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Abstract
We present a general hydrodynamic theory of transport in the vicinity of superfluid-insulator

transitions in two spatial dimensions described by “Lorentz”-invariant quantum critical points. We

allow for a weak impurity scattering rate, a magnetic field B, and a deviation in the density, ρ, from

that of the insulator. We show that the frequency-dependent thermal and electric linear response

functions, including the Nernst coefficient, are fully determined by a single transport coefficient

(a universal electrical conductivity), the impurity scattering rate, and a few thermodynamic state

variables. With reasonable estimates for the parameters, our results predict a magnetic field

and temperature dependence of the Nernst signal which resembles measurements in the cuprates,

including the overall magnitude. Our theory predicts a “hydrodynamic cyclotron mode” which

could be observable in ultrapure samples. We also present exact results for the zero frequency

transport co-efficients of a supersymmetric conformal field theory (CFT), which is solvable by

the AdS/CFT correspondence. This correspondence maps the ρ and B perturbations of the 2+1

dimensional CFT to electric and magnetic charges of a black hole in the 3+1 dimensional anti-de

Sitter space. These exact results are found to be in full agreement with the general predictions of

our hydrodynamic analysis in the appropriate limiting regime. The mapping of the hydrodynamic

and AdS/CFT results under particle-vortex duality is also described.
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I. INTRODUCTION

A key indication that the normal state of the cuprate superconductors is aberrant came

from the pioneering measurements of the Nernst effect by Ong and collaborators [1–4].

Also of interest here are measurements of the Nernst effect in Nb0.15Si0.85 films by Behnia

and collaborators [5, 6]. The Nernst co-efficient measures the transverse voltage arising in

response to an applied thermal gradient in the presence of a magnetic field. The response

of Fermi liquids is associated with a weak particle-hole asymmetry in the spectrum of the

fermionic excitations near the Fermi level [7]. The large observed response, and its striking

and unexpected dependence on the magnetic field, temperature, and carrier concentration

indicated that an explanation starting from a metallic Fermi liquid state could not be tenable.

Instead, Ong and collaborators argued that their observations called for a description in

terms of a liquid of quantized vortices and anti-vortices in the superconducting order (and

its precursors) at low temperatures.

A complete theory of the dynamics of the vortex liquid state is so far lacking. Ussishkin

et al. [8] used a classical Gaussian theory of superconducting fluctuations, and Mukerjee and

Huse [9] extended this to a time-dependent Ginzburg-Landau model. Podolsky et al. [10]

applied classical Langevin equations to a model of phase variables residing on the sites of a

hypothetical lattice. Anderson [11] has taken a speculative view of the vortex liquid, arguing

against the conventional Debye-screening of vortex interactions. While some experimental

trends are successfully described by Refs. 8–10, it would be useful to have a kinematic

approach which is also able to include quantum effects, and extends across the superfluid-

insulator transition. Quantum effects which surely play an more important role at lower

temperatures, especially in the underdoped region. Indeed, it is the equal importance of

thermal and quantum fluctuations which underlies the difficulty in describing this vortex

liquid.

As in the recent work by Bhaseen, Green, and Sondhi [12], this paper will advocate an

approach departing from the quantum critical region of a zero temperature (T ) quantum

phase transition between a superconductor and an insulator. This is the region where

the primary perturbation from the physics of the T = 0 quantum critical point is the

temperature. The single energy scale, kBT , then determines observable properties, including

the values of diffusion constants and transport co-efficients, in a manner that has been

discussed at length elsewhere [13, 14]. The electrical conductivity of this quantum critical

system, which we denote σQ, will play a prominent role in our results. In 2+1 dimensions,

near quantum critical points which obey hyperscaling properties, this conductivity is given

by [15–17]

σQ =
4e2

h
Φσ, (1.1)

where in the quantum critical region Φσ is a universal dimensionless number dependent only

upon the universality class of the critical point.
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FIG. 1: Zero temperature (T = 0), zero field (B = 0) phase diagram in the vicinity of the

quantum critical point described by the CFT, represented by the filled circle. The coupling g

represents a parameter which tunes between a superfluid and a Mott insulator which is at a

density commensurate with the underlying lattice. The chemical potential µ introduces variations

in the density and ρ is difference in the density of pairs of holes in the superfluid from that in the

Mott insulator. The thin dashed lines are contours of constant ρ. In the application to the cuprate

superconductors, the Mott insulator with ρ = 0 could be, e.g., an insulating state at hole density

δI = 1/8 in a generalized phase diagram; then ρ = (δ − δI)/(2a
2), where a is the lattice spacing.

The thick dotted line represents a possible trajectory of a particular compound as its hole density

is decreased; note that the ground state is always a superconductor along this trajectory, even at

δ = 1/8 (although there will be a dip in Tc near δ = 1/8 as is also clear from Fig. 2). Note that the

parent Mott insulator with zero hole density is not shown above. This paper will describe electrical

and thermal transport in the above phase diagram perturbed by an applied magnetic field B and

a small density of impurities.

The discussion so far applies, strictly speaking, only to systems which are exactly at the

commensurate density for which a gapped Mott insulator can form. The cuprates, and other

experimental systems, are not generically at these special densities, and so it is crucial to

develop a theory that is applicable at generic densities. Such a theory will emerge as a

special case of our more general results below. We allow the density to take values ρ by

applying a chemical potential µ, as shown in Figs. 1 and 2.

We emphasize that ρ measures the deviation in particle number density from the density

of the commensurate insulator [19, 20]; so ρ can be positive or negative, and we will see
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FIG. 2: Nonzero temperature (T ) phase diagram at B = 0 along three vertical cuts (i.e. fixed g)

in Fig. 1. The lines indicate Kosterlitz-Thouless phase transitions at T = TKT associated with the

loss of superfluid order as a function of µ for different values of g. At g = gc, TKT/|µ| is a universal

number determined by the CFT at g = gc, µ = 0 [18]. This paper describes transport properties

in the non-superfluid region above TKT , in the presence of an applied magnetic field B and a

small impurity scattering τimp. The results of the supersymmetric CFT solvable by AdS/CFT in

Section V are limited to g = gc, but allow arbitrary variations in µ and B away from quantum

criticality as long there is no phase transition into a superfluid (or other) state.

that the sign of ρ determines the sign of the Hall resistivity and other transport coefficients.

Also, purely as a choice of convention, we will measure ρ in terms of density of pairs of

holes; this choice does not imply the degrees of freedom of the underlying theory are Cooper

pairs, although this is the case in the simplest model. We will use general hydrodynamic

arguments (specialized to “relativistic” quantum critical points) to show that the frequency

(ω) dependent conductivity, σxx at a generic density ρ is given by

σxx = σQ +
4e2ρ2v2

(ε+ P )

1

(−iω + 1/τimp)
(1.2)

where the system is characterized by the thermodynamic state variables ε, the energy density,

and P , the pressure–we will specify their temperature dependencies shortly in Eq. (1.8). The

factor of (2e)2 is a consequence of our choice for the normalization of ρ; note that product

2eρ measures the net charge density, and so is independent of this convention. We assume

there is a dilute concentration of impurities which relax the conserved momentum1, and lead

to the scattering rate 1/τimp—the temperature dependence of τimp is specified in Eq. (1.11).

1 Umklapp scattering can also lead to momentum relaxation, but this is exponentially small at low T .

4



The parameter v is a velocity characteristic of the quantum critical point which is assumed

to have dynamic critical exponent z = 1. Finally, the crucial parameter σQ, is the same

quantum conductance which appeared in Eq. (1.1). However, as one moves away from the

critical coupling g = gc and adds a non-zero µ in Fig. 2, Φσ will acquire a dependence upon

the ratios (g−gc)/T 1/ν and µ/T which can be included unchanged in our results below (here

ν is the usual correlation length exponent).

It is perhaps helpful to note here the “non-relativistic” limit of Eq. (1.2), which does not

constitute the regime of primary interest of this paper. In this limit ε+ P ≈ |ρ|mv2 (where
m is the mass of the particles), and then the second term takes the form of the conventional

Drude result.

To develop a theory for the Nernst effect, we need to apply a magnetic field B to the

system described so far. A central result of this paper is that for not too strong B fields,

the Nernst response, and a set of related thermoelectric transport co-efficients, are com-

pletely determined by the thermodynamic variables and impurity scattering rate appearing

in Eq. (1.2) and the single universal transport co-efficient σQ. In particular, no additional

transport co-efficients are needed. Thus there are a large number of Wiedemann-Franz-like

relations which relate all the thermoelectric response functions to the regular part of the

electrical conductivity in zero field, σQ. We will also determine the frequency dependence

of these transport co-efficients; explicit expressions are given below.

In their work, Bhaseen et al. [12] only considered a non-zero B, with ρ = 1/τimp =

0. Their primary new result concerned the longitudinal thermal conductivity, κxx at zero

frequency. Our result for κxx(ω = 0) is consistent with theirs, and further, we show further

that it is related to σQ by a Wiedemann-Franz like identity (Eq. (1.28) below). However,

remarkably, unlike the conventional identity which specifies the ratio of κxx to the electrical

conductivity , our identity specifies the ratio of κxx to the electrical resistivity. This suggests

a physical picture of transport currents carried by vortices rather than particles, at least

when the perturbation associated with B is larger than that associated with ρ.

A. Characterization of systems under consideration

Let us now specify the class of theories to which our results apply. Current theories of

the superfluid-insulator transition in non-random systems in 2+1 dimensions are described

by quantum field theories which are Lorentz invariant, and are therefore conformal field

theories (CFTs). Consequently, we will mainly restrict our attention here to T > 0 “quantum

critical” phases of CFTs, and the general structure of their response to a non-zero ρ (which

is not restricted to be small) and small B and 1/τimp. We expect that many of our results,

and especially the magnetohydrodynamic analysis in Section III, can be generalized to a

wider class of systems, but we will not discuss such a generalization here.

Specific examples of CFTs to which our results apply are:
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(i) The superfluid-insulator transition of the boson Hubbard model on a two-dimensional

lattice with a density of an integer number of bosons per unit cell. The bosons carry charge

±2e because they are caricatures of Cooper pairs. The critical point is described [21] by the

Wilson-Fisher fixed point of the |ψ|4 field theory of a complex scalar ψ (representing the

boson annihilation operator), see Eq. (1.3) below. This field theory also has a dual repre-

sentation [22, 23] in terms of a vortex field ϕ coupled to an emergent U(1) gauge field. Our

results apply equally to both representations, and the observable properties do not depend,

naturally, on whether the particle or vortex representation is used to describe the CFT.

(ii) The superfluid-insulator transition of the boson Hubbard model on a two-dimensional

lattice with a mean density of a rational number, p/q (with p, q, co-prime integers), of

bosons per unit cell. A ‘deconfined’ critical point [24] is then possible [19, 25] between the

superfluid and an insulator with valence-bond-solid order and is described by the theory of

q flavors of vortex fields ϕℓ coupled to an emergent U(1) gauge field. This field theory can

also be ‘undualized’ to a “quiver gauge theory” of fractionalized bosons with charge ±2e/q

[19].

(iii) Electronic models with a d-wave superconducting ground state can also undergo de-

confined phase transitions to insulating states with valence-bond-solid order [26, 27]. The

CFTs of these transitions have Dirac fermion degrees of freedom, representing the gapless,

Bogoliubov quasiparticle excitations of the d-wave superconductor, in addition to the mul-

tiple vortex and gauge fields found above in (ii).

(iv) Yang-Mills gauge theories with a SU(N) gauge group and N = 8 supersymmetry. These

are attracted in the infrared to a superconformal field theory (SCFT) which is solvable in

the large N limit via the AdS/CFT mapping. This solution has been used in previous work

[14, 28] to obtain the collisionless-to-hydrodynamic crossover in the transport of a conserved

SO(8) R-charge, as well as an exact value for Φσ. Here we will examine, as in other recent

work [29], the deformation of the SCFT by a non-zero B and ρ. The B field and density

ρ are both associated with a U(1) subgroup of the SO(8) R charge. After the AdS/CFT

mapping, B and ρ correspond to the magnetic and the electric charge of a black hole in

AdS space. We will present exact results for the conserved current correlators of the dyonic

black hole in Section V, which allows us to obtain corresponding exact results for the Nernst

and related thermoelectric responses of the SCFT. In the appropriate hydrodynamic limit,

these results are found to be in full agreement with the more general magnetohydrodynamic

analysis in Section III. Additional comparisons between the hydrodynamic and AdS/CFT

results appear in a separate paper [30].

It is worth reiterating that not all of the above CFTs are purely bosonic, and the examples

in (iii) and (iv) contain fermionic degrees of freedom. Furthermore, in cases (ii) and (iii),

the bosonic degrees of freedom of the CFT are not Cooper pairs, but fractions of a Cooper

pair with charges determined by the density of the Mott insulator.
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B. A simple model

Before presenting our main results, it is useful to establish notation by explicitly writing

down the simplest of the CFTs listed above. This is the |ψ|4 field theory for bosons with

charge ±2e and action

S =

∫

d2rdτ

[

∣

∣

∣

∣

(

∂τ − i
2e

~
Aτ

)

ψ

∣

∣

∣

∣

2

+ v2
∣

∣

∣

∣

(

~∇− i
2e

~c
~A

)

ψ

∣

∣

∣

∣

2

− g|ψ|2 + u

2
|ψ|4

]

, (1.3)

where ~r = (x, y) is a 2-dimensional spatial co-ordinate, τ is imaginary time, g is the coupling

which tunes the system from the superfluid to the insulator (see Figs. 1,2), and the quartic

coupling u is attracted to the Wilson-Fisher fixed point value in the infrared limit associated

with the CFT. The electromagnetic gauge potential Aµ is non-fluctuating (and is not to be

confused with the emergent U(1) gauge field of the vortex CFTs noted above). Its time-

component takes an imaginary value (in imaginary time) which determines the chemical

potential

i2eAτ = µ , (1.4)

while the spatial components take τ -independent values so that

~∇× ~A = B, (1.5)

with a spacetime-independent magnetic field B. The density, ρ, is defined, as usual, by the

derivative of the partition function with respect to the chemical potential

ρ =
kBT

~V

〈

∂S
∂µ

〉

, (1.6)

where V is the volume of the system. We reiterate that ρ measures the difference in the

density from that of the commensurate, T = 0, insulating state, and not the total density.

Also, ρ is a charge density in the sense that it measures the number density of particles

minus the number density of anti-particles.

Another parameter above which will be important for experimental comparisons is the

velocity v. Note that it plays the role of the velocity of “light” in the “relativistic” CFT. It is

determined here by the parameters of the underlying boson Hubbard (or other microscopic)

model whose superfluid-insulator transition is described by the above CFT. It is important

to distinguish v from the velocity c, which is the actual velocity of light. Here c merely

plays the role of a coupling constant which relates the value of B to physical CGS units, and

is not a velocity associated with the dynamics of the physical model under consideration.

Because v ≪ c, we can neglect the actual relativistic corrections associated with the physical

quantum fluctuations of the photon field Aµ.

With the definition of v at hand, we can now begin comparing the various energy scales

which characterize the system. The largest energy scales which characterize the deviation

7



from the T = 0 quantum critical point are kBT , an energy scale m0 ∼ |g − gc|ν associated

with the deviation from critical coupling, and the chemical potential µ. We will generally

assume that kBT is the largest of these scales; our results allow m0 and µ to be of order kBT ,

but not too much larger. For the solvable SCFT theories considered in Section V, the energy

scales associated with ρ and B will not be restricted to small values. However, for the more

general analysis in the remainder of the paper which applies also to non-supersymmetric

CFTs, we will assume that the perturbation due to B is small, and in particular,

~v
√

2eB/(~c) ≪ kBT. (1.7)

Some thermodynamic state variables will also appear in our transport result. Their tem-

perature dependencies obey scaling forms similar to those computed earlier for the present

theory at ρ = 0 in Ref. 31, and for ρ 6= 0 in Ref. 32. In particular, we will need results for

the energy density, ε, and the pressure, P which obey

ε = kBT

(

kBT

~v

)2

Φε,

P = kBT

(

kBT

~v

)2

ΦP , (1.8)

where, as in Eq. (1.1), Φε,P are dimensionless universal numbers which depend on the ratios

(g − gc)/(kBT )
1/ν and µ/(kBT ) [31, 32]. The dependence on B is not difficult to account

for, but will be subdominant, and non-singular, under the condition in Eq. (1.7).

The final parameter to introduce in our theory of the Nernst effect and other thermoelec-

tric response functions is the momentum relaxation rate 1/τimp. The theory defined so far

conserves total momentum, and thus, such relaxation requires an additional perturbation.

We assume that the relaxation is caused by a weak random impurity potential V (r) which

couples to the most relevant perturbation allowed by symmetry at the CFT fixed point. For

the present theory, this is the operator |ψ|2, and therefore the impurity action is

Simp =

∫

dτ

∫

d2rV (r)|ψ(r, τ)|2. (1.9)

We will take a “quenched” average over the ensemble of impurity potentials which obey

V (r) = 0 ; V (r)V (r′) = V 2
impδ

2(r − r′), (1.10)

and work to order V 2
imp. Note that total energy and charge are conserved in the presence

of V (r), and momentum is the only conserved quantity which will relax. We estimate the

momentum relaxation rate in Section IV and find

1

τimp
∼ V 2

impT
3−2/ν . (1.11)

The condition for this scattering to be small is

~/τimp ≪ kBT. (1.12)
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The present model has ν ≈ 2/3, and so 1/τimp depends upon temperature only very weakly.

Indeed, all the CFTs noted earlier are expected to have a similar value for ν. It is therefore

a reasonable first approximation to treat 1/τimp as a temperature-independent constant. We

will also ignore the dependence of 1/τimp on B and ρ, under the condition in Eq. (1.7).

C. Summary of results for the thermo-electric response

We finally turn to a statement of our main results for the transport co-efficients. We are

interested in the response of the electrical current ~J and the heat current ~Q to an applied

electric field ~E and a temperature gradient ~∇T . The precise definitions of ~J and ~Q appear

in the contexts of the models studied in the body of the paper. The electric field can be

applied by allowing for a weak spatial dependence in the chemical potential µ (which is then,

formally, the electrochemical potential) with 2e ~E = −~∇µ, while the temperature gradient

describes a similar weak spatial dependence in T . The transport co-efficients are defined by

the relation
(

~J
~Q

)

=

(

σ̂ α̂

T α̂ κ̂

)(

~E

−~∇T

)

, (1.13)

where σ̂, α̂ and κ̂ are 2× 2 matrices acting on the spatial indices x, y. Rotational invariance

in the plane imposes the form

σ̂ = σxx 1̂ + σxy ǫ̂, (1.14)

where 1̂ is the identity, and ǫ̂ is the antisymmetric tensor ǫ̂xy = −ǫ̂yx = 1. σxx and σxy

describe the longitudinal and Hall conductivity, respectively. An analogous form holds

for the thermoelectric conductivity α̂ (which determines the Peltier, Seebeck, and Nernst

effects), as well as for the matrix κ̂ which governs thermal transport in the absence of electric

fields. The latter applies to samples connected to conducting leads, allowing for a stationary

current flow. In contrast, the thermal conductivity, κ̂, is defined as the heat current response

to −~∇T in the absence of an electric current (electrically isolated boundaries). It is given

by

κ̂ = κ̂− T α̂σ̂−1α̂. (1.15)

Finally, the Nernst response is defined as the electric field induced by a thermal gradient in

the absence of an electric current, and is given in linear response by the relation ~E = −ϑ̂~∇T ,
with

ϑ̂ = −σ̂−1α̂. (1.16)

The Nernst signal is the transverse response, eN ≡ ϑyx. The Nernst co-efficient is usually

defined as ν = eN/B, which tends to become field independent at small B. The Nernst

signal is expected to be positive if it is due to driven vortices, while it is generally negative

if it arises from quasiparticle excitations [33].
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We now present our main results for the transport co-efficients. For the computations

using AdS/CFT applied to the SYM theory in Section V, results can be obtained for general

external frequency, ω. However, our more general hydrodynamic results apply only for

~ω ≪ kBT , and this condition is assumed in the remainder of this section. We begin by

presenting our complete result for the frequency dependence of the longitudinal electrical

conductivity (whose B → 0 limit was already quoted in Eq. (1.2)):

σxx = σQ

[

(ω + i/τimp)(ω + iγ + iω2
c/γ + i/τimp)

(ω + iγ + i/τimp)2 − ω2
c

]

. (1.17)

The overall scale is set by the quantum conductance σQ introduced in Eq. (1.2), and the

remainder depends upon two important frequency scales which will appear throughout our

analysis. These frequencies are

ωc ≡
2eBρv2

c(ε+ P )
, (1.18)

and

γ ≡ σQB
2v2

c2(ε+ P )
. (1.19)

We identify the first frequency, ωc, as a cyclotron frequency. This seems a natural inter-

pretation in view of the damped resonance present in the denominator of Eq. (1.17). Note

that in the non- relativistic limit where ε + P ≈ |ρ|mv2, ωc reduces to the familiar result

ωc = 2eB/(mc). For relativistic particles the cyclotron frequency decreases with the energy

E as ωc(E) = 2eBc/E. In the present context where v plays the role of the velocity of

light, this is modified to ωc(E) = 2eB/c · v2/E. The hydrodynamic expression (1.18) can be

regarded as a thermal average over cyclotron frequencies ωc(E ∼ T ), while the proportion-

ality to the charge density, ωc ∼ ρ, reflects the fact that particles and antiparticles circle in

opposite senses.

We can consider the cyclotron mode as arising either from the motion of particles and

anti-particles, or from the motion of vortices and anti-vortices. In the latter interpretation,

the roles of B and ρ are interchanged, whilst the expression for ωc remains invariant. We

will have more to say about this ‘dual’ interpretation in the body of the paper, and further

results appear in a separate paper [30].

The second frequency, γ, is the damping frequency of the cyclotron mode of particles and

anti-particles. Note that this damping is present even in the absence of external impurities,

and is a consequence of collisions between particles and anti-particles which are executing

cyclotron orbits in opposite directions. This should be contrasted from the behavior of a

Galilean-invariant system (i.e., a system with no anti-particle excitations) for which Kohn’s

theorem [34] guarantees an infinitely sharp cyclotron mode. The sharpness of the cyclotron

resonance is determined by the ratio

γ

ωc
= Φσ

B

φ0ρ
, (1.20)
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which up to the factor Φσ equals the number of flux quanta,

φ0 =
hc

2e
, (1.21)

applied per charge 2e.

We will see later that a different frequency plays the role of the damping of the cyclotron

mode when it is interpreted as due to the motion of vortices and anti-vortices. In that case

the damping frequency is

γv =
ω2
c

γ
=

4e2ρ2v2

σQ(ε+ P )
. (1.22)

There is an obvious ‘dual’ structure apparent upon comparing Eq. (1.19) and (1.22), which

we will discuss in more detail. Note that the cyclotron resonance will be visible only in

ultrapure samples where 1/τimp ≪ ωc. In this case, the cyclotron resonance is sharp in the

thermoelectric response associated with particle transport if γ/ωc = B/(φ0ρ) ≪ 1, while the

same condition implies a washed out resonance in the dual response functions associated

with vortices. In the opposite regime, γ/ωc ≫ 1, the vortex response, and in particular the

Nernst effect, should exhibit a sharp cyclotron resonance in ultrapure samples.

Another notable feature of Eq. (1.17) is the singular nature of the limit associated with

the small perturbations of the quantum critical region of Fig. 2. In particular, note that for

the d.c. conductivity at ω = 0, the value of σxx depends upon the order of limits of ρ → 0,

B → 0, and 1/τimp → 0. This singular limit reflects the fact that the low frequency transport

studied previously at ρ = B = 0 in Refs. 14, 17 has ballistic energy propagation and an

infinite thermal conductivity. For non-zero ρ or B, the energy and number currents can mix

with each other, leading to a finite thermal conductivity and an order unity correction to

σxx, as anticipated for the case ρ = 0 in Ref. 12.

A useful property of Eq. (1.17) is that it depends only upon the combination ω + i/τimp.

This is actually a property of the long distance limit of the hydrodynamic equations presented

in Section III, and is obeyed by all the transport co-efficients. The remainder of this section

will therefore present results only in the d.c. limit, while the ω dependence can be easily

reconstructed by replacing 1/τimp → 1/τimp − iω (as long as ~ω ≪ kBT ).

D. Nernst effect

Our central result for the Nernst signal is

eN = ϑyx =

(

kB
2e

)(

ε+ P

kBTρ

)[

ωc/τimp

(ω2
c/γ + 1/τimp)2 + ω2

c

]

(1.23)

=
1

Φσ

(

kB
2e

)(

ε+ P

kBTB/φ0

)[

γ/τimp

(ω2
c/γ + 1/τimp)2 + ω2

c

]

, (1.24)

where Φσ is the dimensionless universal number appearing in the expression for the con-

ductivity σQ in Eq. (1.1). We have expressed the Nernst signal in terms of its quantized

11



unit,
kB
2e

= 43.086 µV/K, (1.25)

times dimensionless ratios in the various brackets. We can use the relation ε+P ≈ Ts, where

s is the entropy density (see Eq. (3.15)), valid for small µ, ρ, to identify the factor in the

second brackets as approximately the entropy per particle in Eq. (1.23), and as the entropy

per vortex in Eq. (1.24). The combination of Eqs. (1.1), (1.8), (1.11) and (1.23,1.24) now

implies an interesting and non-trivial dependence of the Nernst signal on B and T . Those

should be observable in experimental regimes where the entire thermoelectric response is

dominated by critical superconducting fluctuations, as will be discussed further in Section II.

E. Other thermo-electric transport coefficients

We conclude this introductory section by mentioning two other results for transport

co-efficients whose limiting forms can be compared with earlier computations. For the

transverse thermo-electric conductivity we obtain

αxy =

(

2ekB
h

)(

s/kB
B/φ0

)[

γ2 + ω2
c + γ/τimp(1− µρ/(Ts))

(γ + 1/τimp)2 + ω2
c

]

. (1.26)

While in most recent experiments, the electric conductivity σ̂ receives the largest contribu-

tion from non-critical carriers, the thermoelectric conductivity is dominated by supercon-

ducting fluctuations, even far above Tc. It is thus the main quantity to be compared with

recent experimental observations in Section II. As with earlier results, αxy has been written

in terms of the quantum unit of the thermoelectric co-efficient [5, 10], 2ekB/h = 6.7 nA/K,

times dimensionless ratios. In the absence of impurity scattering, 1/τimp → 0, the factor in

the square brackets is unity, and we have αxy = sc/B, a result obtained long ago for non-

interacting fermions [40–42] and later derived by Cooper et al. [43] for interacting fermions,

and by Bhaseen et al. [12] for the superfluid-insulator transition.

For the longitudinal thermal conductivity we obtain

κxx = Φσ

(

k2BT

h

)(

ε+ P

kBTρ

)2 [
(ω2

c/γ)(ω
2
c/γ + 1/τimp)

(ω2
c/γ + 1/τimp)2 + ω2

c

]

(1.27)

=
1

Φσ

(

k2BT

h

)(

ε+ P

kBTB/φ0

)2 [
γ(ω2

c/γ + 1/τimp)

(ω2
c/γ + 1/τimp)2 + ω2

c

]

, (1.28)

where now k2BT/h is the quantum unit of thermal conductance. In the limit 1/τimp → 0

and B → 0, the factor within the square brackets in Eq. (1.27) reduces to unity. The

resulting expression for κxx relates it to σQ in a Wiedemann-Franz-like relation, as has been

noted by Landau and Lifshitz [46] (and elaborated on recently in Ref. 47). This relation

suggests a physical picture of transport due to particles/anti-particles carrying charges ±2e

and entropy per particle s/ρ.
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In the complementary limit of 1/τimp → 0 and ρ→ 0 the factor within the square brackets

in Eq. (1.28) reduces to unity. Now κxx is proportional to the resistivity 1/σQ, indicating

a picture of transport due to vortices of net density B/φ0. The value of κxx has the same

dependence upon all parameters as that obtained by Bhaseen et al. [12]. We can also

compare the value of the numerical prefactor. For Φσ we use the value 1.037/ǫ2 obtained in

Ref. 17 in the ǫ-expansion (ǫ = 3 − d where d is the spatial dimension), which is the same

expansion by Bhaseen et al. [12]. It is also easy to compute the value of Φε+ΦP in the same

expansion: to the leading order needed, these are just given by the values for free, massless,

relativistic bosons in d = 3, which yields Φε+ΦP = 4π2/45+O(3−d). Using these values we

obtain the same result for κxx as in Eq. (24) of Ref. 12, with their dimensionless parameter

g = 4.66 (not to be confused with our coupling g). This is to be compared with their value

g = 5.55. The origin of this numerical discrepancy is not clear to us. We believe Eq. (1.28)

is an exact identity in d = 2, but it is possible that it is modified when d is close to 3.

The outline of the paper is as follows. Section II will compare the result for the Nernst

effect and the thermoelectric response Eq. (1.26) with experiments on the cuprate supercon-

ductors and on Nb0.15Si0.85 films. Section III will present the derivation of these results using

a hydrodynamic analysis of transport near a generic, 2+1 dimensional, “relativistic” quan-

tum critical point perturbed by a chemical potential, a magnetic field, and weak impurity

scattering. An estimation of the impurity scattering rate appears in Section IV. Section V

will describe the exact solution for transport near a supersymmetric quantum critical point,

perturbed by a chemical potential and a magnetic field, which is solvable by the AdS/CFT

mapping to the physics of a dyonic black hole in 3+1 spacetime dimensions. Some technical

details appear in the appendices.

II. COMPARISON WITH EXPERIMENTS

Our main results for the Nernst signal have already been stated in Section ID. In the

following subsections, we will these results with recent observations in the cuprate supercon-

ductors [1–4], and also briefly discuss experiments in Nb0.15Si0.85 films [5, 6]. As mentioned

before, in most of these experiments the electrical conductivity is dominated by non-critical

fermionic contributions which are not captured by our relativistic hydrodynamic descrip-

tion. On the other hand, the transverse thermo-electric response αxy is expected to be

predominantly due to superconducting fluctuations and the vortex liquid. In practice αxy

is conveniently measure via the Nernst signal, using the relation αxy ≈ σxxϑyx. The latter

holds if the non-critical Hall conductivity is small, σxy ≪ σxx, as is usually the case.

It is convenient to perform the experimental comparisons by rescaling B and ρ so that

they are both measured in units of (energy)2,

B = Bφ0/(~v)
2 ; ρ = ρ/(~v)2. (2.1)

Further we observe that in typical experiments the flux per (excess) particle is very small,
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B/ρ≪ 1 and therefore γ/ωc ≪ 1. In this regime Eq. (1.26) simplifies to

(

h

2ekB

)

αxy ≈ s/kB
B/φ0

(τimpωc)
2 1 + γ/(τimpω

2
c )(1− µρ/sT )

1 + (τimpωc)2
(2.2)

≈ ΦsB (kBT )
2

(

2πτimp

~

)2
ρ2 + ΦσΦε+P (kBT )

3
~/2πτimp

Φ2
ε+P (kBT )

6 +B
2
ρ2(2πτimp/~)2

, (2.3)

where in the second line we have assumed a fully relativistic regime with s ∼ T 2 and

ε+ P ∼ T 3, and µρ≪ sT . We recall that Φε+P and Φσ are universal functions of µ/T , and

have an additional dependence on (g − gc)/T
1/ν .

A. The cuprates

Given the relative simplicity of our model of the cuprate superconductors, detailed quan-

titative comparisons with the observations of Ref. 4 are probably premature. In particular,

we have omitted the influence of long-range Coulomb interactions, which modifies the spec-

trum of boson density fluctuations, and likely leads to a superfluid-insulator quantum critical

point which is not Lorentz invariant [35, 36]. Also, although Dirac fermion excitations are

included in some of the CFTs mentioned above (corresponding to the nodal points of the

d-wave superconductor) other Fermi excitations associated with a Fermi surface may also be

important, especially in the case of NbSi. Keeping these caveats in mind, it is nevertheless

useful to examine the extent to which the present model can describe the observations. As

we will now show, using physically reasonable values of the parameters in the theory, our re-

sults describe the overall absolute magnitude of the observations, and numerous qualitative

trends [4] remarkably well.

We work here with a simple caricature of our predictions: We ignore the T and ρ

dependence of the universal functions and simply treat them as constants, Φσ ≈ 1.037,

Φ
(2d)
ε+P ≈ Φ

(2d)
s ≈ 3ζ(3)/π ≈ 1.148. This is equivalent to assuming in Figs. 1,2 that g = gc

and µ = ρ = 0 for the purpose of evaluating these functions. It is not difficult to extend our

theory to include the influence of these corrections to the leading quantum-critical behavior,

but such a detailed analysis would not be commensurate with the other simplifications noted

above.

We notice that for small B, Eqs. (2.2,2.3) predict a Nernst signal linear in B. At not

too large temperatures, the second term in the numerator of (2.3) can be neglected and the

ratio αxy/B is seen to increase with decreasing temperature as 1/T 4,

αxy

B
(B → 0) ≈

(

2ekB
hφ0

)

Φs

Φ2
ε+P

(

2πτimp

~

)2
ρ2(~v)6

(kBT )4
. (2.4)

Such a power law with exponent 4 was indeed observed over two orders of magnitude in signal

strength in underdoped La2−δSrδ CuO4 (LSCO, δ ≤ 0.12), cf., Fig. 4 in Ref. 10. Assuming
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FIG. 3: Contour plot (with logarithmic spacing) of the thermoelectric conductivity αxy (Eq. 2.3)

as a function of temperature T and magnetic field B, for parameters ~v = 47 meV Å, δ−δI = 0.025

and τimp = 10−12s estimated for LSCO. In the ordered low temperature regime T < Tc ≈ 30K,

Eq. (2.3) will receive modifications.

a typical doping δ − δI = −0.025 for underdoped LSCO with a lattice constant a = 3.78

Å, we obtain a constraint for τimpv
3 from fitting (2.4) to the experimental value αxy/B =

0.48/(T/30K)4 nA/KT per layer [10]. Assuming a typical scattering time τimp ≈ 10−12s, we

obtain an estimate for the velocity ~v ≈ 47 meVÅ. These are reasonable parameter values,

with the velocity v being of the order of the characteristic velocity found in Ref. 37.

The result of Eq. (2.2) is plotted as function of both T and B in Fig. 3. This contour

plot should be compared, e.g., with Fig. 13 in Ref. 4 in the underdoped regime, above the

superconducting transition Tc.

Using the above parameter estimates we predict the cyclotron resonance

ωc = 6.2GHz · B
1T

(

35K

T

)3

, (2.5)

which, at T = 35K, is by a factor ωc/ω
(el)
c = 2m(el)v2 · ρ/(ε + P ) ≈ 0.035 smaller than the

cyclotron frequency of free electrons. However, as mentioned before, this resonance can only

be observed in ultrapure samples where 1/τimp ≪ ωc, which is clearly not the case in LSCO.

Having estimated the velocity v and the scattering rate τimp, we can make a quantitative

prediction for the Nernst signal in the vicinity of a quantum critical point where the entire
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FIG. 4: Contour plot (linear scale) of the Nernst signal eN = ϑyx (Eq. 2.6) close to a quantum

critical point, as a function of temperature T and magnetic field B. The parameters are the same

as for Fig. 3. The signal strength in the plot ranges up to 10µV/K.

thermo-electric response is expected to be dominated by critical fluctuations. In this case,

Eq. (1.23) can be cast into the form

ϑyx =

(

kB
2e

)

(Φε + ΦP )
2Φ2

σB(kBT )
5(~/(2πτimp))

[

ρ2 + Φσ(Φε + ΦP )(kBT )3(~/(2πτimp))
]2

+ Φ2
σρ

2B
2
, (2.6)

which is plotted in Fig. 4

1. Hall resistance

Very recently, measurements of the Hall resistance in the high field normal state of

YBa2Cu3O6.5 have been reported [38]. The focus of the authors was on magnetoresistance os-

cillations; these oscillations are quantum interference effects which cannot be reproduced by

the effective classical hydrodynamic models employed here (under the condition in Eq. (1.7)),

and so are beyond the scope of the present paper. However, the authors also reported a

background Hall resistance which, surprisingly, was negative. The sample has hole density

δ = 0.1. As argued in Section I, the density of mobile carriers, ρ, which appears in the

hydrodynamic theory [19] (and which contributes a Magnus force on vortices [20]) is given
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by the difference in density between the superconductor and the proximate Mott insulator.

Using an insulator at δI = 0.125, we have ρ = −0.025/(2a2). This negative value of ρ

provides a very natural explanation of the observed negative Hall resistance. Also, we can

predict that the Hall resistance should change sign as δ is increased beyond δI .

We can make a more quantitative comparison with experiments. In Eq. (3.38) in Sec-

tion IIIA, we report the value of the Hall resistivity, ρxy, and the zero frequency limit of

that result is

ρxy =
B

2eρc

[

1− (1/τimp)
2

(1/τimp + ω2
c/γ)

2 + ω2
c

]

; (2.7)

in the absence of impurity scattering (τimp → ∞), this result was noted in Ref. 29. Using

the value of ρ noted above, at B = 60T, we determine that the prefactor of the square

brackets in Eq. (2.7) is -2.2 kΩ. For the factor within the square brackets, we assume the

same parameters as found above for LSCO, and conclude that it is close to unity. This result

is to be compared with the observed resistance per layer [38] at this field of -3.9 kΩ, which

is quite reasonable agreement for this simple model.

B. NbSi

We also note the experiments on amorphous films of Nb0.15Si0.85 reported in Refs. 5, 6

The normal phase, T > Tc, of these films exhibits a number of features that are consistent

with our hydrodynamic results, when taken to their non-relativistic limit. In particular,

αxy as given in Eq. (2.2) displays a functional dependence on magnetic field akin to that

reported in Ref. 6:

αxy ∝
B

ξ−4 + ℓ−4
B

∝ B

1 + (B/B0)2
, (2.8)

with B0 = ~c/eξ2, which was interpreted as the physics being controlled by the shorter of

the superconducting coherence length ξ and the magnetic length ℓB = (~c/eB)1/2 [6]. We

mention that the low B data, i.e., the Nernst coefficient ν = limB→0 αxy/Bσxx measured in

Ref. 5, was very successfully described by the theory of Gaussian fluctuations [8]. However,

the crossover (2.8) and the high field behavior αxy ∼ 1/B remained unexplained in earlier

theories. Our magnetohydrodynamic approach may give a hint to the origin of the latter.

We believe that the similarity of Eqs. (2.2) and (2.8) is not a mere coincidence. Rather, it

leads us to speculate that the scattering time τimp should be identified with

τimp =
B

B0ωc
=
mξ2

~
≈ (kF ℓ)

ξ2

vF ℓ
∼ τGL, (2.9)

the Ginzburg-Landau life time of fluctuating Cooper pairs [39]. Here we have used the free

electron value (non-relativistic limit) for the cyclotron frequency ω
(el)
c = eB/m(el)c. Further,

vF = ~kF/m is the Fermi velocity, and we have used that kF ℓ ≈ O(1) in the studied

amorphous NbSi [5]. The estimate τimp ≈ τGL suggests that the suppression of the Nernst
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signal at high fields is due to the Cooper pairs starting to perform entire orbits over their

life time.

We may use the above guess of τimp to express the low field limit of αxy, as

αxy(B ≪ B0) =
kBe

~

ξ2

ℓ2B

sξ2

kB
, (2.10)

where we have invoked a small value of γ to approximate the last numerator in Eq. (2.2) by

to 1. It is interesting to note that apart from the last factor which describes the entropy per

coherence volume, this expression has the same parameter dependence as the one derived

from Gaussian fluctuations in Ref. 8.

III. MAGNETOHYDRODYNAMICS

The remainder of this paper will revert to natural dimensionless units with ~ = kB =

2e = v = 1, and absorb a factor of 1/c in the definition of B.

Here we will focus on the nature of quantum critical transport in the hydrodynamic

region [14, 17] where ~ω ≪ kBT . The condition in Eq. (1.7) ensures ~ωc ≪ kBT , and a

relativistic formulation is appropriate if also m0 . kBT is satisfied. We will use the method

described by Landau and Lifshitz [46], which was recently reviewed in the context of a

string theory computation [47]. These previous analyses were carried out for B = 0 and

1/τimp = 0, and only considered the longitudinal electrical and thermal conductivities. Here

we will show how the hydrodynamic analysis can be extended to include non-zero values

of these parameters. Further, we will obtain results for the frequency dependence of the

full set of transport co-efficients in Eq. (1.13). These results are consistent with the exact

results obtained via AdS/CFT for a particular SCFT which are presented in Section V and

Ref. 30—the latter results however extend over a wider regime of parameters.

The fundamental ingredients of a hydrodynamic analysis are the conserved quantities and

their equations of motion. Unlike in the theory of dynamics near classical, finite temperature

critical points [49], here we do not need to explicitly consider the order parameter dynamics

for the effective equations of motion of the low frequency theory. The key difference is that

kBT/~ constitutes an intrinsic relaxation time for the order parameter fluctuations, and we

are only interested in much lower frequency scales. In contrast, at a classical critical point,

the relaxation time diverges. The frequency scales larger than kBT/~ cannot be addressed

by the methods below, and require a full quantum treatment of the dynamics of the CFT.

The conserved quantities of interest are the electrical charge, the energy, and the mo-

mentum. For the relativistic theories under consideration, these can be assembled into the

electrical current 3-vector 2 Jµ = (ρ, Jx, Jy), and the stress-energy tensor T µν . We will use

2 Notice that upon restoring v, the 3-current reads Jµ = (ρv, 0, 0).
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standard relativistic notation with the metric tensor gµν = diag(−1, 1, 1) and coordinates

xµ = (vt, x, y). For the moment, we will ignore the momentum relaxation due to the weak

impurity potential in Eq. (1.9), and include its effects shortly below. With total momentum

conserved, the equations of motion obeyed by the total electrical, momentum and energy

currents are

∂µJ
(tot)µ = 0, (3.1)

∂νT
(tot)µν = F µνJ (tot)

ν . (3.2)

The first equation represents the conservation of charge and requires no further comment.

The second equation describes the evolution of the stress energy tensor, and the term on

the right hand side represent the effects of the external B field. Here F µν is the applied

magnetic field which takes the fixed value 3

F µν =







0 0 0

0 0 B

0 −B 0






, (3.4)

and the right hand side of Eq. (3.2) describes the Lorentz force exerted by this field, as

discussed, e.g., in Ref. 48. In equilibrium, we have J (tot)µ = (ρ, 0, 0) and then the term

proportional to F µν vanishes, as expected.

To use the equations (3.1) and (3.2), we need to relate J (tot)µ and T (tot)µν to parameters

which define the local thermodynamic equilibrium, and a three-velocity uµ which represents

the velocity of the system in local equilibrium with respect to the laboratory frame. As

usual [46], the three-velocity uµ ≡ dxµ/dτ satisfies uµuµ = −1, and uµ = (1, 0, 0) in the

equilibrium frame where there is no energy flow 4. For the thermodynamic parameters we

3 More precisely, if we also allow for an electrical field in the lab frame and restore v, the field tensor takes

the form

Fµν =







0 (c/v)Ex (c/v)Ey

−(c/v)Ex 0 B

−(c/v)Ey −B 0






. (3.3)

The equation of motion (3.2) is a priori valid for velocities v′ ≪ v, where the non-relativistic limit

applies. However, it is valid as a relativistically covariant equation under Lorentz transformations Λµ
ν

characterized by the limit velocity v (not c), if it is understood that Fµν transforms as an antisymmetric

tensor, Fµν = Λµ
αΛ

ν
βF

αβ under a change of reference frame. This is exact up to negligible corrections of

order O([v/c]2).
4 Note that the absence of an energy flow in the rest frame defines the velocity vector uµ in the ”dynamic”

frame used throughout this paper. Alternatively, one can formulate the hydrodynamics in the kinetic

frame [45] where uµ denotes the velocity associated with the electrical current via Jµ = ρuµ. However,

the dynamic frame is the natural frame to work with, since we assume local equilibrium. ui is canonically

conjugate to the momentum density T 0i, and the energy current has a natural expression in terms of uµ

(cf. Eq. (3.18)).
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will use the charge density, ρ, the energy density ε, the pressure P , and the magnetization

densityM ; we define the pressure, P , as the negative of the grand potential per unit volume,

and M as the derivative of the latter with respect to B.

Using these parameters the stress energy tensor of a fluid is given by

T (tot)µν = T µν −MµγF ν
γ + TEµν,

T µν = (ε+ P )uµuν + Pgµν + τµν , (3.5)

where

Mµν =







0 0 0

0 0 M

0 −M 0






, (3.6)

is the polarization tensor [44]. (The electric polarizationsM0i = −M i0 vanish in the absence

of electric fields in the lab frame.)

The electrical current is given by

J (tot)µ = Jµ + ∂νM
µν , (3.7)

Jµ = ρuµ + νµ. (3.8)

The ’dissipative current’ νµ accounts for the fact that the charge current and the energy

current are not simply proportional to each other. This is because there is a heat flow even

in the absence of matter convection, which is a consequence of particle-antiparticle creation

and annihilation.

We have introduced the transport currents [43], Jµ and T µν which represent observable

quantities which can couple to probes external to the system. The remaining contribution to

J (tot)µ is the magnetization current [8, 10, 42, 43], which is induced due to spatial variations

in the local magnetization density. The coupling of the magnetization to the magnetic field

contributes an extra contribution −MµγF ν
γ to the stress energy tensor, reducing its spatial

diagonal to Pint = P−MB (see also Appendix B). The origin and the physics of this term has

also been discussed by Cooper et al [43]. Finally TEµν represents the “energy magnetization

current”. We will not need an explicit expression for this quantity here, apart from the fact

that it obeys ∂νT
Eµν = 0. Expressions will be given later in the paper when we consider

specific CFTs: for the super Yang Mills theory in Section V, and for the Wilson-Fisher

fixed point in Appendix B. With these magnetization currents subtracted out, the residual

transport currents continue to obey the equations of motion as in Eqs. (3.1) and (3.2):

∂µJ
µ = 0,

∂νT
µν = F µνJν . (3.9)

In the expressions for the transport currents in Eqs. (3.5) and (3.8), we assume that ε, P ,

ρ, and M are thermodynamic functions of the local chemical potential, µ, the temperature
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T , and the magnetic field B. We will treat uµ, µ, and T as the “independent” degrees of

freedom which respond to external perturbations, and assume that the remaining thermody-

namic variables will follow according to the equation of state. In equilibrium, the non-zero

components of Jµ and T µν are

J t = ρ ; T tt = ε ; T xx = T yy = P −MB. (3.10)

Eqs. (3.5) and (3.8) also contain the dissipative components of the stress-energy tensor and

the current, as introduced in Ref. 46; these are are orthogonal to uµ

uµτ
µν = uµν

µ = 0, (3.11)

and will be determined below by imposing the requirement that the total entropy increases

under time evolution.

We are now in a position to introduce the scattering due to a dilute concentration of

impurities. We assume that their dominant effect is to introduce a relaxation in the local

transport momentum density: impurity scattering conserves charge and energy, and we do

not expect the magnetization currents to relax by impurity scattering. Thus, we modify

Eqs. (3.9) to

∂µJ
µ = 0,

∂νT
µν = F µνJν +

1

τimp
(δµν + uµuν) T

νγuγ. (3.12)

The new term in the second equation in Eq. (3.12) represents the impurity scattering. The

impurities, as described by the random potential in Eq. (1.9) are assumed to be at rest in

the laboratory frame. The projection operators built out of the uµ in the second term in

Eq. (3.2) ensure that in the laboratory frame only the total momentum, i.e., T i0, is relaxed.

We will discuss a computation of the value of τimp later in Section IV.

Following Landau and Lifshitz [46], we now use the positivity of the entropy production

to constrain the expression for the dissipative components νµ and τµν . First we notice from

Eq. (3.5) that

uν∂µT
µν = −(ε+ P )∂µu

µ − uµ∂µε+ uν∂µτ
µν , (3.13)

and from Eq. (3.12) that

uν∂µT
µν = F µνuµνν . (3.14)

Using the thermodynamic relations

ε+ P = Ts+ µρ, dε = Tds+ µdρ, (3.15)

Eq. (3.11) and current conservation, Eqs. (3.13) and (3.14) can be transformed into

∂µ(su
µ) =

µ

T
∂µν

µ − 1

T
F µνuµνν −

τµν

T
∂µuν , (3.16)
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or

∂µ

(

suµ − µ

T
νµ
)

= νµ
[

1

T
(−∂µµ+ F µνuν) + µ

∂µT

T 2

]

− τµν

T
∂µuν . (3.17)

It is natural to interpret the left hand side as the divergence of the entropy current. Ac-

cordingly we can interpret the three vector

Qµ = sT uµd − µνµ = (ε+ P )uµ − µJµ ≡ JEµ − µJµ (3.18)

as the heat current. We have also introduced the energy current JEµ = (ε+ P )uµ.

Since the entropy can only increase, the right hand side of (3.17) must be positive.

Generalizing the arguments of Landau and Lifshitz, we deduce the most general expressions

for the dissipative currents which are linear in spatial gradients and the velocity,

νµ = σQ(g
µν + uµuν)

[

(

−∂νµ+ Fνλu
λ
)

+ µ
∂µT

T

]

, (3.19)

τµν = −(gµλ + uµuλ) [η(∂λu
ν + ∂νuλ) + (ζ − η) δνλ∂αu

α] . (3.20)

Here η and ζ are the shear and bulk viscosities, and σQ is a conductivity. Notice that

there are only three independent transport co-efficients. We will neglect velocity gradients

for the most part in this paper, and so the viscosities do not appear in our main results.

Consequently, we have the remarkable feature that all transport response functions depend

only upon a single dissipative transport co-efficient σQ. Notice that in the dissipative current

the gradient of the chemical potential appears in combination with the electromagnetic forces

F µνuν , which is natural since it is equivalent to an electric field.

A. Linear response

We will now follow the strategy of Kadanoff and Martin [50]: Use the equations of

hydrodynamics to solve the initial value problem in linear response, and compare the results

to those obtained from the Kubo formula in order to extract transport coefficients and their

frequency dependence.

First, we address the solution of the initial value problem in hydrodynamics. We begin

by choosing our independent variables: from the structure of the above equations, it appears

convenient to choose the four variables T , µ, and ux and uy. So we write

µ(r, t) = µ+ δµ(r, t),

T (r, t) = T + δT (r, t), (3.21)

while F µν is fixed at the value in Eq. (3.4). We also write uµ as

uµ =







1

vx(r, t)

vy(r, t)






, (3.22)
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where vx, vy are of the same order as δµ and δT .

The other variables, ε, P , and ρ are constrained by local thermodynamic equilibrium to

have the form

ρ(r, t) = ρ+ δρ ≡ ρ+
∂ρ

∂µ

∣

∣

∣

∣

T

δµ+
∂ρ

∂T

∣

∣

∣

∣

µ

δT,

ε(r, t) = ε+ δε ≡ ε+
∂ε

∂µ

∣

∣

∣

∣

T

δµ+
∂ε

∂T

∣

∣

∣

∣

µ

δT,

P (r, t) = P + δP ≡ P + ρδµ + sδT. (3.23)

The various components of the stress-energy tensor and the current vector are perturbed

accordingly. To linear order we have

δT tt = δε,

δT ti = T ti = (ε+ P )vi,

δT ij = δPδij − η(∂ivj + ∂jvi − δij∂kvk)− ζδij∂kvk,

δJ t = δρ,

δ ~J = ~J = ρ~v + ~ν,

~ν = σQ

(

−~∇µ+ ~v × ~B + µ
~∇T
T

)

. (3.24)

For small perturbations the conservation laws take the form

∂tρ+ ~∇ ~J = 0, (3.25)

∂tε+ ~∇ ~JE = 0, (3.26)

∂t ~J
E = −~∇P − η~∇2~v − ζ ~∇(~∇ · ~v) + ~J × ~B, (3.27)

with the energy and heat currents

~JE = (ε+ P )~v, (3.28)

~Q = ~JE − µ ~J = (ε+ P )~v − ρµ~v − µ~ν = sT ~v − µ~ν, (3.29)

The crucial remnant of the relativistic theory in the linearized hydrodynamics is the fact

that the energy and particle currents are in general not parallel,

~JE =
ε+ P

ρ

[

~J − σQ

(

−~∇µ+ ~v × ~B + µ
~∇T
T

)]

=
ε+ P

ρ
~J +

(ε+ P )2

Tρ2
σQ~∇T +

ε+ P

ρ2
σQ

(

−~∇P + ~J × ~B
)

, (3.30)

where we have used (3.15) to rewrite the dissipative current. The energy current consists

of three parts: the first two are familiar from non-relativistic theory as the convection of
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matter and heat flow due to a thermal gradient, with a thermal conductivity [46] κ =

σQ(ε + P )2/(Tρ2). The last term in (3.30) is proportional to the acceleration vector, and

is a purely relativistic phenomenon [51]. One can easily see that this term is responsible

for the damping γ of the cyclotron mode (cf., Eq. (1.19)), by using the above relation to

substitute for ~J in the momentum conservation law (3.27).

To complete the hydrodynamic analysis, we solve the equations (3.25)-(3.27) for arbitrary

initial values δT 0, δµ0 and v0x = v0y = 0, and obtain the response in the electrical current ~J

and the heat current ~Q. The ’heat density’ associated to the latter, q(r) = ε(r)− µρ(r) is

canonically conjugate to the temperature at fixed chemical potential [50].

After a Fourier transform in space and a Laplace transform in time, the linear response

of any quantity A obeys

A(~k, ω) =
GA;ε−µρ(~k, ω)−GA;ε−µρ(~k, 0)

iω

δT 0(~k)

T
+
GA;ρ(~k, ω)−GA;ρ(~k, 0)

iω
δµ0(~k)

+
GA;T 0i(~k, ω)−GA;T 0i(~k, 0)

iω

∑

i=x,y

vi(~k), (3.31)

where the coefficients are related to retarded equilibrium correlation functions, as can be

shown from analyzing an adiabatic perturbation [50] of the form

δH(t) = −
∫

dr

[

δµ(r, t)n(r, t)− δT (r, t)

T
(ε(r, t)− µn(r, t))−

∑

i

vi(r, t)T 0i(r, t)

]

.(3.32)

Finally, using the conservation laws in the form

iωρ(~k) = i~k ~J(~k),

iω(ε(~k)− µρ(~k)) = i~k
[

~JE(~k)− µ ~J(~k)
]

= i~k ~Q(~k), (3.33)

we obtain

A(~k, ω) = − 1

iω

[

GA; ~Q(
~k, ω)−GA; ~Q(

~k, 0)

iω

(

−
~∇T 0(~k)

T

)

+
GA; ~J(

~k, ω)−GA; ~J(
~k, 0)

iω
~E(~k)

]

+
GA;T 0i(~k, ω)−GA;T 0i(~k, 0)

iω

∑

i=x,y

vi(~k). (3.34)

For A = ~J and A = ~Q one recognizes the co-efficients of ~E ≡ −~∇µ0 and (−~∇T 0/T ) as

(−1/iω) times the Kubo formulae for the thermoelectric co-efficients σ̂, α̂, κ̂. The response

to an initial velocity perturbation could be used to extract frequency dependent viscous

response functions.

After a Laplace transform in time, the Eqs. (3.25) and (3.26) take the form

i

(

∂ρ

∂µ

∣

∣

∣

∣

T

δµ0 +
∂ρ

∂T

∣

∣

∣

∣

µ

δT 0

)

= ω

(

∂ρ

∂µ

∣

∣

∣

∣

T

δµ+
∂ρ

∂T

∣

∣

∣

∣

µ

δT

)

+ i~∇ (ρ~v +BσQǫ̂~v)− iσQT∇2
(µ

T

)

,

i

(

∂ε

∂µ

∣

∣

∣

∣

T

δµ0 +
∂ε

∂T

∣

∣

∣

∣

µ

δT 0

)

= ω

(

∂ε

∂µ

∣

∣

∣

∣

T

δµ+
∂ε

∂T

∣

∣

∣

∣

µ

δT

)

+ i(ε+ P )~∇ · ~v , (3.35)
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for charge and energy conservation, and Eq. (3.27)

i(ε+ P )~v0 = (ω + i/τimp)(ε+ P )~v + i(ρ~∇µ+ s~∇T )
− iBρǫ̂~v + iBσQǫ̂(~∇µ− µ

T
~∇T ) + iB2σQ~v

+ iη∇2~v + iζ ~∇(~∇ · ~v) , (3.36)

for momentum conservation.

In the case of weak enough momentum relaxation, the response functions will exhibit

peaks associated with the normal modes of these linearized equations. Apart from the

damped cyclotron mode discussed above, one finds two diffusive modes, as analyzed in

Appendix A. However, those will not be of importance below since we are restricting to

long wavelengths in the sequel.

In the limit k → 0, the current and energy conservation impose δµ = iδµ0/ω and

δT = iδT 0/ω, expressing that the decay of initial perturbations can be neglected. Fur-

ther, the contributions from viscosity can be neglected in this limit. Upon injection into

the momentum conservation equations (3.36), we easily obtain the retarded Greens func-

tions and via the mapping (3.34) and Kubo formulae the transport co-efficients defined in

Eq. (1.13):

σxx = σQ
(ω + i/τimp)(ω + iγ + i/τimp + iω2

c/γ)

[(ω + iγ + i/τimp)2 − ω2
c ]

,

σxy = − ρ

B

(γ2 + ω2
c − 2iγω + 2γ/τimp)

[(ω + iγ + i/τimp)2 − ω2
c ]

,

αxx =
s

B

[ωc(iω − 1/τimp)(1− (γµρ/(ω2
cTs))(γ + 1/τimp − iω))]

[(ω + iγ + i/τimp)2 − ω2
c ]

,

αxy = − s

B

[γ2 + ω2
c + γ(−iω + 1/τimp)(1− µρ/(Ts))]

[(ω + iγ + i/τimp)2 − ω2
c ]

,

κxx = −
(

(ε+ P )2

TBρ

)

ωcγ

[(ω + iγ + i/τimp)2 − ω2
c ]

×
{

1 + (1/τimp − iω)
(s2T 2ω2

c + γ2µ2ρ2)

γω2
c (ε+ P )2

+ (1/τimp − iω)2
µ2ρ2

ω2
c (ε+ P )2

}

,

κxy = −
(

Ts2

Bρ

)

ω2
c

[(ω + iγ + i/τimp)2 − ω2
c ]

×
{

1− 2µσQB

Ts

(γ + 1/τimp − iω)

ωc
−
(

µσQB

Ts

)2
}

. (3.37)

We also computed the thermoelectric co-efficients αxx, αxy by examining the heat current

induced by an applied electric field, and precisely the same result as above was obtained.

This confirms Onsager reciprocity which has to hold since the densities associated with

the electric and heat currents are conjugate to δµ and δT/T , respectively. The validity of

Onsager reciprocity is a strong check of the consistency of our hydrodynamic description.
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From expressions in Eq. (3.37) we can also derive the resistivities ρ̂ = σ̂−1, the Nernst

responses defined in Eq. (1.16) and the thermal conductivities defined in Eq. (1.15).

ρxx =
1

σQ

(ω + i/τimp)(ω + iγ + i/τimp + iω2
c/γ)

[(ω + iω2
c/γ + i/τimp)2 − ω2

c ]
,

ρxy = −B
ρ

((ω2
c/γ)

2 + ω2
c − 2i(ω2

c/γ)ω + 2(ω2
c/γ)/τimp)

[(ω + iω2
c/γ + i/τimp)2 − ω2

c ]
,

ϑxx =
s

ρ

[(ω2
c/γ)

2 + ω2
c + (ω2

c/γ)(−iω + 1/τimp)(1− µρ/(Ts))− (µρ/(Ts)(−iω + 1/τimp)
2]

[(ω + iγ + i/τimp)2 − ω2
c ]

,

ϑxy = −B
T

(iω − 1/τimp)

[(ω + iω2
c/γ + i/τimp)2 − ω2

c ]
,

κxx =
(ε+ P )

T

(iω − 1/τimp − ω2
c/γ)

[(ω + iω2
c/γ + i/τimp)2 − ω2

c ]
,

κxy =
(ε+ P )

T

ωc

[(ω + iω2
c/γ + i/τimp)2 − ω2

c ]
. (3.38)

These expressions contain the main results that were quoted in Section I. Although they

appear rather complicated, most of the structure is tightly constrained and the predicted

dependencies on ω are robust consequences of hydrodynamics.

Significant simplifications do appear if in addition to the small B assumption in Eq. (1.7),

we also assume that ρ is small. In particular, let us take B ≪ T 2, ρ ≪ T 2 and ρ ∼ B ∼
T 3/2

√
ω. Note that in this limit we may simplify Eq. (3.15) to Ts = ε+P . Then, the results

in Eqs. (3.37) and (3.38) take the following more compact form (we have set 1/τimp = 0

because, as noted in Section I, the dependence on impurity scattering is easily restored

below by ω → ω + i/τimp):

σxx = σQ
ω(ω + iγ + iω2

c/γ)

[(ω + iγ)2 − ω2
c ]

, σxy = − ρ

B

(γ2 + ω2
c − 2iγω)

[(ω + iγ)2 − ω2
c ]
,

ρxx =
1

σQ

ω(ω + iω2
c/γ + iγ)

[(ω + iω2
c/γ)

2 − ω2
c ]

, ρxy =
B

ρ

((ω2
c/γ)

2 + ω2
c − 2i(ω2

c/γ)γω)

[(ω + iω2
c/γ)

2 − ω2
c ]

,

αxx =
ρ

T

iω

[(ω + iγ)2 − ω2
c ]

, αxy = − s

B

γ2 + ω2
c − iγω

[(ω + iγ)2 − ω2
c ]
,

ϑxx =
s

ρ

(ω2
c/γ)

2 + ω2
c − i(ω2

c/γ)ω

[(ω + iω2
c/γ)

2 − ω2
c ]

, ϑxy = −B
T

iω

[(ω + iω2
c/γ)

2 − ω2
c ]
,

κxx = s
iω − γ

[(ω + iγ)2 − ω2
c ]

, κxy = −s ωc

[(ω + iγ)2 − ω2
c ]
,

κxx = s
iω − ω2

c/γ

[(ω + iω2
c/γ)

2 − ω2
c ]

, κxy = s
ωc

[(ω + iω2
c/γ)

2 − ω2
c ]
. (3.39)

The above expressions are now easily observed to obey a remarkable ‘self-duality’ symmetry.

Under the interchanges

ρ↔ B and σQ ↔ 1/σQ, (3.40)
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the cyclotron frequency ωc in Eq. (1.18) remains invariant, while the damping frequencies

in Eqs. (1.19,1.22) interchange

γ ↔ γv = ω2
c/γ; (3.41)

then note that the expressions for the transport co-efficients interchange as follows:

σxx, σxy, αxx, αxy, κxx, κxy

l
ρxx,−ρxy,−ϑxy,−ϑxx, κxx,−κxy. (3.42)

These relations are consequences of the particle-vortex duality discussed in Ref. 14, and

the mapping of the transport co-efficients in Eq. (3.42) can be deduced from the mapping

Ei ↔ ǫijJj in Eq. (1.13). These duality relations will be discussed further in the context of

SCFTs solvable by AdS/CFT in Section V and in Ref. 30: in this case the duality relations

will be found to hold exactly for all ρ and B.

IV. ESTIMATING THE MOMENTUM RELAXATION RATE

As discussed in Section I, we assume that momentum relaxation is caused by an external

perturbation of the form

Simp =

∫

dτ

∫

ddxV (x)O(x, τ), (4.1)

where V (x) is an external potential which is random function of spatial position x, but

independent of τ , with the averages in Eq. (1.10). The operator O is the “thermal operator”

of the CFT, i.e., the most relevant perturbation which drives the CFT massive (despite the

name, it has nothing to do with temperature in the present context).

We are interested in the modification of the equation of motion of the momentum density,

T i0 by the impurity, because this is the only quantity whose conservation law is spoiled by

the presence of impurities. In the absence of other perturbations from equilibrium we observe

from Eq. (3.12) that the momentum density obeys

∂T it

∂t
= − 1

τimp

T it + . . . , (4.2)

where the ellipses indicates terms which have an explicit spatial gradient and so their spatial

integral vanishes. We will describe here an estimate of τimp to order V 2
imp.

For definiteness, consider the Wilson-Fisher fixed point of a complex scalar ψ in Eq. (1.3),

although the argument easily generalizes to other CFTs. We will also ignore the influence

of B and µ as these are secondary perturbations. Then O = |ψ|2 and

T it = ̟∗∂iψ + c.c. , (4.3)
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where ̟ is canonical momentum conjugate to ψ. For the following, we need the commutator

Υj = i[T jt,O] = ∂j(|ψ|2). (4.4)

We now compute 1/τimp using the memory function method [52, 53]. From this approach,

the estimate of the momentum relaxation rate is

1

τimp

=
V 2
imp

χT

lim
ω→0

1

ω

∫

ddk

(2π)d
Im〈Υi(−k,−ω)Υi(k, ω)〉ret , (4.5)

where we are working in general d dimensions, and χT is the momentum density susceptibility

i.e.

χT =

∫

ddxdτ〈T it(x, τ)T it(0, 0)〉. (4.6)

Using the scaling dimensions

dim[T i0] = d+ 1,

dim[|ψ|2] = d+ 1− 1/ν, (4.7)

(where 1/ν is the scaling dimension of the coupling conjugate to O = |ψ|2) we obtain

dim[χT ] = −d − 1 + 2 dim[T i0] = d+ 1,

dim
[

〈Υi(−k,−ω)Υi(k, ω)〉ret
]

= −d − 1 + 2 dim[Υj] = d+ 3− 2/ν. (4.8)

Thus χT ∼ T d+1, and
1

τimp

∼ V 2
impT

d+1−2/ν , (4.9)

which is the result quoted in Eq. (1.11) for d = 2. As noted there, ν ≈ 2/3, and so 1/τimp

is roughly temperature independent.

An alternative, but less constructive argument proceeds along the lines of the discussion

in Ref. 54. From Eq. (4.1) we have dim[V ] = 1/ν, and so from Eq. (1.10) we have dim[V 2
imp] =

−d+2/ν. This is indeed familiar from Harris’ criterion which states that disorder is relevant

if ν < 2/d. Then, knowing dim[1/τimp] = 1, the result (4.9) follows.

V. DYONIC BLACK HOLES

A. AdS4/CFT3 and the black hole solution

From the point of view of studying quantum critical phenomena, the AdS/CFT corre-

spondence [55] provides a wealth of new solvable strongly correlated conformal field theories

(CFTs) in 2+1 dimensions. The key feature of these CFTs is that they admit a large N

limit in which they can be described classically as a gravitational theory in 3+1 dimensions

that asymptotes to Anti-de Sitter space (AdS4). The CFT is thought of as living on the

‘boundary’ of the higher dimensional, or ‘bulk’, spacetime.

28



The correspondence furthermore allows us to consider departures from criticality due to

finite temperature. This is precisely the type of systems we are studying in this paper.

Finite temperature in field theory corresponds to allowing the bulk spacetime to contain a

black hole [56]. The temperature of the field theory is just the Hawking temperature of the

black hole. Finite temperature dissipation in field theory is dual to bulk matter fields falling

into the black hole.

We wish to consider a CFT with a global U(1) symmetry and a corresponding charge

density ρ and a background magnetic field B. It was explained recently that this is dual

to taking a dyonic black hole, carrying both electric and magnetic charge [29]. These black

holes are solutions to Einstein-Maxwell theory in 3+1 dimensions. In this section, and also in

a separate paper [30], we will see how thermoelectric transport properties of the dyonic black

hole precisely agree with our general analysis in the hydrodynamic limit. The black hole, via

the AdS/CFT correspondence, provides a solvable example of the physics we are studying

throughout this paper. Furthermore, the various particle-vortex dualities we have discussed

above are seen to acquire a very transparent interpretation in the AdS/CFT correspondence.

The canonical example of the AdS4/CFT3 correspondence describes the infrared fixed

point of maximally supersymmetric Yang-Mills theory with SU(N) gauge group. The dual

gravitational theory in this case is M theory on AdS4 × S7 [55]. However, in the large

N limit and for the subset of field theory questions we are asking, this theory may be

consistently truncated to Einstein-Maxwell theory with a negative cosmological constant in

3+1 dimensions. The dimensional reduction is performed for instance in [14].

The action for Einstein-Maxwell theory with a negative cosmological constant may be

taken to be

I =

√
2N3/2

6π

∫

d4x
√−g

[

−1

4
R +

1

4
FµνF

µν − 3

2

]

, (5.1)

which implies the equations of motion

Rµν = 2FµσFν
σ − 1

2
gµνFσρF

σρ − 3gµν , (5.2a)

∇µF
µν = 0 . (5.2b)

We have expressed the normalization of the action in terms of the field theory quantity N .

A black hole in AdS4 with planar horizon has metric

ds2 =
α2

z2
[

−f(z)dt2 + dx2 + dy2
]

+
1

z2
dz2

f(z)
. (5.3)

The dyonic black hole carries both electric and magnetic charge

F = hα2dx ∧ dy + qαdz ∧ dt , (5.4)

where h, q and α are constants that will be related to field theory quantities shortly. The

function appearing in the metric is then

f(z) = 1 + (h2 + q2)z4 − (1 + h2 + q2)z3 . (5.5)
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In these coordinates, the conformal boundary of the spacetime is at z → 0 whereas the black

hole event horizon is at z = 1.

In the following subsection we summarize the thermodynamic properties of this black hole

spacetime that were derived in [29], which is also the thermodynamics of the CFT. We will

express thermodynamic quantities in terms of the dual field theory background magnetic

field and chemical potential. These are related to the constants q and h that appeared in

the black hole solution as follows [29]

B = hα2 , µ = −qα . (5.6)

B. The grand canonical ensemble

We give the thermodynamics of the CFT in terms of the temperature T , the chemical

potential µ and the background magnetic field B. Many variables are most simply expressed

in terms of an auxiliary quantity α(T, µ, B) which is determined from

4πT

α
= 3− µ2

α2
− B2

α4
. (5.7)

The thermodynamic potential is

Ω =

√
2N3/2

6π

Vα3

4

(

−1− µ2

α2
+ 3

B2

α4

)

. (5.8)

Here V =
∫

dx dy is the spatial volume. The energy density is

ε =

√
2N3/2

6π

α3

2

(

1 +
µ2

α2
+
B2

α4

)

. (5.9)

The entropy density is

s =

√
2N3/2

6
α2 . (5.10)

The charge density is

ρ =

√
2N3/2

6π
α2µ

α
. (5.11)

The magnetization is

M = − 1

V
∂Ω

∂B
= −

√
2N3/2

6π
α
B

α2
. (5.12)

The pressure is

P =MB +
ε

2
. (5.13)

These formulae satisfy the thermodynamic relation

ε+ P = Ts+ µρ . (5.14)
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Note that the above implies the relation

ε =
2

3
(sT + µρ−MB) . (5.15)

Finally, it is useful to define

χ =

√
2N3/2

6π
T . (5.16)

Which gives the relation

ρMT 2 = −µBχ2 . (5.17)

C. Magnetization densities and currents

In the following subsection, we will use Kubo formulae to the obtain transport coefficients

of the SCFT from retarded Greens functions. When applying the Kubo formula to systems

with a background magnetic field, it is necessary to subtract effects due to magnetization

currents, as explained in Cooper et al. [43]. The magnetization currents are

Jmag.
i = ǫij∂jM , (5.18)

and

Tmag.
ti = ǫij∂jM

E . (5.19)

Here and below the indices i, j run over the two spatial coordinates x and y. The equilibrium

magnetization density M and energy magnetization density ME for the dyonic black hole

are obtained by differentiating the free energy with respect to a constant magnetic field for

either the charge or momentum currents,

M = − δΩ

δFxy
, (5.20)

ME = − δΩ

δFE
xy

. (5.21)

Here we define δFE
xy = ∂xδg

0
ty−∂yδg0tx and δFxy = ∂xδA

0
y−∂yδA0

x, where δg
0
ta is a background

gauge field sourcing Tta, and δA0
a sources Ja. Further comments on these magnetization

densities, and their computation for the scalar field theory in Eq. (1.3) appear in Appendix B.

In the AdS/CFT correspondence, the free energy Ω is just the action of the dual gravita-

tional background. To compute the derivatives in (5.20) and (5.21) we must consider on shell

fluctuations of the bulk metric and gauge field that tend towards δg0ta and δA0
a, respectively,

near the conformal boundary z → 0. We then differentiate the action with respect to the

boundary values of these fields.

More concretely, the boundary condition may be taken to be

δAy → xB as z → 0 , (5.22)

δgty z
2/α ≡ δGy → xBE as z → 0 , (5.23)
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with B and BE constants and all other fields having normalizable behavior near the bound-

ary. It turns out that the linearized fluctuation equations about the dyonic black hole

background with these boundary conditions may be consistently truncated to the fields δAy,

δAt and δgty. The solution is

δAy = x(B − qBEz) , (5.24)

δGy = xf(z)BE , (5.25)

δAt =
hBE

2α
(z2 − 1)− hB

qα
(z − 1) . (5.26)

Note that At vanishes at the horizon, z = 1, as required.

Because we are fluctuating about a solution, the linear variation of the bulk action will

vanish. However, there will be a boundary term that arises due to integration by parts when

evaluating the action on the solution. There is also a boundary term that must be included

to renormalize the gravitational action

Ibdy. = −
√
2N3/2

6π

[

1

2

∫

d3x
√−γ θ +

∫

d3x
√−γ

]

, (5.27)

where γ is the boundary metric and θ = γµνθµν is the trace of the extrinsic curvature

θµν = −1
2
(∇µnν +∇νnµ), with n an outward directed unit normal vector to the boundary.

For fluctuations about a solution, we have

δI =

√
2N3/2

6π

∫

d3x
√−γ

[

−Fµνn
νδAµ +

1

4
(θµν − θγµν − 2γµν) δgµν

]

. (5.28)

Evaluated on the background (5.3) and (5.4), and considering only δAy, δAt and δgty, this

expression becomes

δI =

√
2N3/2

6π
qα2

∫

d3xδAt . (5.29)

Note that only the first term in the variation of the action (5.28) contributes. Using the

solution (5.26) for δAt, we obtain the magnetization

M = − δS

δB
= −

√
2N3/2

6π
αh = −

√
2N3/2

6π

B

α
, (5.30)

in complete agreement with our previous expression (5.12). For the energy magnetization

we obtain

ME = −α δS

δBE
= −qα

2
M =

µM

2
. (5.31)

D. Transport coefficients in the d.c. limit

We will obtain the transport coefficients using Kubo formulae for the retarded Greens

functions. The Greens functions are obtained by considering fluctuations about the dyonic
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black hole background. In [29] these functions were obtained at k = 0 and to leading order

as ω → 0 with B and ρ held fixed. Unlike in our general magnetohydrodynamic (MHD)

analysis in Section III, no assumptions are made here requiring B to be small. The current-

current correlator is

GR
JiJj (ω) = − ρ

B
iωǫij , (5.32)

the current-momentum correlator is

GR
JiT tj(ω) = − 3ε

2B
iωǫij , (5.33)

and the momentum-momentum correlator is

GR
T tiT tj (ω) = − χT 3s2

χ2B2 + ρ2T 2
iωδij −

9 ρ ε2T 2

4B(χ2B2 + ρ2T 2)
iωǫij . (5.34)

To relate these results to our general MHD study, we need an expression for the heat

current Qi. This is defined in Eq. (3.18); using the expression for the stress energy tensor

in Eq. (3.24), we see that in linear response (small velocities with respect to the lab frame)

we can work with

Qi = T ti − µJ i , (5.35)

leading to the correlators

GR
QiJj(ω) =

(−sT
B

+M

)

iωǫij , (5.36)

and

GR
QiQj(ω) = − χT 3s2

χ2B2 + ρ2T 2
iωδij +

−ρs2T 4 +B2µ2ρχ2 + ρT 2M2B2

B(χ2B2 + ρ2T 2)
iωǫij . (5.37)

In obtaining these expressions, we used (5.15) and (5.17).

The electrical conductivity is given by the Kubo formula

σij = − lim
ω→0

ImGR
JiJj (ω)

ω
=

ρ

B
ǫij . (5.38)

The other thermoelectric tensors are also given by a Kubo formula. However, we should

use the transport currents which are obtained from the supergravity currents by subtracting

the magnetization currents [43]. The correct Kubo formula is

αij = − 1

T
lim
ω→0

ImGR
JiQj(ω)

ω
+
M

T
ǫij . (5.39)

Thus we obtain

αij =
s

B
ǫij . (5.40)

Similarly, the heat conductivity is given by the Kubo formula

κij = − 1

T
lim
ω→0

ImGR
QiQj(ω)

ω
+

2(ME − µM)

T
ǫij , (5.41)
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or

κij =
χT 2s2

χ2B2 + ρ2T 2
δij +

ρs2T 4

TB(χ2B2 + ρ2T 2)
ǫij . (5.42)

We can now compare these results with those of our general MHD computations, by

taking the ω → 0 limit of the MHD transport coefficients (3.37). We see immediately that

the expressions for σij and αij agree exactly. In order to match κij we need to recall that the

MHD results are only valid for small magnetic fields B ≪ T 2, see Eq. (1.7). Furthermore,

we need to know the conductivity σQ for the dyonic black hole. It is shown in Ref. 30 that

for the black hole

σQ|B=0 =

(

Ts

ε+ P

)2
χ

T
. (5.43)

Using this formula and taking the small magnetic field limit, we obtain

κij|B≪T 2 =
σQ(ε+ P )2

ρ2T
δij +

s2T

Bρ
ǫij . (5.44)

This expression now agrees exactly with the corresponding limit of the MHD result (3.37).

Thus we see that the dyonic black hole fits into the general class of finite temperature

deformations of quantum critical points that we have studied via hydrodynamics. The black

hole gives specific values for σQ and the other thermodynamic quantities and furthermore

allows the results to be extended to arbitrary magnetic field.

E. Bulk electromagnetic duality and CFT particle/vortex duality

A consequence of the bulk description is that it gives a very transparent rationale behind

the dualities in the transport coefficients that we commented upon earlier. The study of

electromagnetic duality in the dyonic black hole is pursued in depth in Ref. 30, which

furthermore obtains expressions for the black hole transport coefficients away from the d.c.

limit. Here we shall summarize some results from that paper and show how they precisely

match our expectations from MHD.

The bulk Maxwell theory enjoys an electromagnetic duality. This interchanges the bulk

electric and magnetic fields E → B andB → −E. Acting on the dyonic black hole solutions

(5.3), this corresponds to q → h and h → −q. Using (5.6) and (5.11) and the fact that the

bulk coupling is inverted under electromagnetic duality, this implies that

B → Tρ

χ
, ρ→ −TB

χ
,

χ

T
→ T

χ
. (5.45)

Thus we see that the bulk electromagnetic duality maps the CFT into the same CFT with

the values of the background magnetic field and charge density interchanged. This is the

origin of the particle-vortex duality that we noted in our MHD computations. Indeed it is

immediately seen that under the transformation (5.45) our expressions for σ, α and κ̄ in Eqs.

(5.38), (5.40) and (5.42) transform according to (3.42). There are some overall factors of χ/T
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different to (3.42), due to the fact that the transformation (5.45) is normalized differently

to (3.40). The normalization in (5.45) is natural from the string perspective.

It remains to see how the thermoelectric transport coefficients of the black hole transform

under this map. This is shown in detail in Ref. 30. The central point is the following.

The bulk Maxwell potential A determines the bulk electric and magnetic fields through

E ∼ ∂tA and B ∼ ∂zA. As we tend towards the boundary z → 0, the electric piece is

non-normalizable, and results in a boundary electric field E. The magnetic piece however

is normalizable and therefore results in a boundary current J . The bulk electromagnetic

duality is thus seen to exchange the electric field in the CFT with the current. More precisely,

one finds

Ei ↔ ǫijJj . (5.46)

As we commented below Eq. (3.42), this map together with the definition of the transport

coefficients in Eq. (1.13) is enough to obtain all the duality transformations (3.42).

The results for the transport coefficients presented in the previous subsection were only

obtained in the d.c. limit ω → 0 with B and ρ fixed, following Ref. 29. However, using

the AdS/CFT dictionary, it is possible to study thermoelectric transport at all frequencies.

This is done in Ref. 30. In particular, taking the limit ω → 0 with ρ ∼ B ∼ T 3/2
√
ω, one

obtains precisely the same expressions as those that followed from the MHD analysis (3.39),

thus providing a consistency check for our picture. One can go further with the dyonic black

hole and study transport and all ρ, B and ω numerically. For all values, the particle-vortex

duality holds automatically because of the bulk electromagnetic duality. This is the power

of the AdS/CFT correspondence: all transport phenomena of the strongly correlated CFT

at large N are reduced to solving the equations for classical perturbations of the dual black

hole in Einstein-Maxwell theory.

VI. CONCLUSIONS

This paper has presented a general theory for hydrodynamic thermal and electric trans-

port in in the vicinity of a quantum critical points described by “relativistic” quantum field

theories. We have also shown that the results constitute a valuable starting point to under-

stand experimental observations in a regime where no previous description was available.

It is perhaps useful to describe the results here from the vantage point of the Galilean-

invariant hydrodynamic approaches which are traditionally used in condensed matter physics

[50, 57]. In such theories, charge (or number) currents are proportional to the momentum

current, and consequently the conductivity is infinite in the absence of impurities (in the

presence of a magnetic field, this implies Kohn’s theorem [34]). The natural transport co-

efficient is the thermal conductivity, and this determines various diffusivities and damping

constants.

In contrast, in the present paper, we have used a very different starting point. We
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considered a theory with both particle and anti-particle (hole) excitations, in which there is

no proportionality between momentum and charge currents. For the case with particle-hole

symmetry (ρ = 0) and B = 0, the momentum and charge currents are decoupled from each

other, and it is possible to have a charge current with no momentum current: the electrical

current can decay to zero from such a state, and this decay is associated with the universal

electrical conductivity σQ [17]. There is no analog to σQ in the Galilean invariant case. Also,

because of the symmetry of the stress-energy tensor, we could identify the energy current

with the momentum density; the conservation of momentum then implied that the thermal

conductivity was infinite [58]. Upon relaxing the requirement of particle-hole symmetry (i.e.

allowing ρ 6= 0), we found the appearance of some characteristics of the Galilean invariant

systems. In Eq. (1.2) we found that the excess particles (or holes) contributed a Drude-like

conductivity above the quantum-critical σQ. The thermal conductivity became finite, but

with a value related to σQ by a Wiedemann-Franz-like relation. Finally, we also turned on

a B 6= 0, and showed how all of the longitudinal and transverse transport co-efficients could

be related to σQ in relationships that were summarized in Section I.

While our analysis was specialized to relativistic quantum critical points, we expect that

many aspects will generalize to other strongly interacting quantum critical points. Only a

discrete particle-hole symmetry is required to decouple the charge and momentum currents,

and this should be sufficient to obtain a finite σQ.

We also discussed applications of this general hydrodynamic structure to measurements

of the Nernst co-efficient in the cuprates and NbSi films. For reasonable values of the

parameters, we were able to reproduce several key aspects of the B and T dependence

of the observations. Our results also make a significant prediction, characteristic of such

“relativistic” theories of the superfluid-insulator transition: the presence of a hydrodynamic

cyclotron mode. For the simplest case of a superfluid-insulator transition of Cooper pairs

at integer filling as described by Eq. (1.3), this cyclotron mode can be considered due

to the motion of Cooper pairs (or their dual vortices). However, for the more complicated

examples at fractional filling noted in Section IA, such a simple interpretation is not possible,

and the cyclotron mode is due to motion of all charge carriers, including those carrying

fractional charges. From our fits to the data in the cuprates in Section II, we found that

in presently studied samples this cyclotron mode was strongly overdamped by impurity

scattering. However, this raises the possibility that the cyclotron resonance which might be

observable in ultrapure samples. We estimated that the hydrodynamic cyclotron frequency

in the cuprates was smaller than the cyclotron frequency of free electrons by a factor of

order 10−3. Observation of this resonance would constitute a strong test of the theoretical

ideas presented here, and we hope such experiments will be undertaken.

Another class of results in this paper described the remarkable holographic connection

between this intricate hydrodynamic behavior in 2+1 dimensions and the quantum theory

of dyonic black holes in 3+1 dimensions. Using the AdS/CFT connection, we presented in

Section V exact results for the hydrodynamic response functions of the vicinity of a 2+1
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dimensional supersymmetric conformal field theory. In the appropriate limiting regime,

these results, and those in Ref. 30, were in complete agreement with those obtained from

the magnetohydrodynamic analysis in Section III. This agreement lends strong support to

the validity of our MHD analysis. Indeed, the analysis of the dual gravity theory helped

guide our determination of the MHD equations.
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APPENDIX A: NORMAL MODES OF THE HYDRODYNAMIC EQUATIONS

It is interesting to analyze the normal modes of the linearized magnetohydrodynamic

equations in the absence of impurity scattering. Assuming a space and time dependence

e−iωt+i~k·~x of δµ, δT and v‖ := ~v ·~k/k and v⊥ := (~k/k) · (ǫ̂~v), we find four independent modes

satisfying the equations

ω

(

∂ǫ

∂µ

∣

∣

∣

∣

T

δµ+
∂ǫ

∂T

∣

∣

∣

∣

µ

δT

)

− k(ǫ+ P )v‖ = 0 ,

ω

(

∂ρ

∂µ

∣

∣

∣

∣

T

δµ+
∂ρ

∂T

∣

∣

∣

∣

µ

δT

)

− k
(

ρv‖ +BσQv⊥
)

+ ik2σQ

(

δµ− µ

T
δT
)

= 0 ,

ω(ǫ+ P )v‖ − k(ρδµ+ sδT )− iρBv⊥ + iB2σQv‖ − ik2(η + ζ)v‖ = 0 ,

ω(ǫ+ P )v⊥ + kBσQ

(

δµ− µ

T
δT
)

+ iρBv‖ + iB2σQv⊥ − ik2ηv⊥ = 0 . (A1)

In the long wavelength limit k ≪ 1, one finds two modes corresponding to damped cyclotron

oscillations of the plasma

ω± = ±ωc − iγ . (A2)

These modes have a velocity field with v‖ = ±iv⊥, while δµ and δT are smaller than v‖, v⊥
by a factor of order O(k).

Further there is a diffusive mode with frequency proportional to the conductivity σQ and
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a quadratic dispersion relation

ωdiff = −i k2σQ(ǫ+ P )2

T

(

∂ǫ

∂µ

∣

∣

∣

∣

T

∂ρ

∂T

∣

∣

∣

∣

µ

− ∂ǫ

∂T

∣

∣

∣

∣

µ

∂ρ

∂µ

∣

∣

∣

∣

T

)

(ρ2 +B2σ2
Q)

. (A3)

This mode has no fluctuations in energy density, δǫ =
∂ǫ

∂µ

∣

∣

∣

∣

T

δµ+
∂ǫ

∂T

∣

∣

∣

∣

µ

δT = 0. The velocity

field ~v is of order O(k) relative to δµ, δT .

Finally there is a subdiffusive, transverse shear mode with strongly suppressed fluctu-

ations in temperature and longitudinal velocity component δT = O(k2), v‖ = O(k3). It

exhibits an unusual dispersion relation

ωsubdiff =
ik4η

B2 ∂ρ

∂µ

∣

∣

∣

∣

T

, (A4)

and we have the relation

ikδµ ≈ Bv⊥. (A5)

The origin of the k4 dispersion (A4) can be seen as follows: A strongly suppressed ω(k)

implies that momentum density is nearly conserved. Hence the total force density vanishes

to lowest order, i.e., the Lorentz force is balanced by a longitudinal pressure gradient and a

transverse friction force,

( ~J × ~B)‖ ≈ ~∇P +O(η, ζ, ω), (A6)

η∇2~v⊥ ≈ ( ~J × ~B)⊥ = −BJ‖. (A7)

The first equation yields relation (A5). The second can be injected into the equation for

charge conservation

∂tρ = −~∇ · ~J ≈ ~∇ ·
[ η

B
∇2(v⊥)

]

≈ ~∇ ·
[

η

B
∇2

(

~∇µ
B

)]

, (A8)

from which the dispersion follows upon using ∂tρ = −iω ∂ρ

∂µ

∣

∣

∣

∣

T

δµ.

APPENDIX B: MAGNETIZATION AND ENERGY MAGNETIZATION

In our computation of the transport co-efficients using the Kubo formula in Section V,

we had to face the issue of the subtraction of magnetization currents, as discussed earlier in

Refs. 42, 43. These subtractions were computed in Section V using the AdS/CFT mapping.

This appendix describes the nature of these magnetization subtractions in the context of the

scalar field theory in Eq. (1.3). Actually, most of the basic issues are already clarified in free
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field theory, and so we will limit our discussion here to this simple case. The generalization

of the free field results to the interacting Wilson-Fisher fixed points can be straightforwardly

carried out along the lines of Refs. 31, 32, and so we will not discuss it here.

So we consider here the free field version of Eq. 1.3 with Lagrangian

L = [(∂µ + iAµ)ψ∗] [(∂µ − iAµ)ψ] +m2
0|ψ|2. (B1)

The stress-energy tensor is [59]

Tµν = [(∂µ + iAµ)ψ
∗] [(∂ν − iAν)ψ] + [(∂ν + iAν)ψ

∗] [(∂µ − iAµ)ψ]− gµνL, (B2)

while the U(1) current is

Jµ = iψ∗(∂µ − iAµ)ψ − iψ(∂µ + iAµ)ψ
∗. (B3)

The equation of motion is

(∂µ − iAµ)(∂
µ − iAµ)ψ = m2

0ψ. (B4)

It is now a straightforward, but tedious, exercise to verify that the above expressions do

indeed imply the MHD equation of motion in Eqs. (3.1,3.2).

For the thermodynamics, we need the particle and hole eigenenergies. These are organized

in Landau levels, with energy

ǫ2ℓ = 2B(ℓ+ 1/2) +m2
0, (B5)

(ℓ = 0, 1, . . .∞) and degeneracy per unit area of B/(2π). From this, we can easily obtain

expressions for the grand potential (for all thermodynamic quantities we subtract an infinite

T = 0 value, and ωn is a Matsubara frequency which is an integer multiple of 2π):

Ω

V = −P =
BT

2π

∑

ωn

∑

ℓ

ln
[

(ωn − iµ)2 + ǫ2ℓ
]

=
BT

2π

∑

ℓ

[

ln
(

1− e−(ǫℓ−µ)/T
)

+ ln
(

1− e−(ǫℓ+µ)/T
)]

. (B6)

We also obtain the entropy, s, the density, ρ, and the magnetization density, M , by

s = − 1

V
∂Ω

∂T
; ρ = − 1

V
∂Ω

∂µ
; M = − 1

V
∂Ω

∂B
. (B7)

Following Cooper et al. [43], it is useful to define an internal pressure Pint which equals

Pint = P −MB

=
B2

2π

∑

ℓ

ℓ+ 1/2

ǫℓ

[

1

e(ǫℓ−µ)/T − 1
+

1

e(ǫℓ+µ)/T − 1

]

. (B8)
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We define the energy density ε by 〈Ttt〉. Evaluating this from (B2) in Euclidean Matsubara

space, we obtain

ε = 〈Ttt〉 =
B

2π

∑

ℓ

T
∑

ωn

−(ωn − iµ)2 + ǫ2ℓ
(ωn − iµ)2 + ǫ2ℓ

=
B

2π

∑

ℓ

ǫℓ

[

1

e(ǫℓ−µ)/T − 1
+

1

e(ǫℓ+µ)/T − 1

]

. (B9)

It is now easily verified that the relations in Eq. (3.15) are obeyed.

In a similar manner, we can compute 〈Txx〉 and find

〈Txx〉 =
B

2π

∑

ℓ

T
∑

ωn

−(ωn − iµ)2 −m2
0

(ωn − iµ)2 + ǫ2ℓ

=
B2

2π

∑

ℓ

ℓ+ 1/2

ǫℓ

[

1

e(ǫℓ−µ)/T − 1
+

1

e(ǫℓ+µ)/T − 1

]

= Pint, (B10)

and so Eqs. (3.10) are also obeyed.

Let us now write down the explicit result for M from Eq. (B7):

M = − T

2π

∑

ℓ

[

ln
(

1− e−(ǫℓ−µ)/T
)

+ ln
(

1− e−(ǫℓ+µ)/T
)]

− B

2π

∑

ℓ

ℓ+ 1/2

ǫℓ

[

1

e(ǫℓ−µ)/T − 1
+

1

e(ǫℓ+µ)/T − 1

]

. (B11)

A direct evaluation of 〈~r× ~J〉 in an infinite system yields only the second term but not the

first. We now argue that the first term is the contribution of edge states. Notice that this

first term can be rewritten in the form

M =
1

2π

∫ ∞

0

dEge(E)

[

1

e(E−µ)/T − 1
+

1

e(E+µ)/T − 1

]

− B

2π

∑

ℓ

ℓ+ 1/2

ǫℓ

[

1

e(ǫℓ−µ)/T − 1
+

1

e(ǫℓ+µ)/T − 1

]

, (B12)

where we can interpret ge(E) as the magnetization of edge states:

ge(E) =

{

0 , for E < ǫ0

ℓ , for ǫℓ−1 < E < ǫℓ
. (B13)

Note that ge(E) is a piecewise constant function, and there is one additional edge state as

each Landau level is crossed, as expected. We can write the expression for the magnetization

as a sum of a bulk and edge contributions as

M =
1

2π

∫ ∞

0

dEg(E)

[

1

e(E−µ)/T − 1
+

1

e(E+µ)/T − 1

]

, (B14)
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where

g(E) = ge(E)−
∞
∑

ℓ=0

B(ℓ+ 1/2)

ǫℓ
δ(E − ǫℓ). (B15)

With the above form for M , we can now immediately use the results of Ref. 42 (compare

their Eqns. (31) and (34)) to obtain the value of ME :

ME =
1

2π

∫ ∞

0

dEEg(E)

[

1

e(E−µ)/T − 1
− 1

e(E+µ)/T − 1

]

. (B16)

The subtraction for κxy is, by Cooper et al. [43] Eq. (69), 2MQ where

MQ = ME − µM

=
1

2π

∑

ℓ

[∫ ǫℓ+µ

ǫℓ−µ

EdE

eE/T − 1
− B(ℓ + 1/2)

ǫℓ

(

ǫℓ − µ

e(ǫℓ−µ)/T − 1
− ǫℓ + µ

e(ǫℓ+µ)/T − 1

)]

.(B17)

An alternative evaluation of MQ, which is generalizable to interacting theories, follows

from the representation of the heat current discussed in Ref. 60. As noted in Section VC, we

need the response to a “magnetic field” which associated with the energy (or heat) current,

just as the ordinary magnetization is a response to a magnetic field associated with the

charge current. So we introduce a vector potential ~AQ which couples to heat current: this

is done by the replacement [60] ~A → ~A + i ~AQωn. Consequently, the free energy density in

the presence of this additional “magnetic field” BQ is obtained from Eq. (B6) simply by the

replacement B → B + iBQωn, which yields

Ω

V =
T

2π

∑

ℓ

∑

ωn

(B + iBQωn) ln
[

(ωn − iµ)2 + 2(B + iBQωn)(ℓ+ 1/2) +m2
0

]

. (B18)

Taking the derivative with respect to BQ we obtain

MQ = − 1

V
∂Ω

∂BQ

=
T

2π

∑

ℓ

∑

ωn

(

−iωn ln
[

(ωn − iµ)2 + ǫ2ℓ
]

+
−2iωnB(ℓ + 1/2)

(ωn − iµ)2 + ǫ2ℓ

)

=
T

2π

∑

ℓ

∑

ωn

(−iωn ln [−iωn + ǫℓ − µ]− iωn ln [iωn + ǫℓ + µ])

+
1

2π

∑

ℓ

[

−B(ℓ+ 1/2)

ǫℓ

(

ǫℓ − µ

e(ǫℓ−µ)/T − 1
− ǫℓ + µ

e(ǫℓ+µ)/T − 1

)]

=
1

2π

∑

ℓ

[
∫ ǫℓ+µ

ǫℓ−µ

EdE

eE/T − 1
− B(ℓ + 1/2)

ǫℓ

(

ǫℓ − µ

e(ǫℓ−µ)/T − 1
− ǫℓ + µ

e(ǫℓ+µ)/T − 1

)]

,(B19)

which agrees with Eq. (B17).
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