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Theory of the thermal expansion of Si and diamond
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Phonon-dispersion curves, lattice mode Gruneisen parameters, and the coefficients of thermal ex-
pansion are calculated for Si and C within a tight-binding model. The results are in good agreement
with experimental data. The origin of the negative thermal expansion in Si is examined, and we find

that the di6'erent thermal-expansion behaviors between Si and C can be explained by the diA'erent

relative strengths of bond-bending and bond-stretching forces.

Thermal expansion in semiconductors is a topic of
some technological as well as scientific interest since it
plays an important role in determining the residual
stresses in solid-state devices. While most materials ex-
pand upon heating, many tetrahedral semiconductors
(e.g. , Si, Ge, and GaAs) exhibit negative thermal expan-
sion at low temperatures. ' This problem has received a
fair amount of theoretical attention, mostly empirical
studies relying heavily upon experimental input. An ex-
ception is the recent work of Biernacki and Schemer,
who calculated the negative thermal expansion of Si with
a simple model based on two force constants extracted
from local-density-functional calculations. It is generally
believed that the unusual negative thermal-expansion be-
havior can be attributed to the negative Gruneisen pa-
rameters (i.e., phonon frequency increases as crystal
volume increases) of the transverse acoustic (TA) pho-
nons near the Brillouin-zone boundary, which have also
been reproduced by first-principles theories. ' In this pa-
per, we choose Si and C as prototypical tetrahedral semi-
conductor systems and demonstrate that a simple tight-
binding model can describe the thermal-expansion be-
havior accurately in these systems without fitting to ex-
perimental information. The origin of the negative
thermal-expansion behavior is explained with a simple
physical model. The difference in thermal-expansion be-
havior between Si and C arises from the difference in the
relative strengths of the central forces and angular forces
in the crystal in agreement with ideas in previous investi-
gations.

The free energy of a crystal can be expressed in the
quasiharmonic approximation" as

terms: Eb„the electronic band-structure energy, is the
sum of single-electron energies over all occupied electron-
ic states, and U =

—,
' g; P(r;, ) is a sum of nearest-

neighbor pair interactions. The band structure is evalu-
ated using an empirical tight-binding model following the
previous work of Chadi and co-workers. ' ' The
nearest-neighbor sp parameters are determined by fitting
the electronic bands of Si and C in diamond structures:
E,, = —5.25 eV, c. =1.20 eV, V„=—1.938 eV,
V, =1.745 eV, V =3.05 eV, and V = —1.075 eV
for Si; and E., = —2.99 eV, E =3.71 eV, V„=—5.55 eV,
V, =5.91 eV, V =7.78 eV, and V = —2. 50 eV for
C. These parameters are scaled with interatomic separa-
tion r as r . Unlike the Chadi model, ' the short-ranged
pair potential P(r) in our calculation is determined by
subtracting the Eb, contribution from first-principles
local-density-functional results for the volume-dependent
total energy of the crystal in the ideal diamond struc-
ture. ' Thus the parameters of our model can be ex-
tracted entirely from first-principles calculations without
fitting to any experimental data.

The force-constant matrix is obtained by taking the
second derivatives of the total energy with respect to the
atomic displacements and, using second-order perturba-
tion theory, can be expressed as

8 U BH
K, &= +2Xf„t,nk nk)

~la &J'P nk l 0! JP

+2 X k 'k')
nk, n'k' nk n'k' ~+ia

I' ( V, T)=E ( V) + —,
' g h v, ( V) X (n'k' nk), (2)

+ks T g in[ 1 —exp[ —hv;( V)/kz T]I, (1)

where E ( V) is the energy of the static lattice with volume
V, and v, ( V) are the normal-mode frequencies of small-
amplitude oscillations for the crystal at volume V.

To obtain the phonon frequencies v; at a given crystal
volume, we employ a simple model in which the total en-

ergy of the crystal E( V) is expressed as a sum of two

where H is the tight-binding Hamiltonian,
~
n k ) are elec-

tronic states, and f„kare Fermi occupation factors. The
first term in Eq. (2) is the contribution from the short-
ranged pair potential. The second and the third terms
represent the contributions from the electronic band
structure.

Using the above force-constant matrices, we can evalu-
ate the dynamical matrix' for any wave vector q. We
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obtained the phonon frequencies on a grid of 240 wave
vectors in the irreducible part of the Brillouin zone. The
calculated dispersion curves for Si and C are compared
with experimental data in Fig. 1. Good agreements are
achieved for the acoustic phonon modes. Our model
tends to overestimate the optical-mode frequencies by
—10%. Using the calculated phonon frequencies,
F( V, T) is evaluated for a set of volumes and tempera-
tures. The equilibrium volumes at various temperatures
are determined by minimizing F( V, T) as a function of V.
The results for the linear expansion coefBcients of Si and
diamond are shown in Fig. 2 in comparison with experi-
mental results. ' ' Our calculations give a very good
description of the thermal expansion in both Si and dia-
mond. In particular, the low-temperature negative
thermal-expansion behavior in Si and the absence of neg-
ative thermal expansion in diamond are well reproduced.

From Eq. (1), the thermal-expansion coefficient can be
related to the Gruneisen parameters of the various pho-
non modes'

a= g y;hv; [[e px(h v/kzT) 1] 'I (3—)
0 i

in which y; = —d(lnv, )/d (lnV) is the Griineisen param-
eter for the ith normal mode and Bo is the bulk modulus.
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FIG. 1. Phonon dispersion curves for (a) Si and (b) diamond.
Solid lines show the tight-binding calculation results. The ex-

perimental data (open circles) are from Ref. 1.
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FIG. 2. Linear thermal-expansion coefficient of (a) Si and (b)
diamond as a function of temperature. Results from our calcu-
lations are indicated by solid lines. Experimental data (open cir-
cles) are from Refs. 16 and 1, respectively.

Equation (3) shows that a negative thermal expansion can
only occur when some of the phonon modes have nega-
tive Gruneisen parameters. Since the interatomic forces
in the crystal usually weaken when the lattice expands,
the Gruneisen parameters are usually positive for all the
phonon modes in most materials. The results for the
Gruneisen parameters of Si and diamond are plotted, re-
spectively, in Figs. 3(a) and 3(b), where available experi-
mental data' are also displayed. The acoustic-phonon
modes of Si behave anomalously: strong negative
Grueisen parameters are found for the TA branches espe-
cially near the Brillouin-zone boundaries X and I. On
the other hand, such behavior is not observed in the cor-
responding phonon branches of diamond.

The physical origin of the anomalous behavior of the
TA modes in Si can be elucidated by a simple model
where we consider only nearest-neighbor interactions.
We show in Fig. 4 the patterns of atomic vibrations asso-
ciated with the TA(X) and the TA(L) modes. The polar-
izations of these two modes are determined by the sym-
metry of the diamond lattice and are associated with pure
bond-bending motion: the bonds between atoms are ei-
ther undisturbed or are distorted by atomic motions per-
pendicular to the bonds. In such cases, we can describe
the restoring force on the atoms as the sum of a central-
force part co„„anda noncentral angular part co„,„„„com-
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FIG. 4. Vibrational motion corresponding to the (a) TA(X)
mode and (b) TA(L) mode in the diamond structure. The dis-
placements of the ions are along the [110] direction in (a) and
along the [112]direction in (b).

viation of the bond length from its equilibrium value d0.
Then k and d —d0 can be related to the bulk modulus B0
and 6V/V0. Thus,

T, =k(d —do),

FIG. 3. Mode Gruneisen parameters for (a) Si and (b) dia-
mond. Solid lines (acoustic modes) and dashed lines (optical
modes) are results from our calculations. The experimental
data (, 0 acoustic modes; o, optical modes; ~, O longitudi-
nal; 0, transverse) are from Ref. 1.

ing from the directional covalent bonds stabilizing the di-
amond structure. Thus

and

Finally,

d (cd„„/ado)
1 cen

2

0

4C Bo~o
+3 Pl Cd()

2 — 2 ~ 20 scen ' ~noncen (4)

The central-force contribution is well described by a
spring model. For displacements perpendicular to a
spring, the restoring force depends on the tension in the
spring ( T, ). At the equilibrium volume Vo the tension in
the spring is zero and m0=co„,„„„.Thus co„„=0for
V= V0. When V) V0 the spring is stretched, T, )0 giv-
ing a restoring force co„„)0. When V & V0, the spring is
compressed, T, (0 leading to ~„„(0.We can relate co„„
to the bulk modulus as follows.

First, the central-force contribution to the force con-
stant is related to the spring tension and the bond length

men =2CT /d,
where C takes into account the number of bonds bent by
the phonon distortion [C equals 1 for TA(L) and 2 for
TA(X) ] and m is the mass of atom.

Now T, is related to the spring constant k and the de-

2 4C Bo~oy= +3 r1l Cdo

(10)

By using the bulk moduli and phonon frequencies from
our tight-binding calculations, we can estimate from Eq.

Thus y„„is negative. This is the origin of the negative
Griineisen behavior of the TA modes in Si.

To get a complete description, we have to obtain the
contribution from the angular forces. Using the bond or-
bital approximation, ' the change in covalent bond ener-
gy when the lattice is distorted with bond-bending
motion is dE ~ gO where g is the tight-binding matrix
element between bond orbitals on the two atoms at the
ends of the bond and 0 is the angle of rotation of the
bond. Now q varies as Il/d and 0=2u/d where u is the
atomic displacement, so m„,„„„variesas 1/d . Thus,

y„,„„„=—d ( in'�„,„„„)/d ( ln V) =—', .

Within our simple model, the Cxruneisen parameters of
the TA(X) and TA(L) modes can be written as
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(10) the TA(X) and TA(L) mode Griineisen parameters
of Si, diamond, and Ge. The results are listed in Table I.
Our model predicts that the TA modes have negative
Gruneisen behavior in Si and Ge but not in diamond.
The reason for the difference is that the directional co-
valent bonding is much stronger in diamond than in Si.
Thus the angular forces are dominant in diamond and
our analysis indicates that noncentral forces favor posi-
tive Gruneisen behavior. For negative thermal expan-
sion, the angular forces should be weak but not absent,
because otherwise the diamond structure would not be
stable at all.

The above model can also be applied to the discussion
of thermal expansion of zinc-blende semiconductors, al-
though the analysis will be much more complicated be-
cause of the unequal masses of the atoms in the zinc-
blende structure. However, in such cases, we expect
tight-binding calculations will still give accurate answers.

In summary, we have shown that detailed calculations
based on a simple tight-binding model can provide accu-
rate thermal expansion results (for Si and diamond). We
have given a microscopic analysis of the origin of the
anomalous mode [TA(X) and TA(L)] Gruneisen parame-
ters in Si. Our analysis provides a simple explanation of
the negative thermal-expansion behavior in Si and the
difference in thermal-expansion behavior of diamond and
Si. We hope our work will provide a basis for consider-

TABLE I. The Griineisen parameters y&A(x) and y&A(L) for
Si, diamond, and Ge are calculated from Eq. (10). The estimat-
ed y&A(x) and y&A(L) are compared with experimental data (Ref.
1) and tight-binding calculation results.

y~A(x) (TB calc.)

yTA(x) (expt )

1 TA(X) Ãq (10)l

Si

—1.08
—1.4
—1.67

Diamond

0.042

0.017
—1.53
—1.08

y-fA(L) (TB calc. )

y TA(L) (expt )

y~~ILI [Eq. (10)]

—1.15
—1.3
—1.54

—0.047

—0.060

—0.4
—0.77

ing thermal-expansion behavior in more complicated ma-
terials such as amorphous semiconductors, graphitic
fibers, and polymer chains.
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