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THEORY OF THE LATTICE BOLTZMANN METHOD: DISPERSION, DISSIPATION,

ISOTROPY, GALILEAN INVARIANCE, AND STABILITY

PIERRE LALLEMAND� AND LI-SHI LUOy

Abstract. The generalized hydrodynamics (the wave vector dependence of the transport coe�cients) of

a generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equa-

tion is constructed in moment space rather than in discrete velocity space. The generalized hydrodynamics

of the model is obtained by solving the dispersion equation of the linearized LBE either analytically by using

perturbation technique or numerically. The proposed LBE model has a maximum number of adjustable

parameters for the given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dis-

sipation (hyper-viscosities), anisotropy, and lack of Galilean invariance of the model, and can be applied to

select the values of the adjustable parameters which optimize the properties of the model. The proposed

generalized hydrodynamic analysis also provides some insights into stability and proper initial conditions for

LBE simulations. The stability properties of some 2D LBE models are analyzed and compared with each

other in the parameter space of the mean streaming velocity and the viscous relaxation time. The procedure

described in this work can be applied to analyze other LBE models. As examples, LBE models with various

interpolation schemes are analyzed. Numerical results on shear 
ow with an initially discontinuous veloc-

ity pro�le (shock) with or without a constant streaming velocity are shown to demonstrate the dispersion

e�ects in the LBE model; the results compare favorably with our theoretical analysis. We also show that

whereas linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long

wave-length limit (wave vector k = 0), it can also provide results for large values of k. Such results are

important for the stability and other hydrodynamic properties of the LBE method and cannot be obtained

through Chapman-Enskog analysis.

Key words. kinetic method, lattice Boltzmann equation, derivation of hydrodynamic equation, stability

analysis, numerical artifacts of the LBE method
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1. Introduction. The method of lattice Boltzmann equation (LBE) is an innovative numerical method

based on kinetic theory to simulate various hydrodynamic systems [34, 5, 36]. Although the LBE method

was developed only a decade ago, it has attracted signi�cant attention recently [3, 6], especially in the area of

complex 
uids including multi-phase 
uids [40, 41, 23, 32, 24, 25], suspensions in 
uid [35], and visco-elastic


uids [12, 13]. The lattice Boltzmann equation was introduced to overcome some serious de�ciencies of its

historic predecessor: the lattice gas automata (LGA) [10, 46, 11]. The lattice Boltzmann equation circum-

vents two major shortcomings of the lattice gas automata: intrinsic noise and limited values of transport

coe�cients, both due to the Boolean nature of the LGA method. However, despite the notable success of the
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LBE method in simulating laminar [27, 31, 16, 17] and turbulent [45] 
ows, understanding of some impor-

tant theoretical aspects of the LBE method, such as the stability of the LBE method, is still lacking. It was

only very recently that the formal connections between the lattice Boltzmann equation and the continuous

Boltzmann equation [19, 20, 1] and other kinetic schemes [28] were established.

In this work we intend to study two important aspects of the LBE method which have not been sys-

tematically studied yet: (a) the dispersion e�ects due to the presence of a lattice space; (b) conditions for

stability. We �rst construct a LBE model in moment space based upon the generalized lattice Boltzmann

equation due to d'Humi�eres [8]. The proposed model has a maximum number of adjustable parameters

allowed by the freedom provided by a given discrete velocity set. These adjustable parameters are used to

optimize the properties of the model through a systematic analysis of the generalized hydrodynamics of the

model. Generalized hydrodynamics characterizes dispersion, dissipation (hyper-viscosities), anisotropy, lack

of Galilean invariance, and instability of the LBE models in general. The proposed generalized hydrodynamic

analysis enables us to improve the properties of the models in general. The analysis also provides us better

insights into the conditions under which the LBE method is applicable and comparable to conventional CFD

techniques.

Furthermore, from a theoretical perspective, we would like to argue that our approach can circumvent

the Chapman-Enskog analysis to obtain the macroscopic equations from the LBE models [8, 12, 13]. The

essence of our argument is that the validity of the Chapman-Enskog analysis is entirely based upon the fact

that there are two disparate spatial scales in real 
uids: the kinetic (mean-free-path) and the hydrodynamic

scale the ratio of which is the Knudsen number. When the LBE method is used to simulate hydrodynamic

motion over a few lattice spacings, there is no such separation of the two scales. Therefore, the applicability

of Chapman-Enskog analysis to the LBE models might become dubious. Under the circumstances, analyzing

the generalized hydrodynamics of the model becomes not only appropriate but also necessary.

It should also be pointed out that there exists previous work on the generalized hydrodynamics of the

LGA models [33, 30, 15, 14, 7] and the LBE models [2]. However, the previous work only provides analysis

on non-hydrodynamic behavior of the models at �nite wave-length, without addressing important issues

such as the instability of the LBE method or providing insights as how to construct better models. In the

present work, by using a model with as many adjustable parameters as possible, we analyze the generalized

hydrodynamics of the model so that we can identify the causes of certain non-hydrodynamic behavior, such

as anisotropy, and lack of Galilean invariance, and instability. Therefore, the analysis shows how to improve

the model in a systematic and coherent fashion.

This paper is organized as follows: Sec. 2 gives a brief introduction of the two-dimensional 9-velocity

LBE model in discrete velocity space. Sec. 3 discusses the generalized LBE model in moment space. Sec. 4

derives the linearized lattice Boltzmann equation from the generalized LBE model. Sec. 5 analyzes the

hydrodynamic modes of the linearized evolution operator of the generalized LBE model, and the generalized

hydrodynamics of the model. The dispersion, dissipation, isotropy, and Galilean invariance of the model are

discussed. The eigenvalue problem of the linearized evolution operator is solved analytically and numerically.

Sec. 6 analyzes the stability of the LBE model with BGK approximation, and compares with the stability of

the LBE model presented in this paper. Sec. 7 discusses the correct initial conditions in the LBE simulations,

and presents numerical tests of shear 
ows with discontinuities in the initial velocity pro�le. Sec. 8 provides

a summary and concludes the paper. Two appendices provide additional analysis for variations of the LBE

models. Appendix A analyzes a model with coupling between density � and velocity u, and Appendix B

analyzes the LBE models with various interpolation schemes.
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2. 2D 9-Velocity LBE Model. The guiding principle of the LBE models is to construct a dynamical

system on a simple lattice of high symmetry (mostly square in 2D and cubic in 3D) involving a number of

quantities which can be interpreted as the single particle distribution functions of �ctitious particles on the

links of the lattice. These quantities then evolve in a discrete time according to certain rules that are chosen

to attain some desirable macroscopic behavior which emerges at scales large relative to the lattice spacing.

One possible \desirable behavior" is that of a compressible thermal or athermal viscous 
uid. (For simplicity

of the analysis, we shall restrict our analysis to the athermal case in this work.) We shall demonstrate that

the LBE models can satisfactorily mimic the 
uid behavior to an extent that the models are indeed useful

to simulate 
ows according to the similarity principle of 
uid mechanics. For the sake of simplicity, we limit

our discussions here in two-dimensional space. The extension to three-dimensional space is straightforward,

albeit tedious.

A particular two-dimensional LBE model considered in this work is the 9-velocity model. In this model,

space is discretized into square lattice, and there are nine discrete velocities given by:

e� =

8><
>:

(0; 0) ; � = 0;

(cos[(�� 1)�=2]; sin[(�� 1)�=2])c; � = 1{4;

(cos[(2�� 9)�=4]; sin[(2�� 9)�=4])
p
2c; � = 5{8;

(2.1)

where c = �x=�t is the unit of velocity, and �x and �t are the lattice constant of the lattice space and the

unit of time (time step), respectively. From now on we shall use the units of �x = 1 and �t = 1 such that

all the relevant quantities are dimensionless. The above discrete velocities correspond to the particle motion

from a lattice node rj to either itself, one of the 4 nearest neighbors (� = 1{4), or one of the 4 next-nearest

neighbors (� = 5{8). This model can be easily extended to include more discrete velocities and in space of

higher dimensions, thus to include further distant neighbors where the particles move to in one time step.

Nevertheless, \hopping" to a neighbor on the lattice induces inherent limitations in the discretization of

velocity space.

For the particular model discussed here, nine real numbers describe the medium at each node rj of a

square lattice:

ff�(rj)j� = 0; 1; : : : ; 8g :

The number f� can be considered as the distribution function of velocity e� at location rj (and at a particular

time t). The set ff�g can be represented by a vector in R9 which de�nes the state of the medium at each

lattice node:

jf(rj)i � (f0; f1; : : : ; f8)
T :(2.2)

Once the vector jf(rj)i is given at a point rj in space, the state of the medium at this point is fully speci�ed.

The evolution of the medium occurs at discrete times t = n�t, (with �t = 1). The evolution consists of

two steps:

1. Motion to the relevant neighbors (modeling of advection);

2. Redistribution of the ff�g at each nodes (modeling of collisions).

These steps are described by the equation

f�(rj + e�; t+ 1) = f�(rj ; t) + 
�(f) :(2.3)
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The above equation is the so-called Lattice Boltzmann equation (LBE). The lattice Boltzmann equation can

be rewritten in a concise vector form:

jf(rj + e�; t+ 1)i = jf(rj ; t)i+ j�fi ;(2.4)

where the following notations are adopted:

jf(rj + e�; t+ 1)i � (f0(rj + e0; t+ 1); f1(rj + e1; t+ 1); : : : ; f8(rj + e8; t+ 1))T ;(2.5a)

j�fi � (
0(f); 
1(f); : : : ; 
8(f))
T ;(2.5b)

so that jf(rj + e�; t + 1)i is the vector of a state after advection, and j�fi is the vector of the changes in
jfi due to collision 
.

The advection is straightforward in the LBE models. The collisions represented by the operator 
 may

be rather complicated. However, 
 must satisfy conservation laws and be compatible with the symmetry of

the model (the underlying lattice space). This might simplify 
 considerably. One simple collision model is

the BGK model [4, 5, 36]:


� = �1

�
[f� � f (eq)� ] ;(2.6)

where � is the relaxation time in unit of time step �t (which is set to be 1 here), and f
(eq)
� is the equilibrium

distribution function which satis�es the following conservation conditions for an athermal medium:

� =
X
�

f (eq)� =
X
�

f� ;(2.7a)

�u =
X
�

e�f
(eq)
� =

X
�

e�f� ;(2.7b)

where � and u are the (mass) density and the velocity of the medium at each lattice node, respectively. For

the so-called 9-velocity BGK model, the equilibrium is usually taken as:

f (eq)� = w� �

�
1 + 3(e� � u) + 9

2
(e� � u)2 � 3

2
u2
�
;(2.8)

where w0 = 4=9, w1;2;3;4 = 1=9, and w5;6;7;8 = 1=36.

Some shortcomings of the BGK model are apparent. For instance, because the model relies on a single

relaxation parameter � , the Prandtl number must be unity when the model is applied to thermal 
uids,

among other things. One way to overcome these shortcomings of the BGK LBE model [5, 36] is to use a

generalized LBE model which nevertheless retains the simplicity and computational e�ciency of the BGK

LBE model.

3. Moment Representation and Generalized 2D LBE. Given a set of b discrete velocities,

fe�j� = 0; 1; : : : ; (b � 1)g with corresponding distribution functions, ff�j� = 0; 1; : : : ; (b � 1)g, one can
construct a b-dimensional vector space Rb based upon the discrete velocity set, and this is usually the space

mostly used in the previous discussion of the LBE models. One can also construct a space based upon the

(velocity) moments of ff�g. Obviously, there are b independent moments for the discrete velocity set. The

reason in favor of using the moment-representation is somewhat obvious. It is well understood in the context

of kinetic theory that various physical processes in 
uids, such viscous transport, can be approximantly

described by coupling or interaction among `modes' (of the collision operator), and these modes are di-

rectly related to the moments (e.g., the hydrodynamic modes are linear combinations of mass, and momenta
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moments). Thus the moment-representation provides a convenient and e�ective means to incorporate the

physics into the LBE models. Because the physical signi�cance of the moments is obvious (hydrodynamic

quantities and their 
uxes, etc.), the relaxation parameters of the moments are directly related to the various

transport coe�cients. This mechanism allows us to control each mode independently. This also overcomes

some obvious de�ciencies of the usual BGK LBE model, such as a �xed Prandtl number, which is due to a

single relaxation parameter of the model.

For the 9-velocity LBE model, we choose following moments to represent the model:

j�i = (1; 1; 1; 1; 1; 1; 1; 1; 1)T;(3.1a)

jei = (�4; �1; �1; �1; �1; 2; 2; 2; 2)T;(3.1b)

j"i = (4; 2; 2; 2; 2; 1; 1; 1; 1)T;(3.1c)

jjxi = (0; 1; 0; �1; 0; 1; �1; �1; 1)T;(3.1d)

jqxi = (0; �2; 0; 2; 0; 1; �1; �1; 1)T;(3.1e)

jjyi = (0; 0; 1; 0; �1; 1; 1; �1; �1)T;(3.1f)

jqyi = (0; 0; �2; 0; 2; 1; 1; �1; �1)T;(3.1g)

jpxxi = (0; 1; �1; 1; �1; 0; 0; 0; 0)T;(3.1h)

jpxyi = (0; 0; 0; 0; 0; 1; �1; 1; �1)T:(3.1i)

The above vectors are represented in the space V = R
9 spanned by the discrete velocities fe�g, and they are

mutually orthogonal to each other. These vectors are not normalized; this makes the algebraic expressions

involving these vectors which follow simpler. Note that the above vectors have an explicit physical signi�cance

related to the moments of ff�g in discrete velocity space: j�i is the density mode; jei is the energy mode;

j"i is related to energy square; jjxi and jjyi correspond to the x- and y-component of momentum (mass


ux); jqxi and jqyi correspond to the x- and y-component of energy 
ux; and jpxxi and jpxyi correspond to

the diagonal and o�-diagonal component of the stress tensor. The components of these vectors in discrete

velocity space V = R
9 are constructed as follows:

j�i� = je�j0 = 1;(3.2a)

jei� = �4je�j0 + 3(e2�;x + e2�;y);(3.2b)

j"i� = 4je�j0 � 21

2
(e2�;x + e2�;y) +

9

2
(e2�;x + e2�;y)

2;(3.2c)

jjxi� = e�;x;(3.2d)

jqxi� = [�5je�j0 + 3(e2�;x + e2�;y)] e�;x;(3.2e)

jjyi� = e�;y;(3.2f)

jqyi� = [�5je�j0 + 3(e2�;x + e2�;y)] e�;y;(3.2g)

jpxxi� = e2�;x � e2�;y;(3.2h)

jpxyi� = e�;xe�;y:(3.2i)

Thus,

� = h�jfi = hf j�i ;(3.3a)

e = hejfi = hf jei ;(3.3b)

" = h"jfi = hf j"i ;(3.3c)
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jx = hjxjfi = hf jjxi ;(3.3d)

qx = hqxjfi = hf jqxi ;(3.3e)

jy = hjyjfi = hf jjyi ;(3.3f)

qy = hqyjfi = hf jqyi ;(3.3g)

pxx = hpxxjfi = hf jpxxi ;(3.3h)

pxy = hpxyjfi = hf jpxyi :(3.3i)

Similar to ff�g, the set of the above moments can also be concisely represented by a vector:

j%i � (�; e; "; jx; qx; jy; qy; pxx; pxy)
T :(3.4)

There obviously exists a transformation matrix M between j%i and jfi such that:

j%i = Mjfi ;(3.5a)

jfi = M
�1j%i :(3.5b)

In other words, the matrix M transforms a vector in the vector space V spanned by the discrete velocities

into a vector in the vector space M = R
b spanned by the moments of ff�g. The transformation matrix M

is explicitly given by:

M �

0
BBBBBBBBBBBBBBBB@

h�j
hej
h"j
hjxj
hqxj
hjy j
hqyj
hpxxj
hpxyj

1
CCCCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1

�4 �1 �1 �1 �1 2 2 2 2

4 �2 �2 �2 �2 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 �2 0 2 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0

0 0 0 0 0 1 �1 1 �1

1
CCCCCCCCCCCCCCCCA

(3.6)

� (j�i; jei; j"i; jjxi; jqxi; jjyi; jqyi; jpxxi; jpxyi)T :

The rows of the transformation matrix M are organized in the order of the corresponding tensor, rather than

in the order of the corresponding moment. The �rst three rows of M correspond to �, e, and ", which are

scalars or zeroth-order tensors, and they are zeroth, second, and fourth order moment of ff�g, respectively.
The next four rows correspond to jx, qx, jy , and qy, which are vectors or �rst-order tensors, and jx and jy are

the �rst order moments, whereas qx and qy are the third order ones. The last two rows represent the stress

tensor, which are second order moments and second order tensors. Again, this can easily be generalized to

models using a larger discrete velocity set, and thus higher order moments, and in three-dimensional space.

The main di�culty when using the LBE method to simulate a real isotropic 
uid is how to systematically

eliminate as much as possible the e�ects due to the symmetry of the underlying lattice. We shall proceed

to analyze some simple (but non-trivial) hydrodynamic situations, and to make the 
ows as independent of

the lattice symmetry as possible.

Because the medium simulated by the model is athermal, the only conserved quantities in the system are

density � and linear momentum j = (jx; jy). Collisions do not change the conserved quantities. Therefore,

in the moment space M , collisions have no e�ect on these three quantities. We should stress that the
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conservation of energy is not considered here because the model is constructed to simulate an athermal

medium. Moreover we �nd that the 9-velocity model is inadequate to simulate a thermal medium because

it cannot have an isotropic Fourier law for the di�usion of the heat. Although the conserved moments are

not a�ected by collisions, the non-conserved moments are a�ected by collisions, which in turn cause changes

in the gradients or 
uxes of the conserved moments which are higher order moments. In what follows the

modeling of the changes of the non-conserved moments is described.

Inspired by the kinetic theory for Maxwell molecules [26], we assume that the non-conserved moments

relax linearly towards their equilibrium values that are functions of the conserved quantities. The relaxation

equations for the non-conserved moments are prescribed as follows:

e� = e� s2 [e� e(eq)];(3.7a)

"� = "� s3 ["� "(eq)];(3.7b)

q�x = qx � s5 [qx � q(eq)x ];(3.7c)

q�y = qy � s7 [qy � q(eq)y ];(3.7d)

p�xx = pxx � s8 [pxx � p(eq)xx ];(3.7e)

p�xy = pxy � s9 [pxy � p(eq)xy ];(3.7f)

where the quantities with and without superscript � are post-collision and pre-collision values, respectively.

The equilibrium values of the non-conserved moments in the above equations can be chosen at will provided

that the symmetry of the problem is respected. We choose

e(eq) =
1

hejei
�
�2 h�j�i �+ 
2 (hjxjjxij2x + hjy jjyij2y)

�

=
1

4
�2 �+

1

6

2 (j

2
x + j2y);(3.8a)

"(eq) =
1

h"j"i
�
�3 h�j�i �+ 
4 (hjxjjxij2x + hjyjjyij2y)

�

=
1

4
�3 �+

1

6

4 (j

2
x + j2y);(3.8b)

q(eq)x =
hjxjjxi
hqxjqxic1jx =

1

2
c1jx;(3.8c)

q(eq)y =
hjy jjyi
hqyjqyic1jy =

1

2
c1jy;(3.8d)

p(eq)xx = 
1
1

hpxxjpxxi (hjxjjxij
2
x � hjy jjyij2y) =

1

2

1(j

2
x � j2y);(3.8e)

p(eq)xy = 
3

phjxjjxihjy jjyi
hpxxjpxxi (jxjy) =

1

2

3(jxjy):(3.8f)

The values of the coe�cients in the above equilibriums (c1, �2; 3, and 
1; 2; 3; 4) will be determined in the next

Section and summarized in Subsection 5.5. The choices of the above equilibriums are made based upon the

inspection of the corresponding moments given by Eqs. (3.2), or the physical signi�cance of these moments.

Note that in principle qx and qy can include terms involving third order terms in terms of moment, such

as j3x and jxpxx [13], and � can include fourth order terms. Nevertheless, for the 9-velocity model, these

terms of higher order are not considered because either they do not a�ect the hydrodynamics of the model

signi�cantly, or they lead to some highly anisotropic behavior which are undesirable for the LBE modeling

of hydrodynamics.
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Clearly LBE modeling of 
uids is rather di�erent from real molecular dynamics. Therefore it is not

necessary to try and solve the mathematically di�cult problem to create an inter-particle collision mechanism

for the �ctitious particles in the LBE models that would give the same eigenmodes of the collision operator

in the continuous Boltzmann equation. However, what can be accomplished is that by carefully crafting a

simple model with certain degrees of freedom, we can optimize large scale properties of the model in the

sense that generalized hydrodynamic e�ects (deviations from hydrodynamics) are minimized.

The values of the unknown parameters, c1, �2; 3, and 
1; 2; 3; 4, shall be determined by a study of the

modes of the linearized collision operator with a periodic lattice of size Nx �Ny.

It should be noted that in Eq. (3.8) the density � does not appear in the terms quadratic in j. This

implies that the density 
uctuation is decoupled from the momentum equation, similar to an incompressible

LBE model with a modi�ed equilibrium distribution function [18]:

f (eq)� = w�

�
�+ �0

�
3(e� � u) + 9

2
(e� � u)2 � 3

2
u2
��

;(3.9)

where the mean density �0 is usually set to be 1. The model corresponding to the equilibrium distribution

function of Eq. (2.8) shall be analyzed in the Appendix A.

4. Linearized LBE. We consider the particular situation where the state of the medium is a 
ow

speci�ed by uniform and steady density � (usually � = 1 so the uniform density may not appear in subsequent

expressions) and velocity in Cartesian coordinates V = (Vx; Vy), with a small 
uctuation superimposed:

jfi = jf (0)i+ j�fi(4.1)

where jf (0)i represents the uniform equilibrium state speci�ed by uniform and steady density � and velocity

V = (Vx; Vy), and j�fi is the 
uctuation. The linearized Boltzmann equation is:

j�f(rj + e�; t+ 1)i = j�f(rj ; t)i+ 

(0)j�f(rj ; t)i(4.2)

where 
(0) is the linearized collision operator:



(0)
�� =

@
�

@f�

����
jfi=jf (0)i

� 
�; �(ff (0)� g) :(4.3)

In the moment space M , the linearized collision operator can be easily obtained by using Eqs. (3.7) and

(3.8):

C�� =
h%� j%�i
h%�j%�i

@�%�
@%�

����
j%i=j%(0)i

;(4.4)

where %� and j%�i, � = 0; 1; : : : ; b, are the moments de�ned by Eqs. (3.3) and the corresponding vectors

in V = R
9 de�ned by Eqs. (3.1); �%� is the change of the moment due to collision given by Eqs. (3.7);

j%i = j%(0)i is the vector of all moments at the uniform equilibrium state [see Eq. (3.4) for the de�nition of

j%i]. Obviously the linearized collision operator C depends on the uniform state speci�ed by density � and

velocity V = (Vx; Vy), upon which the perturbation j�fi is superimposed. Speci�cally, for the 9-velocity
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model,

C =

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

s2�2=4 �s2 0 s2
2Vx=3 0 s2
2Vy=3 0 0 0

s3�3=4 0 �s3 s3
4Vx=3 0 s3
4Vy=3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 s5c1=2 �s5 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 s7c1=2 �s7 0 0

0 0 0 3s8
1Vx 0 �3s8
1Vy 0 �s8 0

0 0 0 3s9
3Vy=2 0 3s9
3Vx=2 0 0 �s9

1
CCCCCCCCCCCCCCCCA

:(4.5)

The perturbation in the moments corresponding to j�fi is j�%i, and j�%i = Mj�fi. The change of the

perturbation due to collisions is linearly approximated by j�%i = Cj�%i in the moment space M spanned by

fj%�ij� = 0; 1; : : : ; (b�1)g. This change of state in discrete velocity space V is j�fi = M�1Cj�%i. Therefore
the Eq. (4.2) becomes

j�f(rj + e�; t+ 1)i = j�f(rj ; t)i+M
�1
CMj�f(rj ; t)i :(4.6)

In Fourier space, the above equation becomes:

Aj�f(k; t+ 1)i = [I+M
�1
CM] j�f(k; t)i ;(4.7)

where A is advection operator represented by the following diagonal matrix in discrete velocity space V = R
9 :

A�� = exp(i e� � k)��� ;(4.8)

where ��� is the Kronecker �. It should be noted that for a mode of wave number k = (kx; ky) in Cartesian

coordinates, the advection operator A in the above equation can be written as follows:

A = diag(1; p; q; 1=p; 1=q; pq; q=p; 1=pq; p=q) ;(4.9)

where

p = eikx ; q = eiky :(4.10)

The advection can be decomposed into two parts, along two orthogonal directions, such as x-axis and y-axis

in Cartesian coordinates:

A(kx) � A(kx; ky = 0) = diag(1; p; 1; 1=p; 1; p; 1=p; 1=p; p) ;

A(ky) � A(kx = 0; ky) = diag(1; 1; q; 1; 1=q; q; q; 1=q; 1=q) :

and A(kx) and A(ky) commute with each other:

A = A(kx)A(ky) = A(ky)A(kx) ;

i.e., the advection operation can be applied along x-direction �rst, and then along y-direction, or vice versa.

The linearized evolution equation (4.7) can be further written in a concise form:

j�f(k; t+ 1)i = Lj�f(k; t)i ;(4.11)

where

L � A
�1[I+M

�1
CM] ;(4.12)

is the linearized evolution operator.
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5. Modes of Linearized LBE.

5.1. Hydrodynamic modes and transport coe�cients. The evolution equation (4.6) is a di�erence

equation which has a general solution:

jG(rj ; t = l)i = Km
x Kn

y z
ljG0i ;(5.1)

where m and n are indices for space (rj = mx̂ + nŷ), and x̂ and ŷ are units vectors along the x-axis and

y-axis, respectively; jG0i is the initial state. We can consider the particular case of a periodic system such

that the spatial dependence of the above general solution can be chosen as

j�fi = exp(�ik � rj + zt)jG(rj ; t)i :(5.2)

By substituting Eqs. (5.1) and (5.2) into the linearized LBE (4.11), we obtain the following equation:

zjG0i = LjG0i ;(5.3)

The above equation leads to the dispersion relation between z and k:

det[L� zI] = 0 ;(5.4)

which determines the transport behaviors of various modes depending on the wave vector k. The solution of

the above eigenvalue problem of the linearized evolution operator L provides not only the dispersion relation,

but also the solution of the initial value problem of Eq. (4.11):

j�f(k; t)i = L
tj�f(k; 0)i =

bX
�=1

zt�jz�ihz�j�f(k; 0)i ;

where jz�i is the eigenvector of L with eigenvalues z� in discrete velocity space V.

The eigenvalue problem of Eq. (5.4) cannot be solved analytically in general, except for some very special

cases. Nevertheless, it can be easily solved numerically using various packages for linear algebra, such as

LAPACK. For small k, it can be solved by a series expansion in k. The only part in L which has k-dependence

is the advection operator A. Therefore, we can expand A�1 in L:

K � A
�1 = K

(0) + K
(1)(k) + K

(2)(k2) + � � �+ K
(n)(kn) + � � � ;(5.5)

where K(n) depends on kn:

K
(n)
�� =

1

n!
(�ik � e�)n��� :(5.6)

When k = 0, the eigenvalue problem of the (b � b)-matrix L(0) = (I +M�1CM) can be solved analytically.

There exists an eigenvalue of 1 with three-fold degeneracy, which corresponds to three hydrodynamic (con-

served) modes in the system: one transverse (shear) and two longitudinal (sound) modes. It is interesting

to note that when k = (�; 0) or k = (0; �), L also has an eigenvalue of �1, which corresponds to the

checkerboard mode, i.e., it is a conserved mode of L2. Being a neutral mode as far as stability is concerned,

it will be necessary to study how it is a�ected by a mean velocity V . Thus we shall have to analyze the

model for k ranging from 0 to �, which the standard Chapman-Enskog analysis cannot do.

The hydrodynamic modes at k = 0 are:

j%T i = cos �jjxi � sin �jjyi � jjT i;(5.7a)

j%�i = j�i � (cos �jjxi+ sin �jjyi) � j�i � jjLi;(5.7b)
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where � is the polar angle of wave vector k. For �nite k, the behavior of these hydrodynamic modes depends

upon k. In two-dimensional space, these linearized hydrodynamic modes behave as follows [29]:

j%T (t)i = ztT j%T (0)i = exp[�ik(gV cos�)t] exp(��k2t)j%T (0)i;(5.8a)

j%�(t)i = zt�j%�(0)i = exp[�ik(cs � gV cos�)t] exp[�(�=2 + �)k2t]j%�(0)i;(5.8b)

where � and � are the shear and bulk viscosity, respectively; the coe�cient g indicates whether system is

Galilean invariant (that g = 1 implies Galilean invariance); cs is the sound speed; V is the magnitude of the

uniform streaming velocity of the system V = (Vx; Vy); and � is angle between the streaming velocity V and

the wave vector k. The Galilean-coe�cient g(k) is similar to the g-factor in the FHP lattice gas automata

[10, 46, 11], which also determines the Galilean invariance of the system. The transport coe�cients and the

Galilean-coe�cient are related to the eigenvalues of L as the following:

�(k) = � 1

k2
Re[ln zT (k)];(5.9a)

g(k)V cos� = �1

k
Im[ln zT (k)];(5.9b)

1

2
�(k) + �(k) = � 1

k2
Re[ln z�(k)];(5.9c)

cs(k)� g(k)V cos� = �1

k
Im[ln z�(k)];(5.9d)

where zT (k) and z�(k) are the eigenvalues corresponding to the hydrodynamic modes of the linearized

evolution operator L. Since the transport coe�cients can be obtained through a perturbation analysis, we

shall use the following series expansion in k:

�(k) = �0 � �1k
2 + : : :+ (�1)n�nk2n + : : : ;(5.10a)

�(k) = �0 � �1k
2 + : : :+ (�1)n�nk2n + : : : ;(5.10b)

cs(k) = C0 � C1k
2 + : : :+ (�1)nCnk

2n + : : : ;(5.10c)

g(k) = g0 � g1k
2 + : : :+ (�1)ngnk2n + : : : :(5.10d)

It should be noted that, in the usual Chapman-Enskog analysis of LBE models, one only obtains the values of

the transport coe�cients at k = 0. As we shall demonstrate later, higher order corrections to the transport

coe�cients (i.e., hyper-viscosities) are important to the LBE hydrodynamics, especially for spatial scales of

a few lattice spacings.

One possible method to solve the dispersion relation det[L� zI] = 0 is to apply the Gaussian elimination

technique using 1=si as small parameters for the non-conserved modes (the kinetic modes). Starting from a

9� 9 (b� b in general) determinant, we obtain a 3� 3 determinant for the 3 conserved modes. The elements

of this new determinant are computed as series of 1=si and k with the necessary numbers of terms to achieve

a given accuracy when computing the roots of the dispersion equation.

It should be mentioned that the interest of the present technique is that it provides a very simple means

to analyze models with various streaming and collision rules with as many adjustable parameters as possible

to be determined later when trying to satisfy either the stability criteria or physical requirements to model

various hydrodynamic systems. Free parameters are the equilibrium coe�cients in Eqs. (3.8): c1, �i, and


i; and relaxation rates si.

5.2. Case with no streaming velocity (V = 0). We �rst consider the case in which the streaming

velocity V = 0. To the �rst order in k, we obtain two solutions of Im(ln z�) = �ikcs with

c2s =
1

3

�
2 +

�2
8

�
:(5.11)
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These are the sound modes supported by the medium. At the next order, we obtain modes with Re(ln zT ) =

��0k2. To enforce isotropy we need to have

1

s9
� 1

2
= 2

�
1

s8
� 1

2

�
(c1 + 4)

(2� c1)
;(5.12)

such that the �-dependence in �0 vanishes,

�0 =
(2� c1)

12

�
1

s8
� 1

2

�
;(5.13)

which can be interpreted as the shear viscosity of the medium in the limit k = 0 (measured in basic units of

space and time). For the sound modes, we also �nd an attenuation rate Re(ln z�) = �(�0=2 + �0)k
2 where

(�0=2 + �0) is the longitudinal kinematic viscosity in a two-dimensional system. The bulk viscosity of the

model at long wave length limit k = 0 is:

�0 =
(c1 + 10� 12c2s)

24

�
1

s2
� 1

2

�
:(5.14)

The positivity of the transport coe�cients leads to the bounds on the adjustable parameters:

�16 <�2;(5.15a)

�4 <c1< 2;(5.15b)

and the bounds on the following relaxation parameters:

0 <s2< 2;(5.16a)

0 <s8< 2:(5.16b)

The bounds for �2 and c1 will be further narrowed in the following analysis. Based upon the above results

of �0, �0, and cs, it is clear that the model is isotropic at rest (i.e., the streaming velocity V = 0) and in

the limit of k = 0. The Galilean-coe�cient g cannot be determined when the streaming velocity V = 0.

Therefore, the case of a �nite streaming velocity V is considered next.

5.3. Case with a constant streaming velocity V . As indicated by Eqs. (5.9), to the �rst order

in k, the three hydrodynamic roots of the dispersion equation (zT and z�) give the phase gV cos� and the

sound speed cs. In order to make the root of the transverse mode (zT ) to have a correct phase corresponding

to the streaming velocity V , as expected for a model satisfying Galilean invariance, i.e., g0 = 1, we must set


1 = 
3 =
2

3
:(5.17)

If we further set


2 = 18;(5.18)

then we obtain the roots of the sound modes (z�) which lead to the sound speed

Cs = V cos��
p
c2s + V 2 cos2� ;(5.19)

where V cos� � V � k̂, and k̂ is the unit vector parallel to k. This clearly shows that the system obeys

Galilean invariance only up to �rst order in V . One way to correct this defect is to allow for compressibility

e�ects in the equilibrium properties, as shown in Appendix A. The dispersion of sound can be computed
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either analytically, by carrying out the perturbation expansion in k or numerically, by solving the eigenvalue

problem for any value of k. The dispersion of sound is important when studying the nonlinear acoustic

properties of the medium.

Second, the attenuation of transverse wave depends not only on V but also on the direction of the wave

vector k. In order to eliminate the anisotropy in the V -dependence of the shear wave attenuation, we must

choose:

c1 = �2:(5.20)

With the above choice of c1, the shear viscosity in the limit of k = 0 is given by:

�0 = [s2(2� s8)(c
2
s + (1� 3c2s)V

2 cos2�) + 3(2(s8 � s2)

+s8(s2 � 2) cos2�)V 4 cos2�]=[6s2s8(V
2 cos2�+ c2s)] :(5.21)

Similarly, from the attenuation of acoustic waves, one obtains the bulk viscosity (in the limit of k = 0) which

has a complicated dependence on the streaming velocity V :

�0 = fV cos�
p
V 2 cos2�+ c2s [12V

2((s2 � s8) + s2(s8 � 2) cos2�)

+(2s2 � 3s2s8 + 4s8)(1� 3c2s)]

+3V 4 cos2�[cos2�(2s8 + 3s2s8 � 8s2) + 6(s2 � s8)](5.22)

+2V 2 cos2�[6(s2s8 � s2 � s8)c
2
s + s8(2� s2)]

+c2s[6V
2(s2 � s8) + s8(2� s2)(2� 3c2s)]g=f12s2s8(V 2 cos2�+ c2s)g :

It is obvious that the streaming velocity V has a second order e�ect on �0, and a �rst order e�ect on �0. A

careful inspection of the above result of �0 indicates that the �rst order e�ect of V on �0 can be eliminated

by setting c2s = 1=3 (or equivalently �2 = �8). Furthermore, the second order e�ect of V on the sound

speed and the longitudinal attenuation can also be eliminated by using a slightly more complicated model

with thirteen velocities, as noted by a previous work [37].

In summary, although all the transport coe�cients are isotropic in the limit k = 0, some undesirable

features of the LBE models can be clearly observed at the second order in k when the streaming velocity

V has a �nite magnitude. First, the acoustic wave propagation is not Galilean invariant. Second, both

the shear and the bulk viscosity depend on V . Nevertheless, these e�ects are of the second order in V ,

and can be improved to higher order in both k and V by incorporating compressibility into the equilibrium

properties of the moments (see Appendix A) or using models with a larger velocity set.

5.4. Third order result. The analysis in the previous subsections shows that isotropy for the hydro-

dynamic modes of the dispersion equation can be attained to the �rst and second order in k by carefully

adjusting the parameters in the model. In the situation with a uniform streaming velocity V parallel to k,

we �nd that the third order term in k for the shear mode is anisotropic, i.e.,

g1 = �
�

2

3s28
� 2

3s8
+

1

9

�
+

�
1

3
� 2

s8
+

2

s28

�
V 2 cos2�

+

�
1

3
� 1

s8
+

1

s5

�
2

s8
� 1

���
cos4� � cos2� +

1

3

�
:(5.23)

The anisotropic term in g1 (depending on cos �) can be eliminated if we choose

s5 = 3
(2� s8)

(3� s8)
:(5.24)
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As indicated by Eq. (5.13), parameter s8 is usually chosen close to 2 from below in order to obtain a small

shear viscosity (consequently large Reynolds number). Therefore, the preceding expression yields a small

value for s5. This would lead to an undesirable consequence: Mode jqxi relaxed with the relaxation parameter
s5 would become a quasi-conserved mode leading to some sort of visco-elastic e�ect [13]. Therefore we usually

choose to have large s5 such that the advection coe�cient of transverse waves has an angular dependence

for non-zero k in third order in k. That is, the physical conservation laws are preserved at the expense of

the isotropy of the dispersion in third order (and all higher order) in k.

It should be noted that the value of g has e�ects on the Reynolds number because the time t needs to

be rescaled as gt.

5.5. Optimization of the model and connection to the BGK LBE model. Among seven ad-

justable parameters (c1, �i, and 
i) in the equilibrium values of the moments in the model [see Eqs. (3.8)],

so far only �ve of these parameters have been �xed by enforcing the model to satisfy certain basic physics

as shown in the previous analysis: c1 = �2, �2 = �8, 
1 = 
3 = 2=3, and 
2 = 18. These parameter values

are the optimal choice in the sense that they yield the desirable properties (isotropy, Galilean invariance,

etc.) to the highest order possible in wave vector k. It should be stressed that the constraints imposed by

isotropy and Galilean invariance are beyond the conservation constraints | models with only conservation

constraints would not necessarily be isotropic and Galilean invariant in general, as observed in some newly

proposed LBE model for non-ideal gases [44, 43, 32]. Two other parameters, �3 and 
4, remain adjustable.

In addition, there are six relaxation parameters si in the model as opposed to one in the LBE BGK model.

Two of them, s2 and s8 determine the bulk and the shear viscosity, respectively. Also, because c1 = �2,
therefore s9 = s8 [see Eq. (5.12)]. The remaining three relaxation parameters, s3, s5, and s7 can be adjusted

without having any e�ects on the transport coe�cients in the order of k2. However, they do have e�ects in

higher order terms. Therefore, one can keep values of these three relaxation parameters only slightly larger

than 1 (no severe over-relaxation e�ects are produced by these modes) such that the corresponding kinetic

modes are well separated from those modes more directly a�ecting hydrodynamic transport.

It is interesting to note that the present model degenerates to the BGK LBE model [5, 36] if we use a

single relaxation parameter for all the modes, i.e., si = 1=� , and choose

�3 = 4;(5.25a)


4 = �18:(5.25b)

Therefore, in the BGK LBE model, all the modes relax with exactly the same relaxation parameter so there

is no separation in time scales among the kinetic modes. This may severely a�ect the dynamics and the

stability of the system, due to the coupling among these modes.

6. Local Stability Analysis. The stability of the LBE method has not been well understood, although

there exists some preliminary work [42, 47]. However, previous work does not provide much theoretical insight

into either the causes or the remedies for the instability of the LBE method. In the following analysis, a

systematic procedure which identi�es some causes of instability is discussed and illustrated by some examples.

Our stability analysis relies on the eigenvalue problem for the linearized evolution operator L, the disper-

sion equation. For large values of k, one could in principle analyze the dispersion equation to higher order

by perturbation expansion. In practice, it is more e�cient to compute the roots of the dispersion equa-

tion numerically. We shall try to identify the conditions under which one of the modes becomes unstable:

instability occurs when Re(ln z�) < 0.
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Table 6.1

Special properties of the dispersion relation when the wave vector k is of some special values.

k dispersion equation conditions

[z � 1]3 = 0

[z � (1� s2)] = 0

(0; 0) [z � (1� s3)] = 0 s7 = s5

[z � (1� s5)]
2 = 0

[z � (1� s8)]
2 = 0

[z + 1] = 0

[z + (1� s5)] = 0 or [z + (1� s7)] = 0

[z + (1� s8)] = 0 or [z + (1� s9)] = 0

(�1; 0)� [z2 � 1
3s5z + s5 � 1] = 0

or [z4 + 1
3 (s3 � 2s2)z

3

(0; �1)� + 1
9fs2(s8 � 4s3)� 6s3s8 + 9(s2 + s3 + s8 � 2)gz2

+ 1
3 (s8 � 1)(s2(s3 � 2) + s3)z

+(1� s2)(1� s3)(1� s8)] = 0

[z � (1� s8)]
2 = 0

[z2 � 1
3s5z + s5 � 1]2 = 0

(�1; �1)� [z3 + 1
9 (11s2 � 3s3 � 9)z2

+ 1
9f3(4s3 � 3)� s2(s3 + 2)gz

+(1� s2)(1� s3)] = 0

We have noticed some interesting qualitative properties of the dispersion for the 9-velocity model when

wave vector k is parallel to certain special directions with respect to the lattice line. These properties are

listed in Table 6. These qualitative behaviors of the dispersion equation already demonstrate the strong

anisotropy of the dispersion relations dictated by the lattice symmetry.

To exhibit the complex behavior of the dispersion equation, we compute the roots of the dispersion

equation with a given set of parameters. Figures 1(a) and 1(b) show the real and imaginary parts of the

logarithm of the eigenvalues as functions of k, respectively. Figs. 1 clearly exhibit the coalescence and

branching of the roots. This suggests a complicated interplay between the modes of collision operator

a�ecting the stability of the model. The asymmetric feature of these curves is due to the presence of a

constant streaming.

The growth rate of a mode jz�i, Re(ln z�), depends on all the adjustable parameters: the relaxation

parameters, the streaming velocity V , and the wave vector k. To illustrate this dependence, we consider the

BGK LBE model with 1=� = 1:99. Figure 2 shows the growth rate for the most unstable mode as a function

of streaming velocity V and wave vector k. For each V , we let k be parallel to V , with a polar angle �

with respect to the x-axis. Then we search for the most unstable mode in the interval 0 � k � �. For the

9-velocity BGK LBE model, the unstable mode starts to appear above V � 0:07. Figure 2 shows the strong

anisotropy of the unstable mode: the growth rate signi�cantly depends on the direction of k, and the critical

value of k at which the unstable mode starts to appear is also strongly anisotropic. We also compute the

growth rate for the most unstable mode with V perpendicular to k, and �nd that the stability of the model

is generally qualitatively the same as when V is parallel to k, but is slightly more stable. Generally we

�nd that the transverse mode is more stable than longitudinal modes. In many instances we have observed
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Fig. 1. The logarithmic eigenvalues of the 9-velocity model. The values of the parameters are: �2 = �8, �3 = 4,

c1 = �2, 
1 = 
3 = 2=3, 
2 = 18, and 
4 = �18. The relaxation parameters are: s2 = 1:64, s3 = 1:54, s5 = s7 = 1:9, and

s8 = s9 = 1:99. The streaming velocity V is parallel to k with V = 0:2, and k is along x-axis. (a) Re(ln z�), and (b) Im(ln z�).

Fig. 2. The growth rate of the most unstable mode for the BGK LBE model � ln z� vs. the streaming velocity magnitude

V . The relaxation parameter s8 = 1=� = 1:99. The wave vector k is set parallel to the streaming velocity V . For each value

of V with a polar angle � with respect to x-axis, the growth rate is computed in the interval 0 < k � � in k-space. Each curve

corresponds to the growth rate of the most unstable mode with a given V , and k parallel to V with the polar angle � with

respect to x-axis.

that sound waves propagating in the direction of the mean 
ow velocity V can be quite unstable. This

instability may be reduced by making the �rst order V -dependent term in the attenuation of the sound

waves [�0 in Eq. (5.22)] equal to 0 by choosing c2s = 1=3, as indicated in the previous section. It should be

noted that when the growth rate is in�nitesimal, it takes extremely long time for the instability to develop in

simulations. Because the unstable modes we have observed have a large wave vector k (small spatial scale),

therefore, as a practical means to reduce the e�ect of instabilities in LBE simulations, some kind of spatial

or temporal �ltering technique may be used in the LBE schemes to reduce small scale 
uctuations and thus

to limit the development of instabilities.

It should be pointed out that we do not discuss here the in
uence of boundary conditions which may

completely change the stability behavior of the model through either large scale genuine hydrodynamic
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Fig. 3. The stability of the generalized LBE model vs. the BGK LBE model in the parameter space of V and s8 = 1=� .

The line with symbol 2 and � are results for the BGK LBE model and the model proposed in this work, respectively. The

region under a curve is the stable region in the parameter space of V and s8 = 1=� . Note that the stability of the BGK LBE

model starts to deteriorate after s8 � 1:92, whereas the stability of the proposed generalized LBE model remains virtually intact.

behavior or local excitation of Knudsen modes.

As previously indicated, the adjustable parameters in our model can be used to alter the properties of

the model. The stability of the BGK LBE model and our model is compared in Fig. 3. In this case we

choose the adjustable parameters in our model to be the same as the BGK LBE model, but maintain the

freedom of di�erent modes to relax with di�erent relaxation parameters si. Fig. 2 shows that for each given

value of V , there exists a maximum value of s8 = 1=� (which determines the shear viscosity) below which

there is no unstable mode. The values of other relaxation parameters used in our model are: s2 = 1:63,

s3 = 1:14, s5 = s7 = 1:92, and s9 = s8 = 1=� . Fig. 3 clearly shows that our model is more stable than

the BGK LBE model in the interval 1:9 � s8 = 1=� � 1:99. Therefore, we can conclude that by carefully

separating the kinetic modes with di�erent relaxation rates, we can indeed improve the stability of the LBE

model signi�cantly.

7. Numerical Simulations of Shear Flow Decay. To illustrate the dispersion e�ects on the shear

viscosity in hydrodynamic simulations using the LBE method, we conduct a series of numerical simulations

of the shear 
ow decay with di�erent initial velocity pro�les. The numerical implementation of the model is

discussed next.

7.1. Numerical implementation and initial conditions. The evolution of the model still consists

in two steps: advection and collision. The advection is executed in discrete velocity space, namely to

jf(x; t)i, but not to the moments j%(x; t)i. However, the collision is executed in moment space. Therefore,

the evolution involves transformation between discrete velocity space V and moment space M , similar to

Fourier transform in the spectral or Galerkin methods. The evolution equation of the model is:

jf(x+ e��t; t+ �t)i = jf(x; t)i+M
�1
S [j%(x; t)i � j%(eq)i] ;(7.1)

where S is the diagonal relaxation matrix:

S � diag(0; �s2; �s3; 0; �s5; 0; �s7; �s8; �s9) :(7.2)
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In simulations using the LBE method, the initial conditions provided are usually speci�ed by velocity

and pressure (density) �elds. Often the initial condition of f� is set to its equilibrium value corresponding

to the given 
ow �elds, with a constant density if the initial pressure �eld is not speci�ed. The initial

conditions of f� can include the �rst order e�ect f
(1)
� . The �rst order e�ect in moment space is obtained

through Eq. (7.1):

j%(1)i = S
�1
MDjf (eq)i ;(7.3)

where D is a diagonal di�erential operator:

D�� = ���e� � r :(7.4)

Eq. (7.3) is similar to Chapman-Enskog analysis of f
(1)
� .

For the shear 
ow, only the initial velocity pro�le is given. The density mode is set to be uniform

initially. The remaining modes are initialized as the following:

� = 1;(7.5a)

e = �2 + 3(u2x + u2y);(7.5b)

" = 1� 3(u2x + u2y);(7.5c)

qx = �ux(7.5d)

qy = �uy(7.5e)

pxx = (u2x � u2y)�
2

3s8
(@xux � @yuy);(7.5f)

pxy = uxuy � 1

3s8
(@yux + @xuy):(7.5g)

The terms in pxx and pxy involving derivatives of the velocity �eld take into account of viscous e�ect in

the initial conditions. These terms are obtained through Eq. (7.3). The �rst order terms in turn induce

second order contributions (with respect to space derivatives) which are not included here. This leads to

weak transients of short duration if there is separation of time scales (2� s8)� (2� s5).

Our �rst test is the decay of a sinusoidal wave in a periodic system for various values of k. The numerical

and theoretical results agree with each other extremely well and con�rm the k-dependence of g and �. The

agreement indicates that our local analysis is indeed su�ciently accurate in this case.

The next case considered is more interesting and revealing because the initial velocity contains shocks.

Consider a periodic domain of size Nx � Ny = 84 � 4. At time t = 0, we take a shear wave uy(x; 0) of

rectangular shape (discontinuities in uy at x = Nx=4 and x = 3Nx=4):

uy(x; 0) = U0; 1 < x � Nx=4; 3Nx=4 < x � Nx;

uy(x; 0) = �U0; Nx=4 < x � 3Nx=4:

The initial condition ux(x; 0) is set to zero every where. We consider two separate cases with and without

a constant streaming velocity V .

7.2. Steady case (V = 0). For the case of zero streaming velocity, the initial condition for ux is zero

in the system. The solution of the Navier-Stokes equation for this simple problem is:

uy(x; t) =
X
n

an exp(��nk2nt) cos(knx) ;(7.6)
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Fig. 4. Decay of discontinuous shear wave velocity pro�le uy(x; t). The lines and symbols (�) are theoretical [Eq. (7.6)]

and numerical results, respectively. Only the positive half of the velocity pro�les are shown in the Figures. (a) The LBE model

with no interpolation, (b) with the central interpolation and r = 0:5.

where an are the Fourier coe�cients of the initial velocity pro�le uy(x; 0), �n � �(kn), and kn = 2�(2n �
1)=Nx. The magnitude of the uy(x; 0), U0 = 0:0001 in the simulations.

Figures 4(a) and 4(b) show the decay of the rectangular shear wave simulated by the normal LBE scheme

and the LBE scheme with second-order central interpolation (with r = 0:5, where r is the ratio between

advection length �x and grid size �x), respectively. (The detailed analysis of LBE schemes with various

interpolations is provided in Appendix B.) The lines are theoretical results of Eq. (7.6) with �(kn) obtained

numerically. The times at which the pro�le of uy(x; t) (normalized by U0) shown in Figs. 4 are t = 100, 200,

. . . , 500. The numerical and theoretical results agree closely with each other. The close agreement shows the

accuracy of the theory. In Fig. 4(b), the overshoots at early times due to the discontinuous initial condition

are well captured by the analysis. This overshoot is entirely due to the strong k-dependence of �(k) caused

by the interpolation. This phenomena is not necessarily connected to the Burnett e�ect, as claimed by a

previous work [38]. This artifact is also commonly observed in other CFD methods involving interpolations.

Figure 5 shows the decay of uy(x; t) at one location of discontinuity, x = 3Nx=4 = 63. We tested the

normal LBE scheme without interpolation and the LBE scheme with second order central interpolation with

r = 0:5, and compared the numerical results with theoretical ones. Again, the numerical and theoretical

results very well agree with each other for both cases (with and without interpolation). Note that the time

is rescaled as r�2t in the Figure. It should be pointed out that the LBE solutions of the 
ow di�er from

the analytic solution of the Navier-Stokes equation in both short time and long time behavior. Interpolation

causes overshoot in the velocity at the initial stage. Even without interpolation, the LBE solution does not

decay (exponentially) right away. This is due to the variation of the viscosity with k and this could be

interpreted as the in
uence of the kinetic modes. (If we had a vanishingly small Knudsen number then the

k-dependence would be negligible, however all relaxation rates must be smaller than 2 so that higher modes

can play a role). This transient behavior is due to the higher order e�ect (of velocity gradient), as discussed

previously.

7.3. Streaming case (V = constant). We also consider the case with a constant streaming in the

initial velocity, i.e., ux(x; 0) = Vx = 0:08. This allows us to check the e�ects of the non-Galilean invariance
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Fig. 5. Decay of discontinuous shear wave velocity uy(x; t) at a location close to the discontinuity x = 3Nx=4. The solid

lines and symbols (�) are theoretical and numerical results, respectively. The LBE scheme with no interpolation does not have

a overshooting, whereas the LBE scheme with the central interpolation and r = 0:5 has. The time is rescaled as r�2t.

in the system. With a constant streaming velocity, the solution of the Navier-Stokes equation is:

uy(x; t) =
X
n

an exp(��nk2nt) cos[kn(x� gnVxt)] ;(7.7)

where gn � g(kn) is the Galilean-coe�cient.

Similar to Figs. 4, Figs. 6 show the evolution of uy(x; t) for the same times as in Figs. 4. The solid lines

and the symbols (�) represent theoretical and numerical results, respectively. Shocks move from left to right

with a constant velocity Vx = 0:08. Figs. 6(a), 6(b), and 6(c) show the results for the normal LBE scheme

without interpolation, the scheme with second order central interpolation, and the scheme with second order

upwind interpolation, respectively. In Figs. 6(b) and 6(c), the dotted-lines are the results obtained by setting

gn = 1 in Eq. (7.7). Clearly, the e�ect of g(k) is signi�cant. For the LBE scheme with central interpolation,

the results in Fig. 6(b) with g(k) = 1 under-predict the overshooting at the leading edge of the shock and

over-predict the overshooting at the trailing edge; whereas the results in Fig. 6(c) for the LBE scheme with

upwind interpolation over-predict the overshooting at the leading edge of the shock and under-predict the

overshooting at the trailing edge.

8. Conclusion and Discussion. In this paper, a generalized 9-velocity LBE model based on the

generalized LBE model of d'Humi�eres [8] is presented. The model has the maximum number of adjustable

parameters allowed by the discrete velocity set. The value of the adjustable parameters are obtained by

optimizing the hydrodynamic properties of the model through the linear analysis of the LBE evolution

operator. The linear analysis also provides the generalized hydrodynamics of the LBE model, from which

dispersion, dissipation, isotropy, and stability of the model can be easily analyzed. In summary, a systematic

and general procedure to analyze the LBE models is described in detail in this paper. Although the model

studied in this paper is relatively simple, the proposed procedure can be readily applied to analyze more

complicated LBE models.

The theoretical analysis of the model is veri�ed through numerical simulation of various 
ows. The

theoretical results closely predict the numerical results. The stability of the model is also analyzed and

compared with the BGK LBE model. It is found that the mechanism of separate relaxations for the kinetic
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Fig. 6. Decay of discontinuous shear wave velocity pro�le uy(x; t) with a constant streaming velocity Vx = 0:08. The

thick lines and symbols (�) are theoretical [Eq. (7.7)] and numerical results, respectively. The thin lines in (b) and (c) are

obtained by setting gn = 1 in Eq. (7.7). (a) The LBE model with no interpolation, (b) with the central interpolation and

r = 0:5, (c) with the upwind interpolation and r = 0:5.

modes leads to a model which is much more stable than the BGK LBE model.

The proposed model is a Galerkin type of scheme. In comparison with the BGK LBE model, the

proposed model requires the transformations between the discrete velocity space V and the moment space

M back and forth in each step in the evolution equation. However, the extra computational cost due to

this transformation is only about 10 { 20% of the total computing time. Thus, the computational e�ciency

is comparable to the BGK LBE model. Our analysis also shows that the LBE models with interpolation

schemes have enormous numerical hyper-viscosities and anisotropies due to the interpolations.

We also �nd optimal features of the proposed 9-velocity model: it is di�cult to improve the model

by simply adding more velocities. For instance, we found that adding eight more velocities (�1;�2) and
(�2; �1) would not improve the isotropy of the model. However, our analysis does not provide any a priori

knowledge of an optimal set of discrete velocities. That problem can only be solved by optimization of the

moment problem in velocity space [20]. It is also worth noting that the values of the adjustable parameters

in our model coincide with the corresponding parameters in the BGK LBE model except two (�3 and 
4).

The main distinction between our model and the BGK LBE model is that in our model has the freedom

to allow the kinetic modes to relax di�erently, whereas in the BGK LBE model, all kinetic modes relax at

the same rate. This mechanism severely a�ects the stability of the BGK LBE schemes especially when the
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system is strongly over-relaxed.

It should be mentioned that the procedure we propose here can be applied to analyze the linear stability

of spatially nonuniform 
ows, such as Couette 
ow, Poiseuille 
ow, or lid-driven cavity 
ow. For spatially

nonuniform 
ows, the lattice Boltzmann equation is linearized over a �nite domain including boundary

conditions. This leads to an eigenvalue problem with many more degrees of freedom as was needed in the

analysis of this paper. Standard Arnoldi techniques [39] allow us to determine parts of the spectrum of the

linearized collision operator, in particular to study the 
ow stability. This analysis enables us to understand

the observation that some 
ows are much more stable than what is predicted by the linear analysis of

spatially uniform 
ows. For instance, in plane Couette 
ow with only 2 nodes along the 
ow direction, the

only possible values of k along the same direction are 0 and �, which are far away from the value of k at

which the bulk instability occurs. Namely, the reciprocal lattice k is not large enough to accommodate the

possible unstable modes. Furthermore, in the direction perpendicular to the 
ow, although the reciprocal

lattice k can accommodate unstable shear modes, the velocity gradient, however, alters the stability of the

system. (It improves the stability in this particular case.)

One philosophic point must be stressed. We deliberately did not derive the macroscopic equations

corresponding to the LBE model in this work; instead, we only analyzed the generalized hydrodynamic

behavior of the modes of the linearized LBE evolution operator. We argue that if the hydrodynamic modes

behave exactly the same way as those of the linearized Navier-Stokes equations, up to a certain order of k,

provided that the Galilean invariance is also assured up to a certain order of k, then we can claim that the

LBE model is indeed adequate to simulate the Navier-Stokes equations (up to a certain order of k). There

is no distinction between the LBE model and the Navier-Stokes equations up to a certain order of k. Thus,

there is no need to use the Chapman-Enskog analysis to obtain the macroscopic equations from the LBE

models. On the other hand, we have also shown that, in the limit of k = 0, these two approaches obtain

the same results in terms of the transport coe�cients and the Galilean-coe�cient. Nevertheless, it is very

di�cult to apply the Chapman-Enskog analysis to obtain the generalized hydrodynamics of the LBE models,

which is important to LBE numerical simulations of hydrodynamic systems. The stability result obtained

by the linear analysis presented in this paper is very di�cult for the standard Chapman-Enskog analysis to

obtain. Therefore, the proposed procedure to analyze the LBE model indeed contains more information and

is more general than the low order Chapman-Enskog analysis. Albeit its generality and powerfulness, the

linear analysis has its limitations. Because it is a local analysis, it does not deal with gradients.

Our future work is to extend the analysis to fully thermal and compressible LBE models in three-

dimensional space.
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Appendix A. Coupling Between Density and Other Modes.

To consider the coupling between the density 
uctuation �� = � � h�i and other modes, e, ", pxx, and
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pxy, the equilibrium values of these modes are modi�ed as the following:

e(eq) = �2 �+ 
2 (j
2
x + j2y)(2� �);(A.1a)

"(eq) = �3 �+ 
4 (j
2
x + j2y)(2� �);(A.1b)

p(eq)xx = 
1 (j
2
x + j2y)(2� �);(A.1c)

p(eq)xy = 
3 (jxjy)(2� �);(A.1d)

where (2� �) is used to linearly approximate 1=� when the averaged density �0 � h�i = 1. With the above

modi�cations, four elements in the �rst column of the linearized collision operator C accordingly become:

C12 = s2

�
1

4
�2 � 1

6

2(V

2
x + V 2

y )

�
;(A.2a)

C13 = s3

�
1

4
�3 � 1

6

4(V

2
x + V 2

y )

�
;(A.2b)

C18 = �3

2
s8
1(V

2
x � V 2

y );(A.2c)

C19 = �3

2
s9
3VxVy:(A.2d)

Based on the linearized collision operator with the above changes, the shear and the bulk viscosity at

the limit of k ! 0 are:

�0 =
1

3
(1� V 2 cos2 �)

�
1

s8
� 1

2

�
;(A.3)

�0 =
1

12s22
(2� 3c2s)(2� s2)� V cos�

12css2s8
(1� 3c2s)(3s2s8 � 2s2 � 4s8)

+
V 2

4s2s8
[s2 � s8 + 2(s2s8 � s2 � s8) cos

2�]

+
V 3 cos�

4css2s8
[s2 � s8 + s2(s8 � 2) cos2�] :(A.4)

The sound modes propagate with velocity V � cs (at �rst order in k). The Galilean-coe�cient up to O(k2)

is:

g = 1 +
k2

3s5s28
[(s8 � 2)(s5 � s8)(s5s8 � 3s5 � 3s8 + 6) + (cos4 � � cos2 �)]

+
k2V 2

6c2ss2s
2
8

[(2� s8)(s8 � s2) sin
2�+ 2c2ss2(s

2
8 � 6s8 + 6) cos2�]:(A.5)

Appendix B. Interpolated LBE Scheme.

Recently, it has been proposed to use interpolation schemes to interpolate ff�g from a �ne mesh to a

coarse mesh in order to improve the spatial resolution calculations for a limited cost in total number of nodes

[21, 22]. Obviously, the interpolation schemes create additional numerical viscosities. The Chapman-Enskog

analysis shows that any second or higher order interpolation scheme does not a�ect the viscosities in the

limit k ! 0 on the �ne mesh. A problem with much greater importance in practice is to calculate the

viscosity at �nite k. To our knowledge, no such analysis is now available in the literature.

In the interpolated LBE schemes, the advection step is altered by the interpolation scheme chosen,

whilst the collision step remains unchanged. The advection on a �ne mesh combined with interpolation on

a coarse mesh is the reconstruction step on the coarse mesh. Therefore, to obtain the modi�ed linearized
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evolution operator L only the advection operation A must be changed. In what follows, we shall consider

a coarse mesh with lattice constant �x, and time step �t. The lattice constant of a underlying �ne mesh is

r�x, with r � 1. E�ectively, the hopping velocities of particles are reduced by a factor of r on coarse mesh.

Therefore, dimensional analysis suggests that the sound speed is reduced by a factor of r, and the viscosities

are reduced by a factor of r2 in the limit k = 0. However, the dimensional analysis does not provide any

information about the quantitative e�ects of interpolation when k is �nite. We shall analyze the e�ects of

some commonly used second-order interpolation schemes in the LBE methods. For simplicity, we shall only

deal with a uniform mesh with square grids.

B.1. Central interpolation. The reconstruction step with second-order central interpolation is given

by the following formula:

f�(rj) =
r(r � 1)

2
f��(rj � �r�) + (1� r2)f��(rj) +

r(r + 1)

2
f��(rj + �r�) ;(B.1)

where f�� is the post-collision value of f�, i.e.,

f�� � f� +
�(f�) ;(B.2)

and

�r� =
1

r
e� :(B.3)

The advection operator in this case becomes:

A = diag(1; A; C; B; D; AC; CB; BD; DA) ;(B.4)

where

A =
r(r + 1)p

2
+ (1� r2) +

r(r � 1)

2p
;(B.5a)

B =
r(r + 1)

2p
+ (1� r2) +

r(r � 1)p

2
;(B.5b)

C =
r(r + 1)q

2
+ (1� r2) +

r(r � 1)

2q
;(B.5c)

D =
r(r + 1)

2q
+ (1� r2) +

r(r � 1)q

2
;(B.5d)

where p = eikx and q = eiky . With the new phase factors, we �nd new results at order 1 and 2 in k. The

speed of sound and the \Galilean coe�cient" are multiplied by r and the viscosity coe�cients are multiplied

by r2.

At higher order in k, dispersion e�ects due to lattice arise, leading to di�erences between solutions of

the standard Navier-Stokes equations and the 
ows computed used the LBE technique.

As in Eq. (5.24), we �nd that the advection coe�cient for shear waves can be made isotropic to second

order in k by choosing

s5 = 3r2
(2� s8)

(3r2 � s8)
;(B.6)

which improves Eq. (5.24), since we can choose s8 close to 2 while maintaining s5 reasonably far away from

2 (between 1 and 3=2) by taking r2 close to 2=3.
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B.2. Upwind interpolation. The upwind direction in the LBE method is relative to the particle

velocity e� (the characteristics) rather than the 
ow velocity u. Therefore, the interpolation stencil is static

in time. Second-order upwind interpolation leads to

f�(rj) =
r(r � 1)

2
f��(rj � 2 �r�) + r(2� r)f��(rj � �r�) +

(1� r)(2 � r)

2
f��(rj) ;(B.7)

where �r� is de�ned in Eq. (B.3). Accordingly, the phase factors in the advection operator given by Eq. (B.4)

become:

A =
(1� r)(2 � r)

2
+

r(2� r)

p
+

r(r � 1)

2p2
;(B.8a)

B =
(1� r)(2 � r)

2
+ r(2� r)p +

r(r � 1)p2

2
;(B.8b)

C =
(1� r)(2 � r)

2
+

r(2� r)

q
+

r(r � 1)

2q2
;(B.8c)

D =
(1� r)(2 � r)

2
+ r(2� r)q +

r(r � 1)q2

2
;(B.8d)

where p = eikx and q = eiky .

Again, the third order term (g1) in k for the shear mode is anisotropic unless the following relation is

satis�ed:

s5 = r2
(2� s8)

(3r2 � 3rs8 + 2s8)
:(B.9)

For s8 and s5 in the usual range (s8 near 2 and s5 between 1 and 3=2), the preceding equation leads to a

complex value of r. It should be pointed out that due to the commutativity of propagation along x-axis and

y-axis, one could apply di�erent interpolation formulae along each axis, according to physics of the 
ow. For

instance, large stretch of grid can be applied in the direction along which 
ow �elds do not change much

in space, whereas in the other orthogonal direction, a normal grid (without interpolation) or even a re�ned

grid [9] can be used, so that the aspect ratio of the meshes is large enough to be appropriate to the 
ow.

Figures 7 show the k-dependence of the normalized shear viscosity �(k)=�0 for the LBE model with and

without interpolation schemes. Three orientations of k are chosen: � = 0 (solid line), �=8 (dotted line), and

�=4 (dashed line). Figs. 7(a), 7(b), and 7(c) show the �(k)=�0 for the LBE model with no interpolation, with

second order central interpolation scheme and r = 0:5, and with second order upwind interpolation scheme

and r = 0:5, respectively. It should be stressed that interpolation schemes do create an enormous amount

of numerical viscosity at k = �=2: Both the central and the upwind interpolation schemes increase the

shear viscosity at k = �=2 by almost two order of magnitude, whereas without interpolation, corresponding

increase for the LBE scheme is at most only a factor of about 2.5 (in the direction � = �=8). In all cases,

the viscosity displays signi�cant anisotropy at k = �=2.

Similar to Figs. 7, Fig. 8 shows the k-dependence of the Galilean-coe�cient g(k). The three curves in

the middle of the �gure corresponding to the LBE model without interpolation. The lower three curves,

g(k) � 1, correspond to the LBE scheme with the central interpolation, and the upper three curves, g(k) � 1,

correspond to the LBE scheme with the upwind interpolation. Again, interpolations create signi�cant e�ects

on Galilean invariance.

One common feature observed in Figs. 7 and 8 is that the transport coe�cients of a model along the

direction of � = �=8 is far apart from those along the directions � = 0 and � = �=4. This is related to the

fact that for the square lattice, the wave vector k along the direction � = �=8 is not a reciprocal vector of

the underlying lattice.
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Fig. 7. The k-dependence of viscosities for various models. The values of the adjustable parameters and the relaxation

parameters are the same as in Figs. 1. The solid lines, dotted lines, and dashed lines correspond to � = 0, �=8, and �=4,

respectively. (a) The normal LBE model with no interpolation. (b) with central interpolation, and (c) with upwind interpolation.

Fig. 8. The k-dependence of the Galilean-coe�cient g for various models. The solid lines, dotted lines, and dashed lines

correspond to � = 0, �=8, and �=4, respectively. The middle three curves are g(k) for the LBE model without interpolation,

the lower three for the LBE model with the central interpolation and r = 0:5, and the upper three for the LBE model with the

upwind interpolation and r = 0:5.
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