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A general theory on classification of instability and interconnection relation between
UHF solutions is developed. It is shown that instability of a UHF solution is splitted into
subinstabilities irreducible to the invariance group of the UHF solution. All types of insta-
bility for the eight classes of UHF solutions are listed up .and explicit condifions for the
instabilities are derived. It is shown that the type of a UHF solution emerging from. an

instability is determined by the type of the instability. The invariance groups of the UHF

solutions emerging from instability of 'a UHF solution are the subgroups of the invariance
‘group of the initial UHF solution.

From this, the interconnection relation between the
eight classes of UHF solutions is determined. Expressions for HF energy for the eight
classes of UHF solutions are derived.

§ 1. Introduction

Since the work of O%rerhauser”
solution of the Hartree-Fock (HF) eq
shell solution

indicating that the helical spin density wave
uation emerges from instability of the closed
, importance of instability phenomenon in an HF solution has been
recognized. Instability of an HF ground state solution is a signal for appearance
of new ground state solution and represents a change in
the system. A general condition for instability of an HF
formulated by Thouless.? Through many works® on instability and unrestricted
Hartree-Fock (UHF) solutions in particular systems, it has been recognized that
instability of an. HF solution involves various different types of instability and
UHF solutions of different structures emerge from them. Paldus and Cizek,»
the author® and Ostlund® have shown that the instability of a closed shell solu-
tion invariant for time reversal involves four different subtypes of instability.
The author” has recently formulated instability condition for DODS (different
orbitals for different spins) configuration and shown that its instability is also
splitted into four subtypes but two of them are degenerate, However, the reason
for the presence of subtypes in instability of an HF solution and the connection
between the type of instability and the type of a ULF solution emerging from
it have not been clearly understood on a general footing,

electronic phase” of
solution was firstly
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Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. III 1767

In the present paper, we develop a theory on classification of instability and
interconnection relation between UHF solutions based upon the group theoretical
classification and characterization of UHF solutions developed in the preceding
paper® and the density matrix formulation developed in the first paper” of this
series (hereafter we cite them as Il and I). In the present theory, the invariance
groups of UHF solutions, which are the subgroups of the group of spin rota-
tion and time reversal to characterize the eight classes of UHF solutions, play
a central role. We shall ‘show that instability of a UHF solution is splitted into
subtypes irreducible to the invariance group of the solution. We list up all types
of instability for the -eight classes of UHF solutions and give the explicit con-
ditions for the instabilities to occur. We shall show also that the type of a
_UHF solution emerging from an instability is determined by the group theoretical
symmetry type of the instability. From this, we can determine instability mediated
interconnection relation between the eight classes of UHF solutions. We also
show that the interconnection relation' derived from the group theoretical method
is verified from inspection on the structure of HF energy for the eight classes
of UHF solutions.

The notation used in this paper is the same as those used in I and II

§ 2. Instability and interconnection of UHF solutions

Let ¥,,a=1---n, and ¥,, u=n+1--- 2M, be the occupied and unoccupied
orbitals of a UHF solution. ' We denote the row vectors of the occupied and
unoccupied orbitals by ¥=(¥,) and ¥’ = (¥,), respectively. Let ¢=(¢,) and
¢’ = (p,) be another set of orbitals. From (I, 2-41), ¢ and ¢’ can be represented
in the following form:’ )

4 ,afd
o=¥C(3) +¥'S(3)

-ro()-rs (1)

2-1)

in terms of a matrix 4=(4,,) after carrying out a unitary transformation which
does not mix ¢ and ¢’. C(4),C(4) and S(4) are the matrix functions defined
by I, 2:27). Let P and Q be the projection operators P=¥%* and Q=g¢p".
From (I, 2-31) and (I, 2-4), we have

Q—-P=4{D=% X+ X*+2Z-2), } 2-2)
X=8(), Z=P—-C), Z=1-P-C(4).

From (I, 6-7), the difference between the HF energies of ¢ and ¥ is given as

=%§HE'1D7L’+%C”Z‘I}C [Cﬂlm]DﬂDm, 2-3)
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1768 ‘ H. Fukutome

where H,, is the HF operator of . From (I 2 32) X, Z and Z satisfy the relations

XX+ 7= } @40
XX++Z’=ZZ,
and we have '
Daﬁ= —%Z Daerﬁ.,
N (2-5)
D/w:%‘ ; DMDL’" .

Since ¥ is a UHF solution, H,,=0, and, by using (2-5), Eq. (2:3) may be
rewritten ‘as

dEg=} 2 CulleyDED,, }
e
{CnlI|key = HED 0+ HBr+ [Sy)ex],
where H, is defined by .
‘:B=F_H¢1ﬂ" H’ H[w; H, Hc:/l=0. (2'7)
By the use of (I, 2.27), D is expénded into a power :series of A4 as

(2-6)

(-1 AV 4 (A A A (=1 /14 i o o
,20(2 AU+ Arary+3 T (A= ALY 28

Substituting (2-8) into (2-.6), we may, easily obtain the variation of E, to any
desired order of A.

The second order variation OPEg(4) is given by
SEa(A) =% A1, 2-9)

where 2 and A are the matrix and the column vector of 2z (2M —2z) dimension
given respectively by

=[(<ﬂalflm@>),. ((ﬂalflﬁv»]
KualIlBy>*), ua)I|vp>*) |

" (4ue) - : _
A=| ] l . 2.10
s, | @
<laal IIVB> =Hpn6uﬁ —Hﬂ;apu + [,UGKIBV] ’

uclI|Bvy =[ualvp].

The matrix £ is called the 1nstab111ty matrix of a UHF solution ¥. The elgen-
vectors 4, of @

24 ,=0,4,, p=1---2n(2M—n), ' (2-11).

have always the form of f given in (2-10) since @ satisfies the relation

0 17,00 17__ . , s
[1 o] [1 o]_“q' ) (2-12)

A
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The matrix 4 can be expanded in terms of the eigenvectors of 2 as
4= Z prp . (2'13)

A UHF solution 7 is stable for the variation in the direction of 4, if w, is
positive but is unstable if w, is negative. The point where ®, becomes zero is
called the instability threshold. )

_ As we shall show in a succeeding paper of this series, new UHF solution
¢ emerges from an instability threshold of ¥, if the third or fourth order varia-
tion 0°Ex(4) or §*Ex(4) as a polynomial of z, has finite coefficients in the direc-
_tions of z;, where A; are the eigenvectors of £ with zero eigenvalue at the in-
stability threstiold. The solution ¢ in the vicinity of the instability threshold
is related to ¥ by Eq. (2-1) with 4 in the form

A= Z'l .Z‘;Ag ’ (2' 14)

where z; are small parameters. Conversely, if a UHF solution ¢ interconnects
and. coalesces to another UHF solution ¥ at a point, then the point should be
an instability threshold of 7, If there is only an eigenvector A, of £ with zero
eigenvalue at the instability threshold, i.e., the instability is non-degenerate, then
the 4 matrix connecting the emerging solution ¢ to ¥ is proportional to A4, in
the vieinity of the instability threshold: -

A = JCvo . (2 . 15)

Although all interconnecting points of UHF solutions correspond to instability
thresholds, the converse is not true. Sometimes, an instability threshold may
represent a crossing point of two UHF solutions as we have illustrated for the
system of internal rotation of ethylene” (it should be noted also that not all of
crossing points of UHF solutions correspond to instability thresholds), There-
fore, we may subdivide instabilities into the two categories; the interconnecting
(IC) instabilities and the crossing (CR) instabilities. In this paper, we do not
enter into detailed discussion on the condition to discriminate IC and CR insta-

bilities and the behavior of UHF solutions in the vicinity of an IC instability

threshold. The problems will be discussed in succeeding papers of this series.

In the present paper, we discuss on the group- theoretical aspect of instability

and mterconnectmn of UHF solutions based upon the above-mentioned relation

between them and the group theoretmal characterization of UHF solutions dis-
cussed in II.

§ 3. Group theoretical classification of instability and inter-
connection relation between the eight classes of UHF solutlons

The eight subgroups of the group G of spin rotation (SR) and t1me reversal
(TR) listed in (II, 2-10) are the groups. characterizing. UHF solutions and we’
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1770 H. Fukutome

call them the invariance groups of UHF solutions. Let F be the invariance
group of a UHF solution #. For any element g in F, there are #-dimensional
and 2M —n-dimensional unitary matrices V, and V,” such that

g¥=2V,, g ="V . 31
By operating g, the orbital ¢ defined by (2-1) transforms as
9o={¥C(4,/2) +¥'S(4,/2)}V,, (3:2)

where 4, is

4,=V,/AV,*, (for unitary g), } (3-3)

=V,/4*V,*, (for antiunitary g),
(the elements of G involving TR are antiunitary). Hence, the matrix 4 is a
second order tensor of F with transformation property (3-3).

The matrices V, and V,’ are generated by the following matrices. In the
case of an Scaxial solution, there are matrices A(e) and A’(e) such that

(e-a)¥=FA(e), (e-a-)@"=T’A’(e_)l. C 34
By operating (e:o) on ¢, A is transformed into
4 =4 @44 ). - @5
In the case of a T-invariant solution, there are matrices 7" and 7" such that
¥'=v9T, vr=9"T". i 3-6)
By operating TR on ¢, 4 is transformed into
A=T'4*T*. CRON

In the case of an M, invariant solution, there are matrices M (e) and M’ (e) such
that . ‘ ' )

(e:)¥'=FM(e), (e-a)T"=U'M (e). ) - (3:8)

By the magnetic transformation (e-o)¢f, 4 is transformed into
An(e) =M (e) A4* M+ (e). -9

The matrices A, T and M satisfy
Al(e) =1, A*(e) =A(e),
TT*=-1, T"=-T, (3-10
M(e)M*(e) =1, MT(e)=M(e), "
because of the relations (e-o)’=1, (F)'=—¥ and (e o) ((e-0)¥")'=¥. That
is, they are Hermitian, antisymmetric and symmetric unitary, respectively.” The

following relations also hold among them. In the case of an S-invariant solution,
there are three A matrices A(es),i=1,2,3, with (e;-e;) =0;,. Because of the
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Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. IIT 1771

relation (e:-0)(e; o) = — (e;-0) (ei-0) =i[es X e;] -0, they satisfy
Ae)) Ale;) =—A(e;) Aer) =iA(ei X ey). (38-11)

In the case of S,-axial and 7-invariant ASCW solutions, an M matrix can be
obtained as

. M(e) =A(e) T=—TA*(e). (3-12)

The latter f)art» of (3-12) is obtained from the relation (e-o)Z'= — ((e-o)¥)".
In the case of S,-axial and M, invariant ASDW solutions, besides the matrices
A(e;) and  A(ey), another M matrix can be obtained as

M(es) = —iA(e)) M(es) = —iM(es) A* (e, (3-13)

where we have used. i(es o) 7= (e;-0) (es-0) ¥'=(e;-0) ((e,-0)¥). We have
also the relation

M (es) M* (es) = — M (es) M* (e5) =iA(er), 3-14)

from i(e, o) ¥ = (e;-0) ((es:0) )= — (e-0) ((ez- o) ¥*)'. Summarizing the above,
we have the symmetry operations for the eight classes of UHF solutions derived
from the invariance groups as listed in Table I.

From (3-10), we obtain

Ua)a=4, (4):=4, Up)n=4. (3-15)

Therefore, any of the symmetry operations listed in Table I is a twofold opera-
tion for A, and the matrix A satisfying

Ado=F%4, 44;=%4, 4d,=+4, (3-16)

is an irreducible tensor of F. The combination of the signs in (3:16) should
be consistent with the constraints from (3-11) to (3-14). If 4 is an irreducible
tensor of F, then S(4) is also an irreducible tensor with the same symmetry
type as A but C(4) and C(A4) are irreducible identity tensors of F, i.e., invariant
to all symmetry operations of F. Therefore, if 4 is an identity tensor of F,
then ¢ has the same invariance group as ¥, but, if 4 is an irreducible non-identity
tensor of F, then ¢ is of broken F symmetry.,

Since the instability matrix £ is a fourth order tensor of F, it can be splitted
into a direct sum of submatrices irreducible to F. Therefore, the eigenvectors
A, of @ should be.irreducible second order tensors of F. Therefore, instabilities
of an F-invariant UHF solution can be classified into subtypes according to the
symmetry type of the eigenvector A,.

Since the UHF solution ¢ emerging from and interconnecting to ¥ at a
non-degenerate instability threshold of ¥ has the A matrix proportional to an
eigenvector of 2 as given in (2-15) in the vicinity of the instability threshold,
its symmetry type is determined by the symmetry type of the instability from
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1772 H. Fukutome

which it emerges. The Sylﬁmetry Table I. Invariance operations for .thé eight

operations of ¥ leaving the 4 matrix classes of UHF solutions.

invariant are preserved as the sym- TICS Ale), Ales), Ales), T

metry operations of ¢, but those ' " Mey), Mes), M(es)

changing the sign of A are not. P p— Ale), A, Aer
We list up in Table II all pos- ASCW Ale), T, Me)

sible symmetry types of instability: ASDW Ale), M(ey), Mes)

for the eight classes of UHF solu- ASW Ale)

tions, Listed in the first row are TSCW 4| T

the symmetry operations of the solu: TSDW T M@

tion ¥ given in Table I. The- sign TSW None

in the column under each symmetry

operation represents the symmetry type of the 4 matrix for the symmetry opera-
tion. Given in the first column are the proposed -symbols of the instabilities.
The. combination of the signs in each row is chosen so as to be consistent with
the constraints from (3-11) to (3-14). The symmetry type of the UHF solu-
tion ¢ emerging from the instability is given in the last column. Since the set

of the symmetry operations of ¢ is the set of the plus signed symmetry opera- .

tions of the-instability, the symmetry type of ¢ is determined by seeking in Table
I the class of a UHF solution having the set of symmetry operations which -is
isomorphic to the set of the plus signed symmetry operations.of the instability.

The symbols of instabilities .refer to-their symmetry type. S and %S repre-

sent spin singlet and spin triplet, respectively. The transitions to cause S and

*S type instabilities are the spin singlet and spin triplet transitions of a closed
shell configuration. The former preserves S-invariance but the latter violates it.
Each of ®S type instabilities involves three instabilities. Because of the con-
straint (3.11), the three S-axial symmetries in-an S-invariant solution cannot be
simultaneously violated and an S-axial symmetry should be ‘conserved. There are
three possible choices for the axis of the preserved S-axial symmetry. However,
due to the isotropy of an S-invariant solution for SR, there is no preferred direc-
tion among the three axes. Therefore, the three instabilities have an identical
instability submatrix, The S-axial solutions emerging from them have different
axes of S-axial symmetry but can be transformed into each other by SR. A,
represents conservation (+) or violation' (—) of S-axial symmetry. The transi-
tions to cause A, and A_ type instabilities are respectively the spin unflipping
and spin flipping transitions of a DODS configuration and we may -use the sym-
bols SU and SF .instead of A, and A_. 7T, and M, represent conservation
(+) or violation (—) of T-invariance and M-invariance, respectively. A_M.
instability of an ASDW solutien involves two instabilities. An ASDW solution
has two axes of M-invariance which are orthogonal to each .other and to a eom-
mon axis of S-axial symmetry as shown in (3:13). In the case of A_ instability,
the two M-invariances of an- ASDW solution cannot be simultaneously conserved
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Theory -of the Unrestricted Hartree-Fock Equation and Its Solutions. III 1773

Table II. Symmetry types of instability and the type of emerging UHF solution.

a) TICS:
A, A, A, T M, M. M,
ST, + + + + + + TICS
ST + + - - - - CCW
+ - - + + - -
ST, - + - + - + - ASCW
‘ - - + + - - +
+ - - - - + +
ST - + - — + - 4 ASDW
L - - + - + + -
b) . CCW: ¢) ASCW:
Ay A A A T M
s+ + + | CCW - AT, + + + | ASCW
_ _ AT + . - - | ASW
g | — + _ ASW AT, - + - | TSCW
_ _ + AT. - - + | TSDW
d) ASDW: . e) ASW:
Afey Me) Moes) | . Ale)
AM, + + + | ASDW A, + ASW
aM. |+ - - |asw A- . sW
- + —
AM |\ "_ . _ - , |TSDW
f) TSCW: )  g) TSDW:
X | M(e)
T, + | Tscw M, + TSDW
T- - | TSW M. - | TSW

or violated because of the constraints (3-13) and (3-14). Either one of them
should bé violated but the other should be conserved. Due to the axial sym-
metry of ASDW solutions for SR around the axis of S-akxial symmetry, there is
no preferred direction among the two axes of M-invariance. Therefore, the two
instabilities have an identical instability submatrix, The TSDW solutions emerg-
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'st, Is
Q) | )
ST,

TiICS — ccW

%sT, AM, 12

/ ask\ ) 1 >
AT ascw ar L asow —AM_asw(Da,

e -
A_T ™
+‘ R l AM IA_ \
M.
(o Tsew e TSOW ———a 15W { )1

_ /

Fig. 1. Interconnection relation between the eight classes of UHF solutions mediated by
non-degenerate instability is indicated by arrows. The starting point of an arrow is the
type of initial UHF solution ¥ and the final point is that of the emerging solution ¢.

The type of instability to mediate the interconnection relation is indicated ‘beside the
arrow.

ing from them have different axes of M-invariance but can be transformed into
each other by SR around the axis of S-axial symmetry of the initial ASDW
solution. On account of the above reason, no designation of plus or minus sign
is done for the M symbol in A_M instability. About the above remarks, confer
also the results in § 4.

ST, °ST,, ALM, and A_M instabilities in the present notation were denoted

respectively as S*, T%, ST* and SF in our previous papers.””” The signs in our.

old notation referred to conmservation or violation of the invariance of spatial
orbitals to complex conjugation without change in spin direction. Such a sym-
metry operation corresponds to M,-invariance operation. Our old statement to
correspond it to 7-invariance operation was ‘misleading.

Summarizing the results in Table II, we show in Fig. 1 the interconnection
relation between the eight classes of UHF solutions mediated by non-degenerate
instabilities. It should be noted that the interconnection relation shown in Fig.
1 is isomorphic to the inclusion relation between the invariance groups -of UHF
solutions. The invariance groups of the UHF solutions emerging from a UHF
solution should be the subgroups of the invariance group of the initial solution.

In the case of the degenerate instabilities, the other types of interconnection
relation not indicated in Fig. 1 may arise. %S type and A_M instabilities have
respectively three and two subinstabilities with the same instability submatrices
and are always degenerate. However, their degeneracy has its origin in the sym-
metry properties of S-invariant and ASDW solutions and is of intrinsic nature.
Such an intrinsic degeneracy leads to an arbitrariness in the. directidh of the
axis of symmetry in the S-axial and TSDW solutions emerging from the insta-
bilities. Except this, the interconnection relation mediated by the intrinsically
degenerate instabilities can be treated on the same footing as those mediated by
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Theory of the Unresiricted Hartree-Fock Equation and Its Solutions. III 1775

the non-degenerate ones as we have done. Therefore, we use the term degeneracy
in the sense to represent non-intrinsic one.

We consider in the following the case of doubly degenerate instability. Let
A: and 4, be the eigenvectors of £ with zero eigenvalue at a doubly degenerate
instability threshold. In order for non-iftrinsic degeneracy of instability to occur,
it is necessary that 4; and A, are of different symmetries for F if ¥ has no
spatial symmetry group to which it is invariant but may be of the same sym-
metry type for F if ¥ has a spatial invariance group and they are of different
symmetries for it. As we shall show in a succeeding paper, if 4, and 4, are

Table III. The types of doubly degenerate instability leading to different interconmection
relation from that of the non-degenerate case.

a) TICS:
A 1 A ] A 3 T M" M’ M'
ST, |+ -~ - + + - - 1)
! * s - N M N B TSCW
ST + - - - - + + 2)
! * . B ~ N N + TSDW
ST, + - - + + - - %)
sl * . - M M B + TSDW
ST, + - - + + - - »
"ST- + - - = =+ 4 asw
197 + + + - - = - »
ST, + - - .+ - - Asw
1ST.. + + + - - - - )
'ST. + - - - - + + Asw
b) CCW: c) ASCW:
4, A, Ay A T M)
s S + - - 4) A - T+ - + - W”
’ _ + — TSW AT - —_— + TS
. A T._ .+ - - 5
dy ASDW: A-T. - + - =
A,T. + - -
\ Ae) Men M o o Z L |Tswe
AM . * | Tswe
» - - +
- AM - Yo7 1w
AM. + - -
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1776 ' H. Fukutome -

of non-identity éymmetries for F or for the spatial invariance -group of ¥, .then
new solutions ¢y, 9, and ¢,; whose A matrices in the vicinity of the instability

thlzgshold are respectively of the forms .
AO=zly, AP =24y,
A =2/ A, + 24 4y, }

emerge from the degenerate insta- TICS . cCwW

bility threshold. The symmetry types y 3) . , 4)
of ¢; and g, are determined by those ; \
of 4, and A; respectively in the same - ASDW ASW '

way as the case of non-degenerate
instability, ¢,; is the solution char-
acteristic to the degenerate insta:
bility and its symnietry type is de-
pendent on both of 4, and 4, If

(3-17)

TSW

Fig. 2. Interconnection relation: between the eight
classes of UHF solutions which is realized only
through doubly degenerate instability is indicated

4, is of identity sjrmm-etry for F, by arrows. The reference number beside arrow
then the symmetry type (for SR shows the type of degenerate instability- to ‘me-

. . diate the interconnection relation and corresponds
and TR) of ¢ is determined by to the reference number in the last column of
that of 4,. The interconnection rela- Table IIIL. '

tion of ¢, to ¥ in this case is therefore the same as that given in Fig, 1. If
4, and 4, are of completely the same symmetry for F up to subtypes of %S and
A_M, then, in this case too, the interconnection relation of ¢12 to ¥ is the same
as that given in Fig. 1. If A, and 4, are of different non-identity symmetries
for F, then the interconnection relation of gz to @ be;éomes different from that
given in Fig. 1. We list up in Table III the combinations of 4, and 4, leading
to different interconnection relation from that in Fig. 1. ‘ :

Given in the first column of Table ITI are the types of-instabilities to be
degenerated. The symmetry types of A; and 4, to the symmetry operations listed
in the first row are indicated by the plus and minus signs in the same way as
Table I. The type of the emerging solution @12 is indicated in the last column.
It is determined by seeing the symmetry operations to which both of 4, and 4,
have plus sign. _

We show in Fig. 2, the interconnection relations listed in Table III which
are possible only through the degenerate instabilities, The refetence number
beside the arrows are those given in the last column of Table III and indicates
the types of degenerate instability leading to the interconnection relation. It is

to be noted that the interconnection. relation given in Fig. 2 is also consistent

with the set theoretical inclusion relation between the invariance groups of UHF
solutions. The invariance groups F,, F; and Fi; of ¢y, gs and ¢y3 are the subgroups
of the invariance group F of ¥ and F)s is the common intersection subgroup of
F, and F;; F;=F,nF, It should be noted also that two solutions in the form
of ¢, but with different symmetries emerge from a degenerate instability consisted
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Theory of the Unrestricted Hartree-Fock Eqdation and Its Solutions. III 1777

of ‘two insta‘bil'ities| of S types or two A_M instabilities. In these cases, two
different combinations in ‘the signs of A operations or M operations of component
instabilities are possible as an example seen in Table III a) for the degenerate
instability consisted of ST, 'and }ST_. Therefore, four different solutions emerge
" simultaneously from such a degenerate instability threshold. -

§ 4. Expressions for the irreducible instability matrices

We derive in this section the explicit expressions for the irreducible insta-
bility matrices.

The A matrix for 7", instability of a T-invariant solution sat1sﬁes A*¥ =L T"*AT",
From this and the relation

{pa INBT, yT") = pna| 1| ‘> {ua| vy +<uftlatv) , 4D

we obtain the 7', instability matrix as

(T.) = palIv8) £ {ual| 1| D) = (H,.0us — Healu»
- —<{wlBay + A D) ua|fy) £<ub'lalvy), - (4-2)

where af=aT denotes the orbital ¥,t= (¥T),.
The A matrix for M, instability of an M-invariant solution satisfies A*
=4+ M"*AM*. From this and the relation

| T|BM, v My =l 118", vy =l By —Cub™la™sy,  (4-3)

we obtain the M, instability matrix as

(M) = e T1vB) el I1B™9™) = (Hpudap— Habs
—<w|Bad + A1) ual B> F el ™), 49
where « ~05M denotes the orbital ¥,"=(¥M),=(e-0)¥,’. For.M,invariant
case, orbitals are real and we have ¥™=¢¥ and {u8™ a™)=<ublav.

As we have shown in II, an .S-axial solution is a DODS configuration and

" its orbitals.may be put as
U=, ai=1---n,
« 171, 1 1 } 4. 5)

. =ﬁa2772, as=1-ns.
The A matrix for A, instabilify, of an S,-axial solution (4:5) is of the form

A H Amr,as=6rtrmr,a: ’ }

4.6
At Aura= 1—=8,) T'nrras - (4-6)

Equation (4-6) shows that A, instability is related only to spin unflipping transi-
tions and A_ to spin flipping transitions in a DODS configuration. For the
DODS solution (4-5), we obtain.
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1778 H, Fukutome

<mras| II ”ubv> = 61-146:0 (Hmr,nraal, bs Hbs, u:amr,nr
- <mrnrl b,a,)) + ar:.&uv(’”rarl bunu> »

47
<mra:|1|bunu> = 6r|6uc<mrarl nubu> ’
—6106m<mrbrlniat> ’
where a,,7=1, 2, denotes the orbital ¥.. or ﬁag.-
From (4:6) and (4.7), the A, instability matrix is obtained as
( mea, |l n:bs ’ ( m,a,.[I]b,n,}) l
(A+)=[< TImb), « N s
Kmra,1\bn)*), (Km,anI|nb,p*)
Because of the relation B
<mea I\ nb,) =meal)I|bn,y=0 . (rss), (4.9)

the A_ instability matrix decomposes into a direct sum of two matrices (A))
and (A_’), and (A_) is given by _
A )_[ Kmiadl I mbyp), (KmuaslI|byngy) ]
) Kmaas| Loy, 3*), ({maay| I nsb,p*)

(A_’) is obtained by interchanging the spin indeces 1 and 2 in (4-10) but has
the same set of eigenvalues as (A.) since

0 17 0 1
(A_)=[1 OJ(A_) [1 o]' - (4-11)

In the case of an ASDW solution, the spatial orbitals ¥, and #,, are real.

Substituting (4-5) into (4-4) and using (4:6), we have A,M, instability ma-
trix as

" (4-10)

(AL M) = Kmea,| I\ nb) £+ {mpa,| I byn,) . (4:12)

Because of Eq. (4:9), A_M, and A_M_ instability matrices become identical in
conformity with the result in the preceding section, and the A_M instability
matrix is a real matrix with the same form as 4-10).

In the case of an ASCW solution,

Wn:@‘aﬂ;:Wm n=ns. - (4-13)

Substituting (4-5) with (4- 13) into (4-2) and using (4-6) and (4- 9), we obtain
A,T, and A_T, instability matrices as ) '
(A, T,) = Km,a,| T.|nb,)),
Kmaay| T | 1381 = {tmaan| T o | nobyd* = {ma|S.|nb)
=Hpnlos — Hyolmn—{mnlbad + (1£1) {ma|bn) , 4-14)
)| Ty | nsbsy = {meas| T, | mb)* ={malS,|bn)
= A £1)<{ma|nb> F{mb|na),
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(A—Ti:) = (<m1‘lﬂlTilnlb§>) >
K maa| T o | 1:bs) = {msan| T's | msbip* (4-15)
= H 12000 — Hoy0 mn — {mn|ab) £ {mblan) ,

where the index e denotes the spatial orbital ¥,.
In the case of an S-invariant solution,

Vu=F0u=0., m=m. (4-16)

The A matrix for 'S and %S instabilities are spin scalar and spin vector, respec-
tively:

IS_, Amr,ul=6rl ma s

4.17
5S-, A:nr, as— (Gi)rlrma ) i=1, 2: 3. } ( )
From (4-17), 'S and %S instability matrices are obtained as
=8) =[ (Kma]S.|nbd), L+ (ma|S.|bn)) ]’ (4.18)
+ ({malS.|on)*), (KmalS.|nb)*)

where {ma|S,|nb> and (ma|S.|bn)> are the quantities with the same forms as
those defined in (4.14). Equation (4-16) shows that if ¥,’s in (4.13) and
(4-16) are the same, :

; 1 0 1 0
S) = (AT, (°S>=[0 _1]<A+T_>[O _1]. (419

In the case of a. TICS solution, the spatial orbital ¥, is real, and ‘ST, and
!ST . instability matrices are given by

(ST.) = (ma|S,|nb) £{malS,|bn)), }

(4-20)
(ST ) = (malS_|nb) £ {malS_|bn)).

 Equation (4:20) for the irreducible instability matrices of a TICS solution has
been obtained previously.®~® Equation (4-20) shows

(ST.) =(ST,). (4-21)

As we shall see in the next section, an ASCW solution (4-13) and a CCW
solution (4-16) with the same ¥, always coexist as a degenerate pair and an
ASW solution 'is degenerate with respect to complex conjugation of up and down
spin orbitals respectively. Equations (4-21) and (4-19) are the consequences
of the degeneracies. Equation (4-21) implies that degenerate CCW and ASCW
solutions emerge'sim-ultaneously from a TICS solution. Equation (4-19) implies
that new degenerate CCW and ASCW solutions emerge simultaneously from S
and A.T, instabilities and degenerate ASW solutions from S and A,7. insta-
bilities of degenerate CCW and ASCW solutions.
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§ 5. Standard expressions for HF energy

In practical apblicaﬁons of UHF theory, it is important to study UHF solu-
tions and their interconnection relation from energetic point of view. Therefore,
we derive finally the expressions of HF energy for the eight classes of UHF
solutions referring to the standard forms of UHF orbital given in IT. We start
from the general standard form ‘(IL,-3-4) of the UHF density matrix. '

‘We split the density: matrix (II, 3-4) ‘into the two parts as

ZA]“”WAW'AT,. 0o
=P+i{D, P= N ,
Q + 2‘ ’ 0 Py Z_WA?AT

: 4 (5.1)
po & [(cos Li—e)TLS,  sin BT J ~

- A=1 ' sin 14¢4W4T, (84'—-008 ]\A) ?Aﬁdr . ’
where ¢, is. a sign function over the index A=1...K with either of g,=1 or
—1 assigned. arbitrarily to each A and 3* is the summation over the A’s with
€4==+1 and A=K+1 .- M if there are overcrowded arbitals. Substituting (5- 1)

into (2-3), which holds for arbitrary ¥, we obtain the general standard expres-
sion of HF energy:

Ez(Q) =Ex(P) + } 3 ku(ea—cos 1)

+ %A,;—l {L4n(e4a—cos Aa) (65— cos A5) — M5 s,in A4 Sin 1z}, (5-2)

ka=Kzi— K, +{AA—AA| ;* BB+ ;- BBy ' )
+ 23*CAB|BAY— Y- (AB|BA>,
P A - ‘

Lis=L(ABAB)=(AA—-AA|BB-BB>— {AB|BAY—(AB|BAS ,

e - L ’{ (5-3
M,s=M(ABAB) ={AB|BAY+(BA|AB>, -3
Ey(P) = ;* K.+ ;" Kzz+%§+ [AA|BB]

+4 23 [AA|BB] + 33+ 5~ CAAIBB),

where the indeces A and A denote the functions ¥, and ¥,.
We can easily see that ‘

sin 1,=0, €OS Aa=6€4, (5-4)

is always an extremum of (5-2) for variation of As. (5-4) corresponds to S,-
axial configuration with the density matrix P. There are 2% different choices of

€4, and there are 2% points in the variation space of 1, which correspond to S,-
axial configurations with different electron occupations,.

Equation (5-2) without any constraint on ¥ ' T4 and X4 represents HF en-
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ergy of TSW configuration. HF energy of M, invariant TSDW .conﬁguration
with orbitals (II, 4-21) is obtained by letting ¥, and ¥, real. Without loss of
generality we may assume
5.4:1.’ A=1P;
84/,=—'1_, A,=P+1"'2p, (5'5)
eer=1, A”=2p+1.--K.
HF energies for TSCW, M,-invariant TSDW and S,-axial ASW configurations
with orbitals (II, 4-13), (II, 4-14) and (II, 5-3) respectively are obtained by
imposing -on (5-2) the constraints
“TSCW, #,=7%, ¥,,=-¥* 2p=K,
TSDW, @ ,=0%, T,.=0>* T.=V%, (5-6)
ASW, ﬁ4=.¢y, ﬁA'=¢A, ﬁ'ﬂiym‘.,

Sin XAI =Sin AA ’ (':OS AA’ —= —CO0S lA'; Sin AA’=1 . (5'7)
~ The. constraint (5-6) leads to

LAB=LA’B’ ’ LAB' =LA’B ’ LAB’ =LA’B' 9 A
MAB=MA'B’ ’ MAB{zMA’B ’ MAB”,=MA’B' »
kA+%.§.LAB'= — (kAl-l_%' ; LAIBI). =hA/—hA ’

B k4'+'12;'2L4'B'=0, 4 (5.8)
Br.
- ha=Ku+{AA|2BB+ 31 B"B")
—3V(AB|BAY—} 3 (AB’|B" A,
- B B*

R4

where Y% is the summation over B=1---p and K+1 --- M if there are over-
crowded orbitals, We can show that (5-7) is an extremum of (5-2) with the
constraint (5-8) for variation of 2, and 1.. The constraints (5-6) and (5:7)
Jead to the following expression.for HF energy:

Ey(@) =Ex(P)—+ 3 Lurset Mun)

A7, B*

4 B {Char—ha) (1—cos 1) — T Mo sin A}

i
+& ;_ {(Laz—Lsp) 1—cos 1) (1 —cos 25)

4 1

—(MAB+MAB')Sin }»A SinlB}‘, (5‘9)

where
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Luis—Lun=L(ABA’B’) —L(AB'A’B), )

— TSCW

M+ M5 =M(ABB'A’) ¥ M(AB'BAY), < -\ TSDW )

=M(ABA’B’) + M(AB’A’B), ASW),

M, =0, . (TSCW),
=M(AB”B"A%), (TSDW),
=M(AB"A’B"), (ASW),

Lys+ Mug=0, (TSCW, ASW),

=(A”B’|A”"B"—B" A", (TSDW), |
' (5-10)

In the case K=2p where there is no unpaired orbital ¥,., M, ,.=0. Then,
2% points

sinl,=0, A=1...p T (6-11)

are extrema of (5-9) for variation of 1,. At the points (5.11), TSCW and

TSDW configurations reduce to ASCW configuration and ASW to CCW. In
the cases of TSDW and ASW configurations with unpaired orbitals, (5-11) can-
not in general be extrema of (5-9) for variation of A4 unless the condition M,
=0 is satisfied. In ASW configuration with unpaired orbitals, P is of the form
of an open shell restricted HF (RHF) configuration. Hence, open shell RHF
configuration cannot be a solution of the UHF equation unless the condition
M, =0 is satisfied by spatial symmetry of orbitals.

ASCW and CCW configurations are obtained from TSCW and ASW con-
figurations respectively by putting K=2p, ¥, real and ¥,. pure imaginary. Thus
obtained HF energies of ASCW and CCW configurations are identical. ASDW
configuration is obtained from TSDW configuration by putting all of ¥ functions
real. At the points (5-11), ASCW, CCW and ASDW configurations without
unpaired orbitals reduce to TICS: configuration. :

The expression of Ex(P) in (5+3) shows that Ez(P) is invariant to complex
conjugations ¥,—¥,* and ﬁ4—>@"‘4* of up and down spin orbitals respectively.
Therefore, if there is a DODS solution with orbitals {¥ @"ﬁ,;}, then {¥,y,
¥ 72, {C @"Am} and {¥,*y, 37'4*772}. are also solutions of the UJHF equation-
and they are degenerate. As a corollary of this theorem, we see that if there.
is a CCW solution with orbitals {¥ayp, Pays} then there is always an ASCW
solution with orbitals {¥ap, Tu*ys} and vice versa.
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