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Abstract. A Lorentz force flowmeter is a device for the contactless measurement

of flow rates in electrically conducting fluids. It is based on the measurement of a

force on a magnet system that acts upon the flow. We formulate the theory of the

Lorentz force flowmeter which connects the measured force to the unknown flow

rate. We first apply the theory to three specific cases, namely (i) pipe flow exposed

to a longitudinal magnetic field, (ii) pipe flow under the influence of a transverse

magnetic field and (iii) interaction of a localized distribution of magnetic material

with a uniformly moving sheet of metal. These examples provide the key scaling

laws of the method and illustrate how the force depends on the shape of the

velocity profile and the presence of turbulent fluctuations in the flow. Moreover,

we formulate the general kinematic theory which holds for arbitrary distributions

of magnetic material or electric currents and for any velocity distribution and

which provides a rational framework for the prediction of the sensitivity of Lorentz

force flowmeters in laboratory experiments and in industrial practice.
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1. Introduction

The measurement of velocity in liquid metals is a notoriously difficult problem because

these materials are opaque and often hot and aggressive. Especially in situations where the

liquid metals are at high temperature, as in metallurgy, the development of reliable contactless

velocity measurement methods has far reaching consequences. The goal of the present work is

to establish the theoretical foundations of Lorentz force velocimetry—an electromagnetic flow

measurement method that is based on exposing a flow to a magnetic field and measuring the

force acting on the magnetic field generating system (cf [1] and references therein).

Flow measurement using magnetic fields has a long history. It started in 1832 when

Michael Faraday attempted to determine the velocity of the Thames river [2]. Faraday’s

method which consists of exposing a flow to a magnetic field and measuring the induced

voltage using two electrodes has evolved into a successful commercial application known as

the inductive flowmeter. The theory of such devices has been developed and comprehensively

summarized by [3]. While inductive flowmeters are widely used for flow measurement in fluids

at low temperatures such as beverages, chemicals and wastewater, they are not suited for flow

measurement in metallurgy. Since they require electrodes to be inserted into the fluid, their use is

limited to applications at temperatures far below the melting points of practically relevant metals.

Consequently there have been several attempts to develop flow measurement methods which do

not require any mechanical contact with the fluid. Among them is the eddy current flowmeter

[4] which measures flow-induced changes in the electric impedance of coils interacting with the
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Figure 1. Principle sketch of Lorentz force velocimetry: arrangement of the coil

(a) and structure of the primary magnetic field (b) for a longitudinal flux flowmeter.

(c, d) Same for a transverse flux flowmeter. The magnetic-field-generating system

will also be called the magnet system for brevity.

flow. More recently, a noncontact method was proposed [5, 6] in which a magnetic field is applied

to the flow and the velocity is determined from measurements of flow-induced deformations of

the applied field.

The present paper is devoted to a method whose origin goes back to [3] (chapter 4.2 and

references therein, see also [7]), which has been further developed by [8]–[13] and for which

the term Lorentz force velocimetry has been proposed by [1]. The goal of the present work is to

explain the principles of this method using several simple models and to formulate the theory

which is necessary to perform sensitivity analyses and optimizations for practical applications.

The method is examined and analysed here using the example of flux measurements in a flow

of an incompressible fluid in a circular pipe at low magnetic Reynolds number. However, the

theory can be readily generalized to channels with arbitrary cross-sections and flows with finite

magnetic Reynolds number. The specific examples to be discussed in sections 3 and 4 will focus

on measurements of a global quantity, namely the volume flux. Devices which perform this task

will be referred to as Lorentz force flowmeters. The example treated in section 5 as well as the

general theory presented in section 6 apply to both volume flux measurements and local velocity

measurements. This general method is referred to as Lorentz force velocimetry.

2. Basic principles

When an electrically conducting fluid moves across magnetic field lines, which are either

produced by a current-carrying coil (as in figure 1(a)) or by a permanent magnet (as in figure 1(c)),

the induced eddy currents lead to a Lorentz force which brakes the flow. The Lorentz force density

is roughly

f ∼ σvB2 (1)
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where σ is the electrical conductivity of the fluid, v is its velocity and B is the magnitude

of the magnetic field. This phenomenon is well known [14]–[16] and has found a variety of

applications for flow control in metallurgy and crystal growth [17]. Equally obvious but less

widely appreciated is the fact that by virtue of Newton’s law, an opposite force acts upon the

magnetic-field-generating system and drags it along the flow direction as if the magnetic field

lines were invisible obstacles. A Lorentz force flowmeter is a device which determines the flow

rate from a measurement of this force.

Lorentz force flowmeters can be constructed in two different ways. They can be designed

as static flowmeters where the magnet system is at rest and one measures the force acting on it.

Alternatively, they can be designed as rotary flowmeters where the magnets are arranged on a

rotating wheel and the spinning velocity is a measure of the flow velocity.

Obviously, the force acting on a Lorentz force flowmeter depends both on the velocity

distribution and on the shape of the magnet system. For both static and rotary flowmeters it is

therefore equally important to answer the following two questions: (i) What is the force on the

magnet system for a given velocity distribution? (ii) How does the presence of the magnetic

field affect the flow? The focus of the present work will be on the first question which will be

termed the kinematic problem (as opposed to the dynamic problem that takes into account the

back-reaction of the Lorentz force on the flow). The second question will be briefly addressed

in section 3.2 where we compare the results of kinematic and dynamic numerical simulations.

Before engaging in a systematic analysis of Lorentz force flowmeters it is important to gain a

qualitative understanding of the basic phenomena.

We denote the electric current in the coil of figure 1(a) by J(r) and call it the primary current.

The magnetic field B(r) due to primary current will be referred to as the primary magnetic

field. In figure 1(c) the primary field is produced by a permanent magnet characterized by the

spatial distribution M(r) of magnetization density. This quantity can be described by a fictituous

distribution of primary currents J(r) as will be detailed in section 6, so both electromagnets

and permanent magnets can be treated within the same mathematical framework. The motion of

the fluid under the action of the primary field induces eddy currents which are sketched in

figures 1(a) and (c). They will be denoted by j(r) and are called secondary currents. The

interaction of the secondary current with the primary magnetic field is responsible for the Lorentz

force

Ff =

∫

f

j × Bd3r (2)

which brakes the flow.

The secondary currents create a magnetic field b(r), the secondary magnetic field. The

interaction of the primary electric current with the secondary magnetic field gives rise to the

Lorentz force

Fm =

∫

m

J × b d3r (3)

which acts upon the magnet system. We would like to repeat that this formula also holds for a

permanent magnet because its magnetic field can be represented by fictitious electric currents.

In (2) the integration extends over the domain of the fluid, whereas in (3) the integration is over

the volume of the coil or of the permanent magnet. Strictly speaking, the force on a permanent

magnet is the Kelvin force but we will use the term Lorentz force throughout.
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A key element of Lorentz force velocimetry is the relation

Fm = −Ff (4)

called reciprocity principle which states that the electromagnetic forces on the fluid and on

the magnet system have the same magnitude and act in opposite direction. To verify this

relation we start from the observation that the total Lorentz force due to the interaction of a

localized distribution of electric currents with its own magnetic field is zero. This relation holds

independently for the primary fields, the secondary fields and the total fields and has the form

∫

J × B d3r =

∫

j × b d3r =

∫

(J + j) × (B + b) d3r = 0. (5)

Expansion of the third integral and the use of the first two integrals immediately lead to the relation

(4). A consequence of the reciprocity principle is that one can choose among two alternatives for

the computation of the Lorentz force and select the one which is more convenient for the probem

at hand. We will illustrate this issue in the next sections.

Before turning to the analysis of specific cases we wish to emphasize that the Lorentz force

(1) is proportional to the square of the magnetic field. This is a consequence of the fact that the

magnet system simultaneously acts as a source of the primary and a sensor of the secondary

field. Hence the sensitivity of a Lorentz force flowmeter increases more quickly with increasing

magnetic field than in methods based on the measurement of magnetic field perturbations (see

e.g. [5]). In the latter case the sensitivity increases only linearly with the magnetic field.

3. Longitudinal flux flowmeter

3.1. Analytical theory for laminar flows

We start our analysis with the case of a unidirectional flow of a fluid with electrical conductivity

σ in a circular pipe with radius R which is subjected to an axisymmetric magnetic field given by

B = Br(r, z)er + Bz(r, z)ez, (6)

see figure 1. We use cylindrical coordinates (r, ϕ, z) with the unit vectors er, eϕ and ez where the

coordinate z points in the streamwise direction. The magnetic field (6) has to satisfy the condition

∇ · B = 0 but can otherwise be arbitrary. Flowmeters whose magnetic field is axisymmetric and

whose symmetry axis coincides with that of the pipe will be called longitudinal flux flowmeters.

We consider steady flows of the form

v = v(r)ez. (7)

To compute the Lorentz force in the framework of the kinematic theory we start with Ohm’s law

j = σ(E + v × B). (8)

In the case of low magnetic Reynolds numbers we can use the primary field given by equation

(6) instead of the full magnetic field and represent the electric field using an electric potential
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E = −∇�. Taking the divergence of Ohm’s law we obtain

∇2� = B · ω (9)

where ω = ∇ × v is the vorticity. For flows of the form (7) the vorticity is parallel to eϕ so

the right-hand side of (9) vanishes. Since the electric potential has to satisfy the homogeneous

boundary conditions � = 0 at r = 0 and ∂�/∂r = 0 at r = R we have � = 0, i.e. the potential

vanishes. We can therefore immediately obtain the eddy currents

j = σv(r)Br(r, z)eϕ (10)

which are purely azimuthal and parallel to the wall of the pipe. The Lorentz force density acting

on the fluid is given by

f = j × B. (11)

We are only interested in the z-component of the total Lorentz force whose value will be denoted

by F and is obtained by integrating the z-component of f over the volume of the pipe. The integral

of the other components of the Lorentz force vanishes by symmetry. The resulting expression

for F reads

F = −2πσ

∫ +∞

−∞

∫ R

0

v(r)B2
r (r, z)r dr dz. (12)

Since B2
r is positive, the force is always directed opposite to the flow provided that v(r) � 0

everywhere (i.e. F and the volume flux
∫

vr dr have opposite signs).

The force can be evaluated explicitly if the magnetic field has the form

Br =
3B0

2L2

rz

(1 + z2/L2)5/2
, Bz = B0

1

(1 + z2/L2)3/2
. (13)

This expression describes the magnetic field produced by a single coil with radius L wrapped

around the pipe for the special case R ≪ L (see e.g. [18]). The field has its maximum B0 on the

axis of the cylinder at z = 0. The integration over the magnetic field can be performed analytically

and the total Lorentz force becomes

F = −
45π2

256

σB2
0

L

∫ R

0

v(r)r3 dr. (14)

This equation shows that the force on the longitudinal flux flowmeter depends on the shape of

the velocity profile and the flowmeter samples the velocity close to the wall. In order to analyse

how strongly the force depends on the shape of the velocity profile let us analyse this expression

for some particular cases. It is convenient to express the velocity profile as v(r) = v0g(r/R) with

a nondimensional shape function g(ξ) whose normalization
∫

g(ξ)ξ dξ = 1/2 is such that the

volume flux through the pipe equals πR2v0, thus giving the velocity scale v0 the meaning of the

average velocity. With this step done, the force can be expressed as

F = −
45π2

256

σv0B
2
0R

4

L
S (15)
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where the quantity

S =

∫ 1

0

g(ξ)ξ3 dξ (16)

can be interpreted as the sensitivity of the flowmeter.

The simplest case pertains to solid-body translation for which v(r) = v0 and thus g(ξ) = 1

which gives

S = 1

4
. (17)

Next we consider the Poiseuille flow which is described by g(ξ) = 2(1 − ξ2). After a

straightforward integration we obtain

S = 1

6
(18)

which shows that the force from a Poiseuille flow is by a factor 2/3 smaller than for a moving

solid body.

Let us now analyse the more general one-parameter family of profiles

g(ξ) = β(α) ln [1 + α(1 − ξ2)], (19)

with β(α) = α/[(1 + α) ln(1 + α) − α] to ensure the normalization
∫

g(ξ)ξ dξ = 1/2. For α → 0

this profile obeys g(ξ) → 2(1 − ξ2), i.e. it is Poiseuille-shaped, whereas for α → ∞ we have

g(ξ) → 1 as for solid-body translation except for ξ = 1 where g = 0. Moreover, for α ≫ 1 this

profile has the virtue of approximating the velocity distribution of turbulent pipe flow where α

is proportional to the Reynolds number as will be detailed below. Using symbolic integration it

is straightforward to work out the expression

S(α) =
2(1 + α)2 ln(1 + α) − α(2 + 3α)

8α[(1 + α) ln(1 + α) − α]
, (20)

for the sensitivity. It is reassuring to verify that S → 1/6 for α → 0 and S → 1/4 for α → ∞, as

obtained previously. Figure 2 shows that S(α) smoothly connects the limiting cases of Poiseuille

flow and solid-body translation.

Although the force on the Lorentz force flowmeter depends on the shape of the profile,

the following numerical example shows that this dependence is weak. For turbulent flows the

parameter appearing in the model profile (19) can be approximately identified with the Reynolds

number Re = 2Rv0/ν via α = κ(λ/2)1/2Re where κ = 0.41 is the von-Karman constant and

the friction factor λ is a solution of Prandtl’s universal equation λ−1/2 = 2.0 log [Re λ1/2] − 0.8

(for a discussion of the coefficients in the light of recent experiments see [19]). Let us compare

the sensitivities for Re = 105 and Re = 106 which represent typical values in metallurgy. For

Re = 105 we have λ = 0.01799, α = 3889 and S = 0.2329, whereas for Re = 106 we obtain

λ = 0.01165, α = 31290 and S = 0.2366. Thus the sensitivities differ by only 2% when the

Reynolds number changes by one order of magnitude.
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Figure 2. Sensitivity of the longitudinal flux flowmeter: (a) model profiles

given by equation (19) and (b) sensitivity S(α) according to equation (20). The

model profiles are plotted for α = 10−2, 100, 102, 104 (from top to bottom). The

diamonds (right) represent the sensitivity computed numerically (see section 3.2

for details).

3.2. Numerical simulation for turbulent flows

The analytical computations of the previous section show that for a given flow rate πR2v0, the

Lorentz force is rather insensitive to the actual shape of the averaged velocity profile (at least for

typical values of the Reynolds number encountered in metallurgical applications). In this section

we investigate the following two questions: how strong is the influence of turbulent fluctuations

on the time signal of the Lorentz force? How good is the kinematic approximation in comparison

with a full theory that takes the back-reaction of the Lorentz force on the flow into account? To

answer these questions, a numerical simulation of the pipe flow is performed using the code

CDP developed at the Center for Turbulence Research (NASA Ames/Stanford Univ.) [20, 21].

In this code, the incompressible Navier–Stokes equations are spatially discretized using the finite

volume method and the time advancement of the flow is performed using Crank–Nicholson

scheme. The Lorentz force acting on the flow is incorporated in the algorithm as an explicit

contribution to the momentum equation.

We perform two series of direct numerical simulations of the Navier–Stokes equations

for the turbulent flow in a circular pipe. In the first series we address the kinematic problem,

whereas the second series is devoted to the dynamic problem. In both cases we assume that

the magnetic Reynolds number is small. Indeed, for the flow of a liquid metal with a magnetic

diffusivity (µ0σ)−1 = 1 m2s−1 and a mean velocity v = 1 ms−1 in a pipe with radius R = 0.01m

the magnetic Reynolds number is as small as Rm = 10−2. (The magnetic diffusion time µ0σR2 is

only 0.1 millisecond in this case.) To evaluate the Lorentz force acting on the magnet system we

invoke the reciprocity principle (4) which reduces the task to an integration of the Lorentz force

density j × B over the volume of the fluid. No computation of the secondary magnetic field and no

integration over the coil are then necessary. By virtue of our assumption Rm ≪ 1 we can use the

(unperturbed) primary magnetic field B(r) given by (13). The secondary electric current density

j(r) is computed by solving the Poisson equation (9) using the turbulent velocity field from the
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Figure 3. Lorentz force distribution in a kinematic simulation: iso-contours of

the Lorentz force density in the region of space where it is the strongest. The

contours of the streamwise velocity in an axial cross-section are shown.

solution of the Navier–Stokes equations, and inserting the resulting electric field E = −∇� into

Ohm’s law (8). In the kinematic simulations we solve the Navier–Stokes equations without any

Lorentz force, whereas in the dynamic simulations we solve the Navier–Stokes equations with

the Lorentz force density j × B added to the right-hand side. The parameters of the simulations

are given next.

The computational domain used in this section has an aspect ratio of 10.0 (length/radius)

and is discretized using 101 648 elements. The flow is driven by a constant pressure gradient

at an approximate Reynolds number Re = 2v0R/ν = 3600 where R is the radius of the pipe

and ν the viscosity of the fluid. The primary magnetic field B(r) is given by (13) with L = 2R,

i.e. the radius of the magnetic coil is twice the radius of the pipe. To avoid extra complexity,

a periodic boundary condition is imposed in the streamwise direction; at the cylinder’s wall,

a no-slip boundary condition is imposed. For the transient cases discussed below, the flow is

initialized with a turbulent-like profile on to which perturbations are superposed; the results

shown are obtained after this initial state has converged to a fully developed turbulent regime.

In order to verify the magnetohydrodynamics (MHD) module developed for the CDP code,

a first set of computations is performed in which the velocity profile is prescribed by equation

(19). The sensitivity function obtained in this fashion is displayed in figure 2(a) along with the

analytical result (20). It is observed that the numerically computed sensitivity lies within 1.5%

of the analytical predictions for the whole range of parameters α explored. (A similar validation

of the MHD module for the transverse flux flowmeter to be discussed in the next section is also

performed and shows that in that case the sensitivity lies within 0.5% of the values computed

analytically.)

We start our investigation with a kinematic simulation in which the Lorentz force is computed

from the full three-dimensional time-dependent velocity field but does not appear on the right-

hand side of the Navier–Stokes equation. Figure 3 shows an iso-contour plot of the Lorentz

force density for a given instanteneous velocity field. The figure shows that the areas of strong
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Figure 4. Results of the kinematic simulation: time history (a) and spectra (b)

of the cross-section averaged velocity v0(t) (red) and of the total Lorentz force

F(t) (blue). (c) Low-pass filtered velocity v̂0(t) (red) and force F̂ (t) (blue);

(d) scatterplot of F̂ (t) versus v̂0(t).

Lorentz force form two toroidal structures in the vicinity of the coil. This is due to the fact

that the dominant contribution to the Lorentz force density comes from the interaction of the

longitudinal component of the velocity with the radial component of the magnetic field, the latter

having maxima upstream and downstream of the magnetic coil.

As mentioned above, the flow is sustained using a constant pressure gradient and the

instantaneous flow rate thus slowly varies with time. This is illustrated in figure 4(a) in which the

time series of the average velocity and the Lorentz force are plotted. Note that the signals have

been normalized by removing their mean and dividing them by their standard deviations. The

figure clearly shows that the Lorentz force behaviour is characterized by strong high-frequency

oscillations. The physical origin of these rapid oscillations is easily understood when one recalls

that in the case of the longitudinal flux flowmeter, the magnetic field is quite strongly localized

in the vicinity of the plane of the coil and samples more intensively the near wall structures (see

also equation (14) and the r3 dependence of the Lorentz force). Therefore, the Lorentz force

varies rapidly as the mean flow sweeps turbulent eddies across the region of intense magnetic

field. On the contrary, the flow rate is obtained by integration over the flow domain, so the effect

of separate local velocity fluctuations is averaged out.
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To gain further insight into the nature of the high-frequency oscillations of the Lorentz

force, the spectra of the time series shown in figure 4(a) are displayed in figure 4(b). Note

that the frequency is normalized by 〈v0(t)〉/L which is the inverse of the average crossing time

through the pipe. Because of the limited sampling available, the spectra inevitably appear very

noisy. Nevertheless, several valuable informations can be deduced from them.At low frequencies,

the figure indicates that both spectra are very similar. At higher frequencies, the amplitudes of

the modes corresponding to the Lorentz force are significantly larger than those of the average

velocity; this observation is completely in line with the above discussion. Worth noting are also

the two peaks present in the Lorentz force spectrum at f ≈ 1 and f ≈ 4. The first peak is not

physical and can be attributed to the fact that the simulation uses periodic boundary conditions in

the streamwise direction. For this reason, the Lorentz force signal is necessarily more correlated

with itself at a frequency corresponding to the inverse of the average crossing time (f = 1). The

second peak has a physical origin and is related to the structure of the velocimeter. Indeed, a

turbulent structure influences the Lorentz force signal twice as it crosses successively the two

toroidal ‘active’ regions of the velocimeter (see figure 3). Since the separation between these two

regions of space is roughly L/4, the natural frequency for this correlation in the Lorentz force

signal is f ≈ 4.

Because of the similarity of the spectra at low wavenumbers, it is interesting to filter the

normalized signals by retaining their Fourier modes up to a frequency at which the respective

spectra appear to strongly deviate. This cut-off frequency is of course not well-defined but based

on figure 4(b), the value f = 0.4 seems a reasonable choice. The filtered normalized signals,

respectively v̂0(t) and F̂ (t), are plotted in figure 4(c) and indeed appear very similar. As a further

illustration, figure 4(d) shows the scatter plot of the values of F̂ (t) and v̂0(t) sampled with a certain

time interval. The correlation between the two signals is beyond doubt, which is also shown by the

value of the correlation coefficient C = 0.69. This is a positive result that demonstrates potential

capability of the Lorentz force flowmeter to register fluctuations of the flow rate.

One can also notice in figure 4(c) that there is a certain time shift between the flow rate and the

measured force. The oscillations in the flow rate are preceded by corresponding low-frequency

oscillations of the force. An explanation of this phenomenon would require much closer scrutiny

of the velocity and force fields and is beyond the scope of the present investigation. One can

speculate, however, that the shift is related to evolution of near-wall coherent structures which

can affect the flow rate and later be registered by the magnet system. It can be noted that in low-Re

turbulent flows, such as the one analyzed in this section, the coherent structures are typically

quite strong.

After having characterized the kinematic properties of the Lorentz force, we would now

like to know how strongly the flow modification caused by the presence of the external magnetic

field affects the measured Lorentz force. In order to answer this question we perform a second

simulation in which the Lorentz force acts on the velocity field and this case therefore constitutes

a complete (dynamic) MHD simulation of the flux flowmeter. For this run, the parameters are

chosen in such a way that the interaction parameter, which measures the relative strength of

the Lorentz force to inertial effects, is approximately equal to N = (2σB2
0R)/(ρv0) = 0.2 where

ρ is the density of the fluid. This value of N is typical of metallurgical applications. Figure 5

shows the results of the computation. As expected, the mean velocity v0 is slightly smaller in

the MHD case since extra dissipation is introduced by the Lorentz force while the forcing is

identical to the one used in the kinematic case. The mean Lorentz force is also slightly smaller

than in the kinematic case. Although we have not systematically studied the dynamic case,
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Figure 5. Dynamic versus kinematic simulations: time histories of: (a) average

velocity v0 and (b) integrated Lorentz force F for the unsteady turbulent flow

in a pipe interacting with a longitudinal flux flowmeter. Both plots contain the

kinematic (dark lines) and dynamic (light lines) cases.

it can be inferred from the simulation that the kinematic theory overestimates the Lorentz force

but (for parameter values relevant to metallurgical applications) does not introduce a significant

error into the predictions.

4. Transverse flux flowmeter

It is often desirable to use magnetic systems which are located on one side of the pipe only and

whose magnetic field is predominantly transverse to the direction of the mean flow. We shall term

such systems transverse flux flowmeters. Unlike longitudinal flux flowmeters which encircle the

flow entirely, they do not have to be disassembled and reassembled when they are to be used in

different locations.

To develop a general understanding of the main characteristics of transverse flux flowmeters

we consider a steady unidirectional pipe flow with the same general velocity profile (equation (7))

as in the previous section. We wish to investigate the effect of two-dimensional magnetic fields

of the form

B = By(y, z)ey + Bz(y, z)ez. (21)

Here x = r cos ϕ and y = r sin ϕ are Cartesian coordinates in the plane perpendicular to the pipe

axis which we shall use in addition to the cylindrical coordinates introduced in the previous

section. The components of the magnetic field must satisfy the condition ∂By/∂y + ∂Bz/∂z =
0 but can otherwise be arbitrary. We are interested in the streamwise component of the

Lorentz force which is not affected by Bz. We therefore only need to prescribe the transverse

component By.

To keep the analysis simple, we assume that the variation of this quantity over the cross-

section of the pipe −R � y � +R is weak in which case the dependence of By on y can be

neglected. This corresponds to the case when the distance between the source of the magnetic

field and the pipe is much larger than the diameter of the pipe. Hence we can write By(y, z) ≈ B(z)
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inside the pipe. Having in mind that any distribution B(z) can be expanded into a Fourier series

it is natural to start with the simplest case

B(z) = B0 cos kz, (22)

which is also of interest as the simplest model describing the spatially periodic distribution of

the magnetic field in a rotary flowmeter.

For the present case the electric potential does no longer vanish and has to be obtained by

solving equation (9)

∇2� = −B0 cos kz cos ϕ
dv

dr
(23)

with the boundary conditions

� = 0 (for r = 0),
∂�

∂r
= 0 (for r = R). (24)

The first boundary condition ensures that the electric potential is unique and the electric current

is nonsingular at the origin, whereas the second boundary condition expresses that the normal

component of the electric current vanishes at the wall which we assume to be electrically

insulating. It has to be stressed that the second condition is valid only if the flow satisfies the

no-slip condition at the wall. In other cases, for example, in the case of solid-body translation

considered below, the condition has to be modified to

∂�

∂r
= (u × B)r (for r = R). (25)

The solution of (23) can be represented as

�(r, ϕ, z) = −v0B0R cos kz cos ϕ · f
( r

R

)

(26)

where f(ξ) is a solution of the equation

ξ2f ′′ + ξf ′ − (κ2ξ2 + 1)f = ξ2g′(ξ) (27)

with the boundary conditions f(0) = 0 and f ′(1) = 0. In (27), g(ξ) is the shape function of the

velocity profile defined in the previous section and κ = kR is the nondimensional wavenumber

of the magnetic field. Once this equation has been solved, the Lorentz force density

F = σ(−∇� + v × B) × B (28)

can be evaluated. As in the previous section, we are only interested in the z-component of the

Lorentz force. Inserting (26) into (28) and integrating over the volume πR2L of one period of

the magnetic field (where Lz = 2π/k) we obtain the total force as

F = −
π

2
σv0B

2
0R

2LzS(κ). (29)
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Here the sensitivity is given by

S(κ) = 1 − f(1). (30)

This relation shows that we only need to know the nondimensional potential f(1) at the wall of

the pipe in order to compute S. In contrast to the case considered in the previous section, the

sensitivity does not only depend on the shape of the velocity profile but also on the wavenumber

κ of the magnetic field.

As in the previous section, we analyse the dependency of the force field (29) on the velocity

profile. In the case of solid-body translation, the right-hand side of (27) is zero and the equation

reduces to the modified Bessel equation. Since the no-slip condition is violated by such a flow,

the boundary condition at ξ = 1 changes to f ′(1) = 1 (see (25)). The solution and the sensitivity

function (30) are easy to find in terms of the modified Bessel functions

f(ξ) =
I1(κξ)

κI ′
1(κ)

, S(κ) =
κI0(κ) − 2I1(κ)

κI ′
1(κ)

(31)

where κI ′
1(κ) = κdI1(κ)/dκ = κI0(κ) − I1(κ). In the case of a laminar pipe Poiseuille flow

with g(ξ) = 2(1 − ξ2) the equation (27) with homogeneous boundary conditions can be solved

analytically as

f(ξ) = −
4I1(κξ)

κ3I ′
1(κ)

+
4ξ

κ2
, S(κ) = 1 +

4I1(κ)

κ3I ′
1(κ)

−
4

κ2
. (32)

No analytical solution could be found for the case of the more general one-parameter

velocity profile (19) so we had to resort to numerical solution. The boundary-value problem was

solved using a shooting procedure based on the adaptive step-size Runge–Kutta algorithm of

predetermined solution accuracy. Asymptotic expansion was used to treat the singular point at

ξ = 0.

The results are presented in figure 6. One can see that, as in the case of longitudinal flowmeter,

the measured force is weakly affected by the details of the flow field. Vastly different velocity

profiles illustrated in figure 2 generate only slightly different sensitivity functions.

In addition to the total Lorentz force one is often interested in the mean Lorentz force density

f = F/(πR2Lz) which is equal to

f = 1

2
σv0B

2
0S(κ). (33)

Figure 6 shows that the sensitivity of the flowmeter is a monotonically increasing function of

the wavenumber. For small wavenumbers the magnetic field depends only weakly on z, the eddy

currents are predominantly in the x–y-plane and their contribution to the force is small. As the

wavenumber grows the eddy currents become more and more three-dimensional and the Lorentz

force increases. However, one should be wary of drawing conclusions from the monotonic

nature of S(κ) without taking into account that in practice the magnetic field amplitude B0 is not

a constant. To be specific, assume that the magnetic field (22) were produced by a thin sheet of

electric current with thickness δ located at a distance D below the pipe whose current density
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Figure 6. Sensitivity of the transverse flux flowmeter: sensitivity function S(κ)

plotted as a function of κ for the parabolic Poiseuille profile, generalized profiles

(19) with α = 100, 102, 104, and solid-body translation (from top to bottom). The

sensitivity function obtained at α = 10−2 is indistinguishable from the function

for the parabolic profile.

is given by J = J0 sin(kz)ex (for −D − δ/2 � y � −D + δ/2) and J = 0 elsewhere. In the limit

kδ → 0 (very thin sheet) the transverse magnetic field produced by the sheet is

By(y, z) = µ0J0δ e−k|y−D| cos kz. (34)

If we further assume that the power consumption for producing the electric current, expressed

in terms of dissipated Joule heat per unit length q = (J2
0 /σ) · 2πδ/k is prescribed, we can write

the current density as J0 = (σkq/2πδ)1/2 and the amplitude of the magnetic field becomes

B2
0 =

µ2
0σqδ

2π
k e−2kD. (35)

This relation shows that the magnetic field amplitude decreases strongly for large wavenumbers,

so for a given electric power q (per unit length of the pipe) the Lorentz force has a maximum at

a certain finite value of κ. This example demonstrates how important it is to take the source of

the magnetic field properly into account.

5. Interaction of a magnetic dipole with a uniformly moving fluid

It has become obvious in the previous section that it is not only important to compute the

force acting on the fluid but also to take into account the way in which the magnetic field is

produced. Indeed, the sensitivity of a static Lorentz force flowmeter using permanent magnets

is determined by the ratio F/M of the Lorentz force to the mass of the magnet system rather
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Figure 7. Sketch of the considered problem: a uniformly moving fluid with

electrical conductivity σ interacts with a magnetic dipole whose orientation is

perpendicular to the surface. Points A, A1, A2 are shown to explain the calculation

of the secondary magnetic field. A is the point at which the field is to be

determined, A1 is its mirror image with respect to the plane z = 0, A2 is a shift

of A1 by d in the negative z-direction.

than by the sensitivity alone. We therefore need not only a tool to compute the Lorentz force but

also to relate the force to the weight of the magnet system. The present section uses an exactly

solvable simplified model to outline how to accomplish this task.

5.1. Primary magnetic field

Consider a single dipole with magnetic dipole moment m = mez which is located at a distance h

above a fluid layer with thickness d.As shown in figure 7, the layer moves with uniform horizontal

velocity v = vex and extends from z = −d to z = 0. Since we have seen in the previous sections

that the Lorentz force for solid-body translation differs only weakly from that for realistic velocity

profiles, we believe that this highly simplified ‘flow field’ captures the general properties of the

problem. We will use both Cartesian coordinates x, y, z and cylindrical coordinates x = r cos ϕ,

y = r sin ϕ to formulate and analyse our problem. Notice that the definition of the coordinates

differs from the previous two sections. Our goal is to compute the primary magnetic field B(r),

the electric potential φ(r), the eddy currents J(r) and finally the secondary magnetic field b(r). In

contrast to the previous two sections the force will be computed by evaluating the interaction of

the secondary magnetic field with the magnetic dipole. The dipole generates a primary magnetic

field whose distribution is well known from classical electrodynamics, see e.g. [18], and is

New Journal of Physics 9 (2007) 299 (http://www.njp.org/)

http://www.njp.org/


17 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

given by

B(r′) =
µ0

4π

{

3(m · r′)
r′

r′5
−

m

r′3

}

. (36)

Here r′ = r − hez and r′ = |r′|. In order to compute the eddy currents, we need to know the

primary field within the moving fluid. The components of this field are

Bx =
3µ0m

4π

(z − h) r cos ϕ
[

r2 + (z − h)2
]5/2

, (37)

By =
3µ0m

4π

(z − h) r sin ϕ
[

r2 + (z − h)2
]5/2

, (38)

Bz =
µ0m

4π

2(z − h)2 − r2

[

r2 + (z − h)2
]5/2

. (39)

5.2. Secondary electric currents

Next we need to determine the distribution of the electric potential in order to obtain the

eddy currents. To this end we take the divergence of Ohm’s law (8) having in mind that j is

divergence-free and that ∇ · (v × B) = B · (∇ × v) − v · (∇ × B) = 0 because both the primary

magnetic field and the velocity are irrotational within the layer. Thus the potential in the layer is

governed by

∇2� = 0 (40)

for −d < z < 0 supplemented by the boundary conditions

∂�

∂z
= −

3µ0mv

4π

hr sin ϕ

[r2 + h2]5/2
at z = 0, (41)

∂�

∂z
= −

3µ0mv

4π

(d + h)r sin ϕ

[r2 + (d + h)2]5/2
at z = −d. (42)

These conditions express that the vertical component of the electric current density must vanish

at the surfaces of the layer and are obtained by using Ohm’s law (8) to write jz = 0 as

∂φ/∂z = v By(x, y, 0) and by using (37) to express By.

It can be readily verified that the solution of this problem is

�(r, ϕ, z) = −
µ0mv

4π

r sin ϕ
[

r2 + (z − h)2
]3/2

. (43)

Based on this, the secondary electric currents are immediately obtained employing (8) as

jx = −
3µ0mσv

8π

r2 sin 2ϕ
[

r2 + (z − h)2
]5/2

, (44)
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Figure 8. Distribution of eddy currents for the case when a magnetic dipole

interacts with a uniformly moving fluid. The currents are shown for the upper

surface (z = 0). The fluid moves from left to right and the eddy currents at

x = y = 0 are in the positive y-direction.

jy = −
µ0mσv

8π

2(z − h)2 − r2(1 + 3 cos 2ϕ)
[

r2 + (z − h)2
]5/2

, (45)

jz = 0. (46)

These eddy currents are purely horizontal. Due to their two-dimensionality they can be expressed

as j = ∇ × (ψez) where

ψ(x, y, z) =
µ0mσv

4π

r cos ϕ

[r2 + (z − h)2]3/2
. (47)

The isolines of ψ(x, y, 0) are plotted in figure 8. The figure shows that the secondary electric

currents are strongest below the location of the dipole and form two large counterrotating eddies.

5.3. Secondary magnetic field

When j is time-independent, the secondary magnetic field b is uniquely determined by Ampere’s

law

j =
1

µ0

∇ × b (48)

combined with the equation ∇ · b = 0 and the boundary condition |b| → 0 at infinity. The fact

that the eddy currents are purely horizontal simplifies the computation of the secondary magnetic

field and of the force considerably because b can be represented as b = ∇ × ∇ × (χez) with

χ(r) =
µ0

4π

∫

ψ(r′)

|r − r′|
d3r′. (49)
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Figure 9. Structure of the secondary magnetic field induced by the interaction

of a moving layer with a magnetic dipole. For clarity only a small subset of

the magnetic field lines is plotted for which the field lines originate from the

circle r = h at z = 0. (a) Thin layer, (b) general case and (c) semi-infinite

layer. The secondary field at the location of the dipole is in the same direction

as the flow.

As detailed in the appendix, the necessary integrations can be performed analytically and lead

to the following result:

χ(r, ϕ, z) =
µ0mσv

4

{

[

ζ(r, z, h) − 1

ζ(r, z, h) + 1

]1/2

−

[

ζ(r, z, h + d) − 1

ζ(r, z, h + d) + 1

]1/2
}

cos ϕ (50)

where ζ(r, z, ℓ) = [1 + r2/(ℓ + |z|)2]1/2. Figure 7 shows that the functions ζ(r, z, h) and ζ(r, z,

h + d) have clear geometrical meaning. Let A be an arbitrary point at which the field is to be

computed, A1 its mirror-image with respect to the plane z = 0, and A2 its shift by −d along

the z-direction. Then, tan(α) = r/(|z| + h) and tan(β) = r/(|z| + h + d), where the angles α and

β are shown in figure 7. Hence, 1/ζ(r, z, h) = cos(α) and 1/ζ(r, z, h + d) = cos (β), and after

some algebra we arrive at the compact form

χ(r, ϕ, z) =
µ0mσv

4
{tan(α/2) − tan(β/2)} cos ϕ. (51)

The structure of χ shows that the magnetic field of a layer with finite thickness d is the same as that

of two semi-infinite layers moving in opposite directions where one layer has its surface at z = 0

and moves in positive direction while the surface of the other layer is located at z = −(h + d/2)

and moves in the negative x-direction.

From expression (48) the secondary magnetic field is readily obtained by differentiation:

bx = ∂2χ/∂x∂z, by = ∂2χ/∂y∂z, bz = −∂2χ/∂x2 − ∂2χ/∂y2. Since the resulting expressions are

lengthy we will not write them out explicitly. The structure of the secondary magnetic field is

shown in figure 9.

For the particular cases of a thin layer (d ≪ h) and a thick layer (d ≫ h) the magnetic field

can be written explicitly. Details of the derivations are given in the appendix. For the thin layer
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we obtain

bx(r, ϕ, z) =
µ2

0mσv

8π

sin3(α)

r3

[

3 sin2(α) cos2(ϕ) − 1
]

sign(z),

by(r, ϕ, z) =
µ2

0mσvd

16π

3 sin5(α)

r3
sin(2ϕ) sign(z), (52)

bz(r, ϕ, z) =
µ2

0mσvd

8π

3 sin5(α)

r3
cos(ϕ),

whereas for the thick layer we have

bx(r, ϕ, z) =
µ2

0mσv

16π

sin2(α/2)

r2

[

4 + 3 cos(α) + cos2(α)
]

cos(2ϕ) sign(z),

by(r, ϕ, z) =
µ2

0mσv

8π

sin2(α/2)

r2
(2 + cos α) sin(2ϕ) sign(z), (53)

bz(r, ϕ, z) =
µ2

0mσvd

16π

sin3(α)

r2
cos(ϕ).

Both distributions are shown in figure 9 as well.

5.4. Force and torque

In sections 2 and 3 we have computed the force on the magnet system by evaluating the force

on the fluid and by invoking the reciprocity principle (4). Here we illustrate the alternative route

which consists of computing the force on the magnetic dipole directly by making use of the

secondary magnetic field. The advantage of this approach is that it provides us not only with the

force but furnishes the torque on the magnet system as well.

According to classical electrodynamics (see e.g. [18]) our magnetic dipole experiences a

force

F = (m · ∇)b (54)

and a torque

T = m × b (55)

due to the secondary magnetic field. Along the axis r = 0 where the dipole is located, bx

is the only nonvanishing component, as can be seen from figure 9. Consequently, only the

components Fx = m∂bx(0, 0, z)/∂z|z=h and Ty = mbx(0, 0, h) are nonzero. In order to compute

these quantities we need to know b along the line r = 0. These computations can be performed

analytically and provide the result

F = +
1

128π
·
µ2

0m
2σv

h3
SF (δ)ex, (56)

T = −
1

128π
·
µ2

0m
2σv

h2
ST (δ)ey, (57)
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where the sensitivities SF (δ) and ST (δ) as functions of the nondimensional plate thickness

δ = d/h are given by

SF (δ) = 1 −
1

(1 + δ)3
, (58)

ST (δ) = 1 −
1

(1 + δ)2
. (59)

For a thin layer (δ → 0) we readily obtain

SF = 3δ, ST = 2δ, (60)

whereas for the semi-infinite layer (δ → ∞) we have

SF = 1, ST = 1. (61)

These expressions display several important properties of Lorentz force flowmeters. Firstly,

the torque and the force are proportional to the velocity and to the square of the magnetic

dipole moment. This shows that the sensitivity of a Lorentz force flowmeter is a nonlinear

function of the intensity of the primary magnetic field in contrast to conventional inductive flow

measurement methods like inductive flowmeters or inductive flow tomography. The sensitivity

of Lorentz flowmeters can therefore be greatly enhanced by selecting magnetic materials with

high magnetization. Secondly, the torque given by equation (57) is negative. If the dipole were

of finite extent and free to rotate about the y-axis, it would rotate in the same way as a flywheel

forced by the flow. The positive sign of the force shows that the fluid drags the magnetic dipole

along its own direction of motion. These facts support our intuitive view that the flow invisibly

rotates and drags the dipole as if the dipole’s magnetic field lines would feel a friction with the

flow. Finally, both the torque and the force decay quickly with increasing distance, whereby the

decay of the force (Fx ∼ h−4) is faster than the decay of the torque (Ty ∼ h−3).

It should be noted that the force increases more quickly with increasing thickness of the

layer than the torque. This property has an interesting consequence, illustrated by dot-dashed

line in figure 10 which presents the ratio of the force and the torque (in nondimensional form

SF (δ)/ST (δ)). This quantity is a monotonically decreasing function of δ which implies that if one

simultaneously measures both the force and the torque one can not only determine the velocity

but also the thickness of the layer. Indeed, from the ratio

SF (δ)

ST (δ)
=

3 + 3δ + δ2

2 + 3δ + δ2
(62)

one can determine δ which can then be used in (57) or (56) to obtain the velocity.

Let us illustrate the predictions of the theory using a practical example. Consider a cubic

permanent magnet with 1 cm side length consisting of magnetic material with magnetization

density M = 2000 kA m−1. The volume of the magnet is V = 10−6 m3, and its magnetic

moment becomes m = M V = 2A m2. At a distance h = 1.5 cm from the magnet we imagine

three layers of liquid metal with thicknesses d1 = 1 mm, d2 = 1 cm, and d3 = 10 cm having

electrical conductivity σ = 106 (� m)−1 moving with velocity v = 1 ms−1. Then, gathering

all parameters into (56) and remembering that µ0 = 4π × 10−7 NA−2 we obtain the forces
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Figure 10. Force and torque on a uniformly moving fluid layer interacting with

a magnetic dipole: sensitivity of force (solid line), sensitivity of torque (dashed

line) and their ratio (dot-dashed line) as a function of δ = d/h as obtained from

equations (58), (59) and (62), respectively.

F1 = 1.3935 × 10−5 N, F2 = 1.3688 × 10−4 N, and F3 = 0.012 N respectively. This example

shows that the force becomes very small when the fluid layer is thin. Notice, however, that

it is not the absolute force which is important but rather the ratio of the Lorentz force to the

gravity force acting on the magnet. These ratios are approxiately 3 × 10−4, 3 × 10−3 and 0.25,

respectively.

6. General kinematic theory

Having developed a sufficient intuitive understanding of the physical principles of the Lorentz

force flowmeter, we can now summarize the general mathematical formulation of the theory. The

general problem can be formulated as follows: given a magnet system characterised by a spatial

distribution J(r) of the primary electric currents or by a distribution M(r) of magnetization

density and given a (possibly time-dependent) velocity field v(r) compute the force F and the

torque T acting on the magnet system. In formulating the theory we should once again emphasize

the distinction between the kinematic problem in which the velocity field is prescribed and the

dynamic problem where the velocity field is modified by the presence of the primary field and has

to be determined as a solution of the equations of MHD. Here we will formulate the kinematic

theory. To this end we shall make the following assumptions.

Firstly, we assume that the velocity field is known. This is a less restrictive assumption

than it might appear. Indeed, the kinematic theory is valid no matter whether the velocity field

is prescribed (as in the previous sections) or determined by solving the equations of MHD.

Secondly, we shall suppose that the primary magnetic field is much stronger than the secondary

field. This is expressed by the condition that the magnetic Reynolds number Rm = µ0σvL is

small—a condition that is met in most industrial applications of electrically conducting fluids.

Thirdly, the typical time scale T of the large-scale structures of the flow is assumed to be much
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larger than the magnetic diffusion time µ0σL2; this allows us to use the quasistatic approximation

for the computation of the secondary magnetic field. Fourthly, we restrict our attention to the case

where the sources of the magnetic field J(r) or M(r) are given. In case of a permanent-magnet

system this means that the permanent magnets consist of hard magnetic material which implies

that the distribution of magnetization density is unaffected by the primary or secondary magnetic

field. Finally, we exclude the possibility that the magnetic system moves under the influence of

the force and torque, thereby sacrificing magnetic fluid–structure interactions.

6.1. Primary magnetic field

When the magnet system is an electromagnet with an electric current distribution J(r) the

corresonding primary magnetic field is given by Biot–Savart’s law

B(r) =
µ0

4π

∫

J(r′) × (r − r′)

|r − r′|3
d3r′. (63)

The case of a system of permanent magnets characterized by a distribution M(r) of magnetization

density can be treated in the same way if we introduce a fictitious electric current distribution

J = ∇ × M. (64)

Sometimes, however, it is more convenient to use the equations of magnetostatics (see e.g. [22])

∇ ×

(

B

µ0

− M

)

= 0, ∇ · B = 0. (65)

It follows from the first of these two equations that µ−1
0 B − M must be the gradient of a magnetic

potential whose distribution inside and outside the magnet system is denoted by � and �M ,

respectively. The second of the equations requires

∇2�M = −∇ · M within the magnet system (66)

and

∇2� = 0 outside the magnet system. (67)

The normal component of the magnetic field has to be continuous across the boundary of the

magnetic system which leads to the boundary condition

∂�

∂n
−

∂�M

∂n
= Mn. (68)

Here ∂/∂n is the normal derivative and Mn = M · n the normal component of the magnetization

at the inner boundary of the magnet system. Finally we require that there are no magnetic fields at

infinity, i.e. |�| → 0 as |r| → ∞. Equations (66)–(68) uniquely determine the primary magnetic

field B = µ0∇� within the fluid.

New Journal of Physics 9 (2007) 299 (http://www.njp.org/)

http://www.njp.org/


24 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

6.2. Electric potential and eddy currents

To compute the eddy currents we take the divergence of Ohm’s law (8), remember that ∇ × B = 0

in the fluid, and obtain

∇2� = B · (∇ × v) (69)

for the electric potential. The boundary condition at the wall is obtained by requiring the normal

component of the eddy currents to be zero. Using (8) this translates into

∂�

∂n
= n · (v × B). (70)

If we have the no-slip condition v = 0 at the wall, this boundary condition simplifies to

∂�/∂n = 0. Once � is obtained, the eddy currents j can be computed from Ohm’s law.

6.3. Secondary magnetic field

The eddy currents create the secondary magnetic field which is described by equation (48) and

the condition ∇ · b = 0. The latter condition can be automatically satisfied by introducing the

magnetic potential according to b = ∇ × a. Inserting this into Ampere’s law yields the equation

− ∇2a = µ0j (71)

which has to be solved subject to the boundary condition b → 0 at infinity. This solution can

be explicitly written down and leads to the following integral representation of the secondary

magnetic field.

b(r) =
µ0

4π

∫

j(r′) × (r − r′)

|r − r′|3
d3r′. (72)

Observe that the secondary magnetic field is a linear functional of both the velocity and current

or magnetization.

6.4. Force and torque

Once the secondary magnetic field has been computed, the force and torque are obtained by

integrating over the whole magnetic system. The results are

F =

∫

m

[M(r) · ∇]b(r)d3r (73)

and

T =

∫

m

M(r) × b(r)d3r. (74)

Notice that both the torque and the force are quadratic functionals of the magnetization and linear

functionals of the velocity.
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7. Summary and conclusions

We have formulated the theory of Lorentz force velocimetry. The main results are embodied in

the exact analytic relations (20) for the sensitivity of the longitudinal flux flowmeter with general

velocity profile, (32) for the transverse flowmeter with Poiseuille profile and (58), (59) for a

moving layer under the influence of a localized distribution of magnetic material. Moreover,

the general equations summarized in section 6 provide a rational framework for the sensitivity

analysis for complex velocimeter geometries for industrial use.
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Appendix. Secondary magnetic field for a moving layer

The secondary magnetic field can be represented as b = ∇ × a. The vector potential a ensures

the solenoidal character of b and can be expressed through the secondary electric current via

a(r) =
µ0

4π

∫

j(r′)

|r − r′|
d3r′. (A.1)

The two-dimensionality of the current, i.e. (j = ∇ × (ψez)), permits us to express the vector

potential as a = ∇ × (χez) when

χ(r) =

∫

ψ(r′)

|r − r′|
d3r′. (A.2)

The final integration is carried out with the aid of the Fourier decomposition

1

|r − r′|
=

∞
∑

m=0

ǫm cos [m(ϕ − ϕ′)]

∫ ∞

0

e−k|z−z′|Jm(kr)Jm(kr′) dk. (A.3)

Here, ǫm is the so-called Neumann symbol, defined as ǫm = 1 for m = 0 and ǫm = 2 for m �= 0

and Jm are cylindrical Bessel functions of order m. Since ψ given by (47) has only one nonzero

azimuthal Fourier component, the integration over the horizontal coordinates can be performed
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analytically. It gives:

χ(r, ϕ, z) =
µ0mσv

π

[ζ(r, z, h) − 1]

rζ(r, z, h)
cos ϕ, (A.4)

where ζ(r, z, h) = [1 + r2/(h + |z|)2]1/2. This expression gives χ for the infinitely thin layer

moving at a distance h from the dipole. Since the eddy currents are entirely horizontal, in

order to find χ for the layer of arbitrary thickness one can consider it as a collection of thin layers

which are located at distances h + z′ where z′ belongs to interval −d � z′ � 0. In particular,

for each slice having coordinate z′ we perform the same calculation as before for the thin plate

and obtain χ given by (A.4). First, we extract the coordinate z′ of the slice: |z| → |z − z′| and

h → h − |z′|, where |z| is the distance between point A and the upper surface located at z = 0,

and h is the distance between the upper surface and the dipole m, see figure 7. In order to use

(A.4), the function ζ(r, z, h) must be taken as ζ(r, z + |z′|, h + |z′|) = [1 + r2/(h + |z| − 2|z′|)2]1/2

and then (A.4) can be integrated over −d � z′ � 0. The integration is performed conveniently

by substituting z′ by ζ′:

dζ′(r, z + |z′|, h + |z′|) = 2
(ζ′2 − 1)

3
2

rζ′
dz′,

and the resulting χ for the finite layer is:

χ =
µ0mσv

π
cos(ϕ)

∫ 0

−d

2(ζ′(z′) − 1)

ζ′(z′)r
dz′ (A.5)

=
µ0mσv

π
cos(ϕ)

∫ ζ(r,z,h)

ζ(r,z,h+d)

dζ′

(ζ′ − 1)1/2(ζ′ + 1)3/2
(A.6)

which gives finally (50).
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