of addition form4lae for Legendre polynomials to express P'(cos ()') in terms of 0, 00 

and ~, finally integrating term by term, one finds the following double series for the matrix 

element: 

fl.' - 1 2imrr1l2zz'3/2 exp (!/7r) 
IJ- L3 ma 3/2 ( 1l2W2)2 

H k e+--
2m 

x~ ~r(l+l-iP) P,(cos Oo)~ (-1)m(I+2m) (2/+2m-1)! 

1=0 ... =0 (21)! 2-'" m!r(l+m+j) 

,l t+2m-1 ( - 2i ) 
x F l+l-ip, 2/+ 2m, 21+2,--

(p-i) 21+2... . p-i 
(4 ·13') 

where ,lis defined by 

,l=w/k, (4.14) 

and F is the hypergeometric function of customary use. 

The total probability for the process is obtained by integrating (4 ·12) over all 

directions after inserting (4.13') into (4·12): 

WT(p,,l) = J W«(}o)dSJo 

= 327r2 lle2 /C2(1_~)jI(1+P2)hp(j>1r)S(P' A), 
L 3 me 0 /Co (1+#+,l2)4 

(4.15) 

where S (p, A) is given by 

• _ co Ir(l+l-ip) 12 ,l2/-2 

S(p, A)-~{(2l)!}2(2I+1) (1 +p2) 21 

xl~ (1+2m) (21+2m-1)! {_i_~}~m 

",=0 tn! r(l+m+·V p-i 2 

x F(l+ I-if, 21+2m, 2/+2, ;2~)r (4 ·16) 
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436 Y. Toyozawa , 

We have carried out the calculation of this series to the fourth power in ..1, by making 

use of the equation for the r-function: 

1 r(l-zP) 12 exp (pn-) = 2pn-
l-exp(-2pn-) 

(4·17) 

and the explicit forms of the hypergeometric functions F which are given in the 'Appendix 

II. If we use (4·14), (4·9) and (3.12) to rewrite the result in terms of p arid w, 

the total probability WT can be expressed as follows: 

where 

and 
, ' 

(p) _256n-2 p6 exp (-4p cot-J.p) 
go - --_-=-_--"---'------"--c-:--:---"::-'-_ 

3 {1-exp(-2pn-)} (p2+1)3 

g1(P) =-,---~--;---- {(172p4+ 147p2+23) 
5 (p1+ 1) (pl + 4) 

-2 (p2+ 1) (23p2+ U)exp(2p coCtp) 

+ 3 (p2+ 1) 2exp (4p coc1p)} • 

(4·18) 

(4·19) 

(4 ·20) 

(4.21) 

g2(P) = 1 {(29517p6+49646p4+22385p2+3312) 
35(p2+1) (P2+4) (p2+9) 

-8 (p2+ 1) (997p4+ 1324p2+ 279) exp (2p coc1p) (4.22) 

+ 540 (p2+ 1) 3exp (4P coCtp)}. 

For all values of p between 0 and co ( corres

ponding to 0 S. ct < c), g1 (p) and g2(P) are 

comparatively small and w-dependence of G (p; w) 

is mainly determined by the factor 

so that we can conclude that excitons with small 

wave-number ware the most effective in ionizing a 

trapped electron. For the same reason, p-dependence 

of G (P. w) is mainly determined by go (P) so far 

as w is small compared with u. The curve (a) of 

Fig. 2 shows go (P) as a function of l1=ce!c through 

the relation (4· 11) . Thus the ionization probability 

tends to a finite value as the trapping energy becomes 

nearer to the exciton energy, in spite of the fact that 

15 

10 

i 5 

go(p) 

0,0 

Fig. 2. 
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the state density of final states of the ionized electron tends to zero in this limit. This 

is due -the property of the wave function (4·8), the amplitude of which at the ongm 

tends to infinity as k approaches zero. In fact, when we use plane wave approximation 

instead of the strict wave function (4· 8), we obtain the curve (b), which coincides with 

the curve (a) for small values of L1 but deviates from it for larger values, and tends to 

zero as L1 approaches unity. 

§5. Application to real crystals 

. Before we apply the result obtained in the preceding section to real crystals, we must 

correct them because we have been assuming a very simple model according to which the 

excited states of crystal electrons consist of only one exciton band. In real crystals. such 

as alkali-halides, however, the optical absorption measurements in the fundamental region 

show that the excited states consist of a few number of exciton bands together with an 

ionization continuum. This means that the relation (2 ·18) between rand ICo has to be 

replaced by a generalized one (which is nothing but a dispersion formula for zero frequency) 

~ ryc,;=27r(I-I/ICo) (5.1) 
i 

in which r i and c. are the values for each exciton bands and an ionization continuum. 

Thus the contribution r; of a single (for example, the first) exciton band is much smaller 

than the value "/ given by (2 ,18). Since the perturbation term H' in (4·3) is pro

portional to 1', we must correct the result (4.18) for the transition probability by 

multiplying a factor r~/r2. Now each ri is connected with the oscillator strength j,; of 

the corresponding exciton absorption through the equation (2. 11) and the relation between 

the dipole moment Pi and the oscillator strength: 

(5.2) 

leading to the correction factor: 

r~ _ 127re2jr 
-- 0 f;.. 

1'2 moc-7Io(1-1/lCo) 
(5.3) 

In the following we shall drop the suffix i of f, confining ourselves to the first exciton 

band. 

Assuming the density of trapped electrons to be 11t /C.C., the probability for a 

longitudinal exciton with wave number w to annihilate by ionizing any of the trapped 

electrons is now gi.ven by 

(5.4) 

where we have replaced m by mo. In case of alkali-halides with lattice constant a, Vo is 

equal to 2a3, therefore (5·4) is rewritten as 

(5·4') 
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438 Y. Toyozawa 

Without the knowledge on the J-value, we can compare (S· 4') with the probability 

U'}20) for the annihilation of an exciton through spontaneous emission which is also pro

portional to /: * 

Of these two ways of destruction of excitons, the ionization occurs only for longitudinal 

waves, while the radiation process is possible only for transverse waves. If we neglect the 

energy difference between the two kinds of waves, i:he ratio of their probable numbers is 

1/3: 2/3. The factor 2/3 is already taken into account in (5· S). In order that the 

ionization process is more probable than the emission, the following condition must be 

satisfied: 

(S .6) 

A1; an example for numerical estimation we take the case of .KI crystal containing F

centers, with which Apker and TafeO) carried out one of their experiments. Inserting the 

values 

c=S·6eV, 

c,=2eV (presumed from the F-absorption energy 1.7 eV) 

a=3.S3 A, /Co = 2,7 

into (S. 4') and (S· S), and assuming that· 'In :. 0, we have 

~=0.8 X 10-one/sec-I., 

l-V/i:=1.4 X 10D/sec-l., 

the condition (S. 6) therefore means that 

(S.7) 

(S-8) 

Thus we can safely conclude that for all alkali-halide crystals, excitons annihilate rather 

by ionizing F-electrons than by spontaneous emission, if the density of F-centers is larger 

than 10IR/c.c .. 

Apker and TaftlO) presume that about 10tD/c.c. F-centers are formed in their experi

ment on KI; in case of such a large density, the ionization of F-centers is predominant 

according to the above discussion, thus our calculation supports their interpretation of 

exciton-enhanced photoemission as being caused by the F-electron ionization. 

More generally we can conclude that excitons annihilate mainly by ionizing electrons 

trapped in various impurity levels under the usual condition of purity. (Deeper t,r:aps are 

more efficient in destroying excitons as is seen from the curve (a) of Fig. 3.) This is 

* The optical properties of the system which is described by means of exciton waves are approximately 

the same as those of a system consisting of free atoms.'9) This rule can be applied to the case of the 

spontaneo\JS emission ot an exciton, the probability being given by that of a f~ atom.12) 
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The .E7ectronic Polaron and Ionization if a Trapped Electron by an Exciton 439 

qualitatively in agreement with Seitz'sl~) speculation on the mechanism of exciton destruc

tion, according to which the impurity content of the order of 10-7 is sufficient to suppress 

spontaneous emission of excitons. It would be very interesting if the relation between the 

density of impurities and the photoconductivity in the first exciton absorption region were 

investigated experimentally, though it would be somewhat difficult owing to the formation10) 

of color-centers during irradiation. 

In the above discussion we have tacitly assumed -that the _ exciton band has a positive 

effective mass so that only the ex£itons with wave number w '. 0 prevail in thermal 

equilibrium. If the effective mass is negative, such excitons will decrease through scattering 

by lattice vibrations more rapidly than they annihilate in any way, so that the emission 

process (which is possible only for 'W '. 0) will be less probable and the condition (5·8) 

has to be replaced by even more lenient one. 

In order to estimate U?z absolutely instead of in comparison with W.Ii:> it is necessary 

to know the value of f. Dexter~) recently carried out theoretical calculation and obtained 

the value /=0.07 for NaCl. On the other hand it is difficult to estimate the .f-value 

from experimental data; perhaps it would be safe to assume that f is of the order of 0.05 

for the first exciton bands in all alkali-halides, on the grounds of (a) absorption data~~)·lo-tl), 

(6) relation to the J9-bands23) and (c) Mayer's analysis~4) of dispersion data.* Assuming 

this value for the first exciton band of KI, and nt =101"/c.c. for the density of F-centers, 

the largest value experimentally obtainable, we have, by (5.7), 

(5.7') 

This is still much smaller than the frequency of scattering of excitons by lattice vibrations, 

which is estimated to be of the order of 

(5 ·9) 

As was stated in § 2, only the longitudinal excitons are effective in ionizing trapped 

electrons, while the excitons which are produced by irradiation as in Apker and Taft's 

experiments are of transverse type. By comparison of (5. 9) and (5. 7'), however, we 

see that the equilibrium number of longitudinal waves are produced by scattering in 

~ufficiently short time; thus our estimation remains correct just the same. 

Another point which should be discussed is the energy difference between the 

longitudinal and the transverse waves, which has been neglected in the above estimation. 

Heller and Marcus14) recently noticed that even without overlapping of atomic orbitals an 

exciton band has a finite breadth due to the dipole-dipole interaction of atoms which are 

excited one after another, and that the longitudinal waves have higher energies than the 

transverse ones. But in real crystals most of the contribution to the total oscillator strength 

for the excitation of crystal electrons comes from the transitions to higher states than the 

* In estimating the /-varue from the data (a) and (6), we have used Smakula's formula25) which 

seems to the author to be approximately valid also for the first exciton band, because- the most part of the 

characteristic absorption lies in the shorter wave-length region. 
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440 Y. Toyozawa 

first exciton band, so that the dipole-dipole interaction stated above is shielded by a factor 

1/"0' thus leading to a rather small value of the separation energy. Moreover the influence 

of overlapping would complicate the situation. Therefore thei~ results does not seem to 

affect our estimation so seriously. 

In conclusion the author wishes to express his sincere thanks to Professor T. Muto, 

Professor T. Inui and Professor F. Seitz for their valuable suggestions and discussions. 

His thanks are also to Mr. Y. Uemura and Mr. H. Miyazawa for their continual en

couragements and stimulations to this problem. This work is indebted to the Scientific 

Research Expenditure of the Ministry of Education. 

Appendix I. Proof of the equation (2.18) 

Equation (2.18) can be proved in the same way as Frohlich, Pelzer and Zienau1) 

did in the lattice polaron problem. That is, we consider a. classical point charge e1 fixed 

at r=o. Then the energy of the system composed of e1 and the crystal C is written, 

by (2.14) and (2.16), as 

H;= c ~ b~b.w+ .e)T_~~(bw-b!). 
'm 'V L3 'W'lfJ 

The minimum of this expression is realized for the values of b,. : 

b=~~ 
W C-VD' W ' 

This electronic polarization causes the potential 

if] (r) = . -; ,~~ {b,,, exp (iw .r) -b;!: exp ( -i'w .r)} = -L.!J... 
'V L' w LV 21Cc r 

according to (2. 14) . In order that this be equal to 

- (1-1/"0) 'e]/r 

as is required by electrostatics, the relation (2· 18) has to be satisfied. 

Appendix II. Explicit forms of the hypergeometric 

functions used in the calculation 

The hypergeometric functions appearing an (4. 16) are such that the two parameters 

fl = 2/ + 2 m and r = 2/ + 2 are integers. We can, therefore, express them in terms of 

elementary functions as follows. 

Starting out from the relation 

F(a, fl, fl, z) = (l-z)-" 

which corresponds, in our case, to m= 1, we can utilize the step-up recurrence formula26) 

for the hypergeometric functions 
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zF' (a, (1, r; z) + {1F(a, (1, r; z) ={1F(a, (1+ 1, r; z) 

repeatedly in order to obtain the expressions for the cases m > 1. Thus we have, for 

example, 

F(I+I-ijJ, ZI+Z, zl+z, -Z~)=(jJ-~y+lexp(_ZjJcoCljJ) 
jJ-t P+t, 

F('I+I-ijJ, z/+4, 2l+Z, -Z~) 
jJ-t 

(Z/-l)",2-1 ("'_i)l+l 
= Y Y exp(-ZpcoC1p). 

U+3 (p+i)l+3 

When m = 0, it is more convenient to make use of the expressions in infinite series: we 

can write, for example, 

F( Z 4 . )_~a(a+l) ... (a+n-l).z.3 .. 
a, , ,z -.LJ Z 

,,=0 n!(n+Z) (n+3) 

_ 6 d { (1-2') -(.<-3) 

(a-I) (a-Z) (a-3) dz Z2 

The results up to the case 1- 3 are as follows: 

( . -Zi) p-i F Z-tP, Z, 4; --. =3--. exp( -ZjJcocl p), 
jJ-t P+t 

( -Zi) 5 (P_i)2 1 0 F 3-ip, 4,6; --. =- --. -0- {(23jJ-+l1)exp( -Zp cot- 1 p) 
P-t Z P+t p-+4 

-3 (p2+ 1)}, 

F(4-ijJ 6 8' -Zi)=63 (p_i)4 1 
, , 'P-i Z (p+i)2 (p2+4) (p2+9) 

X {(37 p2+ 13) exp ( -Zp coC t p) -5 (p2+ I)}. 
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Note added in proof: The estimation (5 ·8) for the critical density of F-centers is ;n qualitative agreement 

with that of the previous work by Dexter and Heller27) who considered the F-electron ionization by an exciton 

to take place through two stages, whereas our formulation permits direct process. Though both are based 

on somewhat different pOlOts of view, they are in accordance as regards the most essential point, that is, the 
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for inforrnlOg his interesting idea about this problem.28) 
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