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A general theory on classification of instability and interconnection relation between UHF solutions is developed. It is shown that instability of a UHF solution is splitted into subinstabilities irreducible, to the invariance group of the UHF solution. All types of insta­bility for the eight classes of Uf!F solutions are listed up and explicit conditions for the instabilities are derived. It is shown that the type of a UHF solution emerging from. an instability is determined by the type of the instability. The invariance groups of the Uf£F solutions emerging from instability of a UHF solution are the subgroups of the invariance group of the initial UHF solution. From this, the interconnection relation between the eight classes of UHF solutions is determined. Expressions for HF energy for the eight classes of UHF solutions are derived. 

§ 1. Introduction 

Since the work of Overhauser1> indicating that the helical spin density wave solution of the Hartree-Fock (HF) equation emerges from instability of the closed shell solution, importance of instability phenomenon ir;t an HF solution has been recognized. Instability of an HF ground state solution is a signal for appearance of new ground state solution and represents a change in "electronic phase" of the system. A general condition for instability of· an HF solution was firstly formulated by Thouless.2> Through many works8> on instability and unrestricted Hartree-Fock (UHF) solutions in particular systems, it has been recognized that instability of an HF solution involves various different types of instability and UHF solutions of different structures emerge from them. Paldus and Cizek,'> the author5> and Ostlund6l have shown that the instability of a closed shell solu­tion invariant for time reversal involves four different. subtypes of instability. The author7> has recently formulated instability condition for DODS (different orbitals for different spins) configuration and shown that its instability is also splitted into four subtypes but two of them are degenerate. However, the reason .for the presence of subtypes in instability of an HF solution and the connection between the type of instability and the type of a UHF solution emerging from it have not been clearly understood on a general footing. 
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Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. III 1767 

In the present paper, we develop a theory on classification of inst!lbility and 

interconnection relation between UHF solutions based upon the group theoretical 

classification and characterization of UHF solutions developed in the preceding 

paper8> and the density matrix formulation developed in the first paper9> of this 

series (herea£ter we cite them as II and I). In the present theory, the in variance 

groups of UHF solutions, which are the subgroups o"f the group of spin rota­

tion and time reversal to characterize the eight classes of U~F solutions, play 

a central role. We shall show that instability of a UHF solution is splitted into 

subtypes irreducible to the invariance group of .the solution. We list up all types 

of instability for the eight classes of UHF solutions and give the explicit con­

ditl.ons for the instabilities to occur. We shall show also that the type of a 

. UHF solution emerging from an instability is determined by the group theoretical 

symmetry type of the instability. From this, we can determine instability mediated 

interconnection relation between the eight classes of UHF solutions. We also 

show th-at the interconnection relation derived f~om the group theoretical method 

is verified from inspection on the structure of HF energy for the eight classes 

of UHF solutions. 

The notation used in this paper is the same as those used in I and II. 

§ 2. Instability and interconnection of UHF solutions 

Let 1Fa, a= 1 · · · n, and 1£", fJ. = n + 1 · · · 2M, be the occupied and unoccupied 

orbitals of a UHF solution. · We denote the row vectors of the occupied and 

unoccupied orbitals by. 1£ = (1Fa) and 1£' = (1£"), respectively. Let rp = (rpa) and 

rp' = (rp") be another set of orbitals. From (I, 2 · 41), rp and rp' can be represented 

in the following form: · 

rp = we(~ ) + 1£' s ( ~ ) , 

rp' = 1F'C (~) -1£S+ ( ~ ). l (2·1) 

in terms of 11 matrix A= (Apa) after carrying out a unitary transformation which 

does not mix rp and rp'. C (A), C (A) and S (A) are the matrix functions defined 

by (I, 2·27). Let P and Q be the projection operators P=1£1£+ and Q=rprp+. 

From (I, 2·31) and (I, 2·4), we have 

Q-P=tD=t (X+X++Z-Z), 

X=S(A), Z=P-C(A), Z=l-P-C(A). 
(2·2) 

From (I, 6 · 7), the difference between the HF energies of rp and 1£ is given as 

AEH = EH (Q) - EH (P) 

=t :E H,~D~,+t :E [C'I'Jl"c]D~,D •• , (2·3) ,. , ... 
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1768 H. Fukutome · 

·-

where He, is the HF operator of 'fJ!. From (I, 2 · 32), X, Z and Z satisfy: the relations 

-~~:~:=~~: } (2·4) 

and we· have 

(2·5) 

Since 'fJ! is a UHF . solution, H .. a = 0, and, -by using (2·· 5), · Eq. (2 · 3) may be 
rewritten as 

dEH=t L:: (C'-qili.t,)Dt.l).,, } c,.c 

(C'-qlll.t,) = H~lJ,, +H;.Bt. + [C'nl '.t], 
(2·6) 

where H~, is defined by 

(2·7) 

By the use of (I, ·2·27), D is expanded into a power series of A as 

D='t (- 1)" {A(A+A)"+(A+A)"A+}+t (- 1 )"{(A~A)"-(AA+)"}···. (2·8) 
n=O (2n + 1)! t&=l (2n)! ·· _ . , 

Substituting (2 · 8) into (2 · 6), we. may, easily_ obtain the variation of EH to any 
desired order of A. 

The second order variation 61EH(A) is given by 

(2·9) 

where !J and A are the matrix and the column vector of 2n (2M- n) dimension 
given respectively by , 

;=[C<ttalllvP)).. C<ttaMIPv))]. 
((ttalliPv)*), ((ttalllvP)*) ' 

A =1- (A,.a) ]· 
(A*) ' - pa 

(ttalll vP) = H,..B atJ- HtJ~B ,.. + [ttaiPv], 
(ttalliPv>= [ttalvP]. 

(2·10) 

The matrix !J is called the instability matrix of a UHF solution 'fJ!. The eigen­
vectors A P of !J, 

!JAp=a>pAp, P=1 ··· 2n(2M-n), (2·11) 

have always the form of A given in (2 ·10) since !J satisfies the relation 

[~ ~]g*'[~. ~]=!J. '(2·12) 
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Theory of the Unrestricted HartreecFock Equation and Its Solutions. III 1769 

The matrix A can be expanded in terms of the eigenvectors of !! as 

(2·13) 

A ·UHF solution 7J! is stable for the variation in the direction of A11 if ())11 is 
positive but is unstable if ())11 is negative. The point where ())11 becomes zero is 
c11lled the instability threshold. 

. As we shall show in a succeeding paper o£ this series, new UHF solution 
q; emerges from an instability threshold of 7J!, if the third or fourth order varia­
tion ~ 8 EH(A) or ~'EH(A) as a polynomial of x 11 has finite coefficients in the direc­

tions of x,, where A, are the eigenvectors of !J with zero eigenvalue at the in-
stability threshold. The solution q; in. the vicinity of the instability threshold 
is related to 7J! by Eq. (2 ·1) with A in the form 

(2·14) 

where x, are small parameters.· Conversely, if a UHF solution q; interconne_cts 
and coalesces to another UHF solution 7J! at a point, then the point should be 
an instability threshold of 7J!. If there is only an eigenvector Ao of !J with zero 
eigenvalue at the instability threshold, i.e., the instability is non-9,egenerate, then 
the . A matrJx connecting tlie emerging solution q; to 7J! is proportional to A0 in 
the ·vicinity of the instability threshold: 

A=xoAo. (2·15) 

Although all interconnecting points of UHF solutions correspond to instability 
thresholds, the converse is- not true. Sometimes, an instability threshold may 
represent a crossing point of two UHF solutions as we have illustrated for the 
system of internal rotation of ethylene7' (it should be noted also that not all of 
crossi:p.g points of UHF solutions correspond to instability thresholds). There­
fore, we may· subdiv,ide instabilities into the two categories; the interconnecting 
(IC) instabilities and t4e crossing (CR) instabilities. In this paper, we do not 
enter into detailed discussion on the condition to discriminate IC and CR insta­
bilities and the behavior of UHF solutions in the vicinity of an IC ·instability 
threshold. The problems will be discussed in succeeding papers of this series. · 
In the present paper, ~e discuss on the group· theoretical aspect of instability_ 
and interconnection o£ UHF solutions based upon the above-mentioned relation 
between them 'and the group theoretical characterization of UHF solutions dis­
cussed in II. 

§ 3. Group theoretical classi-fication of instability and inter­
connectio~ relation between the eight classes of UHF solutions 

The eight subgroups of the gro.up G of spin rotation (SR) and time reversal 
(TR) listed in (II, 2 ·10) are the groups characterizing. UHF solutions and we-
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1770 H. Fukutome 

call them the invariance groups of UHF solutions. Let F be the invariance 
group of a UHF solution 7J!. For any. element g in F, there are n-dimensional· 
and 2M- n-dimensional unitary matrices Vg and Vg' such that 

g7J!=7J!Vg, g7J!'=7J!'Vg'. 

By operating fJ, the orbital q; defined by (2·1) transforms as 

gq; = {7J!C (Ag/2) + 7J!' S(Au/2)} Vu, 

where Au is 

Au= Vg' AV/, (for unitary g), } 

= Vg' A* Vg +, (for antiunitary g}, 

(3·1) 

(3·2) 

(3·3) 

(the elements of G involving TR are anti unitary). .Hence, the matrix A is a 
second ·order tensor of F with transformation property (3 · 3) . 

The matrices Vg and Vg' are generated by the following matrices. In the 
case of an S.-axial solution, there are matrices A(e) and A'(e) such that 

( e · o-) 7J! = 7J! A (e), ( e · o-) 7J!' = 7J!' A' (e) . (3·4) 

By operating (e·o-) on q;, A is transformed into 

(3·5) 

In the case of a T-invariant solution, there are matrices T and T' such that 

7]!1 = 7J!T, 7J!'~ = 7J!'T'. 

By operating TR on q;, A 1s transformed into 

A~=T'A*T+. 

(3·6) 

(3·7) ' 

In the case of an M.-invariant solution, there are matrices M(e) and M' (e) such 
that 

(e · o-) 7J! 1 = 7J!M(e), (e · o-) 7J!'1 = 7J!' M' (e). (3·8) 

By the magnetic transformation (e·o-)<r/, A is transformed into 

(3·9) 

The matrices A, T and M satisfy 

A 2 (e) =1, A+(e) =A(e), l 
TT*= -1' TT= -T' 

M(e)M*(e) =1, ~(e) =M(e), . 

(3·10) 

because of the relations (e·o-Y=1, (7J!1)'= -.7]! and (e·o-) ((e·o-)7f!1)'=7J!. That 
is, they are Hermitian, antisymmetric and symmetric unitary, respectively. The 
following relations also hold among them. In the case of an S-invariant solution, 
there are three A matrices A(ec),i=1,2,3, with (e,·e1) =fJ,1• Because of the 
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Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. Ill 1771 

relation (e,·cr){e1 ·u)=-(e1 ·u)(ec·CT)-=i[e,xe1]·u, they satisfy 

A(e,)A(e1) = -A(e,)A(e,) =iA(e, xe1). (3·11) 

In the case of S.-axial and T-invariant ASCW solutions, an M matrix can be 
obtained as 

. M(e) =A(e)T= -.TA*(e). (3·12) 

The Jatter part of (3·12) is obtained from the relation (e·u)'fJ1' 1=- ((e·u)'fJl')'. 
In the case of S.1-axial and Mea-invariant ASDW solutions, besides the matrices 
A(e1) and A(e2), another M matrix can be obtained as 

where we have used- i(e8 ·u)'fJ1'1=(e1 ·u)(ea·u)'fJ1'1=(e2 ·u)((e1 ·u)'fJ1')'. We have 
.also the relation 

M(es)M* (es) = -M(es)M* (es) =iA (e1), (3 ·14) 

from i(e1 • u) 'fJ1' = (e8 • u) ( (e~· u) 'fJl'')'=- (e 8 ·u) ( (es· u) 'fJl'')'. Summarizing the above, 
we have the symmetry operations for the eight classes of UHF solutions derived 
from the invariance groups as listed in Table I. 

From (3 ·10), we obtain 

(3·15) 

Therefore, any of the symmetry operations listed in Table I 1s a twofold opera­
tion for A, and the matrix A satisfying 

Aa = ±A , A,= ±A , Am= ±A , (3·16) 

is an irreducible tensor of F. The combination of the signs in (3 ·16) should 
be consistent with the constraints from (3 ·11) to (3 ·14). If A is an irreducible 
tensor of F, then S (A) is also an irreducible tensor with the same symmetry 
type as A. but C (A) and C (A) are irreducible identity tensors ofF, i.e., invariant 
to all symmetry operations of F. Therefore, if A is an identity tensor of F, 
then q; has the_ same invariance group as 'fJl', but, if A is an irreducible non-identity 
tensor of F, then q; is of broken F symmetry. 

Since the instability matrix !J is a fourth order tensor· of F, it can be splitted 
into a 'direct sum. of submatrices irreducible to F. Therefore, the eigenvectors 
A 11 of !J should be .. irreducible second order tensors of F. Therefore, instabilities 
of an F-invariant UHF solution can be classified into subtypes according to the 
symmetry type of the eigenvector A11• 

Since the UHF solution q; emerging from and interconnecting to 'fJ1' at a 
non-degenerate instability threshold of 'fJ1' has the A matrix proportional to an 
eigenvector of !J as given in (2 ·15) in the· vicinity of the instability threshold, 
its symmetry type is determined by the symmetry type of the instability from 
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1772 H. Fukutome 

which it emerges. The symmetry 

operations of 'fJf leaving the A matrix 

invariant are preserved as the sym­

metry operations of q;, but those 

changing the sign of A are not. 

We list up in Table II all pos­

sible symmetry types of instability· 

for the eight classes of UHF solu­

tions. Listed in the first row are 

the symmetry operations of the solu" 

tion 'fJf given in Table I. The sign 

in the column under each symmetry 

Table I. Ip.variance operations for the eight 
classes of· UHF solutions. 

TICS A(e1), A(e,), A(e0), T 

M(e1), M(eo), M(e0) 

ccw A(e,), A (el),. A (ea) 

ASCW A(e), T, M(e). 

ASDW A(e1), M(es), M(eo) 

ASW A(e) 

TSCW T 

TSDW !If (e) 

TSW None 

operation represents the symmetry type of the A matrix for the symmetry opera­

tion. Given in the first column are the pro :posed . symhols of the instabilities. 

The combination of the signs in each row is chosen so as to be con'sistent with 

the constraints from (3 ·11) to (3 ·14). The symmetry type of the UHF solu­

tion q; emerging from the instability is given in the last column. Since the set 

of the symmetry operations of q; is the set of the plus signed symmetry _opera- . 

tions of the· instability; the symmetry type of q; is determined by seeking in Table 

I the class of a UHF solution having the set of symmetry operations which is 

isomorphic to the set of the plus signed symmetry operations of the instability. 

The symbols- of instabilities refer to· their symmetry type. 1S and 8S repre­

sent spin singlet and spin triplet, respectively. The transitions to cause 1S and 

as type instabilities are the spin singlet and spin triplet transitiqns of a closed 

shell configuration. The former preserves S-invariance but the latter violates it. 

Each of as type instabilities involves three instabilities. Because of the con­

straint (3 ·11), the three S-axial symmetries in·· an S-in variant solution cannot be 

simultaneously violated and an S-axial symmetry· should be conserved. There are 

three possible choices for the axis of the preserved S-axiai symmetry. However, 

due to the isotropy of an S-invariant solution for SR, there is no preferred direc­

tion among the three axes. Therefore, the three instabilities have an identical 

instability submatrix. ·The S-axial solutions eme;rging from them have different 

axes of S-axial symmetry but can be transformed .into each other by -SR. A± 
represents conservation ( +) or violation' (-) of S-axial symmetry. The transi­

tions to cause A+ and A_ type instabilities are respectively the spin unflipping 

and spin flipping transitions of a DODS configuration and we may use the sym­

bols ~U and SF .instead of A+ and A_. T ± and M± represent conservation 
( +) or violation (-) of T-invariance and M-invariance, respectively. A_M 
instability of an ASDW solution involves· two instabilities. An ASDW solution 

has two axes of M-invariance which are orthogonal to each other and to a com­

mon axis of S-axial symmetry as shown in (3 ·13). In the case of A...: instability, 

the two M-invariances of an ASDW solution cannot be simultaneously conserved 
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Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. III 1773 

Table II. Symmetry types of instability and the type of emerging UHF solution . 

.a) TICS: 

1ST_ 

•sr_ 

b), CCW: 

A, 

'S 
I I + 

+ 
•s 

d) ASDW': 

I A(e,) 

I + 

I + 

A.M 

f) TSCW: 

I 

A a 

I + 

r· + + 

+ 
+ 

+ 
+ 

A a As 

+ + 

+ 
+ 

M(ea) M(ea) 

+ + 

+ 
+ 

T 

+ 

A a 

+ 

+ 

+ 

+ 

1 ccw 

IASDW 

IASW 

ITSDW 

TSCW 

TSW 

T 

+ 

+ 
+ 
+ 

+ 

+ 

+ 
+ 

M, 

+ 

+ 

+ 

+ 

c) ASCW: 

A(e) 

A+T+ 

A+T­
A_T+ 
A_T_ 

e) ASW: 

g) TSDW: 

+ 
+ 

Ma 

+ 

+ 

+ 
+ 

T 

+ 

+ 

A(e) 

+ 

M(e) 

+ 

TICS 

ccw 

ASCW 

ASDW 

M(e) 

+ 

+ 

ASCW 

ASW 

TSCW 

TSDW 

.ASW 

TSW 

TSDW 

TSW 

or violated because of the constraints (3 ·13) and (3 ·14). Either one of them 

should b~ violated but' the other should be conserved. Due to the axial sym­

metry of ASDW solutions for SR around the axis of S-a~ial symmetry, there is 

no preferred direction among the two axes of M-invariance. Therefore, the two 

instabilities have an identi~al instability submatrix. The TSDW solutions emerg-
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1774 H. Fukutome 

Fig. 1. Interconnection relation between the eight classes of UHF solutions mediated by 
non-degenerate instability is indicated by arrows. The starting point of an arrow is the 
type of initial UHF solution 'IF and the final point is that of the emerging solution ({J. 

The type of instability to mediate the interconnection rela~ion is indicated ·beside the 
arrow. 

ing from them have different axes of M-invariance but can be transformed into 
each other by SR around the axis of S-axial symmetry of the initial ASDW 
solution. On account of the above reason, no 
is done £or the M symbol in A_M instability. 
also the results in § 4. 

designation of plus or minus sign 
About the above remarks, confer 

1ST ±• 8ST ±• A+M± and A_M instabilities in the present notation were denoted 
respectively as S±, T+, ST± and SF in our previous paper-s.6>• 7> The signs in our 
old notation referred to conservation or violation of the invariance of spatial 
orbitals to complex conjugation without change in spin direction. Such a sym­
metry operation corresponds to M 11-invariance operation. Our old statement to 
correspol).d it to T-invariance operation was misleading. 

_Summarizing the results in Table II, we show in Fig. 1 the interconnection 
relation between the eight classes of UHF solutions mediated by non-degenerate_ 
instabilities. It should be noted that the interconnection relation shown in Fig. 
1 is isomorphic to the inclusion relation between the invariance groups -of UHF 
solutions. The invariance groups of the UHF solutions emerging from a UHF 
solution should be the subgroups of the invariance group of the initial solution. 

In the case of the degenerate instabilities, the other types of interconnection 
relation not indicated in Fig. 1 may arise. 8S type and A_M instabilities have 
respectively three and two subinstabilities with the same instability submatrices 
and are always degenerate. However, their degeneracy has its origin in the sym­
metry properties of S-invariant and ASDW solutions and is of intrinsic nature. 
Such an intrinsic degeneracy leads to an arbitrariness in the. directiJh of the 
axis of symmetry in the S-axial and TSDW solutions emerging from the insta­
bilities. Except this, the interconnection relation mediated by the· intrinsically 
degenerate instabilities can be treated on the same footing as. those mediated by 
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Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. III 1775 

the non-degenerate ones as we have done. Therefore, we use the term degeneracy 

in the sense to represent non-intrinsic one. 

We consider in the following the case of doubly degenerate instability. Let 

A1 and As be the eigenvectors of !J with zero eigenvalue at a doubly degenerate 

instability threshold. In order for non-intrinsic degeneracy of instability to occur, 

it is nece.ssary that A1 and As are of different symmetries for F if 'if! has no 

spatial symmetry group to which it is invariant but may be of the same sym­

metry type for F if 'fJ! has a spatial invariance group and they are of different 

symmetries for it. As we shall show in a succeeding paper, if A1 and As are 

Table III. The types of doubly degenerate instability leading to different interconnection 

relation from that of the non-degenerate case. 

a) TICS: 

'ST_ 

1/ 

•sr_ 
'ST_ 

b) CCW: 

A, 

•s + 
1/ 

d) ASDW: 

A.M 

A.M 

A.M-

I A(e,) 

I 
+ 

+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 

A a 

+ 

A a 

+ 

+ 

+ 

+ + 

+ + 

Aa I 

I TSW'' 

M(es) M(ei) I 

+ + ITsw•> 

+ 
I TSW'' 

T 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

c) ASCW: 

A(e) 

+ 

Ma 

+ 
+ 

+ 

+ 

+ 

T 

+ 

+ 

TSCW'> 

TSDW'> 

TSDW'> 

ASW'' 

ASW'' 

M(e) 

+ I Tsw•> 

ITSW'' 

+ I TSW'' 
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1776 H. Fukutome · 

of non-identity ~ymmetries for F or· for the spatial invariance group of 1J!, :then 
new solutions ffJI, ({Ja and q;18 . whose A matrices in the vicinity of the instability 
threshold are respectively of the forms 

A<1> =x1A1, A(B> =:taA.a', }· 
A<lB) =x/ A1 + xa'Aa, 

(3·17) 

emerge from the degenerate insta­
bility threshold. The symmetry types 
of q;1 and q;2 are determined by those 
of A1 and Aa respectively in the ·same 
way as the case of non-degenerate 
instability. q;12 is the solution char­
acteristic to the degenerate insta~ 

bility and its sym~etry type is de­
pendent on both of A1 and A2• If 
A1 is of identity symmetry for F, 
then the symmetry type (for SR 
and TR) of q;18 is determined by 

TICS 

4) 

ASCW 

.2)~- . 

ASDW ~ASW 

TSCW TSDW ~ 
TSW 

Fig. 2. Interco~nection relation· between. tbe eight 
classes of UHF solutions which is realized only 
through doubly degenerateinstability is indicated 
by arrows. The reference number beside arrow 
shows the type of degenerate instability- to me­
diate the interconnection relation and corresponds 
to the reference number in the last column of that of A2• The interconnection rela- Table III. 

tii:m of q;12 to 1J! in this case is therefore the same as that given in Fig. 1. If 
A1 and Aa are of completely the same symmetry for F up to subtypes of 8S and 
A_M, then, in this case too, the interconnection relation of q;12 to 1J! is the same 
as that given in Fig. 1. If A1 and A2 are of different non-identity symmetries 
for F, then the interconnection relation of q;18 to 1J! b~comes dlfferent from that 
given in Fig. 1. We list up in Table III the combinations of A1 and A2 leading 
to different interconnection relation from that in Fig. 1. . 

Given in the first column of Table III are the types of instabilities to be 
degenerated. T~e symmetry types of A1 and A2 to the symmetry operations listed 
in the first row are indicated by the plus and minus signs in the same way as 
Table II. The. type of the emerging solution q;12 is indicated in the last ,column. 
It is· determined by seeing the symmetry operations t9 which both of A1 and A2 

have plus sign. 

We show .in Fig. 2, the interconnection .relations listed in Table III which 
are possible only through the degenerate instabilities.. The refetence number 
beside the arrows are those given in the last ~olumn of Table III and indicates 
the types of degenerate instability lea,ding to the interconnection relation. It is 
to be noted that the interconnection. relation given in Fig. 2 is also consistent , 
with the set theoretical inclusion relation between the invariance groups of UHF 
solutions. The in variance groups F 1, F& and Fu of (/Jb q;2 and q;~a are the subgroups 
of the invariance group F of 1J! and F 12 is. the common intersection subgroup of 
F1 and Fa; F 12 =P1 n F2• It should be noted also that two solutions in the form 
of q;1a but with different symmetries emerge from a degenerate instability consisted 
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Theory ~~the Unrestricted Hartree-Fock Eq~ation and Its Solutions. Ill 1777 

of two instabilities of 8S types or two A_M instabilities. In these cases, two 
. I 

different combinatiOns in 'the signs of A operations or M operations of component 

instabilities are pdssible as an example seen in Table III a) for the degenerate 

instability consisted of 8ST + and 8ST -· Therefore, four different solutions emerge 

simultaneously from such a degenerate instability threshold. · 

§ 4. Expressions for the irreducible instability matrices 

We derive in this section the explicit expressions for the· irreducible insta­

bility matrices. 

The A matrix forT :t instability of a T-in variant solution satisfies A*= ± T'*ATT. 

From this and the relation 

<.aalli/1T, vT') = (ttalll'{1'v') = (ttai [1v) + (ttf1'1 a'v) , ( 4 ·1) 

we obtain the T ± instability matrix as 

(T±)= ((ttalllv/1)± (ttalllf1'v')) = (H".CJap-H,jJ"" 

- (ttvl [1a) + (1 ± 1) (ttal [1v) ± (ttf1'1 a'v)), 

where a'=aT denotes· the orbital 7f!a'= (7J!T)a. 

(4·2) 

_The A matrix for M± instability of an M-invariant solution satisfies A* 

= ± M'* AMT. From this and the relation 

we obtain the M± instability matrix as 

(M±)= ((ttalllv[1)±(ttalllf1"'v"')) = (Hp.CJap-HfJa(J"" 

-<ttvi[1a)+ (1± 1)(ttal[1v) =f(ttf1"'1a"'v)), (4·4) 

where a"'~aM denotes the orbital 7f!a':'= (7J!M)a= (e·CT) 7J!a'· For. My-invariant 

case, orbitals are real and. we have 7J!"' =i7J! and (ttf1"'1 a"'v) = (tt/11 av). 

As we have shown in. II, an S-axial solution is a DODS configuration and 

its orbitals may be put as 

7f!a=7f!a.l1Jb al=1 ··· n1, } 

· = iJ' a.arja, aa = 1 · · · n2 • · 
(4·5) 

The A. matrix for A± instability. of an S,-axial solution ( 4 · 5) 1s of the form 

A+ : Amr,a.• = CJ ,.,r mr,a• , } 

A~: Amr,a.• = (1- CJ,.,)T mr,a.• • 
(4·6) 

Equation ( 4 · 6) shows that A+ instability is related only to spin unflipping transi­

tions and A_ to spin flipping transitions in a DODS configuration. For the 

DODS solution (4 · 5), we obtain 
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1778 H. Fukutome 

<mra,llln,.b~)=DruD,~(Hmr,"rDa.,,&,-H.,,a.,Dmr,Rr } 

-<mrnrlb,a,)) +Dr,Du~<mrarlb,.n;.), 

(mra,lll b~n..) = Dr,D,.~<mrarl n;.b,.) · 

-DroD,..<mrbrln,a,), 

where ar, r= 1, 2, denotes the orbital f".,.1 or fl' ,... 
From (4·6) and (4·7), the A+ .instability matrix is obtained as 

[ 
(<mrarilin,b,)), <<m,.arllib,n,)) ] 

(A+)= * )* . ((mrarlllb,n,) ), ((mrarllln,b, ·) 

Because of the relation 

(mra,lll n,br) =(mrd,illb,nr) = 0 (r=l=s), 

(4·7) 

(4·8) 

(4·9) 

the A_ instability matrix decomposes into a direct sum of two matrices (A_) 
and (A_'), and (A_) is given by 

_ [ ((miaalllnibz)), ((miaalllbina)) ] 
(A_)- '* . - . ((maa1lllbzni) ), ((maaiillnihJ.) ') 

.. (4·10) 

(A_') is obtained by interchanging the spin indeces 1 and 2 in (4·10) but:has 
the same set of eigenvalues as (A_) since 

(A_') = (A_)* . [ 0 1 ]• [ 0 1] 
1 0 1 0 . 

. (4·11) 

In the case of an ASDW solution, the spatial orbitals f" 11 and fl' 1a are real. 
Substituting (4·5) into (4·4) and using (l:l·6), we have A+M± insta~ility ma­
trix as 

(4·12) 

Because of Eq. (4·9), A_M+ and A_M_ instability matrices become identical in 
conformity with the result in the preceding section, and the A_M instability 
matrix is a real matrix ·with the same form as (4 ·10). 

In the case of an ASCW solution, 

(4·13) 

Substituting (4·5) with (4·13) into (4·2) and using (4·6) and (4·9), we obtain 
A+ T ± and A_ T ± instability matrices as 

(A+T±) = ((mrariT±In,b,)), 

(mlall T ±I nlbl) = (maaal T ±I nab.)*= (mal s± I nb). 

=H,.,.Da.0 -H0,.D,."-(mnlba)+ (1±1)(ma[bn), 

(mlaliT±Inaba) =(maaaiT ±ln1b1)* =(maiS±[bn) 

= (1± 1)(malnb)=F(mblna), 

(4·14) 
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Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. Ill 1779 

(A_T±) = ((m1aaJT±Jnlba)), } 

(m1a~T ±ln1ba) = (maa1JT ±I nsb1)* 

-H.,., .. {Ja~-Hai},,. .. -(mnJab)± (mbJan), 

(4·15) 

where the index a denotes the spatial. orbital 'lf!a. 

In the case of an S-invariant solution, 

,(4·16) 

The A matrix for 1S and 8S instabilities are spin scalar and spin vector, respec­

tively: 

18, Amr,ai={Jr,Fma, .. 

as, A!.r,a•= (fJ,)r,Fma, i=1, 2, 3. } 

From (4·17), 1S and 8S instability matrices are obtained as 

(4·17) 

(4·18) 

where (maJS±Jnb) and (maJS±Jbn) are the quantities with the same forms as 

those defined in (4·14). Equation (4·16) shows that if 'lf!a's in (4·13) and 

( 4 ·16) are the same, 

(4·19) 

In the case of a TICS solution, the spatial orbital 'lf!a is real, and 1ST± and 

8ST ± instability matrices are given by 

esT±)= ((maJS+Jnb)±(maJS+Jbn)), } 

CSST±) = ((maJS_oJnb)±(maJS_Jbn)). 
(4·20) 

Equation ( 4 · 20) for the irreducible instability matrices of a TICS solution has 

been obtained previously.'l-11) Equation ( 4 · 20) shows 

(4·21) 

As we shail see in the next section, an ASCW solution (4·13) and a CCW 

solution (4 ·16) wi,th the same 'lf!a always coexist as a d,egenerate pair and an 

ASW solution· is degenerate with respect to complex conjugation of up and down 

spin orbitals respectively. Equations (4·21) and (4·19) are the consequences 

of the degeneracies. Equation (4·21) implies that degenerate CCW and ASCW 

solutions emerge simultaneously from a TICS solution. Equation (4·19) implies 

that new degenerate CCW and ASCW solutions emerge simultaneously from 1S 

and A+T + instabilities and degenerate ASW solutions from 8S and A+T _ insta~ 

bilities of degenerate CCW and ASCW solutions. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

2
/6

/1
7
6
6
/1

8
4
8
3
2
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1780 H. Fu~utome 

§ 5. Standard expressions for HF energy 

In practical applications of ·UHF theory, it is important to study UHF solu­
tions and. their interconnection relation from energetic point of view. Therefore, 
we derive finally the expressions of HF energy for the eight classes of UHF 
solutions referring to the standard forz.ns of UHF orbital given in II. We start 
from the general standard form (II,. a ·4) of the UHF density matrix. 

We split the density· matrix (II, 3·4) into the two parts a~ 

[ 
:E+?fAFAt,. 0 .] 

Q=P+tD, P= A _71f. fifo ' . 0, :E Y!,i'.l! At 
A (5·1) 

D = t [(c~s .).A- eA) FAFAt, siil ).Ar!AfJ At J 
.A=l SID).Af/AFAt, (BA-cos·).A)f/Af/~t .. ' 

where eA is. a sign function over the index A= 1 · · · K with· eith~r of eA = 1 or 
-1 assigned. arbitrarily to . each A and _I± is the summatioq over the A's with 
BA = ± 1 and A= K + 1 · · ·· M if there are overcrowded arbitals; Substituting (5·1) 
into (2 · 3), which holds for arbitrary F, we obtain the genera:! standard expres­
sion of HF energy: 

LAB=L_(ABAii) =(AA-AAIBB-BB)-(ABIBA)-(ABIBA)' 
MAB=M(ABAB) =(ABIBA)+(BAIAii)' (5 ·3) 
EH(P) = :E+ KAA+ :E- K.i.z+t ~+ [AAIBB] 

A A ~B · 

+t :E- [AAlillfj + :E+ :E- (AAli1iJ>, 
~B A B 

where the indeces A and A denote the functions FA and fJ A• 
We can easily see that 

(5·4) 

is always an extremum of (5. 2) for. variation of AA· (5. 4) corresponds to s.­
axial configuration with the density matrix P. There are 21r difft)rent choices _of 
eA, and there are 2K points in the variation space of ).A which correspond to S.­
axial configurations with different electron occupations. 

Equation (5·2) without any constraint on FA, fJA -and ~A represents HF en-
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.. Theory of the· Unrestricted Hartree-Fock Equation and Its Solutions. III .1781 

ergy of TSW configuration. HF energy of My-invariant TSDW configuration 

with orbitals (II, 4·21) is obtained by letting 1J!4 and fJ!4 real. Without loss of 

generality we may assume 

eA = 1 , A = 1 · · · p , } 

llA·=-1, A'=P+1···2P,, 

SA·= 1 ' AN= 2p + 1 ... K . 

(5·5) 

HF eneq~ies for TSCW, M,-invariant TSDW and S..,-axial ASW configurations 

with orbitals (II, 4 ·13), (II, 4 ·14) and (II, 5 · 3) respectively are obtained by 

imposing on (5 · 2) the constraints 

'TSCW, fJ!A=lJ!J,, fjfA,=-1J!A*, 2'p=K,} 

TSDW, fJ!A=1J!1 .• !A·=lf!A*, !A·,=1f!1'. 

ASW,, fJ!A=lJfA,, 1J!A,=1J!A, 1J!A•=1J!A•., 

The constraint (5 · 6) leads to 

LAB=LA'B'' LAB'=LA'B' LAB'=LA'B'' . 

MAB=MA'B'' MAB~=MA'B' MAB·.=MA'B'' 

(5·6) 

(5·7) 

(5·8) 

where :E~ is the summation over B = 1 · · · p and K + 1 · · · M if there are over­

crowded orbitals. We can show that (5·7) is an extremum of (5·2) with the 

constraint (5 · 8) for variation of ;1,4 • and ).4 •• The constraints (5 · 6) and (5 · 7) 

lead to the following expression. for HF energy: 

(5·9) 

~here 
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1782 H. Fukutome 

LAB-LAB'=L(ABA'B') -L(AB' A' B), 

MAB+MAB'=M(ABB'A') =t=M(AB'BA'), 

=M(ABA'B') +M(AB'A'B), 

MAB·=O, 

=M(ABHBH A'), 

=M(ABu A'Bu), 

LA•B•+MA•B·=O' 

=(AHBHIAuBu -BH Au), 

( - TSCW) 
. + TSDW ' 

(ASW),. 

(TSCW),. 

(TSDW), 

(ASW), 

(TSCW, ASW), 

(TSDW), 

(5·10) 

In the case K = 2p where there is no unpaired orbital 'I]! A., MAB·=O. Then, 
2P points 

(5·11) 

are extrema of (5 · 9) for variation of AA· At the points (5 ·11),. TSCW and 
TSDW configurations reduce to ASCW configuration and ASW to CCW. In 
the cases of TSDW and ASW configurations with unpaired orbitals, (5 ·11) can­
not in general be extrema of (5 · 9) for variation of ;," unless the condition MAB• = 0 is satisfied. In ASW configuration with unpaired orbitals, P is of the forn:l 
of an open shell restricted HF (RHF) configuration. Hence, open shell RHF 
configuration cannot be a solution of the UHF equation unless the condition 
MAB• = 0 is ·Satisfied by spatial symmetry of orbitals. 

ASCW and CCW configurations are obtained from TSCW and ASW con­
figurations respectively by putting K=2P, 'IJ!A real and 'If!", pure imaginary. Thus 
obtained HF energies of ASCW and CCW configurations are identical. ASDW 
configuration is obtained from TSDW configuration by putting all of 'If! functions 
real. At the points (5 ·11), ASCW, CCW and ASDW configurations without 
unpaired orbitals reduce to TICS· configuration. 

The expression of EH(P) in (5·3) shows that E:H(P) is invariant to complex 
conjugations 'lf!r~'IJ!"* and flr~fiA* of up and down spin orbitals respectively. 
Therefore, if there is a DODS solution with orbitals {'If! A1Jh fl A.1}s}, then {'If! A1Jh 
fi"*7J2}, {'IJ!A*1Jh fiA1}a} and {'IJ!A*7J1, fiA*1Js} are also solutions of the UHF equation 
and they are degenerate. As a corollary of this theorem, we see that if there 
is a CCW solution with orbitals {'lf!A7J1, 'IJ!A1}s} then there is always an ASCW 
solution with orbitals {'lf!A7Jh 'IJ!A*1}s} and vice versa. 
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