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A theory of flow of substances showing elastic recovery is developed. It leads to a set of
differential equations which contain three parameters. In the case of dispersions these
parameters can be derived from the properties and the composition of the components.

1. INTRODUCTION

2022

*%‘In the mechanics of continua the theories of two types of substances have been
%I)ma.inly considered, those of Hookean elastic solids and of Newtonian fluids. It is
<t common knowledge that there are many substances of great importance which
& cannot be classified under either heading. Some of these substances exhibit both
g elastic and viscous properties; they flow under the influence of applied stresses, but
Spon removal of stress part of their deformation is gradually recovered, a phenomenon
& known as elastic recovery.

20 The aim of the present paper is twofold. First, we shall derive a set of fundamental
% differential equations which desecribe the properties of flow of substances which
'T'; show elastic recovery. These equations contain a number of parameters, and it is
2 the second aim of this paper to relate these parameters to structural properties of
Z'such materials. Many of the substances which exhibit elastic recovery are two-phase

5)
‘D systems forming colloidal sols, or dispersions consisting of independent solid

§ micelles embedded in a viscous fluid. They can be represented by a simplified physical

Zmodel in which the micelles are considered to be elastic spheres, while the fluid is
X treated according to the classical theory of hydrodynamics. This is a model which
gwe were able to treat without undue mathematical difficulties, while on the other
hand sols are also of considerable experimental interest.

Although we shall restrict ourselves to dispersions, the resulting equations of flow
are of a very general nature if we do not specify the parameters by the expressions
which connect them with the structure of the dispersions. We, therefore, hope that
these equations may also be applicable to other substances. On the other hand, we
are aware that they can be generalized in various ways, but in the present paper it
is our intention to present them in their simplest form.
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2. STRUCTURE AND METHOD

First, then, consider a substance consisting of equal elastic spheres dispersed in
a Newtonian fluid of viscosity 7. To simplify calculations a unit length is chosen such
that on an average there is one solid sphere contained in the volume 47/3, i.e. in a

i Based on Report L/T. 150 of the British Electrical and Allied Industries Research
Association (E.R.A.).
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sphere of unit radius. If @ is the radius of the elastic spheres measured in this unit,
a® is the relative volume occupied by the dispersed particles compared to the total
volume of the mixture. By definition

at<1. (1)

It will be assumed that the fluid adheres to the surface of the spheres, which means
that the velocity of flow at such a surface is the same for the fluid as for the elastic
sphere. It is easy to consider qualitatively the rheological properties of such a sub-
stance. Consider first the spheres as rigid. As has been shown by Einstein (1906,
1911) such a system behaves like a fluid with an effective viscosity

7* = 9(1+3a%), (2)
provided a*<l. (3)
Actually the spheres are not rigid, which means that on application of a stress they
are deformed. In view of the adherence of the fluid to the sphere this deformation
requires a certain time which depends on the viscosity 7. Thus on application of an
external stress to our substance one would expect a flow whose velocity gradually

decreases, and which ultimately reaches a value determined by the effective viscosity
7*. On removal of the external stress the spheres, in view of their interaction with
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Ficure 1. Experimental strain-time curve of a bitumen according to Lethersich (1942).
A constant load is applied at the time ¢ = 0 and removed at ¢ =/,

the surrounding fluid, will again require some time to go back to their undeformed
shape. This gives rise to an elastic recovery. A behaviour of the type described just
now is displayed by many substances. As an example figure 1 shows the experi-
mental strain-time relation of a bitumen of the sol type.

The next task is to develop the above consideration into a quantitative theory.
This will be done for those substances for which the volume occupied by all the
spheres is small compared with the total volume of the substance, i.e. for which
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condition (3) is valid. The spheres as well as the fluid will be assumed to be incom-
pressible and isotropic, and that their inertia can be neglected, i.e. oscillations will
not be considered. The elastic behaviour of the spheres can thus be described by a
single elastic constant, e.g. the modulus of rigidity %, which means that a shear stress
8y produces a shear strain d;; given by

Sik = 2kd‘-k. (4)

The fluid obeys the following equations (cf. text-books on hydrodynamiecs). Let u
be the velocity of flow with the components u, (: = 1, 2, 3) in rectangular co-ordinates.
&ﬂ.‘hen the condition for incompressibility is
8 divua = 0. (5)

ai‘urthermore, if Sy (i,k=1,2,8) are the stress components in rectangular co-
ébrdinates,

ou; ou
Q — 2 i L e k=
> Sip = —pds+ ﬂ(axk+ Bx‘) - @, k= 1,2,3), (6)
S
Sivhere p is the hydrostatic pressure while
S
gb 8 =0, ifi+k,
£ 1, 9=k
G
T‘;Cle&rly, using (5) and (6), 811+ Sea+ 833 = — 3p. (7)
éAesummg that there are no external volume forces, general principles of mechanics
.‘Q‘lf applied to (6) lead to the well-known differential equations
Q
o ap
=2 Au;—=— =0 (1=1,2,3 8
% n i axi ( ) ( )
£ A method must now be found to derive the macroscopic rheological properties

Lof our substance from the behaviour of its components. For this purpose a method

Ehas been generalized which has been used to calculate from the behaviour of a single

gdipole the macroscopic dielectric polarization of a dipolar substance in an external

,gelectric field. A ‘unit cell’ is chosen consisting of one sphere and some fluid and the

B whole medium treated outside the unit cell as a macroscopic continuum. Then it is

'Udemanded that the macroscopic flow remains unchanged if the unit cell too be re-

= S placed by the macroscopic medium. This will lead to the conditions from which the

B macroscopic properties of flow can be deduced.

Q Einstein (1906, 1911) used a different method for his case of rigid spheres which
can also be generalized and applied to the case of elastic spheres. In view of (3) both
methods consider the influence of the spheres as a perturbation of the viseous flow
of the fluid and should, therefore, lead to the same result. We have satisfied ourselves
that this is actually the case, although the mathematical treatment is different. In
the following we shall present the calculations according to our method which we
think, in the present case, leads in a more direct way to the macroscopic rheological
properties.

Vol. 185. A. 27
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To bring the present method into a mathematically convenient form it will be
noticed that the equations (4)-(8) for the components of our substance connect
stresses in a linear way with deformations and their time derivatives. Therefore, in
view of the incompressibility and of the isotropy of our substance, any suitable
gystem of external stresses and any suitable macroscopic shape of the substance may
be chosen in order to calculate its flow. Its behaviour under another system of
stresses or when its macroscopic shape is different will then follow from symmetry.

A cube of our substance will be chosen whose centre coincides with the origin of
the co-ordinate system, and whose surfaces are perpendicular to the co-ordinate
axes ;. At the surfaces perpendicular to z, a uniaxial stress 37" is applied. Instead,
in view of the incompressibility at the cube, the following equivalent system of tensile
stresses may be applied:

Sll = 2T, Szz = Saa = e T, i.e. p = 0, (9)

which differs from the uniaxial stress only by adding the hydrostatic pressure 7'.
Although the properties of flow of our substance are not known, its incompressibility
and isotropy in conjunction with the linearity of equations (4)—(8) require the
following spacial distribution of flow:

Uy = 2Y%;, Uy = —YTy, Ug=—7YT, (10)

where y depends on the stress, 7', but is independent of the co-ordinates ;. For the
same reasons the stresses inside the substance are also given by (9), i.e. they are
independent of the co-ordinates z,. ¥ may, and in general will, however, depend on
time, and the calculation of this time dependence is our main task.

The subsequent consideration of the macroscopic structure will give rise to axial
symmetry. We shall consider within our substance a macroscopic sphere of radius
R> 1. If polar co-ordinates (r, 8, ¢) with the 1-direction as axis be chosen, the stress
system (9) is given by

8, = 2TFy(cosl), 8,5 = TPycosl), Sy=0, p=0, (11)
while the components of the flow (10) are now
u, = 2yrP,, uy=yrP;, uy;=0, (12)
where P, is the second Legendre polynomial, i.e.
Py(cosfl) = $cos?@—4, Py(cosf) = —3coslsind. (13)

The suffixes r, 0, ¢ of § and u refer to the r, # and ¢ components respectively.
Under the influence of stresses of the type (11), such a macroscopic sphere will be
transformed into a spheroid. It will be considered as long as it can be approximated
by the origina] sphere, and the flow compared at its surface » = R with that of andther
sphere which has the same radius R but in which a ‘unit cell’ of the substance near the
centre has been replaced by its microscopic structure. This second representation of
our substance (cf. figure 2) consists of three concentric spheres of radiusa < 1, 1, and
R> 1. The inner sphere contains the élastic material described by the modulus of
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rigidity k, the shell between r = @ and r = 1 is filled with the fluid with the viscosity 7,
while the shell outside » = 1 contains the continuum with the macroscopic properties
which is to be calculated. For both inner surfaces » = @ and r = 1 continuity of
stress and flow will be demanded. At the outer surface r = R, the stress system (11)
will be applied and the flow at this surface must be calculated considering the
condition (3). This flow will then be equated to the flow at the surface of the first
(homogeneous) sphere of radius R which is given by equation (12)if r = Ris inserted.
It may be expected that this is possible only if B> 1. In this case the two macro-
scopic spheres, i.e. the homogeneous one and the one containing the unit cell, are
equal except for the parts within the radius r = 1. The influence of the substance
inside this radius upon the flow at the external surface » = R must be of the order
of the ratio of the volumes, i.e. ~1/R3. It will, therefore, be demanded that the
ratio of the flow at the surfaces r = R of the two large spheres must be unity if terms
up to the third power in 1/R are considered,

flow of homogeneous sphere = nas B

flow of sphere with structure of figure 2 5 const. atr=R  (14)

This will allow the calculation of .

Figure 2. Structure of a sphere consisting of an elastic body (r<a), a Newtonian fluid
;«;<;‘)<l). and a continuum with the macroscopic properties of our substance (l1<r<R,
>1).

3. CALCULATIONS

The following calculations will be greatly simplified if the case in which the
spheres of radius a are rigid is considered first. This will not lead to any result
beyond (2). The calculations will, however, be given in some detail, because they
will be required for the case of elastic spheres which is the main interest. In view
of (3) the higher powers in a than a® will be neglected throughout.

27-2
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A. Rigid spheres
In this case the macroscopic substance can be assumed to be & fluid with the
unknown viscosity 7*. The value of 7* must follow as a result of the calculations.
One requires:
(i) The flow of the homogeneous macroscopic sphere consisting of fluid of the
viscosity *. With the stress system (11) (or (9)) it is well known to be given by (12)

(or (10)), where T
Y=g (15)
(ii) The flow of the second big sphere which is made up as shown in figure 2.
In the present case it consists of a shell between r = @ and r = 1, containing fluid
with a viscosity 7 which has to satisfy equations (5)—(8), and of a shell between r = 1
and r = R containing fluid with a viscosity #* which has also to satisfy (5)-(8), if
7 bereplaced by *. Moreover, the following boundary conditions have to be fulfilled:

=0, Uy=0 atr=a, (16)
u, and u, continuous atr =1, (17)
S,, and 8,, continuous atr = 1, (18)

while at » = R, S,, and S, must be given by equation (11).
(iii) Then the condition (14) must be fulfilled which will lead to adetermination of 5*.
In view of the symmetry of the problem the ¢-component of the flow, u,, will be
expected to vanish while the angular dependence of «, and p should be given by £,
and that of u,; by P;. This leads actually to a solution. To obtain it, it is necessary to
transform (5)—(8) into polar co-ordinates and take u, = 0. In equations (16)-(18),
this latter condition has already been used. One thus obtains from (5)

—25'(721") rs :nﬁaﬁ(uosmo) (19)

i rzar(r aa':)’f;z::,raa%[ ‘“0(%%"2“0)]‘%‘%%13 0 i
a5 5) eaimona (00 ) s s grap =0 4D

and from (6) S, = —p+27}aé—l:_f, 8= (O;_o-l-%%—'g—%’), 8,4 =0. (22)

The most general solution of (19)-(21) with a P, symmetry contains four constants
A, B, €, D and has the form,

A% B 3D

u.,,=(—7— = .DT-F)P,, (23)
5473 ,

u,,=( s +Cr+r4)P,, (24)

= r,(A oy g) P, (25)
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Inserting these solutions into (22) one finds

8, =1( -4 =25 +40+72) B (26)
8D
(R n(”’+;,%+20 rs)P’ 27)

These solutions refer to @ <r < 1. The solutions in 1 <r< R are the same if 5 be

replaced by #* and the four constants 4, B, C, D by four’other constants 4,, B,

C,, D,. Assuming that 5 and #* are given, the solution thus contains eight constants.
QA To determine them one has six homogeneous equations from the boundary conditions
S(18), (17), (18) together with the two inhomogeneous equations at r = R required
gto give 8, and S,, the values (11). These are just sufficient equations to determine all
B0the eight constants. It is thus seen that the flow of a sphere with the structure of
<Cﬁgure 2 can be calculated for any value of 9 and #* in terms of the external stress.
STo determine 7* it is necessary, in addition, to fulfil equation (14), i.e. one must
Sequate the flow at the surface r = R of the sphere (given by (23)and (24)if 4, B, C, D
?@re replaced by 4,, B,, C,, D,) to the flow at the surface r = R of a homogeneous
oaphere of fluid with the viscesity #* which is given by (12) and (15). For B> 1, this
S 2condition must be fulfilled independently of R. It therefore includes the con-
&‘ dltlon according to which the stress at r = R must be given by (11). Equation (14)
'S thus means for u,

3

% 4(R) _ Cl( +£_ R4 B, 1 _?Dl 1..) =1+ 3 c_onst.’

,8 2yRP, vy 140, 401 R 207 R® neg R"

o

'1‘3 uo(R) Cl( 5A1 2 Dl - const.

%""d LS Nt R T s R5) I+ 3 —pn

s It follows that Cy=y (28)
%““d A4;=0, B;=0. (29)
= S Solutions in 1 <7< R thus become

= 3D D,

§ u, = (27"_',.71) B, uy= (yr+ 7‘) Pl (30)
!

5 6D

2 p=0, 8,= 4v*(7+ —,5—') By 8 =29 (7—~D~‘) Py. (31)
3

o

A

There remain the five constants A, B, €, D, D, and the six boundary conditions
(16), (17) and (18). Since y is known from equation (15) they lead to six inhomo-
geneous equations. These can be solved only if the coefficients of the equations fulfil
a certain condition. This leads to the determination of #*. One obtains from (16),
using (23) and (24), Az B 3D s

—7—+—2“a—n+ 2C'a—*az' = 0,

| ‘,
5A4a® D (32)
42
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from (17), using (23), (24) and (30),
A B

,—7‘+‘§ +2C—-3D = 2‘}'-—3D1,
(33)
84 404D =yrD
E =2y 1
and from (18), using (26), (27) and (31),
*
—§—3B+ 40+ 24D = 4—;’— (y+6D,),
(34)
84 B . _ 29* ;
The solution can easily be found by anticipating
A4=0. (35)

In the final result for 7* terms of a higher order in @ than a® will be neglected (cf. (3)).
Keeping this in mind, then

D,=ya%, B=-10ya%, C=y(1+a), D=-ya’, (36)

and the value (2) for g*.
It is of interest to calculate the stresses at the surface r = a of the rigid sphere.
Inserting (36) and (15) into (26) and (27) then in zero order in @

8, =6TP, 8,=4TP, (37)

This stress system has the same symmetry as the external stress system (11), but
it has § times its magnitude.

B. FHlastic spheres

If the spheres of radius @ are considered to be elastic according to (4), a stress of
the type (37) will tend to deform them into spheroids. In equilibrium the com-
ponents d, and d; of the displacement of the surface are thus given by

5T 5T~
dr = Eiﬁ- aP,‘,, do = -‘IE an. (38)
In view of the viscosity of the fluid which adheres to the surface » = a, this deforma-
tion cannot be established at once on application of the external stress. Instead, a

deformation of the form

d, = EaPB,, d,= ‘;'] aP}, (39)

may be expected where £ depends on time. Throughout, the stresses will be assumed
to be weak enough to make
E<1, (40)
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so that the deformed surface of the elastic body can be approximated by the un-
deformed sphere r = a. One thus obtains at this surface for the stress, using (4),

S,, = 2kEP,, 8S,,=kEP,, r=a, (41)
and for the velocity of flow
u, = BaP,, uy= gaP;, r=a (42)

where the dot means differentiation with respect to time.

It must be mentioned here that the most general deformation with a P, symmetry
is not given by equation (39) but contains additional terms with one further constant
F. Byputting F = 0 we anticipate already part of the solution. Subsequently, when
the constants from the boundary conditions are derived, this will lead to one super-
numerary equation. The fact that this equation will be a consequence of the other
equations, i.e. that it does not lead to a new incompatible condition, is a proof that
assumption (39) for the deformation is correct.

In view of (40) the solution of equations (19)—(22) in the shell a <r<1 is still
given by (23)—(27), but the coefficients 4, B, C, D may now depend on time.

The outer shell 1 <7< R is now filled with a medium with unknown properties.
In view of (40) and (3) it is known, however, that the mathematical expressions
describing these properties can be developed into power series in @, and that the
elastic terms (containing E or E) will not appear in the zerb-order terms. From this
the general shape of the expressions for the flow of this substance may be derived.
Consider first the homogeneous sphere of radius R which consists entirely of this
substance. As discussed in § 2 its flow is given by equation (12), but v is no longer
connected with the stress by equation (15) which referred to a viscous fluid where the
stress is entirely due to internal friction. For our substance this should be énly so
when the deformation of the elastic spheres has become stationary. Otherwise an
additional term proportional to £ would be expected which means that the total
velocity of flow contains one term which is proportional to the velocity of deforma-
tion of the elastic spheres. Thus, instead of (15),

T

7='2_77;+§E: (43)

where {is a constant which is expected to vanish ifa = 0. In view of (43), the con-
nexion between stress and flow is no longer given by

Sy = 2TF, = 4y*yF,, 8,y = TP, = 2y*yP,,
but by 8, = 4*y—LE)B, 8, = 2y*y—LE) P (44)

The following calculations have now to show that a value for ¢ exists for which
hypothesis (43) actually leads to a self-consistent solution, i.e. that the two big

spheres of radius R will actually show the same flow at the surface (in the sense of
equation (14)).
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Now return to the flow in the outer shell 1 <»< R of the sphere described in
figure 2. In the case 4 this flow was given by equation (30), i.e. it was composed of
a homogeneous flow u, = 2yrP,, u, = yrP;, and a non-homogeneous flow (D;-term)
which represents the influence of the inner shell and which is of the first order in a®
(cf. (36)). The influence of the elasticity of the spheres which is now considered is to
change the flow considered in § A by adding terms of the first order in a®. Therefore,
any correction of the D; terms in equation (30) would lead to second-order terms
which are neglected here. On the other hand, y-terms will be influenced so that ex-
pression (15) is replaced by (43). Considering this, (30) still represents the flow in
the outer shell, and condition (14) is thus fulfilled in the same way asin § A. Equation
(31) does, however, no longer represent the stresses but has to be supplemented in
the same way as (44). Thus

6D 4D\ 1,
S, = o (y-tB+22) B 8= 2(y-L8-"31) Py (45)

Again the D, terms need not be improved as they are already of the first order.
Now proceed in a similar way as in § A. The boundary conditions (17) and (18)
at » = 1 must be fulfilled, while (16) must now be replaced by

u,, U S, S,s continuous at » = a. (46)
This leads to the following equations. From (46) using (23)—(27) and (41) and (42)
follows A_aa+ B .= 3D—E
B ek Senkn
(47)
bAa? e D Ea
12 G e 7
2
_A_a_¥+4c+2i? - 2_1‘3,]
7 a a 7
84a® B 8D k =
TRE ™ ki J
From (17) one obtains as in (33),
A
7+g+20—3D=27—-3D1,
49
i C+ D=y+D -
a9 ) + =Y+ LD,,
and from (18), using (45) and the left-hand side of (34)
A *
i (50)

84 B 29* |
ﬁ"'i +2C—8D =%’,—(Y_€E—w1)'J



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

Theory of the rheological properties of dispersions 425

It will be noticed that for £ = 0 equations (47), (49) and (50) are identical with
(32)-(34), while both equations (48) become equivalent and can be used to calculate
E. This represents one solution of the system of equations. It leads to the value (2)
for 7*. Having thus determined #* now find the influence of the elasticity of the
spheres of radius @ on the flow, i.e. one is now interested in solutions for which E+o0.
Now (47)—(50) is a system of eight inhomogeneous equations for the seven unknowns
A, B, C, D, D, E and E. As discussed above one of the equations (48) must be con-
sidered as a consequence of the other equations because the value of one further
unknown F has been anticipated by writing the deformation of the elastic spheres
in the special form (39) which requires only one constant. This leaves seven equations
for seven unknowns. They have one solution expressing them in terms of the coeffi-
cients of the equations. This is the solution mentioned above in which £ = 0. Other
solutions for which E + 0 will express the six unknowns 4, B, C, D, D,, E not only
in terms of the coefficients but also in terms of £. They exist only if the coefficients
fulfil a certain condition which will be used to determine {.

The actual solution can be found quickly if again, as in (35),

A=0 (51)
is anticipated. Inserting this into (47), then

D= (E = o) a5, B= 10(5 = c) a, (52)
2 2
which, introduced into the first equation (48), yields
10C—3E = 3”5’1; (53)

The second equation (48) is then fulfilled without leading to any inconsistency which
means that (39) was anticipated correctly.
Inserting (51) and (52) into (49), then

E
C=y(1+a%)-5a, D, =7a3—1§a3, (64)
so that neglecting higher order terms in a, (52) and (53) become
E E
D= (5_7) a’ B= 10(-5 —'y) at, = 21712 [10y(1 +a?) —(3+5a®) E]. (55)

Equations (51), (54) and (55) represent the six quantities 4, B, €, D, D, and E in
terms c.>f y and E, as required. Inserting them into the first equation (50) and
neglecting terms of a higher order than a3, then

§ = ia®. (56)
With (51), (54)-(56) the second equation (50) is fulfilled which shows that 4 = 0

was a..nticipated correctly. Thus all equations (47)-(50) have been satisfied and the
solutions of the required type found.
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Now insert the value (56) into the relation (43), i.e.
T = 29y*(y —§a°E). (57)

To obtain the required connexion between stress and flow of the macroscopic sub-
stance it is necessary to eliminate £ from this relation. This can be done by intro-
ducing the time derivatives 7' and . Using E from equation (55), then, neglecting
terms of a higher order in @ than a?,

T+1,T = 29y +747); (58)
where Ty = gz(l +3a3), 7,= Z—Z(l —$ad). (59)

Equations (2), (58) and (59) represent the main result of the calculations.

The introduction of 7' requires a further condition because at certain times, e.g.
on application or removal of stress, 7' will be allowed to be a discontinuous function
of time. In this case an additional condition is required for the solution of the
differential equation (58). To obtain it (57) is used to eliminate y from equation (55)
and yields, with the use of (2) and (3),

2kE + 33E(1 — $a®) = 5T(1 —$a3).

The solution of this equation can be written in the form
t
B = fest J' e (1) dt,
0

where o and / are constants easily derived from the preceding equation. This shows
that £ remains continuous when 7' has a discontinuity. Thus, using again (55) and
(57)-(59), it is found that

—3a*y B = 1, T — 2y*r,y = continuous. (60)

This is the condition which 7' and y have to fulfil when 7 is discontinuous.

4. RESULTS AND DISCUSSION

From the discussion in §2 it was seen that the main task was to calculate the
quantity y expressing the flow by equation (10) in terms of the stress. This has now
been done (equations (58)-(60)). Hence it may be concluded that the connexion
between the stress system (9) and the components of flow «; is given by

)
S +18 = 29* g, Wt Tatly), (E=1,2,3). (61)
i

This equation can easily be generalized to comprise an arbitrary stress system.
First by a suitable rotation of the co-ordinate system, the system of tensile stresses
can be transformed into a system of shear stresses, while the corresponding trans-
formation of the components of flow follows from the isotropy of our substance.
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Secondly, in view of the incompressibility of our substance the addition of a hydro-
static pressure p cannot have any influence on its flow. Thus equations (61) which
refer to p = 0 can be extended to the case p+ 0 by adding the term — (p+7,p) to
the right-hand side of the three equations (61), which in view of (7) just cancels the
hydrostatic terms at the left-hand sides. The generalized equations (61) can thus
be written as

Oy = — Moy + 7]*(_88%': + gz—;f) , (62)

if one introduces the three quantities
O = S+ T8 T=p+TyP, V= U+ Ty, (63)
derived from stress S;; , pressure p = — (S,; + Sy + S33) and flow »,. These equations

have to be supplemented by condition (60) which, after being tredted in a similar
way as (58), leads to
au,- ou s
T1(Sik + Pdy) — sz*(gk + 5;:‘) = continuous. (64)
In general the stresses may now be allowed to depend on the co-ordinates z; if
only they can be ¢onsidered as approximately constant within a region which con-
tains many of our elastic spheres. The equilibrium of forces then demands

3 a'gl k
T o,
if acceleration terms and external volume force (e.g. gravitation) are neglected.

Differentiating these equations with respect to time, and making use of (62) and
(63) then

=0 (k=1,23),

ﬂ*Avi_éa;n. = O. (65)
1

The condition of incompressibility requires divu = 0 and hence

divv = 0, (66)
while (64) leads to

o . ol 1o M
Ton*Au,— 7, 8%: = continuous on application or release of stress. (67)

Equations (62)-(67) together with (2) and (59) represent the results of the theory.
They can be divided into two parts, (i) a macroscopic theory of flow which contains
the three parameters 7,, 7,, and 9*, (ii) the calculation of these parameters from the
properties and the concentration of the two components.

From the mathematical point of view the equations of flow have a great similarity
to the hydrodynamic equations. In fact, the fundamental hydrodynamic equations
(5), (6) and (8) are identical with equations (66), (62) and (65) if the three quantities
O, m and v are replaced by S, p and u respectively. This means that to each hydro-
dynamical problem there exists a problem for our substances whose solution is
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obtained from the hydrodynamic solutions by making the substitutiops just men-
tioned. To obtain then the velocity of flow and the stresses, equations (63) have to be
solved (in which @, 7, and v; are now known) using the conditions (64) or (67).
This mathematical similarity leads to a similar physical behaviour only if Sy, and u,
are independent of time, because only then are they equal to @, and v;. Otherwise,
the physical behaviour of our substance may be very different from that of a viscous
fluid.

As a simple example consider the case of a homogeneous flow. Suppose a tensile
stress S,, acts parallel to the axis of a prism which is assumed to be the z;-axis.
This will lead to a homogeneous flow and its z,-component u, will be calculated.
Let oy, be the tensile strain in the [-direction. Then clearly

Uy = %), (68)

Suppose that the stress is applied at the time ¢ = 0, having the magnitude x, and that
it is removed at ¢ = ¢’. Thus since Sy, = S35 = 0,

[0, 0, t<0,
Sll = <K, P: —g’ ﬂt 0<t<t’, (69)
l\o, 0, s

Inserting these expressions for %, and p into (62) one finds, making use of (63),
§(Su+7181) = 29*(6yy +Tb), (70)
i.e. a differential equation for o,.
Assuming & = 0, (70) with the use of (69) becomes

0 t<Oandit>t,

3k O<t<t'. (11)

2p* (0 +To0yy) =

Since 8,, is discontinuous, use must be made of condition (64) at ¢ = 0 and ¢ = ¢'.
Inserting (68) and (69) this condition becomes
§718,, — 21,9*6,, = continupus. (72)
Since dy; = 0 for ¢ < 0, then, making use of (69),

e o -
O = ST, att =0
LIS
3n* 7y
where 6, (t' + 0) refers to the value of ¢, just befcre (¢' —0) or after (¢’ + 0) the time
t=1t,

With these conditions and with o, =0 at £=0 the solution of (71) becomes

Oy (t'+0)— 0y, (t' —0) = — att=1t',

Oy = Og +0yies (73)

K {t 0<t<t’,}

where D e
bl ™ A

(74)
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—eiims O<t<t',
and Ol = 5‘;—. (11— 73) 8 . :_y/-,.)) e—1—4)irg i> t'.} (75)
It is seen that the total deformation can be split into (i) a viscous part o, which
increases proportional to ¢ during the application of stress and remains constant
when the stress is removed, and (ii) an elastic part o,; which on application of stress
becomes time independent if ¢>7,, and on removal of stress is recovered following
an exponential law.

From this simple example it is seen that for a homogeneous stress the theory leads
to a strain-time dependence of the same type as that found experimentally on
certain bitumens (figure 1). In particular, it shows an elastic recovery described
by a.time of relaxation 7,. Suppose that a substance has been found which obeys
the equations given. Then in an experiment of this type (figure 1) all the three
parameters 7,, 7, and 7* can be determined. »* is obtained from the slope of the
strain-time curve for a time t>7, (i.e. the dotted curve in figure 1), because
according to (73)—(75)

K

W ift,>t>>72.

Oy =
7, is obtained as the time of relaxation of the elastic recovery, while (7, —7,)/7* and
hence 7, can be determined from the total strainrecovery, since according to (73)—(75)

Ao = oy (t') — oy (0) = 3_,:* (1,—73) i t'>7,. (76)

Having thus determined the three parameters it is possible to check the results
by an independent experiment. Supposing that at the time ¢’, instead of removing
the stress, the strain is kept constant so that ¢, = &,; = 0. It then follows from
equations (68) and (72) that S,, decays exponentially

T _'Tz

1
Su =

Ke —(l—t’)/n y
1
with the relaxation time 7,.

So far equations (62)-(67) have been discussed as macroscopic equations con-
taining fhree parameters, 7,, 7, and #*. According to the present theory these quanti-
ties are connected by equations (2) and (59) with the three microscopic quantities
a® k and 7, i.e. with the relative volume of the elastic spheres, their modulus of
rigidity, and the viscosity of the fluid in which they are dispersed. It should be
possible to check these formylae by varying a?, and by using various materials
whose k and 7 values are known. A variation of a3, for instance, changes all three
quantities 7*, 7, and 7,. It is connected in a very direct way with the total elastic

recovery which can be easily measured and which according to (76), using (2), (59)
and (3), is given by

Ao = %iaaz, .. (@¥<1).
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There are, at present, no experiments available which allow a quantitative check
of our theory. Such experiments would require sols or dispersions of a known
structure. We have tried to compare our results with experiments on bitumens,
some of which, according to Pfeiffer & Saal (1940), form sols. We compared the
elastic recovery curve of a bitumen measured by Lethersich (1942) with our results,
according to which it should be an exponential function of time. Figure 3 shows that
this is the case for most of the recovery curve, but for (relatively) short times there
is an additional recovery. It seems evident that the structure of bitumens is more
complicated than was assumed in our model, and there are a number of suggestions
one can make to account for the additional recovery (e.g. an interaction between the
elastic spheres, or an elasticity of the fluid in which they are dispersed). It is not the
object of this paper to study bitumens, but it seems interesting to notice that such
a simple analysis in the light of our theory leads at once to suggestions concerning

their structure.
22

21 X
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I
18}~

o \1\.\1*-‘«—.5
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Ficure 3. Experimental values of the elastic recovery of a bitumen according to
Lethersich (1942) compared with an exponential function.

Before going into a detailed study of such complicated substances it seems desir-
able to have experiments on materials which agree as closely as possible with our
model. We do not doubt, however, that it will be possible to generalize our theory
80 as to comprise more complicated structures.

The authors are indebted to the British Electrical and Allied Industries Research
Association for permission to publish this paper.
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