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A theory of the random magnetic mixture of some kinds of Ising spins is formulated
in terms of distribution functions which are introduced for the thermal averages of each
kind of spins. The distribution functions are determined from a. simultaneous non-linear
integral equation of order », where 7 is the number of kinds of spins.

By the use of this theory, the magnetic properties of a honeycomb lattice with two kinds
of magnetic atoms are investigated. The ferromagnetic phase, the ferrimagnetic phase and
the antiferromagnetic phase are obtained with respect to the types and concentrations of
those atoms. The possibility of a new phase with the infinite susceptibility without the.
spontaneous magnetization is also conjectured. The magnetization process and phase transi-
tion in each phase are studied in detail.

§1. Introduction and summary

In a previous paper” (referred to as I hereafter), a theory to obtain the
magnetic properties of the one-dimensional random mixture composed of some
kinds of Ising spins was given in terms of distribution functions and was applied
to some binary mixtures. It was shown that the low temperature magnetization
curves of the binary mixture have some steps when antiferromagnetic elements
are included, and they increase abzuptly with external magnetic field when fer-
romagnetic elements are included. These were discussed in detail from random
nature of the system. '

The main purposes of this paper are to develop a general theory for the
random mixture of Ising spins by generalizing the idea of the distribution funec-
tions, and to study ordered phases and the magnetization processes of the random
binary mixtures. The theory will be extended to the Heisenberg system in a
next paper. )

In §2, a mathematical formulation is given in terms of the distribution func-
tions. Since the thermal average of each element of the random mixture such
as each spin and each spin pair on the lattice sites is at random corresponding
to the random arrangement of atoms, it is natural to introduce distribution func-
tions for those elements and to consider equations for those functions. Follow-
ing this idea, we develop two approximation theories which correspond to mole-
cular field theory and Bethe approximation theory in the regular system. In
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both thieories, the distribution function g,(¢) is introduced for the thermal aver-

age of the spin ¢ of ¢ atom. A simultaneous non-linear integral equation for

the distribution functions is obtained.

The paramagnetic phase is considered in° §3. The simultaneous integral
equation is reduced to a simultaneous linear equation when magnetic field is
low.®® The magnetization process is numerically investigated. It is shown
that shapes of the magnetization curves are. dependent on concentrations of mag-
netic bonds rather than  kinds of magnetic atoms. It is also shown that our
theories are generally in agreement with the previous approximation theories for
the regular system when the system is in the paramagnetic phase and magnetic
field is low.® . .

In '§4, ordered phases and the magnetization processes of the random binary
mixtures of A and B atoms in the loose-packed lattice are numerically studied.
We take a honeycomb lattice for simplicity. The ordered phases obtained are
as follows: The ferromagnetic one when Jy4, Jss, Ja5>0, and J, >0, Jz<<0
for p,>p5, the ferrimaghnetic one when J,,, Jz5>0, J,5<0, and the antiferromag-
netic one’ when J,,, Jpp<<0, and J,,>>0, J55< 0, for p,<ps, where J,,, Jpz and
J4z are the exchange integrals of each spin pair of A-A atoms, B-B atoms and
A-B atoms, and p, and pgp are concentrations of A and B atoms, respectively.

The magnetization process of each system is investigated in detail. It has
information of both the ordered phase and random nature. The spontaneous
magnetization and the first order phase transition are found when _JAA, Jzz >0
(except the case Jy4=dJzs, J15<0, my=myp and p,=pp), and J,, >0, Jpz<<0 for
pa>ps, while the sublattice magnetizations and the second order phase transi-
tion caused by sublattice structure  when Jyu,, J55<C0, and J, >0, Jz5<C0 for
pa<ps. We also find the second order phase transition when J,,=J53z(0),
J 450, my=myg and p,=pp, which is due to the symmetry of two kinds of mag-
netic atoms. The behavior of saturation process is also discussed from random
nature of the mixture, ,

It is interesting to find a new phase where the susceptibility diverges while

. the spontaneous magnetization' disappears when J, = —Jgz, mi=mg and p,=2p5.

§

This property resembles to that in the two-dimensional Heisenberg ferromagnet
conjectured by Stanley and Kaplan.® The origin of our phase is the cancella-
tion' of antiparallel two unstable magnetic moments contrary to the instability
of the ferromagnetism in the Heisenberg system. It should be noted, however,
the existence of this.new phase is still open question, because we have used an
assumption that the ordered phase is either ferromagnetic or antiferromagnetic
in addition to use of an approximation theory.

Finally it is to be npte& that our theory is one for the random mixtures
(the quenched systems), and it is completely satisfied with requirements of the
quenched system, i.e., the free energy of thé quenched system is given as an
average of free energies of various systems each of which has a possible con-
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1126 F. Matsubara )

figuration of atoms.® Our theory is exact so long as the thermal average is
exactly treated. The Bethe approximation in our theory gives the exact result
for the Bethe lattice- (it contains the previous exact result for the one-dimensional
mixture). The limits and the efficiencies of our theory are also dependent on
the properties of approximation for the thermal average.

§ 2. Formulation

In this section an idea of the distribution functions for the problem of the
random magnetic mixture is given and two approximation theories are developed.

We first consider the thermal averages of the spins on the lattice sites of
a random binary mixture, - The magnetization per lattice site of this mixture is
given as an average of these thermal averages. The thermal averages have
random values corresponding to the random arrangement of atoms. Therefore,
it is necessary to take account of fluctuations of those values. Then we intro-
duce distribution functions for the thermal averages of some elements of the
system and consider equations for those functions. These correspond to some

theories for the cooperative phenomena such as molecular field theory and Bethe'

approximation theory where some parameters are introduced with some consist-
ency equations. These generalize the idea of the distribution functions used in
I where the distribution functions are introduced as a technique of calculations.

To make this idea concrete, we firstly consider a zero-order approximation
which corresponds to molecular field theory in the regular system (we call it
the molecular field theory in the random mixture).

)  Molecular field theory

We consider an o atom on a lattice site and B, Ba, +++, B, atoms on z neigh-
boring sites, The thermal averages of the spins of those atoms are expressed
as 0o, 01, '+, 0,. They are connected by molecular field theory as

Go=tanh(C, + ; K000, @1
=1 -

where C,=m, H/kT, K,,= ws/2kT, and m,,J,z, H k and T are used in usual
meaning (see I). The spins of those atoms are assumed as S=1/2 and ¢ =2{S*.
Equation (2-1) is the well known molecular field theory’s when K,,=K, C,=C
and ¢,=g¢. ) 7

Next, we introduce a distribution function 9.(0) for the thermal average
of the spin ¢ of o atom. The distribution function is normalized as

jgu(a)d(r:l. (2-2)

Using this distribution function, we obtain the average value of the spin of ¢
atom as )

220z 1snbny |z uo1senb Aq G0ZL06 /2| L/v/zG/elonie/did/woo dnoolwepeoe)/:sdiy wol pspeojumoq



Theory of the Random Magnetic Mixture. I 1127

Fo= jaga(a)da. - (23)
The magnetization per lattice site of the mixture is given by.
<m6>= ; ma?aaa > (2'4)

where p, is concentration of ¢ atoms. .

Now, we consider an equation for the distribution functions. The proba-
bility of finding the thermal average of the spin of @ atom in an interval (¢,¢
+40) is given by .¢,(0) 46 from the definition of the distribution functions, On
the other hand, it is also given by 34,2 s, 08, Ppd - 40 [13-195,(0:) dv™® from
Eq. (2.1), where 4v is a region in (04,05, .-+, 0,) space which is projected to the
interval (03 0+ 46) by the function (2-1). Then, in the limit 46—0, we obtain

0.0) =33 ta-p fimm [ [ T ontoddo.  @5)

Equation (2-5) is a simultaneous non-linear integral equation for the distribu-
tion functions. This corresponds to consistency equations in molecular field
theory. It requires the consistency of the distributions of molecular fields in-
stead of the consistency of some definite values of molecular fields.

It is obvious that our theory contains ordinary molecular field theory in’

special case. A simultaneous equation for the average values of the spins of
each kind of atoms in molecular field theory is given by

G,=tanh(C,+= ;pBKuﬂo_‘ﬁ). (2-6)

On the other I;and, we have

Ge= TS 15, bp, [+ [tanh (Cot 1 Kan O [1 05,000 @D)

from Eq. (2-5). Equation (2-7) reproduces Eq. (2-6) when K,;=K and C,=C,
and both are rewritten as

5u=Ca+z ZﬁPﬂKuﬁaﬂ‘ s ‘ (2'8)

when T>T, and H~0. These facts shows that two theories may give quali-
tatively the same results when the system is composed of similar kinds of atoms,
ie., C,=C and J,=J, or when the system is in the paramagnetic phase and
H~0. The latter fact is discussed again in the next section.

(2) Bethe approximation theory

Next, we consider a first-order approximation which corresponds to the
Bethe approximation. Here we consider the exact formulation for the Bethe

~ ® Since the correlation of spins is neglected in the molecular field theory, the integrand is
given as a product of independent z functions IT-1gp,(00).
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1128 F. Matsubara

lattice, because of the simplicity of the succeeding calculations. The framework.

of the Bethe approximation will be given in the Appendix. -
We consider an @ atom and neighboring B, Be, +++, B. atoms on the Bethe
lattice. The thermal average of the spin of the ¢ atom is given by

[tanh Cu + Z§=1 zi tanh Ko g, + 3 s s 2425 tanh K 4, tanh K,s,tanh C,+
"+ Zaxy -z, tanh K, tanh K, ---tanh K, tanh"®C ]
[1+ 2% i tanh K4, tanh C, + Y .y, z:x; tanh K4, tanh K, s,+

-+ xy%2 -, tanh Ka/gl tanh Kaﬂ'. --tanh Kaﬁ, tanh™e— I)Ca]
n()=[1+(-D/2,

where the x; is the thermal average of the spin of the f; atom when the «

atom on the central site is removed. The z; is also determined by a recur-
rence rélation

0= ’ (29)

[tanh Cp, + Z;“_ll zytanh Ky, + 37,4 22 tanh Kﬂm tanh K, tanh Cp, +
+ZZy -z, tanh K, tanh K, ---tanh K tanh™¢-9C, ]

1+ 21—1 xytanh K, tanh Cg + 37,00 521 tanh K, tani K, + )
t&Zyz, o tanh K, tanh K, -tanh K, | tanh™-9C, ]

(2-10)

Next, we also introduce a distribution function 0,(x) for the thermal aver-
‘age x of ¢ atom. Using the similar discussion as in (1), we obtain a simul-
taneous integral equation

Zy=

0(2) =5 B o fm o [ Toptaodo, @11

where 4v is a region in (x,zs, -+, z,-.) Space which is projected ‘to~an interval
(z,z+4z) by the function (2:10). The average value of the spin of ¢ atom
is given by

0—‘“:;_.;; pﬁx'“pﬁs J‘ J‘o-u(xly Ty "ty xﬂ)g gﬁt(xi)dv > (212)

where. 0,(z1, s, -, x,) is the thermal average of the spin of the ¢ atom given
by Eq. (2-9). The magnetization per lattice site of the mixture is given by
Eq. (2-4). Equations (2-9) ~(2-12) are completely in agreement with previous
results when =2,

The formulation developed in this section is more complicated than that in
- the Bethe approximation theory (Appendix). However it is more useful in the
practical applications, because of the simplicity of the integral equation (2-11),

It is also to be noted that the formulation mentioned above is one for the
ferromagnetic ‘mixtures where J,,>0, i. e., each kind of atoms is ferromagnetic
but interactions of them are not always ferromagne’uc The sublattice structure
must be taken into account in the other cases. For those systems sublattice
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Theory of the Random Magnetic Mixture. I 1129

distribution functions ¢,*(x) and ¢,%(x) are introduced.

tegral equation for those functions is

gau(x) ZZ
E 81. Bz

9.7 (x) =22+
ﬁl z-1

We use Egs, (2-9)~(2:13) in later

The simultaneous in-
given as follows:

2 Pp Ppe hm—j j H 9 (x)dv ,

4z—-0 Ax
(2-13)

D Pasbe.. lllm—J j‘ H 9s (x)dv .

4z-0 A

sections.

§ 3. Disordered phase

We first consider the paramagnetic phase at H~0. Equations (2-9) and

(2- 10) are rewritten as
0p= tanh Ca +

and»

. 2-1
xi:tanh Cﬁi+ Z Zj tan.h Kﬁ’”l .
=1

Then using Eqs. (2-11) and (2-12),

F.=tanh C,+ 2z D pgZstanh K 4
3

and

Ty=tanh C.ﬁ + (z—1) rZ 2,7, tanh K4, ,

T T T
<ma >

1

1 13
0 0.5 1.0 -1.5 20

Fig. 1. The magnetization curves of random
binary honeycomb lattices of ms=m5 and
pa=p3=05 when £T/J=1. @ denotes the
case Jaa=Jgs=Jaz=J (0), ® the case
JAA':JAE:—JBB:J, ® the case JAA=JBB

) =—J43=d:J, @ the case JAA=—JBB=v
‘—JAB=J, @ the case J44=J355JAE=—J.

37z, tanh K, (3-1)
3e=1
(3-2)
we obtain
3-3)
(3-4)
whefe
Tp= ng,ﬁ (x)dzx . (3-5)

Equation (3-4) is a simultaneous linear
equation for %, Hence we can obtain
the paramagnetic magnetization at H~0,
These equation are completely in agree-
ment with those in previous papers where

the paramagnetic susceptibility and  the

phase transition of the binary mixture are

discussed in detail ®®

The integral equation is numerically
solved when H=:0.
processes of the random mixtures of A
and B atoms are shown in Fig. 1, Since
the effect of the long range correlation

The magnetization
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1130 F, Matsubara

does not play an important role in the paramagnetic phase, each magnetization
curve increases smoothly with EH and its shape is mainly dependent on concen-
trations of magnetic bonds. The shapes of the magnetization curves in the or-
dered phase have some patterns corresponding to the kinds of the magnetic
atoms. These are discussed in detail in the next section.

Here we give a comment for the relation between our and previous approxi-
mation theories. It is already shown that ordinary molecular field theory gives
the same results as ours when 7°>7T, and H~0 It can be also shown that
Egs. (3:3) and (8:4) are also in agreement with those in ordinary Bethe_ ap-
proximation theory. These are not accidental. In both our and the previous
theories, nature of randomness is taken into acount as fluctuations of molecular
fields which are small when T>T. and H~0, Then it gives the linear effects
which are independent of the order of the averaging process (the thermal aver-
age for spins and the configurational average for atoms). Thus the equivalences

are recognized. These may be also found in some of the other approximation
theories.

§4. Ordered phase

Let us next consider ordered phases of the random binary mixture in the loose-
packed lattice. It was shown that the binary systems are distinguished to two
groups with respect to the signs of the exchange integrals: (A) J 4T 5| 450
and (B) J,4J35<<0.2 )

The group (A). is rather simple. The ground state can be easily deter-
mined. The transition temperature is generally independent of the signs of the
exchange integrals, and is approximately given by

{1 —P'A (z‘— 1) tanthAA[} '{1 —-PE (2— 1) tanthBBI} Z?A’pB (z —_ 1) ztanthAB N (4 . 1)

when H=0. The ordered phases are as follows: (1) the case J 4,55, Jz>0;
the ferromagnetic one, (2) the case Jau, Jpz >0, J15<<0; the ‘ferrimagnetic one
where almost all spins of A atoms are arranged upward and almost all spins
of B atoms downward, (3) the case Jau, Jop, J45<0; the antiferromagnetic one
with o and B sublattices, (4) the case Jau, J25<C0, J,3>0; the antiferromagnetic
one where almost all spins of A atoms are arranged upward when they are on
a sublattice and downward when they are on B sublattice, while those of B
atoms downward when they are on « sublattice and upward when they are on
B sublattice. . ‘

On the other hand, the group (B) is complex. The ground state has not
yet been determined. The studies have been developed under an assumption
that the ordered phase is either ferromagnetic or antiferromagnetic.? The Curie
temperature was approximately given by

{1—p4(z—1)tanh K} {1 —p5(z—1)tanh Kozt =paps(z—1)*anh’K 5, (4-2)
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and the Néel temperature by
{1+ pa(z—1)tanh K 44} {1+ p5(z—1)tanh Kpg} =pap5(z—1)*tanh’Kup. (4-3)

In this paper, we discuss features of those phases from the magnetization

process obtained from Egs. (2-4), (2-11), (2-12) and (2-13). We take a hon-
eycomb lattice (z=3) for simplicity. The integral equation is numerically solved.

(1) The case Jy4,Jz5, Jus>0: The magnetization curves resemble to those
of the ferromagnetic regular system with effective exchange integrals and effec-
tive magnetic moments. ‘

(2) The case Ju4, J52>0, J45<0: Since the ordered phase is ferrimagnetic,
the mixture has the spontaneous magnetization except when Jy,=Jgs, ma=msp
and ps=ps The magnetization curves are shown in Figs. 2 and 3. They have
linear slopes and small hollows in addition to ferrimagnetic shapes when ‘the
temperature is low. These are due to successive flips of spin clusters of vari-
ous sizes. The spontaneous magnetization disappears when Jus=Jgs, ms=m3
and p,=ps, because.of the cancellation of antiparallel two magnetic moments.
The first order phase transition is only possible in the former case (which is
found at H=0), while the second order phase transition is also possible in the
latter case, because of possibility of a change of symmetry of two kinds of
magnetic atoms. In fact, as shown in Fig. 6, we have the second order phase
transition in the latter case. .

(3) The case Juu,J5s,Jap<<O: Since the ordered phase is completely an-
tiferromagnetic when H=0, the magnetization curves behave as the antiferro-
magnetic ones at H~0. The second order phase transition is found because of
existence of sublattice structure. The magnetization curves are shown in Fig.
4. The linear slopes and the small hollows are also due to the flips of various
spins.

(4) The case Juu,J5<0, J45>>0: The ordered phase is also antiferro-

<mo> ' T T o> T T T
1.0F e My
0.25 1-0r
0.81 - - 0.8
KT/J=0.
KT/7=025 . 17=0.25
0:6}- ~05 1 0.6F 05 .
~ Q.75
0.75 1.0
1.5 1.0 1.5
O.l{— b 0.4 g b
0.2 ‘ E 0.2 -
) ) ) myH/T . \ ) \ m HIT
0 0.5 1.0 1.5 2.0 [0} 0.5 1.0 .5 2.0

Fig. 2 The magnetization curves of a random Fig. 3. The magnetization curves of a' random
binary honeycomb lattice of Jus=Jzz=~Jun binary honeycomb lattice of Jua=Jpz=—Jus
= J 0 . ma=mp and pa =0.6, P= =04. =J (>0) , My=mp and PA=PB=O5
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1132 F. Matsubara

<ma> T T T <mo> T ' '
ma ma

1.0f LoF 1

0.8 -1 0.8F
KkT/J=0.25,

0.6 05 . 0.6k

0.4 . 0.4k

0.2 - 0.2
l . L MM - ‘ . L mHa

0 1.0 2.0 3.0 4.0 0.5 1.0 .5, .20

Fig. 4. The magnetization curves of a random
binary honeycomb lattice of —J,4/2=—Jgs

——'2JAB=J (>0), Ms=Mp and P4=PB=,O.5.

Fig. 5. The magnetization curves .of .a random
binary honeycomb lattice of —J, =—Jzz
=J4z=J(>0), ma=mz and pa=pp=05.

magnetic. The system has not spontaneous magnetization. The second order
phase transition is also due to the existence of the sublattice structure. The
magnetization curves are shown in Fig. 5. The low slopes of them in the para-

magnetic phase (H>H, H, is the critical field) are due to successive flips of
various spin clusters.

1

(5) The case J,,>0, Jz<<0: This case is most interesting. We calcu-
late the magnetization curves through the assumption that the ordered phase is
either ferromagnetic or antiferromagnetic. This assumption is supported from
two ways; (1) it may be true when Pa>pp or py<py, (2) the ordered phase
with more complex sublattice structure may be unrealizable because of random
arrangement of atoms. However, the possibility of more complex structures

4 .
Ferro 4 N Anti-Ferro
0.4F s N 0.4

i
I 3
1 A
! \
1 1

) ! , myHLT

L L
-0 O.I25 05 0.75 1 0 0.5 .0 . 1.5

2.0 .
Fig. 6 . The phase diagram of random binary Fig. 7. The magnetization curves of random
mixtures of Jas=—Jza=|Js|=J (>0) and binary honeycomb lattices of Jyu=—Jpz
patps=1 when H=0. =Jap=J (>0), ma=my and ps+pp=1 when
kT/J=05 (solid curves) and 0.25 (dotted

curves).
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<mo> T T T
Ma
1.0
0.8 )
0.6
0.4
0.2
x . muHIT ) ) . Pa
0 0.5 1.0 1.5 2.0 . 0 0.25 0.5 . 075 1.0
Fig. 8. The' magnetization curves. of random Fig. 9. The magnetizations of various random
binary honeycomb lattices of Jiu=—Jzz= binary honeycomb lattices of Jia=—J3zs
—Juz=J >0), ma=mpand pa-+pz=1 when =Juz=J (>0), ma=mpand pa+pp=1 when
kET/J=05. kT/J=0.25 and m.H/J=0.01.

cannot be forbidden. In fact, the glass-like phase may be also one of the most
realizable ones\when pa=ps The problems of the ground state and the structure
of the ordered phase are still open questions. The phase diagram and the
magnetization curves of binary mixtures with Jy.= —J3z(C>0) and m,=mj, are
shown in Figs. 6, 7 and: 8. The magnetization curves have the spontaneous
magnetizations when p,>>p5, and the sublattice magnetization when p,<pp. The
first order phase transition is found at H=0 in the former case, while the second
order phase transition in the latter case. .The bending of the magnetization curve
at the critical field becomes smaller with p, owing to the destruction of the
sublattice structure. It is most interesting to observe that the zero field suscep-
tibility increases anomalously with p, near Papp, and diverges when p,=p;z
(see also Fig. 9). The latter fact generally indicates the possibility of a new or-
dered phase with the infinite susceptibility without the spontaneous magnetization,
The critical temperature -of this new phase may be approximately given by

pApB(z—l)z(ténh K,, tanh|K gz + tanh®K ,5) =1 . 4-4)

This property resembles to that in the two-dimensional Heisenberg ferromagnet
conjectured by Stanley and Kaplan. The origin of our new phase is, however,
the cancellation of two unstable magnetic moments in contradiction to the ther-
mal instability of the ferromagnetism in the Heisenberg system.’

We have explained the magnetic behavior of the random binary Ising mix-
ture in the loose-packed lattice with an example of a honeycomb lattice by using
a new approximation theory. Although the honeycomb lattice is the simplest
two-dimensional one and the ;eliaBility of our theory is the same as that of the
Bethe approximation, the- qualitative results mentioned above may be yet availa-
ble for many of loose-packed lattices, for theories of the cooperative phenomena
show a close resemblance of the magnetic behavior of the loose-packed lattices

220z ¥snbny |z uo 3senb A G0Z106L/v2 | LIv/ZS/eome/did/woo dno-olwapese)/:sdpy Woly pepeojumoq



1134 F. Matsubara

and the qualitatively high validity of the Bethe approximation in the Ising system.

The numerical calculation has been done as follows: The continuous space
z(—1=<z=<1) is replaced by the discontinuous space consisting of 31 points,
the distribution of which is taken to be symmetric with' respect to z and to
be dense near x= —1,1 and rough near x=0, the integral equation is solved
by iteration method, the error is estimated as smaller than 19, i.e., the con-
vergence of the functions is judged by [|git'(x) —9.'(2)|[dx=<0.002 for all «.
Owing to complexity of the calculation' we could not determine the fine behavior
of the order parameter (sublattice magnetization) near the ecritical field, This

may be important to study more detailed mechanism of thé phase transition in
‘the random mixture.
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Appendix

The framework of the formulation of the Bethe approximation is given,
We consider a cluster of o atom and surrounding f3;, 8z, ---, B, atoms. The spins
of Bi, 8., -, 8, atoms take molecular fields H*, Hy*, ---,H,* in addition to the
external magnetic field A, Then the Hamiltonian of the cluster is given by

H= 23 0,0, S¢S¢ —2m HSy — 3 (2m g H+ H) S/ (A-1)
1=1 i=1 -
The expected values of each spin is given as
0o zfao' (Con Cﬁu T, CB,, erﬂl: Ty Kaﬁ,, Hl*, Ty Hz*) s (A2)
0 =f55i (Ca, Cﬁ;a ) Cﬁz’Kaﬁn STty Kaﬁ,, Hl*: s HZ*)’ (A '3)

where ¢,=2{S;*>. Then eliminating H,*, H,* ..., H,*, we obtain
Oy :f(Caa C/Sn Ty Cﬂ;: Kaﬂu Ty Kaﬁ,y 0-1’ Y 0?) . (A '4)

This corresponds to Eq. (2-1). Hence, we obtain the formulation of the Bethe
approximation theory as Eq. (A-4) and Egs. (2-2) ~(2-5).
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