Lawrence Berkeley National Laboratory

 Recent WorkTitle
THEORY OF THE LOW-ENERGY PION-PION INTERACTION

Permalink

https://escholarship.org/uc/item/42v7g3ki
Authors
Chew, Geoffrey F.
Mandelstam, Stanley.
Publication Date
1959-04-15

UNIVERSITY OF CALIFORNIA

 Ernest O. Laurence Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory

 Berkeley, CaliforniaContract No. W-7405-eng-48

THEORY OF THE LOW-ENERGY PION-PION INTERACTION Geoffrey F. Chew and Stanley Mandelstam

```
April 15, 1959
```

Printed for the U. S. Atomic Energy Commission

THEORY OF THE LOWøENERGY PIONœPION INTERACTION*
Geoffrey F. Chew and Stanley Mandelstam
Lawrence Radiation Laboratory and Department of Physics University of California, Berkeley, California

April 15, 1959

ABSTRACT

The double-dispersion representation is applied to the problem of pion-pion scattering, and it is shown that, if inelastic effects ere important only at very high energies, a set of integral equations for the lowenergy amplitudes can be derived. The solution of these equations eppears to depend on only one arbitrary real parameter, which may be defined as the pionopior. coupling constant. The order of magnitude of the new constant is established. and a procedure for solving the integral equations by iteration is cutlined

[^0] the AFOSR of the Air Research and Development Commans.

THEORY OF THE LOW-ENERGY PION-PION INTERACTION
Geoffrey F. Chew and Stanley Mandelstam

Lawrence Radiation Laboratory and Department of Fhysics

University of California, Berkeley; Californis.
April 15, 1959

I. INHRODUCTION

It has become evident in recent times that no further substartsel progress will be made in the theory of strong-interaction phenomas an we pions sne nucleons until something is understood about the picn-pion intsen. Exerious thearetical work on this probiem has lacked a framework in when make plasible approximations, so the results of calculations done ur an are not considered reliable. Recently, however, one of us has propozed a gercralization of aispersion relations that allows the simultaneous exve. $5:=$ of energy and momentum transfer variables into the complex plane. if no double-dispersion representation is accepted as correct, it beccmes pus. \because formalate an approximation method for elementary-particle acettering at in energies that is extremely piausible. We propose in this peper to arpiy to new method to the pion-pion interaction.

The underlying motivation of the new approach is the froperty of an analytic function that its behavior in a limited region of the complex ase is dominated by nearby singularities. This circumstance is the beast ot "effective-range" theories for partial-wave scattering amplitules. Etresta range theory leads to approximate formulas for partial amplitudes, walia in a smail range of energies, that include nearby poles ard branch points ion : distant singularities. These formulas approxinate the infivence of the nexlected

1
S. Mandelstam, Phys. Rev. (1959), to be publisho, and Wiversity of Cain Forn Physics Department preprint, Berkeley !1959). Also Phys. Rev. ile. ijum
singularities by arbitrary constants to be fitted by experiment. The content of the double-dispersion representation is essentially to give the location and character of all the singularities of a scattering amplitude as well as the behavior at infinity. Armed with this information, one may extend the usual "effective-range" approach so as to reduce drastically the number of free parametere. Of course one can never include all the distant singularities, but in the pionmpicn problem the first difficult branch point occurs at such a high energy that we belleve the omitted effects can to a good approximation be absorbed into a single real parameter.

In the conventional Lagrangian formulation of field theory an independert: constant appears in the pionopion interaction, so one may be temptea to regari an effectiverange approach with a single free parameter as the equivalent cif complete dynamical calculation. We prefer not to delve here into this very difficult question of principle but leave to the reader the thecreticei intexpeo tation of the constant λ that is to be introduced. Our definition of λ wil. be unambiguous from the experimental point of view.

As the price for including more of the nearby singularities than is usually attempted in effective-range theories, we shall have to solve nonilnear integral equations to find the pionopion scattering amplitude. These equations will perhaps seem complicated, but they can be put into a nonsingular form amenable to numerical solution. The results of the numerical solutions for various values of λ are given in a subsequent paper.

II. SYMMETRIES AND KINEMATICS

Pion-pion elastic scattering may be represented by whe diagram of itig, I, where the ingoing fouromomenta and isotopicmspin indires are (fy α) ard
 for dieclissions of symetry to use a notation ir whioh all mamerta are formally directed inward, although in the physical region m_{1} and p_{2} are posityv. timeilke, with p_{3} and p_{4} negative timelike. The convenient intaniart dynamical variables for the double-dispersion representation are the squares :f the total center-of-mses energies for the three reaetions:

$$
\begin{array}{ll}
\text { Io } & \left(p_{1}, \alpha\right)+\left(p_{2}, \beta\right) \rightarrow\left(-p_{3}, r\right)+\left(-p_{4}, \delta\right) \\
\text { II. } & \left(p_{1}, \alpha\right)+\left(p_{4}, \delta\right) \rightarrow\left(-p_{2}, \beta\right)+\left(-p_{3}, \gamma\right) \\
\text { III. } & \left(p_{1}, \alpha\right)+\left(p_{3}, \gamma\right) \rightarrow\left(\infty p_{2}, \beta\right)+\left(-p_{4}, \delta\right)
\end{array}
$$

Thus we define

$$
\begin{align*}
& s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}=4\left(q^{2}+\mu^{2}\right) \\
& \Xi=\left(p_{1}+p_{4}\right)^{2}=\left(p_{2}+p_{3}\right)^{2}=-2 q^{2}(1+\infty \cos)
\end{align*}
$$

and

$$
t=\left(p_{1}+p_{3}\right)^{2}=\left(p_{2}+p_{4}\right)^{2}=-2 q^{2}(1-\cos \theta)
$$

where q is the magnitude of the threemomentum and θ the angle of scartarires in the barycentric system. Note the important supplementary conditicn 2

The isotopic indices α, β, r, and δ can eacr assume the $\quad \beta \quad 10,1,2$, The value 3 corresponds to the neutral pion, while lineer combinations of 1 and 2 correspond in the usual way to arged pions.

$$
\begin{equation*}
s+t+\bar{t}=4 \mu^{2} \tag{11,3}
\end{equation*}
$$

which means that only two of the three variables s, t, \bar{t} are independert ever When extensions are made into the complex plane.

Since isotopic spin is conserved and the three values $Z=0, I, 2$ as. occur, we expect to have three independent invariant functions of s, t. These functions are conveniently introduced by writing the complete ampiltuit as
$A(s, t, \bar{t}) \delta_{\alpha \beta} \delta_{\gamma \delta}+B(s, t, \bar{t}) \delta_{\alpha \gamma} \delta_{\beta \delta}+C(s, t, \bar{t}) \delta_{\alpha \delta} \delta_{\beta \gamma}$.

Crossing symmetry leads at once to the relations
and

$$
\begin{align*}
& A \rightarrow A \tag{x}\\
& B \rightarrow C \\
& A \rightarrow \bar{t}, \quad s \rightarrow s \\
& A \rightarrow C \\
& C \rightarrow \bar{t},
\end{align*}
$$

$$
\left.\begin{array}{l}
A \rightarrow C \\
B \rightarrow B
\end{array}\right\} \quad s \rightarrow \bar{t}, \quad t \rightarrow t
$$

- The first of these relations simply expresses the Fauli principle, but the remaining two place a powerful nev condition on the combined fnergy snd angular dependence of the amplitude. Such a condition, even fhcugh it arices from very simple considerations, is not known outside field theory.

An elementary calculation gives the connection betweer A, B, B gri the three amplitudes A^{I} corresponding to wellodefined in spin

$$
\begin{aligned}
& A^{0}=3 A+B+C \\
& A^{1}=B-C \\
& A^{2}=B+C
\end{aligned}
$$

$$
A^{1}=B-C, \quad \text { ini,bicion }
$$

At this point one may verify that (II.5), together with (II.2), means that only even powers of $\cos \theta$ appear in the amplitudes for $I=0,2$ and only odd powers of $\cos \theta$ for $I=1$. The implications of (II.6) and (II.7) are much more subtle, as we shall see later.

The unitarity condition on the pionopion amplitude is most usefuily expressed in terms of the partial-wave expansion of the amplitudes A^{I} when these are considered as functions of q^{2} and $\cos \theta$:

$$
\begin{equation*}
A^{I}\left(q^{2}, \cos \theta\right)=\sum_{\substack{\ell \text { even, } I=0,2 \\ \ell \text { odd, } I=1}}^{\sum(2 \ell+1) A_{\ell}^{I}\left(q^{2}\right) P_{\ell}(\cos \theta) .} \tag{Ir.9}
\end{equation*}
$$

Unitarity allows the partial amplitudes $\left.A_{\ell} I_{(q)}{ }^{2}\right)$ to be written in terms of phase shifts δ_{ℓ}^{I} according to ${ }^{3}$

$$
\begin{equation*}
A_{\ell}^{I}\left(q^{2}\right)=\frac{\sqrt{q^{2}+\mu^{2}}}{q} e^{i \delta_{l}^{I}} \sin \delta_{\ell}^{I} \tag{II,10}
\end{equation*}
$$

where the phase shifts are real for $q^{2}<3 \mu^{2}$, the threshold for ineiastic scattering with the production of two additional pions. 4 At higher energies the phase shifts are complex, but the content of (II.10) can generaily be expressed by the relation

3
The normalization of (II.10) is arbitrary, but the dependence on a follows from the Lorentz invariance of the S matrix.

Production of any odd number of pions is forbidden by the G parity of Lee and Yang, Nuovo Cimento 3, 749 (1956)。 Singlempion production harmens also to be forbidden by ordinary parity conservation.

$$
\operatorname{Im} A_{l}^{I}=\frac{q}{\sqrt{q^{2}+\mu^{2}}} R_{l}^{I}\left|A_{l}^{I}\left(q^{2}\right)\right|^{?}
$$

or

$$
\begin{equation*}
\operatorname{Im}\left(A_{l}^{I}\right)^{-1}=-\frac{q}{\sqrt{Q^{2}+\mu^{2}}} R_{\ell}^{I} \tag{Mooll}
\end{equation*}
$$

where R_{ℓ}^{I} is the ratio of the total to the elastic partialawave cross section.

III. THE DOUBLE-DISPERSION REPRESENTATION

A prescription for extending the scattering amplitude to complex values of s, t and \bar{t}, subject to (II.3), has been given by one of us. ${ }^{l}$ This rule is embodied by the representation ${ }^{5}$

$$
\begin{align*}
& A(s, t, \bar{t})=\frac{1}{\pi^{2}} \iint d s^{\prime} d t^{\prime} \frac{A_{13}\left(s^{\prime}, t^{\prime}\right)}{\left(s^{\prime}-s\right)\left(t^{\prime} \propto t\right)}+\frac{1}{\pi^{2}} \iint d s^{\prime} d \overline{t^{\prime}} \frac{A_{12^{\prime}}^{\left(\overline{t^{2}}, s^{\circ}\right)}}{\left(s^{\prime} \omega s^{\prime}\right)} \\
& +\frac{1}{\pi^{2}} \iint d t^{0} d \bar{t}^{0} \frac{A_{23}\left(t^{s}, \bar{t}^{9}\right)}{\left(\overline{t^{r}}-\bar{t}\right)\left(t^{9}-t\right)}, \tag{2+1}
\end{align*}
$$

where the integrations in the primed variables extend in each case over regions of the positive real axis extending to infinity, and the weight functions $A_{i j}$ are real. The functions B and C have similar representations, but the

As shown in reference 1 , the correct $\pi-\pi$ representation probabiy requires also single dispersion integrals and an overall subtraction term. See. the remarks below, following Eq. (III.5), in this connection; as well as those following (IV.7).
crossing conditions tell us that only two out of the total of mine weight functions are independent, with one of these a symmetric function of its twe arguments. In particular, in order to satisfy (II.5), (II.6) and (II.7), we require

$$
\begin{array}{r}
\rho(x, y)=A_{13}(x, Y)=A_{12}(y, x)=B_{13}(y, x)=B_{23}(x, y) \\
=C_{12}(x, y)=C_{23}(y, x) \tag{m.en}\\
\rho_{s}(x, y)=\rho_{s}(y, x)=A_{23}(x, y)=B_{12}(x, y)=C_{13}(x, y) \cdot
\end{array}
$$

The region of the (x, y) plane in which the weight functions fail ta vanish is bounded by $x=4 \mu^{2}$ and $y=4 \mu^{2}$, but the region is not rectanguigit. According to the rules developed by one of us on the basis of perturbation thecry, ${ }^{1}$ the boundary is given by the curves,

$$
x=\frac{16 \mu^{2} y}{y-4 \mu^{2}}, \text { for } x>y
$$

and
(III. 3)

$$
y=\frac{16 \mu^{2} x}{x-4 \mu^{2}}, \text { for } y>x
$$

as shown in Fig. 2. The large distance to the boundary from the corner. $y=x=4 \mu^{2}$, is associated with the absence of a three-pion vertex and considerably simplifies our problem. The absence of a three-particle vertex also is responsible for the absence of poles in (II.I).

6 We assume that there exist no strongly interacting particles with the same quantum numbers as a pair of pions. If such a partisle shoula be sound, corresponding poles must be added to (III.I), whether or not the new particle is interpreted as a two pion homd state.

A point of maximum symmetry in the s, t, \bar{t} variables is the nonphysical point, $s=t=\bar{t}=4 \mu^{2} / 3$, where A, B, and C are all real and equal to sach other. It is appropriate then to introduce the pion-pion coupling constiant i through the definition ${ }^{7}$

$$
\begin{align*}
\lambda=-A\left(\frac{4}{3} \mu^{2}, \frac{4}{3} \mu^{2}, \frac{4}{3} \mu^{2}\right) & =-B\left(\frac{4}{3} \mu^{2}, \frac{4}{3} \mu^{2}, \frac{4}{3} \mu^{2}\right) \\
& =-C\left(\frac{4}{3} \mu^{2}, \frac{4}{3} \mu^{2}, \frac{4}{3} \mu^{2}\right) \tag{Tz}
\end{align*}
$$

It follows from (II.8) that at this symmetry point we have

$$
A^{0}=-5 \lambda, \quad A^{1}=0, \quad A^{2}=-2 \lambda .
$$

Normally a coupling constant is defined through the residue of a poley but her there are no poles. The new constant λ may be explicitly introduced inte (III.1), if desired, by making a subtraction at the symmetry point. Subtractick. are probably necessary to give a meaning to the doubledispersion representation (III.1), but we only need this expression in order to locate the singilaritnos of the scattering amplitude. Thus we proceed at once to consider the axaidit. \quad y properties of the partialmave amplitudes $A_{l} I^{\prime}\left(q^{2}\right)$. which can be correctiy obtained by inspection of (III.1).

7
This λ.is, in conventional terminology, a renormalized unrationalized coupling constant. It corresponds to a term in the lagrangian of the form $4 \pi \lambda\left(\varnothing_{\mu} \emptyset_{\mu}\right)^{2}$.

IV. ANALYTICITY PROPERTIES OF THE PARTTAL-WAVE AMPLITUDES

In this paper we shall concentrate most: of our attention on the low angularmomentum states. In principle, the approximation scheme based or the double-dispersion representation does not consist of taking more ani nore angular-momentum states into account--such a procedure would be inadequate cinc to the failure (to be discussed below) of the Legendre expansion to converge an the unphysical region. It will therefore ultimately be necessary to aiclete the spectral functions in (III.1), and so to include effects of all the gatiar.. momentum waves. An approximation scheme for calculating the spectral functions can be worked out and was outlined in reference 1 . Even if the spectral functions were known, however, it woula still be necessary to treat separately the low angular-momentum states. The reason is that, when the single-dispersion inter... are included in (III.l), the absorptive parts of the low angular-momentua aratas will no longer be determined by the spectral functions, as has been expiainea ir reference l. We shall see below that, because of special properties ar it: rar system, the calculation in the lowest approxination can be based entirely on the low angular-momentum states.

From (II.9) it follows that
$A_{l}^{I}\left(q^{2}\right)=\frac{1}{2} \int_{-1}^{+1} d \cos \theta A^{I}\left(q^{2}, \cos \theta\right) F_{\ell}(\cos \theta)$,
so that, in view of (II.2), the projection of a given partia? vave ancurts to an integration at fixed s over either $d t$ or $d \bar{t}$. The two gariable,
 dinections. It is straighterwara, then, by incpectiva c: ! In... + establish the nature and location of the singularities of $A_{f} I_{i}{ }_{i}$:

$$
\text { * Dowisent bremach } p^{t} \text {. in } t=4 \mu^{2} \text {. }
$$

$$
s=4 u^{2}-t-t=-t .
$$

$$
\text { cot the Rowcet valum of } t=0 \text { at } \cos \theta=+1 . \quad \text { So, } S=0 \Rightarrow \xi^{2}=-h^{2} \text {. }
$$

It is obvious, first of all, that all the singularities lie on the real axis. 9 Next it will be recognized that thexe are three sets of branch points. The first set is associated with the vanishing of denominators containing s, with the lowest branch point occurring at $q^{2}=0$, the threshold of the physical region. The next branch point of this set will be at $q^{2}=3 \mu^{2}$, the tinreshola for producing two additional pions, and so on. It is evidentiy appropriate to choose a cut running along the positive real axis from 0 to ∞ weshall refer to this as the "rightohand" or "physical" cut.

The other two sets of branch points are associated with the varishing of denominators containing t or \bar{t} and are coincident, lying on the negative real axis. The first pair of branch points is at $q^{2}=m \mu^{2}$, the seconi at $q^{2}=-4 \mu^{2}$, etc., the spacing being the same as on the positive axis. A seccni cut may then be chosen to mun from $-\mu^{2}$ to ∞; this will be called the "left-hand" or "unphysical" cut.

Finally it should be recognized that cur partiaiwweve amplituge $1 \leqslant a$ real analytic function of q^{2}, whose boundary value as the physical ati i. approached from above is the complex physical amplitude, but which is real in the gap between $-\mu^{2}$ and 0 on the real axis. The discontimuity in gelng across either cut is twice the imaginary part of the limit as the out is approached. The required imaginary part is given for the right-hand cut by (II.11)。

9
With unequal masses, as in pion-nucleon scattering, the singularities in the partialwwave amplitudes do not all lie on the reai axis, but they can be located without difficulty. See, for example, S. W. McDoweli, waivercity of Birmingham Physics Department preprint (1959).

The calculation of the imaginary part on the lifo foment wa is mach in it involved, as the unitarity condition cannot be used for negate values if z^{2}. We shall have to bise crossing symmetry to obtain the imaginary part on the isfor

 I, II, and IIT, defined in reference 1 .

The absorptive parts A_{I}, B_{T}, and C_{I} may be ingxifati in it imaginary parts of the corresponding amplitudes ir the rbyenai rote f reaction $I, q^{2}>0$. Similarly, the absorptive paris with auberirtz is: III are equal to imaginary parts in the physical regive if resume: respectively. These will be regions of negative q^{2}, titapasibie ta dat. from (IIT.2) the following crossing rules; which comespord tit fer $x=1.6$ (II.5) to (II. 7):

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{A}_{\text {III }} \rightarrow \mathrm{B}_{I} \\
\mathrm{~B}_{\text {III }} \rightarrow \mathrm{A}_{I} \\
\mathrm{C}_{\text {III }} \rightarrow \mathrm{C}_{I}
\end{array}\right\} \\
& \mathrm{fce} 54 \% \text { そ }
\end{aligned}
$$

and

The other relation needed is that connecting the imaginary part of the amplitudes for $q^{2}<0$ with the absorptive parts for reactions II and III. By examination of (III.l) we find

$$
\begin{aligned}
& \operatorname{Im} A\left(q^{2}, \cos \theta\right)=-A_{I I}\left(q^{2}, \cos \theta\right)-A_{I I I}\left(q^{2}, \cos \theta\right), \\
& \because \text { for } q^{2}<0,
\end{aligned}
$$

with similar relations for Am B and Tm C.
If we now define
and

$$
\begin{aligned}
q^{1^{2}} & =\frac{t}{4}-\mu^{2}, \\
\bar{q}^{\prime 2} & =\frac{\bar{t}}{4}-\mu^{2}, \\
\cos \theta^{\prime} & =1+\frac{s}{2 q^{\prime 2}}=1+2 \frac{q^{2}+\mu^{2}}{q^{2}},
\end{aligned}
$$

$$
\cos \bar{\theta}^{2}=-1-\frac{s}{2 \bar{q}^{2}}=-1-2 \frac{q^{2}+\mu^{2}}{\bar{q}^{2}}
$$

and recall from (II.2) that

$$
q^{2}=\frac{s}{4}-\mu^{2},
$$

and

$$
\cos \theta=1+2 \frac{q^{p^{2}}+\mu^{2}}{q^{2}}=-1-2 \frac{\bar{q}^{2}+\mu^{2}}{q^{2}},
$$

then the crossing rules (IV.2) allow us to write in place of (IV.3),
$\operatorname{Im} A\left(q^{2}, \cos \theta\right)=-C_{I}\left(\bar{q}^{2}, \cos \bar{\theta}^{0}\right)-B_{I}\left(q^{1^{2}}, \cos \theta^{0}\right)$,
where $q^{0^{2}}$ ranges from $-q^{2}-\mu^{2}$ to $-\mu^{2}$ as $\cos \theta$ goes from -1 to +1 , while $\overline{\mathrm{q}}^{2}{ }^{2}$ covers the same range but in the opposite direction. It can be
seen by inspection of (III.1) that B_{I} and C_{I} vanish in the range bstwe en 0 and $-\mu^{2}$, and so we have achieved our goal of expressing the imaginary part, af the amplitude for negative q^{2} in terms of quantities at positive= q^{2}.

It remains now to project out the partial waves. From (IY.I) we have for $q^{2}<-\mu^{2}$,

$$
\begin{aligned}
& \operatorname{Im} A_{\ell}\left(q^{2}\right)=\frac{1}{2} \int_{-1}^{+1} d \cos \theta \operatorname{Im} A\left(q^{2}, \cos \theta\right) F_{l}(\cos \theta) \\
&=\int_{0}^{-q^{2} \infty \mu^{2}} \frac{d \bar{q}^{2}}{q^{2}} C_{I}\left(\bar{q}^{2},-1-2 \frac{q^{2}+\mu^{2}}{q^{2}}\right) P_{\ell}\left(-1 \cdots 2 \bar{q}^{2} \frac{q^{2}+\mu^{2}}{q^{2}}\right. \\
&\left.+\int_{0}^{-q^{2}-\mu^{2}} \frac{d q^{\prime 2}}{q^{2}} B_{I}\left(q^{2}, 1+2 \frac{q^{2}+\mu^{2}}{q^{2}}\right) P_{\ell} l^{i}+2 \frac{q^{2}+\mu^{2}}{q^{2}}\right)
\end{aligned}
$$

The formulas for $\operatorname{Im} B_{\ell}\left(q^{2}\right)$ and $\operatorname{Im} C_{\ell}\left(q^{2}\right)$ are similar, and the correaraida expressions for amplitudes with weil-defined isctopic spin are
$\operatorname{Im} A_{l}^{I}\left(q^{2}\right)=-\int_{0}^{2}-\mu^{2} \frac{d q^{2}}{q^{2}} P_{l}\left(1+2 \frac{q^{1^{2}}+\mu^{2}}{q^{2}}\right)$

$$
x \quad \sum_{I=0,1,2} \quad \alpha_{I I}, A_{I}^{I^{2}}\left(q^{2}, 1+2 \frac{q^{2}+\mu^{2}}{q^{2}}\right)
$$

for $q^{2}<-\mu^{2}$,
where

$$
\alpha_{I I}\left(\begin{array}{ccc}
2 / 3 & 2 & 10 / 3 \tag{IV.6}\\
2 / 3 & 1 & -5 / 3 \\
2 / 3 & -1 & 1 / 3
\end{array}\right)
$$

Under the integrals in (IV.5) appear the absorptive parts of scattering amplitudes at values of $\cos \theta$ less than -1 . From the boundary curve of Fig. 2 and Formula (III.3) it is possible to conclude that the Iegendre polynomial expansion of $\left.A_{I} I^{\prime} q^{2}, \cos \theta\right)$ converges for the velues of $\cos \theta$ required in (IV.5) so long as $q^{2}>-9 \mu^{2}$. For the "effectivemrange" approach of this paper, such a limit might as well be $-\infty$. The surprisingly large magnitude of this limit is associated, as mentioned above, with the absence of a three-piar vertex. Crudely speaking, absence of a single-pion exchange mechanism reduces the range of the force to $\sim 1 / 2 \mu$ and greatly improves the convergence of the partial wave expansion. Also it should be remembered, as emphasized by Lehmerm, 10 that the expansion of the absorptive part of the amplitude always converges beyter than that of the real part.

It is possible to view in a slightly different way the approximetion maie in keeping only the first few terms of the polynomial expansion of the abscrpitwo parts on the right of (IV.5). As shown in reference 1 , the absorptive part asia be written as a dispersion integral

10
For a discussion of the convergence of the Legendre polynomial exparsion of a scattering amplitude, see H. Lehmann, Nuovo Cimento 10, 579 (1958).
$A_{I}\left\{q^{2}(s), \cos \theta(s, t)\right\}=a_{0}(s)+a_{1}(s) t+\ldots$

$$
\begin{aligned}
& +\left(t-t_{0}\right)^{n} \frac{1}{\pi} \int d t^{\prime} \frac{A_{13}\left(s, t^{0}\right)}{\left(t^{\theta}-t_{0} j^{r_{i}}(t, t)\right.} \\
& +\left(\bar{t}-\bar{t}_{0}\right)^{n} \frac{1}{\pi} \int d t^{?} \frac{A_{12}\left(s, \overline{t_{0}}\right)}{\left(\bar{E}^{0}-\bar{t}_{0}\right)^{n_{i}}\left(\bar{t}^{0}-\bar{t}\right)}
\end{aligned}
$$

(-4.7

The subtraction terms are here writiten explicitily, and the value of the expowent n is equal to the number of such terms. Perturbation theory presambss thent ceif one subtraction is necessary. However, further subtractions may be mate sits: because one distrusts perturbation theory in this connection or to frovese to accuracy of the calculation. Il In this paper we make two subtraceina, as os below explicitly in Formulas (IV.9) and (IV.10).

Let us examine the form of the region ix whion cne of the spextas functions, A_{13} for instance, is nonzerc. As explafn=d in reforince i, th spectral function consists of a number of parts corresporaing to 3 ifferes Feyman diagrams. The two parts extending to the iowest values of $E f_{\text {fan . }}$ are bounded by the curves $A B$ and. $C D$ of Fig. 2. Now, the pert bcutct 19 a
 additional pions. In the following section we shell approximate the gesern:part in the physical region by neglecting inelastio processes in the vritsery, condition. This is in line with the "effectivearange" prireiple, which ascum:
that the behavior of the scattering amplitude at low momenta is dominated by the nearest singularities. . The part of A_{13} bounded by $A B$ is therefore zevo in this approximation. Similar considerations will apply to the other spectrai functions. If, further, we require the crossing relations (IT. 2) to be satisfied, we shall also have to assume that the part of A_{13} bounded by is zero in the lowest approximation, so that the spectral functions are tobs neglected entirely. That is to say, all contributions the spectrol fiatam begin at values of s and t which are so far from the region of interast that they should be ignored in a consistent "effectiverange" spproach.

From Eq. (IV.7), the absorptive part A_{I} can then be approximeted by sn expression of the form

$$
A_{I}\left\{q^{2}(s), \cos \theta(s, t)\right\}=a_{0}(s)+a_{1}(s) t \ldots
$$

which is terminated at an early stage. The abscrptive parts are thus rapsenc... by taking a small number of angularmomentum states onily. This conciusion befrs out the statement made at the beginning of this seation that, in the iswest: approximation, the calculation can be based entirely on the Iow anguinromometrem states.

The approach just outlined enables us to understand why the absent: $: \%$ threempion vertex is critical in allowing one to terminate the Legentre expansion of the absorptive part. Had there been such a vertex, the curve bounding the shaded area in Fig. 2 would have consisted of a single parturn approached asymptotically the lines $x=4 \mu^{2}, y=4 \mu^{2}$. The neglect of the spectral functions would then not have been justified. It would have been necessary to insert them in some approximation into Eq. (IV.7), with the resulting expressions then substituted ime the integrals of Eq. (IV.5)。
[Actually the fourth-order perturbetion approximation ocila be used for the spectral functions, as all other contributions begir at walues cf either s ir t greater than $(4 \mu)^{2}$.] Even in the sotual problem with ac $3-p i o m$ vertex. if we were to go beyona the lowest approximation it woud be neveceary to sinutit the spectral functions to an appropriste socureve gni then insert them int: Ect (IV:7).
 scattering amplitude to be represented by its lowest angaermmentume was. No such assumption regarding the real part is made. At the ent of the al vilati.i. the real part of the first angularmomentum state cmited sar be rmputen. $\because: a$ square turns out to be small at the energies urider sonsuderatoring we wer frimber justified in leaving out the absorptive pert。 There is thus a cherk or the number of angular states which it is necessary io inslude.

To illustrate the above considerations sind for future reforer:u wa w derive formulas that elearly show the differense in outreatere in ar partial waves. With no subtractions, one sould write the fcintwing momert. transfer dispersion relation on the basis of (2IT, I):

$$
=\frac{1}{\pi} \int_{0}^{\infty} d q^{2} \frac{B^{2}\left(q^{2}, 1+2 \frac{q^{2}+\mu^{2}}{q^{2}}\right)}{q^{3}+\mu^{2}+\frac{q^{2}}{2}(1-\cos \theta)} \int_{0}^{0} q^{2} q^{2}+q^{2}+2,2
$$

$$
=\frac{1}{\pi} \int_{0}^{\infty} d q^{2} B_{I}\left(q^{q^{2}}, 1+2 \frac{q^{2}+\mu^{2}}{q^{2}}\right)\left[\frac{1}{q^{2}+\mu^{2}+\frac{q^{2}}{2}(1-\cos \theta)}\right.
$$

$$
\left.+\frac{1}{q^{1^{2}}+\mu^{2}+\frac{q^{2}}{2}\left(1^{1}+\operatorname{sos} \theta\right)}\right]
$$

With similar expressions for B and C. Now, the absorptive part B_{i} is, in general, complex, but the imaginary part of B_{I} vanishes in the lower rang if the integral (IV.8) because from the equivalent of Eq. (IV.7), for $a^{2}>0$ and $q^{:^{2}}>0$, we have
$\operatorname{Im} B_{I}\left(q^{2}, 1+2 \frac{q^{2}+\mu^{2}}{q^{i^{2}}}\right)=B_{13}\left(4\left(q^{q^{2}}+\mu^{2}\right), 4\left(q^{2}+\mu^{2}\right)\right)$,
which is zero outside the shaded region of Fig. 2。. Thus, if we make subtranivi in the dispersion relation (IV.8) to suppress the higheenergy part, the rembiriter will be almost entirely real for small q^{2}. Figure 2 shows, of course, that: as. q^{2}, becomes large, the imaginary part cannot be suppressed. These considerations are identical to those following Eq. (TV.7).

Let us make the subtraction by removing the Swave part of Ea.
$\left.A\left(q^{2}, \cos \theta\right)=A_{0}\left(q^{2}\right)+\frac{1}{\pi} \int_{0}^{\infty} d q^{b^{2}} B_{I} q^{1^{2}}, 1+2 \frac{q^{2}+\mu^{2}}{q^{2}}\right)\left[\frac{1}{g^{2}+\mu^{2}+\frac{q^{2}}{2} i+\cdots \ldots \theta}\right.$

$$
\left.+\frac{1}{q^{2}+\mu^{2}+\frac{q^{2}}{2}(1+\cos \theta)}-\frac{2}{a^{2}} \operatorname{kn} 1+\frac{a^{2}}{q^{2}+h^{2}}\right]
$$

$$
\text { x. } 8
$$

In the next section we shall determine $A_{0}\left(q^{2}\right)$, allowing i^{2} to b mita, but the residual amplitude (which starts here with the D wave is $r=s i=1$ a
 part of B_{I} is to be neglected, we are ignoring the sixglaritten this function in the variable q^{2}, and accoraing to the grgunerts fojuire E. we may consistently approximate it by a low-crider pciyromial. Sirse e wh: continued to the physical region of reartion I is the imagisery part it amplitude, the appropriate procedure is to zepresers. E_{1} :r me. . those partial waves that have been subtrartod cut, 1 of. thes tos: ar-allowed to be complex.

$A^{I}\left(q^{2}, \cos \theta\right)=A_{0}^{I}\left(q^{2}\right)+\frac{1}{\pi} \int_{0}^{\infty} d q^{2} \sum_{I} \alpha_{I I} A_{I} I^{8} q^{2}, 1+2 \frac{q^{2}+\dot{q}^{2}}{q^{2}}$,

$$
\left\{\begin{array}{r}
\frac{1}{2}\left[\frac{1}{q^{2}+\mu^{2}+\frac{q^{2}}{2}(1-\cos \theta)}+\frac{2}{q^{2}+\mu^{2}+\frac{1}{2} 1+\therefore \theta \theta}\right] \\
\cdots \frac{1}{2} x_{1} i+\frac{q^{2}}{q^{2}+m^{2}}
\end{array}\right\}
$$

For $I=1$; we subtract the P wave:

$$
\begin{gather*}
A^{1}\left(q^{2}, \cos \theta\right)=3 \cos \theta A_{1}^{I}\left(q^{2}\right)+\frac{1}{\pi} \int_{0}^{\infty} d q^{2} \sum_{I} \alpha_{1 I^{\prime}} A_{I}^{I^{q}}\left(q^{2}, 1+2 \frac{q^{2}+\mu^{2}}{q^{2}}\right) \\
\left\{\frac{1}{2}\left[\frac{1}{q^{2}+\mu^{2}+\frac{q^{2}}{2}(1-\cos \theta)}-\frac{1}{q^{2}+\mu^{2}+\frac{q^{2}}{2}(1+\cos \theta)}\right]\right. \\
\end{gather*}
$$

Under the integrals in these formulas $A_{I} I^{0}\left(q^{0}{ }^{2}, \cos \theta^{0}\right)$ will be approximate r by

$$
A_{I}^{0,2}\left(q^{8^{2}}, \cos \theta^{8}\right){ }_{q^{1}}^{2} \underset{\sim}{\approx} \operatorname{Im~}_{0}^{0,2}\left(q^{0^{2}}\right)
$$

$$
A_{I}^{1}\left(q^{D^{2}}, \cos \theta^{0}\right) \underset{q^{0}}{2} \approx 00 \cos \theta^{0} \operatorname{Im} A_{1}^{1}\left(q^{D^{2}}\right)
$$

V. FORMULATION OF INTEGRAL EQUATIONS

We now have the task of translating our knowledge about partialawave amplitudes into integral equations. After introducing the variable $V=q^{2} / \mu^{2}$, the preceding statements about the location of singularities are equivalent to the dispersion relations,

$$
\begin{equation*}
A_{\ell}^{I}(\nu)=\frac{1}{\pi} \int_{-\infty}^{-1} d \nu^{\prime} \frac{\operatorname{Im} A_{\ell}^{I}\left(\nu^{\prime}\right)}{\nu^{\prime}-\nu}+\frac{1}{\pi} \int_{0}^{\infty} d \nu^{\prime} \frac{\operatorname{Im} A_{\ell}^{I}\left(\nu^{\prime}\right)}{\nu^{\prime}-\nu^{\prime}} \tag{V}
\end{equation*}
$$

provided the functions in question behave properly at infinity. The unitarity condition (II.10) guarantees that the partial-wave amplitudes behave asymptoticaliy no worse than like constants. In order to estimate the error in our approximaticri, we shall assume that on the right-hand (physical) cut,

$$
\begin{equation*}
\operatorname{Im} A_{\ell} I^{I}(\nu) \rightarrow \frac{1}{2} \tag{v.2}
\end{equation*}
$$

and
$\operatorname{ReA}_{\ell}{ }^{I}(\nu) \rightarrow 0$,
in other words; the limit of pure diffraction scattering. 12 Such behavior, i, e. the ratio of the real to the imaginary part going asymptotically to zero, can be consistent with Eq. (V.I) only if the limits on the left-hand cut are the same 13

A partial-wave amplitude of order ℓ vanishes at the origin like ν^{ℓ} so we may consider new quantities
12. Such behavior is expected because of the overwhelming competition from
inelastic channels that sets in at very high energies.
13
Considerations of this kind were first emphasized by I. Pomeranchuk, J. Exptl. Theoret. Phys: (USSR) 34, 725 (1958), in connection with forward. dispersion relations.

$$
\begin{equation*}
A_{\ell}^{\prime}(\nu)=\frac{1}{\nu^{\ell}} A_{\ell}^{I}(\nu) ; \tag{v.3}
\end{equation*}
$$

which also satisfy relations of the type (VOl) but whose imaginary parts, except for $\boldsymbol{\ell}=0$, now vanish at infinity like $v^{-\ell}$. it is clear that the higher the angular momentum, the smaller is the relative contribution from high values of v^{i} In the dispersion integrals (when V is small). It is only for the S wee that: distant contributions are expected to be important, so for the S were wa mas z subtraction at the symmetry point

$$
\begin{equation*}
v_{0}=-2 / 3 \tag{104}
\end{equation*}
$$

to obtain 14

$$
\begin{aligned}
& A_{0}^{I}(\nu)=a_{I}+\frac{\nu-\nu_{0}}{\pi} \int_{-\infty}^{-I} d \nu^{n} \frac{\left.\operatorname{Im} A_{0} I_{(} \nu^{0}\right)}{\left(\nu^{0}-\nu\right)\left(\nu^{0}-\nu_{0}\right)} \\
& +\frac{\nu-\nu_{0}}{\pi} \int_{0}^{\infty} d \nu^{h} \cdot \frac{\operatorname{Im} A_{0}^{I}\left(\nu^{1}\right)}{\left(\nu^{2}-\nu^{\prime}\right)\left(\nu^{2}=\nu_{0}\right)}
\end{aligned}
$$

os

It is possible that even an S-wave subtraction is unnecessary in a teatmsst which includes in a serious way very-higheenergy inelastic processes sun gs nucleonmantinucleon pair production. We do not believe, however, that sis 9 treatment will be practical for a long time to come. Certainly nothing c ambitious will be attempted here.
14 The two subtraction constants a_{0} and a_{2} are notiraependent but are related to λ through Eq. (III.5). The relation is given below it Formula (V.18).

Thus, either by dividing by ν^{ℓ} or by subtracting we hope to suppress very high energies under the dispersion integrals. Specifically, we hope that taking finite limits for the integrals will not cause a large error, and so we consider, instead of (V.1), expressions of the form

$$
A_{\ell}^{\prime I}(\nu)=\frac{\nu^{\ell}}{\pi} \int_{-I}^{-I} d \nu^{\prime} \frac{\operatorname{Im} A_{\ell}^{\prime}\left(\nu^{\prime}\right)}{\nu^{\ell}\left(\nu^{\prime}-\nu\right)}+\frac{\nu^{\ell}}{\pi} \int_{0}^{L} d_{\nu} \nu^{\prime} \frac{\operatorname{Im}_{\ell}^{\prime} I^{\prime}\left(\nu^{\prime}\right)}{\nu^{l}\left(\nu^{\prime}-\nu\right)},
$$

or the corresponding subtracted expressions for S waves. These are supposed adequately to represent the physical scattering amplitudes, so long as we have $\nu \ll L$. The exact choice of L, of course, should not be important, or a new parameter would have been introduced into the problem. Using Eq. (V.2) one can easily estimate the order of magnitude of the neglected contributions to $b=$

$$
\begin{equation*}
\delta A_{0} \sim \frac{1}{\pi} \frac{\nu-\nu_{0}}{L} \tag{v. 6}
\end{equation*}
$$

and

$$
\delta A_{\ell} \sim \frac{1}{\pi} \frac{1}{\ell}\left(\frac{\nu}{L}\right)^{\ell},
$$

which are small provided L can be made sufficiently large.
In this first attempt at solving the pion-pion problem, we shail choose
L in the range where inelastic scattering first becomes important. The inelsst: threshold is at $\quad \nu=3$, but experience with pion-nucleon scattering suggests that double-pion production won't represent a substantial fraction of the cruss section until $\quad \vee \sim 10$. Thus, with L in this range, we may use the unitarity condition (II.11) with R_{ℓ} set equal to unity:

$$
\operatorname{Im}\left[A_{\ell}^{I}(\nu)\right]^{-1}=-\sqrt{\frac{\nu}{V+1}} \quad, \quad \text { for } \quad 0<\nu<L
$$

Furthermore, as discussed in the preceding section, the imaginary parts on the left-hand cut as given by Eq. (IV.5) may be evaluated by the use of Legeriare polynomial expansions under the integrals. In particular we shall keep only $\ell=0$ and $\ell=1$ terms in these integrals; the legitimacy of this approximation may be checked a posterior by calculating the D waves that emerge from our $y=\cdots$ of equations.

In terms of the variable ν the formulas (IV.5) for the firs: iso partial waves become, in this approximation:
$\operatorname{Im}_{\ell}^{I}(\nu)=\frac{1}{\nu} \int_{0}^{-\nu_{-} I} \alpha \nu^{\prime} P_{\ell}\left(1+2 \frac{\nu^{\beta}+1}{\nu}\right)\left\{\alpha_{10} \operatorname{Im} A_{0}^{O_{(}} \nu^{\beta}\right)$

$$
+\alpha_{I 2} \operatorname{Im} A_{0}^{2}\left(\nu^{0}\right)+3\left(1+2 \frac{\nu+1}{\nu^{0}}\right) \alpha_{I 1} \operatorname{Im} A_{1}^{1} \nu
$$

Now we put all the above information together in order to obtain a pratikes $\{$ calculating phase shifts in terms of the empirical sonstant $\lambda_{\text {: }}$

Consider first the two S-wave amplitudes: We attempt to represser. \quad ser of these by a quotient

$$
\begin{equation*}
A_{0}^{I}(\nu)=\frac{N_{0}^{I}(\nu)}{D_{0}^{I}(\nu)} \tag{iv. 9}
\end{equation*}
$$

where $N_{0}^{I}(\nu)$ and $D_{0}(\nu)$ are both real analytic functions, the numerator contains the branch point at $\quad \nu=-1$ with the left hand at, and the denominator contains the branch point at $\nu=0$ with the rightmand $\therefore \mathrm{O}$
is also necessary, of course, that $D_{0}^{I}(\nu)$ have no zeros. By assumption, then, we have
$\left.\begin{array}{l}\operatorname{Im} N_{0}^{I}(\nu)=D_{0}^{I}(\nu) \operatorname{Im} A_{0}^{I}(\nu), \\ \operatorname{Im} D_{0}^{I}(\nu)=0,\end{array}\right\}$ for $\quad \nu<-1$
$\operatorname{Im} N_{0}^{I}(\nu)=\operatorname{Im} D_{0}^{I}(\nu)=0, \quad$ for $-1<\nu<0$
$\operatorname{Im} \cdot N_{0}^{I}(\nu)=0$,
and, according to our approximation of neglecting high-energy contributions, we set both imaginary parts equal to zero for $\nu>L$ and $\nu<-L$.

The subtracted dispersion relation (V.5) normalizes the Sowave amplitudes to a_{I} at the point $\nu=\nu_{0}$. We accomplish this normalization in our quotient by setting $i_{0} I^{\prime}\left(\nu_{0}\right)=a_{I}$ and $D_{0} I^{\prime}\left(\nu_{0}\right)=1$. Furthermore, with a cutoff at L the amplitudes $\dot{A}_{0}^{I}(\nu)$ approach real constants at infinity, ${ }^{I 5}$ so we may assign constant asymptotic behavior to both numerator and denominator. Then, introducing,

$$
\begin{equation*}
f_{\ell}^{I}(\nu)=\operatorname{ImA}_{\ell}^{I}(\sim \nu), \quad(\nu>0) \tag{V.11}
\end{equation*}
$$

[^1]we are led first to write
\[

$$
\begin{align*}
N_{0}^{I}(\nu) & =a_{I}+\frac{\nu-\nu_{0}}{\pi} \int_{-I}^{-1} d \nu^{\prime} \frac{f_{0}^{I}\left(-\nu^{\prime}\right) D_{0}^{I}\left(\nu^{\prime}\right)}{\left(\nu^{\prime}-\nu^{\prime}\right)\left(\nu^{\prime}-\nu_{0}\right)} \tag{V.12}\\
& =a_{I}+\frac{\nu-\nu_{0}}{\pi} \cdot \int_{1}^{L} d \nu^{\prime} \frac{f_{0}^{I}\left(\nu^{\prime}\right) D_{0}^{I}\left(-\nu^{0}\right)}{\left(\nu^{\prime}+\nu\right)\left(\nu^{\prime}+\nu_{0}\right)}
\end{align*}
$$
\]

Second, remembering (v.7), we have
$D_{0}^{I}(\nu)=1-\frac{\nu-\nu_{0}}{\pi} \int_{0}^{L} d \nu^{\prime} \sqrt{\frac{\nu_{1}}{\nu^{\prime}+1}} \quad \frac{N_{0}^{I}\left(\nu^{\prime}\right)}{\left(\nu^{\prime}-\nu^{\prime}\left(\nu^{\prime}-\nu_{0}\right)\right.}$.

On defining $E_{0}^{I}(\nu)=D_{0}^{I}(-\nu)$ and substituting Eq. (V.12) into Eq. (V.13), the following integral equation is obtained:
$E_{0}^{I}(\nu)=I+\left(\nu+\nu_{0}\right) K\left(\nu,-\nu_{0}\right) a_{I}+\frac{\nu+\nu_{0}}{\pi} \int_{I}^{L} d \nu^{\prime} \frac{K\left(\nu, \nu^{q}\right) f_{0}^{I}\left(\nu^{0}\right) E_{0}^{I}\left(\nu^{\prime}\right)}{\nu^{\prime}+\nu_{0}}$
with

$$
\begin{equation*}
K\left(\nu, \nu^{\prime}\right)=\frac{1}{\pi} \cdot \int_{0}^{L} \alpha \nu^{\prime \prime} \frac{\sqrt{\frac{\nu^{\prime \prime}}{1+\nu^{\prime \prime}}}}{\left(\nu^{\prime \prime}+\nu\right)\left(\nu^{\prime \prime}+\nu^{\prime \prime}\right)} \tag{V.14}
\end{equation*}
$$

If the function $f_{0}^{I}\left(\nu^{\prime}\right)$ were known, Eq. (V.14) would be a nonsingular Fredhoim equation, soluble by any number of standard methods. It will be shown in the following paper that, even in the limit $L \rightarrow \infty$, the equation can be cast into a nonsingular form.

We cannot lessen the reliability of our result at this stage by taking L infinite rather than in the neighborhood of 10 , since the associated change
in the amplitude will be smaller than the error (V.6) which we have agreed to tolerate. ${ }^{16}$ It is possible, on the other hand, that the result may be improved by taking $I=\infty$. if elastic scattering is dominant up to higher energies than might conservatively be guessed. For these reasons, plus the esthetic consideration that one does not like a calculation to depend formally on an unnecessary parameter, we shall henceforth set $L=\infty$, even though the error in our approach should be estimated from Eq. (V.6) with some finite L.

It is unfortunately true that $f_{0}^{I}\left(\nu^{\prime}\right)$ is not known in advance but is given only through Eqs. (V.II) and (V.8) in terms of the amplitudes we are looking for. Thus our system of equations is actually nonlinear. In a subsequent paper, however, it will be shown that the problem can be solved by an iteration procedure in which at every stage the linear equations (V.14) are solved with the f_{0}^{I} corresponding to the previous stage. We must, of course, also formulate an equation for the P amplitude since this is required in Eq. (V.8).

Before considering the P-amplitude, however, a few general remarks about, the Swave problem are in order. First, an inspection of (V.14) with f_{0}^{I} set equal to zero and $L=\infty$ shows that E_{0}^{I} will develop a zero for $\nu<\nu_{0}$ if a_{I} is negative. According to Eq. (V.8), both f_{0}^{0} and $f_{0}{ }^{2}$ will be negative if, as is likely, the S contributions under the integrals are dominant. ${ }^{27}$

This conclusion is not quite air tight but seems very plausible since the high energy elastic partial-wave cross sections given by our equations are smaller than the total cross sections used in the estimates (V,6).

Recall that the imaginary part of a partial-wave amplitude in the physical region is positive definite.

The zero will therefore not be removed when f_{0}^{I} is included, but if the zero appears sufficiently far out along the negative real axis-mbeyond the limit L at which our calculation of $\operatorname{Im} A_{0}$ ceases to be accuratemmethe associated pole in A_{0} is of no physical significance and cannot be excluded. A crude estimate, based on Eq. (V.14) and neglecting f_{0}^{I}, indicates that for $-0.7<a_{I}<0$, the zero in $E_{0}^{I}(\nu)$ will occur for $\nu>10$.

If a_{I} is positive, the requirement that there be no zero of $E_{0}^{T}(\nu)$ in the region $\nu_{0}<\nu<0$ (i.e. no bound state of the $\pi \sim \pi$ system) puts an upper limit on a_{I}. As a_{I} increases, the zero will appear first at $\nu=0$, so we examine the condition that $E_{0}^{I}(0)$ be positive. Here the neglect of f_{0}^{I} is a good approximation, so one may deduce from Eq. (V.14) the requirement

$$
I-\frac{2}{3} K\left(0, \frac{2}{3}\right) a_{I}>0
$$

or, since we have

$$
K\left(0, \frac{2}{3}\right)=\frac{3 \sqrt{2}}{\pi} \tan ^{-1} \frac{1}{\sqrt{2}}
$$

we can write

$$
a_{I}<\frac{\pi}{2 \sqrt{2}} / \tan ^{-1} \frac{1}{\sqrt{2}}=1.8
$$

One may inquire also about the possibillty of zeros in $D_{0}^{I}(\nu)$ that are not on the real axis. Inspection of Eq. (V.13) shows that such zeros ars

-30

impossible so long as $N_{0} I_{i}(\nu)$ has no zeros on the pcsitive real axis. ${ }^{18}$ Shoiia we find a solution that does have zeros in the physical region, this point would have to be investigated further.

Let us now determine the relation between a_{I} and λ and the consequent restrictions on λ that follow from the abcre limitations on a_{I}. Ascording to (III.5), we have

$$
\begin{align*}
& A^{0}\left(\nu_{0}, 0\right)=-5 \lambda \\
& A^{1}\left(\nu_{0}, 0\right)=0 \tag{v.16}
\end{align*}
$$

and

$$
A^{2}\left(\nu_{0}, 0\right)=-2 \lambda
$$

The second of these relations is identically satisfied, sirce A^{1} contains $\because y^{\prime}$ odd powers of $\cos \theta$. The first and the third, however, give us the reguired information about a_{0} and a_{2} which are defined by Eq. (V.5) to be

$$
\varepsilon_{0}=A_{0}^{0}\left(\nu_{0}\right)
$$

and

$$
a_{2}=A_{0}^{2}\left(\nu_{0}\right)
$$

Thus to a good approximation $a_{0} \approx-5 \lambda$ and $a_{2} \approx-2 \lambda_{2}$ sirie we expest and higher partial-wave amplitudes to be small.

18 For $V=V_{R}+i V_{I}$, the imaginary part of $D_{0}^{I}(\nu)$ is given by

$$
=-\frac{\nu}{\pi} \int_{0}^{\infty} d V^{\prime} \sqrt{\frac{\nu^{0}}{\nu^{\prime}+1}} \frac{N_{0}^{I}\left(\nu^{\prime}\right)}{\left(\nu^{0}-\nu_{R}\right)^{2}+\nu_{I}^{2}},
$$

and therefore vanishes only for " $V_{I}=0$ if $\mathrm{N}_{0} I^{\prime}(V$ ') has a single sign.

It is possible to correct for the higher waves within the approximation outlined at the end of Section IV. Formula (IV.9), when evaluated at $\cos \theta=0$ and $\nu=\nu_{0}$, leads to the following result:

$$
\begin{aligned}
& a_{0}=-5 \lambda+\frac{1}{\pi} \int_{0}^{\infty} d \nu^{\prime}\left\{\frac{1}{\nu_{0}} \ln \left(1+\frac{\nu_{0}}{\nu^{0}+1}\right)-\frac{1}{\nu^{0}+1+\nu_{0} / 2}\right\} \\
& x\left\{\frac{2}{3} \operatorname{Im} A_{0}^{0}\left(V^{0}\right)+\frac{10}{3} \operatorname{Im} A_{0}{ }^{2}\left(V^{0}\right)+6\left(1+2 \frac{V_{0}+1}{\nu^{0}}\right) \operatorname{Im} A_{1}{ }^{1}\left(\nu^{0}\right)\right\} \\
& a_{2}=-2 \lambda+\frac{1}{\pi} \int_{0}^{\infty} d \nu^{\prime}\left\{\frac{1}{\nu_{0}} \ln \left(1+\frac{\nu_{0}}{\nu^{\prime}+1}\right)=\frac{1}{\nu^{0}+1+\nu_{0} / 2}\right\} \\
& \left\{\frac{2}{3} \operatorname{Im} A_{0}^{0}\left(\nu^{0}\right)+\frac{1}{3} \operatorname{Im} A_{0}^{2}\left(\nu^{0}\right)-3\left(1+2 \frac{\nu_{0}+1}{\nu^{0}}\right) \operatorname{Im} A_{1}{ }^{1}\left(\nu^{\prime}\right\}\right.
\end{aligned}
$$

The integral correction given by Eq. (V.18) to the simple relation betwern the a_{I} and λ is very small ${ }^{19}$ and may be ignored except for highly refined considerations. The most restrictive conditions on λ are obtained by consiáring the $I=0$ state, for which $a_{0} \approx-5 \lambda$. The absence of zeros on the negative real axis for $|\nu|<L$, as discussed above, then leads to the limits

$$
-\frac{1}{5}(1.8) \lesssim \lambda \lesssim-\frac{1}{5}(-0.7)
$$

or

$$
-0.36 \lesssim \lambda \lesssim 0.14 .
$$

The smallness is due to the expression in the first curly bracket in the integrand of Eq. (V.18), which has ε maximum value of 0.15 at $\nu^{\circ}=0$ and falls rapidly to zero as ν^{\prime} increases.

-32-

A study of the formula for the cotangent of the S phase shifts reveals another interesting circumstance. We have for $\nu>0$

$$
\begin{align*}
& \sqrt{\frac{\nu}{\nu+I}} \cot \delta_{0}^{I}=\frac{\operatorname{Re} D_{0}^{I}(\nu)}{N_{0}^{I}(\nu)} \\
& =\frac{1-\left(\nu \cdot \nu_{0}\right) I^{\prime}\left(\nu,-\nu_{0}\right) a_{I}-\frac{\nu-\nu_{0}}{\pi} \int_{I}^{\infty} a \nu^{\prime} \frac{I\left(\nu, \nu^{\prime}\right) f_{0}^{I}\left(\nu^{0}\right) E_{0}^{I}\left(\nu^{0}\right)}{\nu^{\prime}+\nu_{0}}}{a_{I}+\frac{\nu-\nu_{0}}{\pi} \int_{1}^{\infty} a \nu^{\prime} \frac{f_{0}^{I}\left(\nu^{0}\right) E_{0}^{I}\left(\nu^{0}\right)}{\left(\nu^{\prime}+\nu\right)\left(\nu^{\prime}+\nu_{0}\right)}} \tag{V.20}
\end{align*}
$$

where $I\left(v, v^{\prime}\right)=\lim _{L \rightarrow \infty} k\left(-v, v^{\prime}\right)$

$$
\begin{equation*}
I\left(\nu, \quad \nu^{\prime}\right)=\frac{P}{\pi} \int_{0}^{\infty} \alpha \nu^{\prime \prime} \frac{\sqrt{\frac{\nu^{\prime \prime}}{\nu^{\prime \prime}+1}}}{\left(\nu^{\prime \prime}-\nu\right)\left(\nu^{\prime \prime}+\nu^{\prime}\right)} . \tag{V,21}
\end{equation*}
$$

Again in the approximation where f_{0}^{I} is neglected we may study the possibility of a resonance developing, that is, $\cos \delta_{0}^{I}$ vanishing. We have

$$
\begin{equation*}
\sqrt{\frac{\nu}{\nu+1}} \cot \delta_{0}^{I} \approx \frac{1}{a_{I}}-\frac{2}{\pi}\left\{\sqrt{2} \tan ^{-1} \frac{1}{\sqrt{2}}-\sqrt{\frac{\nu}{\nu+1}} \ln (\sqrt{\nu}+\sqrt{\nu+1}\}\right. \tag{V,2e}
\end{equation*}
$$

an expression that does not vanish for $\nu>0$ if it is positive at $\quad \nu=0$. The condition of being positive at $\quad \nu=0$ for a_{I} positive is, however, exactly the condition that there shall be no bound state. Thus it seems unlikely that a resonance will develop in either S state for negative λ unless the effects of the f_{0}^{I} are very strong.

For positive λ and negative a_{I}, formula (V.22) has a zere but anly fon $\nu>L$ if the condition (V.19) is obeyed. Thus we tertatively conclude that there are no lowenergy S wave resonances in pioncpion scattering. 20

We turn now to the P wave and again attempt to represent the amplitude by a ratio

$$
\begin{equation*}
\frac{1}{\nu} A_{1}(\nu)=\frac{N_{1}(\nu)}{D_{1}(\nu)} \tag{V,2}
\end{equation*}
$$

with the same division of singularities between the numerator and denominator as for the S wave. By arguments analogous to those used above, we may derive the equations

$$
\begin{align*}
N_{1}(\nu) & =\frac{1}{\pi} \int_{-L}^{-1} d \nu^{0} \frac{f_{1}^{1}\left(-\nu^{k}\right) D\left(\nu^{0}\right)}{\nu^{0}\left(\nu^{0}-\nu\right)} \tag{4}\\
& =\frac{1}{\pi} \int_{1}^{L} d \nu^{0} \frac{f_{1}^{1}\left(\nu^{\beta}\right) D\left(-\nu^{0}\right)}{\nu^{0}\left(\nu^{\beta}+\nu\right)}
\end{align*}
$$

and

$$
D_{1}(\nu)=1-\frac{\nu}{\pi} \int_{0}^{L} d \nu^{n} \sqrt{\frac{\nu^{0}}{\nu^{0}+1}} \frac{N_{1}\left(\nu^{0}\right)}{\nu^{0}-\nu},
$$

20 The absence of S-state resonances in simple tiwo body systems is a very general circumstance and may be traced to the lack of a fentrifugal barrier that can "confine" a positive energy state. The only way to get on Smintr= resonance is to heve the force sufficiently complicated so that a strone inner attraction is surrounded by an outer repulsion。 Pawave rag nierctu. in contrast, arise naturally whenever there is a sufficientiy strong attraction.
where N_{I} has been assigned a I / V behavior at infinity and D_{I} a constant behavior. Introducing $E_{1}(\nu)=D_{1}(-\nu)$, the following integral equation is obtained by substituting Eq. (V.24) into Eq. (V.25):

$$
E_{1}(\nu)=1+\frac{\nu}{\pi} \int_{1}^{L} \dot{d} \nu^{0} \frac{K\left(\nu, \nu^{0}\right) f_{1}{ }^{1}\left(\nu^{0}\right) E_{1}\left(V^{0}\right)}{\nu^{8}} .
$$

The P phase shift in the physical region for $V>0$ is given by the formula

$$
\begin{equation*}
=\frac{1-\frac{\nu}{\pi} \int_{1}^{\infty} d \nu^{0} \frac{I\left(\nu, \nu^{0}\right) f_{1}^{1}\left(\nu^{0}\right) E_{1}\left(\nu^{0}\right)}{\nu^{0}}}{\frac{1}{\pi} \int_{1}^{\infty} d \nu^{0} \frac{f_{1}{ }^{1}\left(\nu^{0}\right) E_{1}\left(\nu^{0}\right)}{\nu^{0}\left(\nu^{0}+\nu\right)}} \tag{v,27}
\end{equation*}
$$

If. f_{1}^{l} were positive and sufficientiy large it woind be possible to show thst a resonance develops in the P wave. Examination of Eq. (V.8) shows that $f_{i}{ }^{1} \nu$; may change sign as ν increases but is definitely positive for large values of ν_{0}. Its magnitude is uncertain. We cannot say with confidence, therefore that a Pwave resonance will develop until the equations have been integrated, cu: the possibility appears strong.

The sum of the higher partial-wave amplitudes is to be calculated from Eqso (IV.9) and (IV.10). If individual phase shifts are desired, the appropriatprojection from these formulas is straightforward. In a subsequent parix, D phase shifts are calculated in this manner.

VI. CONCLUSION

A set of coupled integral equations for the S and P wave pionopior amplitudes has been formulated and in a subsequent paper the numerisal solution of these equations for various values of λ will be described. The D and higher phase shifts can consistently be calculated by integration cyar the left-hand cut only, where the discontinuity across this cut is expressed fin terms of the S and P amplitudes.

The physical meaning of our approximation in conventional languge is that we consider expicitily only the exchange of pairs of virtual pions betwes: the two physical pions being scattered, lumping 4 apicn and higher muitpilaidy exchanges into the constant λ. Furthermore we only attempt to alcuister accurately the exchanged pairs of lower energy-athose which are mainly in S mat P states. The higher energy pairs are included in λ along with ali scrts f^{f} other high-energy exchanges. In terms of the range of varicus contributhrg mechanisms to the pionopion force, what we are trying to do, of ccursey is to calculate the longest-range effects in detail and to represent fhe shortorsmge effects by an empirical constant. If there is an intrinsicaliy incalculable zero-range force, as suggested by Lagrangian field theory, this alsc is tridud in λ 。

Beside the solution discussed in the foregoing paragraphs, trsiry se also an infinite number of other possible solutions, corresponding tw the Castillejo, Dalitz, and Dyson (CDD) ambiguity. ${ }^{21}$ We car add to the rightohand side of Eq. (V.13) any number of terms of the form $a_{r} /\left(\nu-\nu_{r}\right)$, sinne the only effect of such terms is to introduce zeros into the scattering armsith.. $\overline{21 . C a s t i l l e j o, ~ D a l i t z, ~ a n d ~ D y s o n, ~ P h y s . ~ R e v . ~ 101, ~} 453$ (1956).

While a rigorous treatment of the CDD ambiguity has not been given for reiativistic field theory, the problem has been solved for several models, ${ }^{22}$ and there seems ti be little doubt as to the meaning of the extra solutions. They correspond to theories in which, before the coupling is turned on, there are one or more particles with the same quantum numbers as two pions. Once the coupling is turned on, these particles become unstable, and appear experimentaliy as resonances. These "kinematical" resonances differ from "dynamical" resonances, such 2.5 that. which we have suggested might appear in the P state of this problem, in that they occur for arbitrarily small values of the coupling constant. The absence of such unstable particles must be regarded as an additional postulate to be insertad into the theory.

A knowledge of the pion-pion scattering amplitude will allow a systemstir calculation of many important properties of nucleons. The application to the nucleon electromagnetic structure has been emphasized already by Frazer aril iroc This application, however, actually requires a prior knowledge of the fulit amplitude for the graph shown in Fig. 3, which describes not oniy pior-aicleon scattering but also nucleon-antinucleon annihilation to form two pions. ore a us has outlined a procedure for attacking this problem which is identicai in spirit to that described here for the $\pi-\pi$ problem. ${ }^{24}$ The procedure requires in knowledge of $\pi-\pi$ scattering and may now be implemented. It is, hoped thats reasonably accurate description of the low-energy $\pi-N$ phase shifts in terns of a single additional parameter, the pion-nucleon coupling constant, will ru:

23 W. R. Frazer and J. R. Fulco, The Effect of a Pion-Pion Scatterine wo Tanat on Nuclear Structure, UCRIm8688, March 1959, and Phys. Rev. Ie \quad ters, \therefore, (1959).

24 S. Mandelstam, Phys. Rev. 112, 1.344 "r. 9).

With an understanding of the graph of Fig. 3 one can proceed to a systematic calculation not only of nucieon electromagnetie structure but misc of the two pion exchange terms in the nuclear force. One can alsc, of ccurse, make a solid theory of photopion production. All these problems are under investigation.

There is no reason why the generalized effective-range apprasin based on the double dispersion representation cannot be used in mowe compisiotad problems, such as those involving strange particles. $A s$ the strueture of the nearby singularities becomes more complicated, of scurse, it becmes mure 2 : more difficult to include enough of them to constitute a good approximatsur. ".; is doubtful that any other problem can be found that is as favorable in thes respect as $\pi \sim \pi$ scattering.

FIGURE LEGENDS

Fig. 1 . The pion pion interaction, $\pi+\pi \leftrightarrow \pi+\pi$.

Fig. 2. The domain in which the spectral functions of the two-dimensional $\pi-\pi$ representation are nonvanishing.

Fig. 3. Diagram for the reactions, $\pi+N \leftrightarrow \pi+N$ and $\pi+\pi \leftrightarrow N+\bar{N}$

$$
M U-17069
$$

Fig. 1

Fig. 2

Fig. 3

[^0]: * This work was supported in part by the U.S. Atomie Energy ommises anci

[^1]: $\overline{15}$ Such behavior is inconsistent with Eq. (V.2) and incorrect physically, but our modified functions are only supposed to be accurate at low energies.

