
2090 J .  Phys. Chem. 1985, 89, 2090-2096 
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An analytical theory is presented for the isotropic-liquid crystal phase separation in a solution of bidisperse rodlike polymers 
when either the bidispersity ratio is close to unity or the fraction of longer rods in the isotropic phase is relatively small. 
Gaussian trial functions are used that depend on adjustable parameters which are found by minimizing the free energy of 
the system. It is shown that in the nematic phase the longer rods are always more highly ordered than the shorter ones. 
The coexistence equations can be simplified significantly, so that they can be conveniently solved by only one iteration. From 
the solutions it is straightforward to understand the involved phase separation in qualitative terms as well as the Dhysical 
mechanism of the generally strong fractionation. 

Introduction 
In his paper' on the nematic-isotropic phase transition in a 

solution of monodisperse rodlike particles, Onsager already hinted 
that an extension of his calculations to the case of polydisperse 
rods would prove to be interesting. Without giving a derivation 
he noted that the longer rods should prefer the anisotropic phase. 
This fractionation has been substantiated by  experiment^.^-^ A 
fair amount of numerical analysis has been devoted to the effect 
of polydispersity both within the original framework of distribution 
functions*-9 and in the lattice approximation.'*14 Nevertheless, 
in order to gain physical insight into the mechanism of the 
fractionation we present an analytical theory for a system of long, 
bidisperse rodlike macromolecules. 

The distribution-function theory remains a well-founded way15J6 
to elucidate the nematic-isotropic phase transition, especially in 
systems of long rods. In particular, the Onsager theory has been 
brought to a high level of perfection by Kayser and Ravechb.17 
Still, in practice there will be substantial deviations from these 
calculations because the rods are never ideally hard particles1*'* 
and they are always flexible, perhaps minutely but nonetheless 

Therefore, we take along only the leading order 
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The theor; is in g o d  agreement with extensive numerical woik.. 

terms from the asymptotic expansions of the Onsager theory1 in 
studying the complicated influence of bidispersity, Le., the fact 
that the solution contains rods of two different lengths. For this 
reason we cannot claim a very high degree of precision in all our 
results, but we stress that the physically important terms are 
retained. Since Onsager's leading order terms can be derived from 
a Gaussian-type distribution function, we may call our theory the 
Gaussian approximation. 

Our analysis shows that the phase separation of bidisperse 
rodlike macromolecules is a very delicate phenomenon although 
it is quite amenable to interpretation. It turns out that the coupling 
between shorter and longer rods in the nematic phase acts very 
differently on the respective macromolecules so that the respective 
order parameters are highly asymmetric. The longer rods are 
always more highly ordered than the shorter ones but the precise 
factor depends markedly on the molar fraction. Furthermore, the 
coexistence equations simplify considerably in the Gaussian ap- 
proximation so that they become soluble by iteration at least under 
certain circumstances. The theory agrees rather well with a lot 
of numerical work. Perhaps more importantly, the complex nu- 
merical results can now be given a physical interpretation. 

The plan of the paper is as follows. We first minimize the free 
energy of the system of bidisperse particles with respect to the 
adjustable parameters a1 and a2 that occur in Gaussian trial 
functions which are assumed to approximate the orientation 
distribution functions of the respective macromolecules. The 
condition for the stability of the nematic phase is discussed. Next, 
the expressions for a' and a2 are used to simplify the coexistence 
equations. These in turn are solved by iterating in two cases: (A) 
relatively small bidispersity ratio and (B) relatively low molar 
fractions in the isotropic phase. These solutions are compared 
with previously published numerical work as well as new work. 
Finally, we give a qualitative discussion of the analytical ex- 
pressions and an outline of the resulting osmotic pressure-com- 
position phase diagram for the case of a large bidispersity ratio. 

Formalism 
First we shall briefly summarize several of the starting equations 

that have been discussed in considerable detail  before.'^^ Spe- 
cifically, we will adhere to the notation of ref 9. Let us consider 
a solution of volume I/ that contains N I  rods of length LI and N2 
rods of length L2, all rods having the same diameter D. The rods 
interact mutually like hard particles. They are relatively long, 
Le., Ll >> D,  L2 >> D. For the sake of being definite we take 
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L2 > L l .  The Helmholtz free energy of the solution in dialytic 
equilibrium with the solvent a t  temperature T i s  given 

- M F(so1ution) - F(so1vent) -- 
NkBT - NkB T 

( 1  - x ) P O 1 ( ~ , ~ o )  + xcL0z(T,w0) - + c’ + ( 1  - 
kB T 1 

x )  In ( 1  - x )  + x In x + ( 1  - x)ul + xu2 + cI(1 - 
x)2bllPll + 2x(1 - ~)blZP12 + x2bzzp221 ( 1 )  

[ 
Here, po .( T,po) signifies the standard chemical potential of the 
rods in the solvent of chemical potential po 0’ = 1 refers to the 
shorter rods, j = 2 to the longer), kB is Boltzmann’s constant, N 
= N 1  + N2 is the total number of macromolecules, c’ = N / V  is 
the number density, x is the molar fraction of the longer rods, 
and bjk = (?r/4)LjLkD is the average volume excluded by a pair 
of rods of types j and k if they were randomly oriented. The 
one-particle-orientation-distribution functions fl(Q) and f z ( Q )  
determine the parameters uj and P j k .  

uj = fw) In 4rfj(Q) dQ j = 1 , 2  ( 2 )  

pjk = 4 ? r - 1 1 1 S i n  r(Q,Q‘)fj(Q) fk(0‘) dQ dQ’ j ,  k = 1 ,  2 
(3) 

where r(Q,W) is the angle between rods j and k and the solid 
angles Q and Q’ refer to the direction of these rods with respect 
to the director. Equation 1 is the second virial approximation 
accurate only whenever L,,  Lz >> D. 

If the solution is not isotropic the negative (confinement) en- 
tropy terms uj are enhanced. Nevertheless, the translational 
entropy increases because the excluded volume decreases (see eq 
3). Therefore it is entirely feasible that a nematic phase might 
form provided the bjk terms are large e n ~ u g h . ~  Evidently, if x 
is unequal to either zero or unity, the coupling term blz ultimately 
c a m  large deviations from the behavior of typically monodisperse 
solutions. We  elucidate the isotropic-nematic phase separation 
by finding convenient approximations to fj and by subsequently 
solving the coexistence equations derivable from eq 1 .  

Minimization of the Free Energy 
To proceed one can either minimize eq 1 with respect tofi and 

fi or, as Onsager did,l choose realistic trial functions and then 
minimize with respect to adjustable parameters. His choice was 
particularly convenient 

j =  1 , 2  (4) 

with aI and az adjustable parameters and with normalization 
conditions 

lfj(Q) dQ = 1 j = 1 , 2  ( 5 )  

For the nematic phasefj depends on 6 only where 0 represents 
the angle between the rod and the director. We will assume aI 
and a2 are significantly larger than unity in the anisotropic phase, 
a restriction that will not allow us an exhaustive analysis but which 
suffices for many purposes. 

The entropy terms (eq 3 )  are calculated for these trial functions 
in the remarkable appendix to Onsager’s paper.’ As we mentioned 
before, we retain only the leading order terms of his asymptotic 
expansions for large aj, although we will correct partially for this 
neglect later on. 

uj(aj) N In (aj) - 1 (aj >> 1 )  j = 1 ,  2 ( 6 )  

We call this the Gaussian approximation because eq 6 and 7 can 
be obtained from the high 9 limit of eq 4 which is a Gaussian 

distribution in 6 (see eq A1 of Appendix A). Onsager’s derivation 
of the asymptotic expansions is rather complicated. Since the 
precise aj, (Yk dependence of p,k is essential to understanding the 
mechanism of the fractionation, we give a simple alternative 
analysis of this leading order term in Appendix A. For convenience 
we introduce the following dimensionless parameters9 

4 = LZ/LI ( 8 )  

( 9 )  b I b l l  = (?r/4)L2D 

bl’ = qb 

bzz = $6 

We call q the bidispersity ratio. 
If we minimize eq 1 using eq 6 and 7 ,  we obtain 

1/2d/’(bC’)-’al’/’ = ( 1  - X )  + 2’/’xq h(Q) 

1/~d/2(bc’)-’a2’/2 = 2’/’(1 - x)q  g(Q) + Xq’ 

(10) 

( 1 1 )  

with the help of the following definitions 

Q I az/ai (12) 

h(Q) I (a)”’ 
Q + 1  

g(Q) (1 + e)-’/’ (14)  

The scaled concentration c 1 bc’can immediately be eliminated 
from eq 10 and 1 1  

( 1 5 )  
q [xq  + 21/2g(Q)(1 - 4 1  

Q 1 / 2  = 
[2l/’h(Q)xq + ( 1  - x ) ]  

In Appendix B we prove that Q 1 ‘/’(8q2 + l ) ’ / ’  - Le., the 
longer rods are always more highly ordered. Equation 15 simplifies 
in the following cases. 

( i )  The Case q >> 1 .  Equation 15 shows at once that Q must 
likewise be large. Hence we approximate g(Q) by Q’lz and h(Q) 
by 1 - (2Q)-’ in order to solve eq 15 explicitly. 

xq’ + [x2q4 + 4(2’/’xq + ( 1  - ~ ) ) ( 2 l / ’ q  - 2- ’ / ’q~) ] ’ / ’  

(16)  

Q N 1/24’ xq >> 1 (17)  

x2q3 e 1 ( 1 8 )  

Q l / z  = 
2[2’/’xq + ( 1  - x ) ]  

Equation 16 has the following approximate limits 

QW N 2 1 ~ ~ 1 ~  + y2xq2 - 2-114~312~ 

(i i)  q Close to Unity. If Q - 1 is small compared to unity, the 
1 + Q turns out to be very good, so that 

(19) 

We have yet to investigate the stability of the nematic phase, 
but a t  this stage it is convenient to write the pjk functions explicitly 
in terms of q, Q, and x .  From eq 7, 10, and 1 1  we have 

approximation 2Q’l2 
eq 15 simplifies 

4Q = q2 + q(q2 + 8)112 

2’ 1’h-l (Q) 
CP12 = 1 - x + 2I/’xqh(Q) 

Here c is the scaled concentration bc’. In eq 1 the term< 7 occurs 

17 I C I ( 1  - X ) ’ P l l  + 2x(1 - x)qp, ,  + x2qZPz21 (23) 
Very surprisingly this formidable-looking function reduces to a 
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pure number if one uses eq 13-1 5 a number of times after sub- 
stituting eq 20-22 into eq 23. 

]I = 2 (24) [ 2 ' 4 1  - x)g + xq 
g 

Now the distribution functions pertaining to the isotropic phase 
are also solutions to the integral equations obtained from eq 1 (see 
ref 9; eq A1 of Appendix A cannot, of course, yield the isotropic 
solution for it is meaningless for small values of aj). Accordingly, 
we require that a completely nematic phase is to be more stable 
than a fully isotropic phase a t  some scaled concentration c, and 
this implies 

AFa(Ca,Xa) < AFi(CaJa)  

where the indices a and i will from now on refer to the anisotropic 
and isotropic phases, respectively. Hence, we derive the following 
condition from eq 1, 2, 23, and 24: 

(1 - Xa)gl,a + ~ a g 2 , a  + 2 < Ca(1 - xa + XaqI2 

or 

1 + In aI + x,  In Q < ca(l  - x, + x,q)2 (25) 

Equations 10 and 11 give values of aI and a2 for which AF has 
an extremum. In order to ensure that the nematic phase is stable 
viz. that AF also attains its minimal value, we require aZAF/aa12 
> 0, a 2 ~ / a a 2 2  > 0, and (a2AF/aa12)(a2AF/aaz2) - (azAF/ 
dalaa2)2 > 0 for 0 I x I 1 and q 2 1. A straightforward but 
lengthy calculation bears out that this condition is fulfilled. When 
solving the coexistence equations we must check whether inequality 
(2 5) holds. 

Coexistence Equations 
If we assume there a re  two possible phases that may 

coexist-one of them isotropic, the other anisotropic, denoted 
hereafter by the indices i and a ,  respectively-we can find their 
composition and concentration from the equality of the osmotic 
pressure and the particle chemical potentials in the respective 
phases. In terms of the scaled concentrations c1 bc{ and c, 1 
bc:, we then have the following coexistence equations's9 

Ci( 1 + Ci[( 1 - Xi)2 + 2 4  1 - xJq + x2q21) = 
Ca(1 + ca[(l - xa)2Pll + 2xa(1 - xa)q~12 + x,Z~~PZZI) (26) 

In ci + In (1 - xi) + 2ci[(l - xi) + xiq] = 

In ci + In xi + 2ciq[( 1 - xi) + xi41 = 

In ca + In (1 - xa) + ~1 + 2ca[(l - xa)Pll + xaq~121 (27) 

In Ca + In xa + g 2  + 2caq[(l - X ~ ) P ~ Z  + xaq~221 (28) 

At first sight the set of eq 26-28 seems intractable. Fortunately, 
the right-hand sides of all three of them can be simplified con- 
siderably. We have already remarked that 7 = 2 (see eq 24). This 
means that, a t  least within the Gaussian approximation, the os- 
motic pressure in the nematic phase is completely independent 
of the bidispersity, a t  least in an explicit sense. 

Part of the right-hand side of eq 27 is rearranged as follows 

3 In c, + In ( 4 / ~ )  + 3 + t (29) 
In ca + U I  + 2Ca[(l - xa)Pll  + xaq~121 = 

with 

Here we have repeatedly applied eq 6, 7, and 13-15 just as in the 
simplification of eq 23. Note that E = 0 in the monodisperse case. 

It turns out to be convenient to use eq 28 not directly but rather 
with eq 27 subtracted from it. In the same way as previously we 

simplify the awkward terms that appear by aptly using eq 6, 7, 
and 13-15 

w E g 2  - UI + 2caq[(l - xa)Plz + X ~ ~ P Z Z I  - 
2 3 / 2 g ( ~  - 1) 

Again w = 0 if we have rods of only one length. 
If the bidispersity ratio q is not very large, it is not difficult 

to solve the set of eq 6, 7, 10-14, 19, and 26-28 analytically by 
perturbation theory. For arbitrary q, however, we can make 
headway only under certain circumstances, for instance if xiq << 
1. 

(A)  The Case q - 1 << 1. We write q - 1 = t which we take 
to be a small perturbation parameter and we expand all expressions 
up to order e. Equation 19 gives Q = 1 + (4~13) .  Hence, eq 10 
and 11 reduce to 

!/"2C['a''/2 = 1 + Xx,t + O(2)  

jl2T'l%,-'a2'/2 = 1 + 2/36 + y3xat + O(2) 

(32) 

(33) 

Equations 6, 7, 24, and 26-33 lead to the following expressions 
correct to order e: 

Ci[l + Ci(1 + 2Xit)I = 3c, (34) 
In ci + In (1 - xi) + 2 4  1 + xie) = 

3 In c, + In (1 - x,) + In ( 4 / ~ )  + 3 (35) 

In ci + In xi + 2ci(1 + e + xie) = 
3 In c, + In x, + In ( 4 / ~ )  + 3 + 4e (36) 

Note that there are no terms of order x,e. Furthermore, t does 
not enter in the right-hand side of eq 35 implying that to order 
e the the chemical potential of the shorter rods in the anisotropic 
phase is explicitly independent of the bidispersity. 

Equations 34-36 are readily solved by iteration. First we 
subtract eq 35 from eq 36 

Next, we write ci = cio + t q l  and c, = c,,~ + ec,,', substitute these 
identities in eq 34, 35, and 37 and collect all terms of the same 
order in e, keeping in mind that In (1 - xi)(l - xa)-' is possibly 
also of order e. The zero-order terms which correspond to a 
monodisperse solution are given by 

ci,o + ci,02 = 3c,,0 (38) 

(39) 

(40) 

In 

The terms of order e are 

+ 2 q 0  = 3 In c,,~ + In ( 4 / ~ )  + 3 

Ci,~(2Ci,o + 1) + 2XiCi,02 = ~ C , J  

We can eliminate ci,' from eq 40 and 41 

The numerical solution of eq 38 and 39 is ci,o = 3.4516 and 
= 5.1217 which should be compared to Onsager's values' coi,o = 
3.3399 and Pa,,, = 4.4858. The small but significant discrepancy 
between the respective anisotropic concentrations arises because 
we have used only the leading order terms of Onsager's asymptotic 
expansions.' One possible way of correcting for the neglect of 
the higher order terms in his series is to replace ci and in eq 
40-43 by Onsager's values or those of  other^.^^'^ For the sake 
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of complete consistency, however, we shall use our own values most 
of the time. 

There is also a second solution to eq 38 and 39, viz. c * ~ , ~  = 
0.98347 and c*,,~ = 0.65023. This can be discarded for the 
moment not because it violates inequality 25 but because aI is 
much too small to be in the range of validity of the Gaussian 
approximation. 

Equation 42 is rewritten as follows: 
X, = xi + ~(2~ i ,o  - 4)xi(l - xi) 

c, = c,,o - 2c,,ocxi 

(44) 

(45) 

As xi increases, the total concentration c, of rods in the anisotropic 
phase decreases monotonically. Moreover, xi is always smaller 
than x,, Le., the longer rods are preferentially absorbed into the 
anisotropic phase. For xi = 1, c, reduces to cBo - 2~c,,~ as it should, 
for it must equal q-2c,o to order e. The quantities a1 and a2 which 
are related to the order parameters by the relations SI = 1 - 3 q - l  
and S2 = 1 - 3aZ-l also decrease monotonically with increasing 
xi for the scaled concentration c, is lowered quite rapidly. 

Equation 43 then yields 

4cxi 
s1 = so - -(1 - So) 

3 

(47) s2 = so + -(1 - xJ(l -So) 

Here So is the order parameter for the nematic phase in the 
monodisperse case and it is equal to 1 - 3ao-' with ?r 1/2 a. 1/2 = 
2 ~ , , ~  from eq 10. Equation 25 amounts to 

4E 
3 

2 In c,,~ + In (4/?r) + 1 < c,,~ 

a condition that is readily verified and in fact identical with that 
for the monodisperse case. 

(B) The Case xiq << 1. If we assume xi is very much smaller 
than q-' we can make significant progress in solving the coexistence 
equations analytically. Equations 24 and 26 now give us a simple 
relation between ci and c,. 

(48) 

(49) 

ci + c: = 3c, 

From eq 21, 29, and 30 we have 
In ci + 2ci = 3 In c, + In (4/a) + 3 + In (1 - x,) + [ 
Likewise, eq 27, 28, and 31 reduce to 

In (xi/x,) + 2ci(q - 1) = w - In (1 - x,) (50) 

With the help of eq 48 we can simply eliminate c, from eq 49 

j(ci) = 2ci - 2 In ci - 3 In (1 + ci) + 3 In 3 - In (4/?r) - 3 = 
In (1 - x,) + f = [' (51) 

From the structure of eq 50 and 51 one can easily discern a 
convenient way of solving them. The Gibbs phase rule tells us 
that there is one variable from the set (xi, x,, ci, c,) that can be 
freely chosen. Evidently x, is very suitable as an independent 
quantity. A fast numerical scheme is the following. From eq 15 
and given values of x, and q we calculate Q by iteration. The 
concentration ci is then obtained from eq 30 and 5 1. Then c, is 
calculated from eq 48 and finally the composition of the isotropic 
phase can be derived from eq 3 1 and 50. Once one knows Q and 
c, the parameters cyI and a2 can be calculated from eq 10 and 11. 

There is one remaining problem. The function j(ci) attains a 
minimal value of -0.62786 for c ~ , ~  = 2 which implies that the 
number of possible solutions is two, one, or zero. 

The number of tenable solutions must be sorted out with the 
aid of the following restrictions: (i) al >> 1; (ii) xiq << 1; and 
(iii) inequality 25. 

The variable f' [ + In (1 - x,) can easily be rather small 
compared to unity, for instance, when x, is small but also in quite 
a few other cases. Accordingly, it is fruitful in analytical work 
to write ci = q0 + 6q where 6ci is regarded as a perturbation and 
so expand eq 51 in 6ci. In this manner, we obtain 
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or 
ci = ~ i , o  + 1.3393f' (52a) 

Earlier on we dismissed the solution ~ * i , ~  = 0.984347 for x, = 0 
(see the discussion after eq 43). However, if x, and q are large 
enough, it becomes possible to satisfy inequality 25 again so we 
have to examine this solution too. 

ci = c * ~ , ~  - 0.646785' (x, and q large enough) (52b) 

Equations 48, 50, 52a, and 52b constitute analytical solutions to 
the coexistence equations for a certain range of parameters. They 
will be compared to numerical work later on. 

It is of interest to study these exmessions in more detail for 
very small values of x,. First, we expand eq 13-15 

Q = QO + XaQi + O(Xa2) 

with 

Qo(Qo + 1) E 2q2 

and 

h = ho + x,hl + O(X,Z) 

with 
ho Qo1/2(Qo + l)-l/z 

h, = '/QIQo-l/Z(Qo + 1)-Il2 

and 

g = go + X&l + W,2) 
with 

go 5 (Qo + 1)-Il2 

gi E -'/zQi(Qo + 
Equations 53-61 can be used to expand f and w. 

f = (Qoz - Q03/2 - QO1l2 + 1)x; + O(X:) 

w = In Qo + 2Q0 - 2 - 2x,(Q:/' - 1)(Qo'/2 - 1) + O(X:) 
(63) 

These results are consistent with the c expansions given earlier. 
If x, is very small, ci is close to either q0 or c * ~ , ~  and therefore 

c, is, analogously, almost equal to either c,,~ or c*,,~. We are 
allowed to disregard the c* type solution given by eq 52b because 
it does not satisfy inequality 25. 

Equations 50, 52a, 62, 63 yield to order x, 
In (q/x,) = -A - Bx, (64) 

where 
A = 2ci,,(q - 1) - In Qo - 2Q0 + 2 

B = 2(QO3l2 - 1)(Qo1/2 - 1) - 1 - 2.6786(q -1) 

As xi tends to zero, x, ultimately does the same as it should. 
However, for q somewhat larger than unity, xi is very much smaller 
than x, since we have Qo < 2lI2q and thus A > 0 

and 

(xi/xa)xj-o = e-" (65) 

Equation 64 shows that a rapid enhancement of x, as a function 
of xi is expected when xi reaches a certain value xi> A variation 
of &xi in xi leads to a variation Sx, given by 

6Xi 6x, 
= -B~x, - - -  

Xi Xa 
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e = 0.1 as outlined in Tables I1 and 111. Also tabulated are the 
analytical calculations according to the following expressions: 

TABLE I: Values of Q and the Scaled Parameters 1/2?r1/2c;1a, for 
the Extreme Limits of x, As Calculated from Eq 10-14 

limiting values for 
scaled parameters x, - 0 x, - 1 

1/2?r1/2c,-1al'/2 1 q2Q-'/2 
1/2"1/2c,-Ia21/2 Q1/2 q2 
relation between q and Q Q' + Q = 2qz 2@ = q2(Q + 1) 

Hence if x, becomes so large that x,B approaches unity the molar 
fraction x, must increase sharply when xi is only slightly enhanced. 
This value xi can be written as 

Behavior of the Order Parameters 
We know from previous numerical work9 that both order pa- 

rameters exhibit a maximum as a function of xi for q = 2 and 
q = 5 ,  but for q close to unity we have shown this cannot be so. 
In order to assess the behavior of the order parameters Sj ana- 
lytically, we note the following statements. 

(1) For aj >> 1, we have Sj = 1 - 3a;' within the Gaussian 
approximation. 

(2) Sj(x,=O) > Sj(xa=l) for q > 1 .  This follows from (i) c, - c,,~ as x, - 0 where c,,~ is the anisotropic concentration for 
monodisperse rods of type 1 (In the Gaussian approximation). 
(ii) c, - q-2c,,o as x, - 1, from the definition of the scaled 
concentration. (iii) Q is larger than l /2(8q2 + 1)1/2 - (see 
Appendix B). (iv) The limiting results for the parameters aj (see 
Table I). 

(3) We assume the order parameters Si do not have a minimum 
as a function of x,. As yet we have no proof of this conjecture. 

From these statements we deduce that Sj will have a maximum 
if daj/ax, 2 0 for x, = 0, i.e., when q > 1.51 in the case of a1 
and q > 1.47 in the case of a2 (see eq 10, 11,48,52a, 54, 57, and 
62). 

Comparison with Numerical Work 
First, we compare our theory with numerical solutions of the 

relevant integral equations together with the coexistence equations. 
The method is expounded in ref 9 and one uses the expansion of 
the kernel sin y in Legendre polynomials." With the help of Alain 
Stroobants (Vrije Universiteit Brussel) we have obtained numerical 
results (bearing the superscript num) for q - 1 = t = 0.01 and 

Ax x, - xi = ( 2 4 y  - l)CXi(l - Xi) 

c, = G y ( l  - 2 4  

S1 = Sgum - ?$Xi( 1 - S y )  (70) 

(71)  

Equations 67-71 are obtained from eq 38,40, and 44-47 but with 
the analytical quantities cia, cao, and So replaced by the numerical 
ones = 3.2904, Gim = 4.1910, and %'" = 0.7922, respec- 
tively. The reason for this is that a1 and a2 are, of course, close 
to a0 = 33.4 when t is small so that for these relatively low a's 
the errors incurred are substantial but, as we stated before, they 
are diminished somewhat by the use of the "real" q0, c,,~, and 
SO. 

Judging from Tables I1 and I11 we can see that the fractionation 

s2 = + 4/3e(l - Xi)(l - e m )  

Axnum follows closely a relationship of the form 

Axnum 0.71Ax 

Thus the main functional dependence of Axnum on xi is correctly 
predicted by eq 67 although the theory overestimates the frac- 
tionation by about 40%. There is also a very slight asymmetry 
apparent in Table 11: A r m  is a bit underestimated for xi < 0.5 
but overestimated for xi > 0.5. This asymmetry increases when 
e = 0.1 as can be seen from Table 111. The other semianalytical 
eq 68-71 work remarkably well and need little comment. 

Next, we compare the theory with several results for q = 2 and 
q = 5 from ref 9. Because xiq is never sufficiently small in Tables 
I1 and I11 of ref 9, we asses the theory by inserting the numerical 
values from those tables into our analytical expressions for the 
coexistence equations, viz. eq 26-28, but with the right-hand sides 
given by eq 23, 24, and 29-31. We should end up with identities 
and Table I V  shows this is reasonably the case. The values of 
a1 in Table IV are equal to about 30 or so and we have not checked 
other entries from ref 9 because a1 is then much too small. 

In Table V we have contrasted numerical results via Onsager 
trial functions (see eq 4) with those using the Gaussian approx- 
imation. When the values of the a's are large, our theory works 
very well. We emphasize that for very high a's the usual ex- 

TABLE 11: Theory for q - 1 = c = 0.01 Compared with Numerical Analysis of the Integral Equations Analogous to That Described in Ref Y 

0.1 0.00232 0.001 68 3.2838 3.2838 4.1826 4.1826 0.7919 0.7919 0.7947 0.7950 
0.2 0.00413 0.00297 3.2772 3.2772 4.1742 4.1742 0.7916 0.7916 0.7944 0.7947 
0.3 0.00542 0.00388 3.2707 3.2707 4.1658 4.1658 0.7914 0.7912 0.7941 0.7944 
0.4 0.00619 0.00442 3.2641 3.2641 4.1575 4.1575 0.7911 0.7909 0.7938 0.7941 
0.5 0.00645 0.00459 3.2576 3.2575 4.1491 4.1492 0.7908 0.7906 0.7936 0.7938 
0.6 0.00619 0.00439 3.2509 3.2512 4.1407 4.1410 0.7905 0.7903 0.7933 0.7935 
0.7 0.00542 0.00382 3.2443 3.2447 4.1323 4.1328 0.7902 0.7900 0.7930 0.7931 
0.8 0.00413 0.00290 3.2378 3.2383 4.1240 4.1246 0.7900 0.7896 0.7927 0.7928 
0.9 0.00232 0.001 63 3.2312 3.2319 4.1156 4.1165 0.7897 0.7893 0.7925 0.7925 
1.0 0 0 3.2246 3.2256 4.1072 4.1084 0.7894 0.7922 0.7922 

Xi Ax h n u m  Ci cy c a  cy SI S F  s 2  S y  

"he numerical results are denoted by nun. The theoretical values have been calculated from eq 67-71. 

TABLE 111: Theory for q - 1 = t = 0.1" 
s n u m  

Xi L k  Ci cy, c a  cy SI s;- s 2  
h n u m  

0.1 0.0232 0.0183 3.2246 3.2209 4.1072 4.1009 0.7894 0.7897 0.8171 0.8183 
0.2 0.0413 0.0313 3.1588 3.1547 4.0234 4.0155 0.7866 0.7870 0.8144 0.8159 
0.3 0.0542 0.0396 3.0930 3.0917 3.9395 3.9344 0.7838 0.7840 0.8116 0.8133 
0.4 0.0619 0.0436 3.0272 3.0316 3.8557 3.8573 0.7811 0.7809 0.8088 0.8106 
0.5 0.0645 0.0437 2.9614 2.9740 3.7719 3.7839 0.7783 0.7776 0.8060 0.8077 
0.6 0.0619 0.0406 2.8956 2.9189 3.6881 3.7139 0.7756 0.7742 0.8033 0.8048 
0.7 0.0542 0.0343 2.8298 2.8660 3.6042 3.6471 0.7728 0.7707 0.8005 0.8017 
0.8 0.0413 0.0253 2.7639 2.8152 3.5204 3.5832 0.7700 0.7671 0.7977 0.7985 
0.9 0.0232 0.0138 2.6981 2.7664 3.4366 3.5221 0.7672 0.7635 0.7950 0.7954 
1.0 0 0 2.6323 2.7193 3.3528 3.4636 0.7645 0.7922 0.7922 

"See captions and footnotes to Table 11. 
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TABLE I V  Theory Compared with Numerical Analysis of Integral Equation0 As Described in Ref !P 

4 X? x: # e [I rl 12 r2 13 r3 
2 0.1 0.496 2.301 2.773 8.706 8.319 5.790 5.808 8.655 8.492 
2 0.2 0.588 1.900 2.240 7.908 6.720 4.979 5.020 8.153 7.956 
5 0.1 0.741 0.770 0.601 1.932 1.803 1.789 1.942 8.216 7.919 

'The variables indexed N are taken from Tables I1 and I11 of ref 9. They are used to calculate II = Ihs of eq 26; rl = rhs of eq 26 with the use 
of eq 23 and 24; l2 = lhs of eq 27; r2 = rhs of eq 27 with the use of eq 29 and 30; I 3  = lhs of eq 28; r3 = rhs of eq 28 calculated from eq 29-31. 

TABLE V Typical Values of the Composition, Concentration, and Ordering Derived from Theory for x,q << 1 and from Numerical Calculations 
with the Use of Onsager Trial FUIIC~~OW' 

Xi ca Ci Q 
4 xa (X:"") (e") (e-) (a?;") (& (e)""" 
2 0.1481 0.645 X 4.66 3.27 40.2 98.8 2.46 

(1.00 x 10-2) (4.17) (3.12) (26.6) (67.4) (2.54) 
2 0.5327 0.709 X lo-' 3.37 2.72 44.2 115 2.61 

(1.00 x 10-1) (2.86) (2.32) (27.5) (74.8) (2.72) 
3 0.06848 0.467 X lo4 4.95 3.39 44.3 177 4.01 

(4.14) 
5.07 

(1.00 x 10-4) (4.52) (3.28) (31.2) (129) 
3 0.66 12 0.617 X 3.90 2.96 163 8 27 

(1.00 x 10-3) (3.63) (2.84) (139) (713) (5.13) 
3 0.7513 0.243 X 3.30 2.68 139 716 5.15 

(1.00 x 10-2) (2.57) (2.29) (81.4) (428) (5.26) 
5 0.6621 0.724 X 10-lL 6.46 3.93 1247 15724 12.61 

(1.00 x lo-") (6.34) (3.89) (1199) (15138) (1 2.62) 
5 0.7761 0.930 X 5.65 3.65 1235 15975 12.94 

(1.00 x 10-10) (5.63) (3.64) (1221) (15833) (12.96) 
5 0.8323 0.977 X lo4 4.95 3.38 1064 13918 13.08 

(1.00 x 10-9) (4.94) (3.38) (1056) (13846) (13.11) 
5 0.8671 0.804 X lo-* 4.34 3.14 876 11528 13.16 

(1.00 x 10-8) (4.28) (3.12) (851) (1 1227) (1 3.19) 
5 0.8976 3.46 X 0.958 1.27 45.2 598 13.23 

(1.00 x 10-2) (1.13) (1.37) (60.5) (827) (1 3.66) 

"The latter results are denoted by num. Equation 10-15, 30, 31, 50, and 52a have been used to calculate the analytical quantities except for the 
last entry where we have used eq 52b instead of eq 52a by way of illustration. 

pansions in Legendre polynomials are very weakly convergent and 
may sometimes be useless. 

Finally, we have also used the Onsager trial functions to analyze 
the phase separation for very low x, for the case q = 3.2. The 
limiting value of xYm/xrm can be approximately written as 

In (xpm/xym) = -6.25 - 20x, 

This result should be compared with 
In ( x i / x , )  = -7.68 - 7 . 6 2 ~ ~  

obtained from eq 64 with Qo = 4.053. However, al is not par- 
ticularly large so that the use of the numerical values Em = 4.32 
and 4;" = 3.3399 may be expedient. In fact we then obtain 

In (xi/x,) = -6.59 - 1 0 . 3 ~ ~  

which is in better agreement with the fully numerical result. As e" increases from 0.2843 X l@ to 0.2844 X 10-4 the anisotropic 
molar fraction xrm increases extremely sharply from 0.021497 
to 0.325785. From eq 66 we get xi$ = 0.36 X lo4 which is quite 
close to the numerical value. 

Discussion 
We present a qualitative discussion of the theory for large values 

of the bidispersity ratio q. It  is fruitful to distinguish between 
several regions. 

(I) For x,q3l2 << 1, the q2 term in eq 11 can be neglected so 
we have a2 = O(c:q;Ql), this term arising from the interaction 
of the longer rods with an  excess of shorter ones. Because x,  is 
much smaller than unity we must have c, 'v c,,~ and we can write 

= O(c,,02). Thus a2/aI  = Q = O(q2Ql)  and so Q = O(q). 
%ally, we have a2 = O(c$q), Le., the longer rods are quite highly 
ordered. We can understand this effect more deeply by looking 
closely at  the excluded-volume terms. In eq A4 of Appendix A 
we have b = O ( C Y , - ~ / ~ )  and 0' = O((Y<~/~) for typical values of 
the angles and we can profitably expand eq A3: y = 0 + o(Yz/0) 
+ O(t9' cos 9) in order to obtain p12 = O(al-1/2) + O(a11 /2 /a2 ) ;  
p I I  = O(al-' /2) and p22 = O ( ( Y ~ - ~ / ~ ) .  The coupling term in p12 

is Q1/2 times smaller than p2* which together with the fact that 
the random excluded volume BI2 is q times Bll, leads to expressions 
for a2 just given. Now ~ , , ~ [ ( l  - x,)pI2 + x,qpZ2] = O(1) and u2 
= O(ln q) but it so happens that q 0  is large enough to dominate 
in eq 28 so that a strong fractionation occurs (see eq 64). 

(11) Next we have the region q-3/2 B< x, << 4-l. Again, the 
fraction of longer rods is small so that c, = c , , ~  and al = O(c,,$) 
but a2 has increased markedly: (y2  = O(ca,02xa2q4) and Q = 

(111) When x, is increased further we reach the very complex 
region x,  >> q-'. The usual solution based on c , , ~  is, however, 
simple to discuss. For instance, if x, = x,,~ N 1 - (e2/2q2), 
= 0 and from eq 5 1 c, = c, o. Hence, a2 = O(crO2q4) and a1 = 
O(ca,02q2) so that Q = O(qi). All the rods are highly oriented. 

O(x,2q4). 

The c* type solution is much more intricate. 
(i) For large q, f' may be written as 

(' = In [2xa2q2(1 - x,)] - 2 (73) 
See eq 30 and Table I. This has an upper bound equal to In 
(8q2/27) - 2 for x = 2/3. From eq 51 we then have ci = O(q-l) 
and so c, = O(q-'). For large q, inequality 25 holds but the very 
small a1 values (= O( 1)) make this solution useless. 

(ii) 6' is zero for x,,~ N 1 - (e2/2q2) and the solution to eq 51 
is c * ~ , ~ .  For large enough q, inequality 25 definitely holds and 
aI = O(c*,,~x,,~q2) is then surely large enough. Hence, we know 
two solutions exist for x,  = x,,~. 

(iii) 6' equals -0.62786.- for x,,,, = 1 - (1.97/q2). Equation 
51 has only one solution, namely, c, = 2, and thus c, = 2 (a, is 
large enough if 4 is so). 

(iv) For x, > xam, ,$' < -0.62786... and so eq 5 1  has no solutions 
at all. Of course this conclusion is valid only if xiq is indeed much 
smaller than unity. As xi tends to unity, we must eventually come 
across solutions with x, larger than x,,~.  

(v) For x, = x,,~, the right-hand side of eq 50 is easily shown 
to be O(ln q). Hence, if q is large, xiq is certainly much smaller 
than unity. 

These results are conveniently plotted in a coexistence diagram 
of the osmotic pressure (rP) vs. the molar fraction (x) as in Figure 
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Odijk and Lekkerkerker 

cos y = cos B cos 0' + sin 0 sin 8' cos ,$ (A2) 
Here 4 is the angle between the rods when they are projected onto 
a plane perpendicular to the director. Because aj >> 1, the angles 
8, e', and y are very small on the average so that we can expand 
eq A 2  

In spite of this simplification, the excluded volume term p,k given 
by eq 3, A l ,  and A3 is still not trivial. 

7 2  02 + e 1 2  - 208' COS 9 ('43) 

2ajak 
p j k  s,~~S,:I"S,'!" d+ de de' eeye2 + 

ef2 - 208' COS d)Il2 exp(-j/,aJ@ - y2ak6") (A41 

To make headway, we preaverage the cosine term, a procedure 
which should not lead to significant error. 

Pjk LX 

I 

a i 

Figure 1. Qualitative features of the isotropic phase coexisting with the 
anisotropic phase as described by an osmotic pressure (II)-molar 
fraction ( x )  diagram for large q. The full curves are drawn according 
to the Discussion whereas the dotted lines cannot be obtained from the 
present analytical expressions. A reentrant phase is evident. 

1. Note that in view of eq 23 and 24, the osmotic pressure is 
just equal to 3kBTca. As can be seen from Figure 1 ,  the theory 
provides evidence for the existence of a reentrant phase. 

Concluding Remarks 
Our theory which we have called the Gaussian approximation 

allows us to understand the physics behind the complicated phase 
separation occurring in solutions of bidisperse rodlike polymers. 
Although we cannot as yet fully comprehend those parts of the 
phase diagrams for which xiq is of order unity or larger, we find 
that the remaining parts are quite intricate although simply ex- 
plainable. The comparison of the iteratively obtained equations 
with numerical work shows that the theory works quite well for 
both small and large bidispersity ratio. As a matter of fact, 
sometimes the predicted ordering is so high that we expect the 
analysis to be very reliable. We are thinking of extending the 
results in the near future. 
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Appendix A 
If aJ >> 1, eq 4 can be approximated by 

In order to calculate y we start from the well-known trigono- 

If we switch to the new variables t = '/zaj02, u = 1/2ak012 and 
ak/aj = P where we let P 5 1 for convenience (otherwise a j / q  
= P ) ,  we are able to integrate with respect to u.  

with 

Equation A6 is simplified by integrating by parts 
a . 3 / 2  - a k 3 / 2  

(A7) 

This expression is all but identical with eq 7 .  The small dis- 
crepancy of a t  most 6% when aj = o((Yk) is due to the preaver- 
aging. 

Appendix B 

J 
p jk  4(2r)-'l2 

(aj - ak)aj'/2ak1/2 

After straightforward but tedious algebra one finds 

-- - aQ1/2 
ax 

(2'/'hxq + 1 - x ) [ ( l  + Q ) 3 / 2 ( 2 1 / 2 h ~ q  + 1 - X )  + 21/2Q'/2q] 
(B.1) 

q2(1 + Q)3/2(l - 2hg) 

From this expression it follows that dQ'/'/ax 3 0. The equality 
holds for Q = 1. For x = 0 one finds 

Q = Qo = y2(8qz + 1)Il2 - y2 (B.2) 
Thus for q > 1 one finds Qo > q > 1 and this means that, for q 
> 1, Q is a monotonically increasing function of x that lies between 

j/2(8q2 + l)Il2 - yz (for x = 0) 

and 

4'+ + (for x = 1) 4 4  metrical rule . - I  


