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Abstract      

     We present a theory for the lattice thermal conductivity, κL, of single-walled boron 

nitride nanotubes (BNNTs) and multi-layer hexagonal boron nitride (MLBN), which is 

based on an exact numerical solution of the phonon Boltzmann equation. Coupling 

between layers in MLBN and nanotube curvature in BNNTs each break a phonon 

scattering selection rule found in single-layer hexagonal boron nitride (SLBN), which 

reduces κL in these systems.  We show that out-of-plane flexural phonons in MLBN and 

out-of-tube phonons in BNNTs, provide large contributions to κL , qualitatively similar to 

multi-layer graphene (MLG) and single-walled carbon nanotubes (SWCNTs). However, 

we find that the κLs in BNNTs and MLBN are considerably smaller compared to similar 

SWCNTs and MLG structures because of stronger anharmonic phonon scattering in the 

former. A large and strongly temperature dependent isotope effect is found reflecting the 

interplay between anharmonic and isotope scattering phonons.  Finally, we also 

demonstrate convergence of BNNTs into SLBN for large diameter nanotubes and MLBN 

to bulk hexagonal boron nitride within a few layers.   

 

PACS:  63.20.kg, 63.22.Rc, 66.70.-f, 65.80.Ck 
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I.  INTRODUCTION 

     Like the more intensely studied graphene and single-walled carbon nanotubes 

(SWCNTs), boron nitride can be constructed into single or layered, sp
2
-bonded 

hexagonally packed planes and into nanotubes with alternately bonded boron and 

nitrogen atoms instead of carbon.  Despite having similar lattice constants, unit cell 

masses, and phonon dispersions [1-7], the measured lattice thermal conductivity, κL, of 

bulk hexagonal boron nitride (h-BN) is a fifth that of graphite [8-9].  Qualitatively 

consistent with this, molecular dynamics (MD) simulations of κL for boron nitride 

nanoribbons and small diameter single-walled boron nitride nanotubes (BNNTs) find 

significantly lower values than their carbon-based counter-parts [10].  On the other hand, 

recent measurements of κL for isotopically enriched multi-walled boron nitride nanotubes 

show similar values to multi-walled carbon nanotubes [11].  

     In order to shed light on this issue and develop a more comprehensive understanding 

of h-BN systems, we present a Boltzmann transport equation (BTE) theory for κL of 

BNNTs and multi-layer hexagonal boron nitride (MLBN) which includes anharmonic 

phonon-phonon and isotopic impurity scattering. We find that intrinsic phonon-phonon 

scattering selection rules play important roles in determining κL, similar to the case of 

SWCNTs and multi-layer graphene (MLG) [12-14].  In particular, we show that out-of-

plane vibrations in MLBN and out-of-tube vibrations in BNNTs provide large 

contributions to κL and the interaction between layers in MLBN and nanotube curvature 

in BNNTs violate a 2D selection rule in SLBN leading to a substantial reduction in κL.  

However, we find stronger anharmonic three-phonon scattering in MLBN and BNNTs, 

which is responsible for the lower κL compared to MLG and SWCNTs.  This finding is 
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also supported by previous results found for SLBN and h-BN [15].  Calculated 

enhancements to κL are found to be relatively strong for isotopically pure BNNTs (20-

30%) around room temperature, although somewhat less than those reported for multi-

walled BNNTs in Ref. 11 (~50%).   We also find a strong temperature dependence to the 

isotope effect reflecting the interplay between anharmonic and isotope scattering. We 

show that with increasing diameter κBNNT →κSLBN and with increasing layer number, N, 

hBNMLBN κκ → .   

     Section II provides an overview of the phonon properties and three-phonon selection 

rules relevant in BNNTs, SLBN, and MLBN.  In Sec. III, we discuss the lattice thermal 

conductivities of different h-BN systems.  Our results for the lattice thermal 

conductivities and subsequent discussion are presented in Sec. IV.  We also discuss other 

recent theoretical predictions in relation to this work in Sec. IV.  In Sec. V, we give a 

summary of this work and our conclusions.  Appendix A provides a detailed account of 

the phonon-phonon scattering selection rules, while Appedix B outlines the details of the 

relevant scattering mechanisms and the Boltzmann transport equation. 

II.  PHONONS AND SCATTERING SELECTION RULES 

     An accurate representation of the interactions between atoms is required to effectively 

model the thermal transport in h-BN systems.  Phonon frequencies, λω , and acoustic 

phonon velocities, v λα = dω λ / dqα , are determined from the harmonic interatomic force 

constants (IFCs), while anharmonic IFCs are essential for describing intrinsic phonon-

phonon scattering [16].  Here, ),( jq=λ  designates a phonon with wavevector, q , in 

branch, j, and α  is a Cartesian component.  For h-BN, q  is a 3D wavevector and 

j=1,…,12 [14, 15], for SLBN and MLBN q  is a 2D wavevector in the plane of the layers 
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with j=1,…,6N [14, 15, 17].  In BNNTs ),( lqq =  where q is a continuous wavevector 

along the nanotube axis, l is an angular quantum number and j=1,…,6 [12, 13].  The 

phonon frequencies are determined by diagonalization of the dynamical matrix:   
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for a given q  in the Brillouin zone of a h-BN system.  Here, κ  designates the thκ  atom 

in the th  unit cell, κm  is the mass of the thκ  atom, and α , β , and δ  are Cartesian 

components.  R  is the lattice vector for the th  unit cell in Cartesian components for 

SLBN, MLBN, and h-BN.  In BNNTs, ),( zR θ=  with θ  and z  specifying the 

coordinates around the nanotube axis and along the axis respectively [12, 13, 18].  In Eq. 

1, δβS  is a rotation matrix for the th  unit cell in BNNTs and the identity matrix for the 

other systems.  The harmonic IFCs, 
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displacements from equilibrium, are determined by a given interatomic potential energy, 

Φ . 

     For the weak interlayer bonding in MLBN we use a Lennard-Jones potential 

VLJ (rij ) = 4ε[(σ /rij )
12 − (σ /rij )

6]
 
where ε and σ are adjusted to best fit the interplanar 

distance and c-axis phonon dispersion and rij is the distance between atoms i and j in 

adjacent layers.  We consider coupling between nearest planes with AA ′  stacking 

consistent with ab initio calculations [19].  For the in-plane covalent bonding, we employ 

a Tersoff empirical interatomic potential [20, 21] with parameters optimized to best fit 

harmonic phonon properties of h-BN [15].  The Tersoff potential has been successfully 
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used to model thermal transport properties of graphene, SWCNTs, SLBN, and BNNTs 

[10, 12-15, 17, 22-25].   

     For SLBN and MLBN, the Tersoff parameters presented in Ref. 15 accurately 

represent the quadratic out-of-plane acoustic (ZA1) phonon branch and give velocities for 

the linear transverse and longitudinal acoustic (TA1 and LA1) branches within 5% of 

experiment [7].  These branches provide the dominant contributions to κL so their 

accurate description is most important. There is not as good agreement with the higher 

frequency optical modes, in part due to our neglect of the slightly ionic bonding of B and 

N atoms.  However, we find that around room temperature, the optic branches in h-BN 

and graphene systems play only a small role in thermal transport justifying this 

approximation.  The effect on the acoustic branches due to ionicity has been shown to be 

negligible [26].  Recently, a similar Tersoff parameterization used for MD calculations of 

SLBN and BNNTs also demonstrates good agreement with the experimental in-plane h-

BN phonon dispersion [10]. 

      For MLBN, the weak interlayer coupling produces N-1 low-lying optic phonon 

branches (one for h-BN) for each acoustic branch, labeled ZAi>1, TAi>1, and LAi>1 [14].  

The flexural branches, ZAi>1, significantly deviate from the ZA1 while the TAi>1 and 

LAi>1 branches are degenerate with the TA1 and LA1 except very near the Γ-point, (see 

Figure 1 in Reference 14).  MLBN has 3N optic branches little affected by the weak 

interlayer coupling which are degenerate with the six optical branches of h-BN.  In 

BNNTs, there are four acoustic branches, linear torsional and longitudinal acoustic 

branches (l=0, j=2 and 3) and two quadratic flexure branches (l=±1, j=1), as well as 

numerous optic branches [12, 13].  For a given l, the j=1 phonon branches correspond to 
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low-frequency out-of-tube vibrations, the radial breathing mode (l=0, j=1) being one.  

The j=2 and 3 branches correspond to low-frequency in-tube vibrations. 

     Intrinsic phonon-phonon scattering is the dominant cause for thermal resistance to 

heat flow in semiconductors, such as h-BN systems, around and above room temperature 

[16].  In this work, we consider three-phonon scattering processes and scattering selection 

rules which play critical roles in understanding κL of BNNTs, SLBN, and MLBN.  The 

phase space for three-phonon scattering is defined from all processes satisfying the 

conservation of energy and momentum: ( ) ( ) ( )qqq jjj
′′=′± ′′′ ωωω  and Kqqq +′′=′± , 

where K  is a reciprocal lattice vector, which is zero for Normal processes and non-zero 

for Umklapp processes and the ±  signs correspond to the two types of possible three-

phonon processes [16]. 

     In BNNTs where ),( lqq = , conservation of crystal momentum in a three-phonon 

scattering process not only restricts the translational wavevectors, q, but also imposes a 

restriction on the azimuthal quantum numbers, l, which is discussed in Appendix A and 

in References 12 and 13.  This azimuthal selection rule severely limits the number of 

three-phonon scattering processes allowed and has permitted rigorous calculations of 

large diameter chiral and achiral BNNTs [13].   

     We have shown previously that reflection symmetry in a 2D crystal, such as SLBN, 

leads to a selection rule that forbids any n-phonon scattering process involving an odd 

number of out-of-plane phonons [17, 22, Appendix A].  This selection rule leads to 

significantly less scattering, especially for ZA phonons, and to higher κL.  Interlayer 

coupling and nanotube curvature violate this 2D selection rule causing MLBN and larger 

diameter BNNTs to have lower κL than SLBN.   
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III.  THERMAL CONDUCTIVITY 

     We calculate κL for BNNTs and MLBN using an exact numerical solution to the 

phonon Boltzmann transport equation (BTE), previously described elsewhere for 

SWCNTs [12, 13], SLBN [15], graphene [17, 22], and MLG and graphite [14].  Here we 

outline this theory.  Full details of the phonon BTE and relevant scattering mechanisms 

can be found in the given references and Appendix B.   

      The κL for each system is given by: 

                       

qdvTn
D j

L ∑∫ ∂∂= λλαλλ τωκ 20 )/(
1

  (2) 

where 0

λn  is the Bose distribution function, α  is the Cartesian component in the transport 

direction, and D is a system dependent prefactor.  For h-BN Eq. 2 is a 3D integral with 

D = (2π)3
.  For SLBN and MLBN Eq. 2 is a 2D integral with D = (2π)2Nδ , where 

nm333.0=δ  is the interlayer spacing for h-BN [3].  Since l is quantized for a BNNT 

wavevector, ( , )q q l= , Eq. 2 becomes a 1D integral for q and sum over j and l while 

δππ dD )2(=  where d is the nanotube diameter.  For an infinite 2D hexagonal lattice, the 

in-plane transport is isotropic and can be represented by a single value as in Eq. 2.  In 

principle, finite systems display directional anisotropy, though, for the system sizes 

considered here this anisotropy is small (< 5%) and thus not considered. 

     In this work, the phonon lifetimes, λτ , for mode λ  are limited by three-phonon, 

boundary, and isotopic impurity scattering.  The boundary scattering time, 

τλ
bs = L /2 | v λα |, with L being the length between crystallite or sample boundaries, gives 

the correct limiting values of Lκ  in the ballistic ( L → 0) and diffusive ( L → ∞ ) limits for 
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nanotubes and nanoribbons [27, 28].  Note, we do not explicitly introduce diffuse 

scattering from sample sides perpendicular to the transport direction.  Such scattering 

where transport is restricted to 2D layers has recently been shown to be considerably 

weaker than for the corresponding case of bulk (3D) systems [29]. In any case, for 2D 

layers the empirical boundary scattering employed here is closely related to the 

conventional relation, L /v λ  where vλ = v x

2 + v y

2 [15]. 

     The isotopic scattering time, iso
λτ , is limited by the large concentration of 

10
B (19.9%) 

atoms in the more abundant 
11

B (80.1%) atoms in naturally occurring boron samples (the 

nitrogen isotope impurity concentration is negligible).  The boron isotopic mass 

differences are treated as a perturbation to the harmonic Hamiltonian, and the scattering 

rates are calculated using Fermi’s golden rule [30].  For three-phonon interactions, the 

first anharmonic term in the expansion of the crystal potential is treated as a perturbation 

to the harmonic phonons.  Fermi’s golden rule is again used to calculate millions of three-

phonon scattering rates which enter the phonon BTE.  The λτ  are given by the solution of 

the linearized BTE which is exactly determined using an iteration process which accounts 

for the fact that phonon-phonon scattering couples phonons of different modes.  Details 

of the isotope scattering, three-phonon scattering, and the BTE calculation can be found 

in Appendix B. 

IV.  RESULTS AND DISCUSSION 

     For MLBN, we take the coupled 2D sheets to lie in the x-y plane connecting thermal 

reservoirs at slightly different temperatures, and we consider thermal transport in the 

M→Γ  direction.  We consider boundaries of length, L, in this transport direction.  For 
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BNNTs, we consider zig-zag (n,0), armchair (n,n), and chiral (n1,n2) BNNTs with 

diameter, d, and length, L, connecting thermal reservoirs.  The chiral indices, n1 and n2, 

uniquely identify each BNNT considered.  The phase space for three-phonon scattering 

grows very large with increasing layer number and nanotube diameter in MLBN and 

BNNTs respectively.  We have been able to calculate the κL  for MLBN up to N = 5  and 

BNNTs up to d = 11nm .  Fully converged κL for h-BN was not possible due to the 

enormous phase space for three-phonon scattering; however, we estimate values to be 

within 10% of fully converged results [14].  Chiral BNNTs (and zig-zag to a lesser 

extent) have large translational unit cells, and thus large scattering phase spaces even for 

relatively small d compared to armchair BNNTs, so calculations of these κL are more 

limited.  

     Scaled Lκ  vs. layer number, N, for MLBN (solid black circles) is shown in Figure 1 

along with the corresponding scaled per branch-type contributions, ZAκ , TAκ , and LAκ , 

(red triangles, green squares, and blue diamonds) given by κZA = κZAi

i=1

N

∑ , etc..  Each 

system is taken to have length, L=10μm, at temperature, T=300K, and is scaled by the 

calculated κSLBN=810Wm
-1

K
-1

.  The dashed black line (highest) in Figure 1 represents the 

approximate Lκ  for h-BN.  The dashed red, green, and blue lines (higher, lower, and 

lowest) correspond to the per branch-type values in h-BN.  Also shown in Figure 1 is the 

calculated Lκ  vs. N for isotopically pure MLBN (open circles). 

     Similar to recently published results for MLG [14], κL for MLBN decreases 

monotonically from a maximum for κSLBN converging to κhBN within only a few layers 

with the largest decrease from SLBN to bilayer BN, κbilayer=0.6κSLBN.  The reduction in κL 
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for MLBN comes in part from the violation of the 2D selection rule present in SLBN, in 

part due to lowered density of states of the ZAi>1 phonons.  As seen in Figure 1, κZA 

provides the greatest contribution to κL for MLBN and drops ~60% from N=1 to N=5, 

while κTA and κLA change little with increasing N.  The coupling between layers especially 

affects the ZA modes which vibrate perpendicular to the planes.  Convergence to κhBN 

within only a few layers is a consequence of the limited range of the van der Waals 

forces.  The κL for isotopically pure MLBN follows the same trend as κL for naturally 

occurring MLBN with enhancements of 36% and 29% for SLBN and h-BN at room 

temperature, respectively.  In SLBN (and to a lesser extent in MLBN) the isotopic 

enhancement is sensitive to system size and shows peaks at lower temperature where 

anharmonic scattering is weaker compared to the boundary and isotope scattering [15].      

     To highlight the importance of three-phonon scattering relative to the phonon-isotope 

scattering in determining κL for MLBN around room temperature we have calculated the 

ratio κL

iso /κL

pure
, where 

iso

Lκ  is the κL determined with only boundary and impurity 

scattering (natural isotopic composition) and 
pure

Lκ  is the κL determined with only 

boundary and three-phonon scattering.  We find 104~/ −pure

L

iso

L κκ  depending on the 

system (BNNT, SLBN, or MLBN) and system length (L=3-10µm).  The isotopic 

scattering is weak compared to three-phonon scattering at T=300K in h-BN systems even 

with high impurity concentrations.  This leads to the relatively large values for κL

iso /κL

pure
. 

     Furthermore, the κL for h-BN systems are significantly lower than for carbon systems 

[14, 15, 17].  We demonstrate this by calculating ratios for isotopically pure systems:  

κgraphene/κSLBN≈3.2 and κMLG/κMLBN≈3.9 for similar layer number.  The small difference in 

the ratios may come from stronger anharmonic scattering in MLBN due to slightly 
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smaller interlayer spacing and different stacking orientation compared to MLG.  To gain 

further insights into the reduced κL of h-BN systems compared to carbon systems, we 

have developed hypothetical models which mix different aspects (frequencies, velocities, 

anharmonic IFCs, etc.) of isotopically pure MLG and MLBN in the BTE calculations.  

This was recently done with MD simulations of SLBN [10], however, anharmonic effects 

on the phonon scattering times of the different systems were not considered.  We find that 

the main cause for the reduction of κL in SLBN and MLBN compared to graphene and 

MLG comes from stronger three-phonon scattering rates due to the somewhat lower 

phonon frequencies in the h-BN systems.  The scattering rates, Eq. B4 are strongly 

dependent on these frequencies since they enter inversely directly and through the Bose 

factors.  Thus, the reduced frequencies substantially increase the scattering rates and 

lower κL. 

     We now consider the nanotubes.  Figure 2 shows the scaled Lκ  vs. diameter, d, for a 

series of naturally occurring isotopic composition armchair (black circles), zig-zag (black 

triangles), and chiral (black squares) BNNTs with length, L=3µm, at temperature, 

T=300K.  The κL are scaled by the calculated κSLBN=650 Wm
-1

K
-1

 (indicated by the black 

line (highest)). In Figure 2, the contributions, κj, to κL of BNNTs for each branch j=1,2, 

and 3 (obtained by summing over all of the l values), are given by the colored symbols 

(red (higher), j=1; green (lower), j=2; blue (lowest), j=3) along with the corresponding 

colored lines for the per-branch contributions to κSLBN (red (higher), ZA; green (lower), 

TA; blue (lowest), LA).  The κj for large d nanotubes converge to their corresponding 

κSLBN counterparts:  κ1→κZA, κ2→κTA, and κ3→κLA. 
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     The non-monotonic behavior of the κL vs. d curve is a consequence of the competition 

between the onset of the 2D scattering selection rule for large d BNNTs and the loss of 

optic scattering channels for small d BNNTs.  For large d, where the nanotube curvature 

is small, the 2D selection rule is well approximated and L SLBNκ κ≈ .  As d decreases, the 

nanotube curvature increasingly violates the 2D selection rule leading to stronger 

scattering of the out-of-tube phonons and reduction of κ1 and κL.  Note that κ2 and κ3 

change very little for the larger diameter nanotubes because the in-tube modes, which 

correspond to the TA and LA modes in SLBN, are little affected by the 2D selection rule.  

The κL has a minimum for d~3nm where quantization effects in the nanotubes begin to 

play a more significant role.  As d decreases, the number of optic phonon modes 

decreases and are pushed to higher frequencies.  Thus, the optic phonons become less 

efficient scatterers of the lower-lying acoustic phonons, especially for j=1 and 2, which 

leads to increased κL. 

     Figure 3 shows the κL vs. T for a (10,10) BNNT (black; lower) and a (10,10) SWCNT 

(red; upper) with L=3µm.  The dashed curves correspond to isotopically pure 
11

B and 
12

C 

and the solid curves correspond to naturally occurring boron and carbon abundances (
10

B 

(19.9%) and 
13

C (1.1%)).  For temperatures above about 100K, the behavior of κL is 

governed by phonon-phonon scattering and phonon-isotope scattering.  In this 

temperature range, the κL for both naturally occurring and isotopically enriched BNNTs 

lie well below those for the SWCNTs.  This reflects the stronger phonon-phonon 

scattering rates in the former.  This is further demonstrated by the lower temperatures of 

the peaks in κL for the BNNTs (T~100K) compared to the SWCNTS (T~150K). For T 

below the peak temperature, κL decreases as boundary scattering provides the dominant 
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resistance.  For low T, only low-frequency phonons are thermally populated and can 

contribute to thermal transport and resistance.  The out-of-tube (j=1) phonon branch 

contributions to κL dominate in this temperature regime because of the high density of 

phonon modes at low frequencies.  For T above the peak temperature, κL drops with 

increasing T, which is a signature that phonon-phonon scattering is stronger than the 

phonon-isotope scattering and boundary scattering. At T=300K, we find that the ratio of 

κL for a natural isotopic composition (10,10) SWCNT and an isotopically pure (10,10) 

BNNT is κSWCNT/κBNNT=2.3.  The inset to Figure 3 shows the ratio κSWCNT/κBNNT vs. d for 

similar isotopically pure armchair SWCNTs and BNNTs with L=3µm and T=300K.  For 

small d, κSWCNT/κBNNT≈1.5.  This ratio increases with diameter and saturates to ~3 for the 

larger nanotubes where optic modes provide a significant amount of scattering and the 

2D selection rule plays a role. 

     Figure 4 plots the percent enhancement to κL, P = (κ L

pure /κ L

nat −1) × 100% , from 

isotopic enrichment as a function of temperature for the (10,10) BNNTs (black solid 

curve) and (10,10) SWCNTs (red dashed curve) with L=3µm.  For T decreasing from 

room temperature, P  increases in both systems reflecting the weakening of the phonon-

phonon scattering due to freeze-out of Umklapp processes.  At T=300K, P=23% for 

BNNTs and P=9% for SWCNTs, while at the temperatures giving the peaks in κL P=89% 

and 20%, respectively.  Since phonon-phonon scattering is stronger in BNNTs, a much 

larger P enhancement for BNNTs is evident.  The overall larger P for BNNTs is a 

consequence of the larger isotope scattering resulting from the much higher isotope 

concentration.  Given the small (~1%) 
13

C concentration in naturally occurring SWCNTs 

the relatively large isotope effect arises because of the comparably weak phonon-phonon 
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scattering.  Finally we note that the peak value increases rather strongly with increasing 

nanotube length, as has been noted previously for SLBN [15]. 

     To summarize these results:  For all of the nanotubes considered here κSWCNT>κBNNT, 

which is largely due to the stronger anharmonic phonon scattering in the BNNTs rather 

than the stronger isotope scattering.  This is qualitatively similar to SLBN and MLBN 

systems discussed above.  Furthermore, we find a strong temperature dependence to the 

enhancement factor, P, a feature that has been commonly observed previously in bulk 

semiconductors [31-33].  Recent measurements [11] have found room temperature 

isotopic enhancement in κL of P~50%, which is somewhat larger than our calculated 

value.  Since scattering of phonons by isotopes is well represented within the BTE 

approach [34], then accepting the experimental number would suggest that our 

anharmonic scattering rates are too large.  On the other hand, the measured isotopic 

enhancement in Ref. [11] is roughly temperature independent, which suggests such weak 

anharmonic scattering that the κL for bulk h-BN would be far higher than measured [8].  

Finally, we note that the room temperature κL for multi-walled carbon nanotubes (κL=320 

Wm
-1

K
-1

) reported in Ref. 11 are below those found previously (κL=2000-3000 Wm
-1

K
-1

) 

[35, 36], although Ref. 11 points out a known error in these earlier measurements 

associated with lack of transmission electron microscopy characterization.  Perhaps more 

importantly, the value quoted in Ref. 11 is seven times lower than that of bulk pyrolytic 

graphite [9].  Ultimately, further research on the κL for naturally occurring and 

isotopically enriched carbon and boron nitride nanotubes are needed to address this issue. 

     Here we will compare our phonon BTE results for the κL of BNNTs with those of 

recent theoretical work.  Ref. 37, was able to match the temperature independence of the 
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isotopic enhancment of κL for multi-walled BNNTs measured in Ref. 11 but this required 

assuming a very weak phonon-phonon scattering so that the phonon-isotope scattering is 

dominant.  In contrast, around room temperature we find three-phonon scattering is 

stronger than isotopic impurity scattering, a characteristic seen in bulk h-BN where κL 

decreases with temperature around 300K, a sign that anharmonic scattering is dominant 

as in most semiconductors.  

     In Ref. 10 (MD simulation) and Ref. 38 (kinetic theory), isotopic impurity scattering 

is ignored, while the focus is on phonon-phonon scattering in limiting κL for small 

diameter BNNTs (d~0.4nm-1.4nm).  Like these works, we find lower κL for BNNTs than 

for SWCNTs (though for a more expansive range of diameters) which we attribute to 

stronger anharmonic three-phonon scattering, especially for moderate to large diameter 

BNNTs.  As in Ref. 38 we find strong contributions from the quadratic (l=±1, j=1) 

acoustic modes for small diameter BNNTs.  In larger BNNTs we demonstrate that all of 

the j=1 modes for different ls (out-of-tube vibrations) combine to make a strong 

contribution to κL which we connect to the approximation of a 2D selection rule in a flat 

SLBN sheet.  Finally, here we have presented a theory and results for the full solution of 

the phonon BTE without use of the single-mode relaxation time approximation (RTA) 

that is used in Ref. 38 which misses important aspects of thermal transport in h-BN 

systems.  For example, while the proper azimuthal symmetries are taken into account in 

Ref. 38, Normal scattering is incorrectly treated as independently resistive.  Also, 

extending this RTA to larger BNNTs with smaller tube curvature will fail due to the role 

of the 2D selection rule. 
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     Finally, we highlight the importance of implementing a full solution of the BTE that 

includes both Normal and resistive Umklapp scattering processes.  Low-frequency, zone-

center phonons participate very little in Umklapp scattering, but have very strong Normal 

scattering channels which are not themselves resistant to a thermal current.  However, the 

Normal scattering processes are important for redistributing these low-frequency phonons 

to higher frequencies away from the Brillouin zone-center where they can undergo 

Umklapp scattering and thus encounter thermal resistance.  We find this born out in the 

iterative solution to the BTE, similar to SWCNTs [12].  Let us consider an isotopically 

pure (10,10) BNNT with L=3µm and T=300K which has κL=769Wm
-1

K
-1

.  Neglecting 

Umklapp scattering processes, the zeroth order BTE solution (relaxation time 

approximation) gives κL=426Wm
-1

K
-1

 which is qualitatively wrong because Normal 

processes alone cannot provide resistance.  However, upon iteration the phonon lifetimes 

diverge which leads to divergent κL.  Neglecting Normal scattering processes leads to a 

converged κL=4937Wm
-1

K
-1

 which is significantly higher than the full solution 

demonstrating the importance of both Normal and Umklapp processes in determining κL. 

 

V.  SUMMARY AND CONCLUSIONS 

     The κL of BNNTs and MLBN have been calculated, using an exact numerical solution 

of the phonon BTE.  This theoretical approach highlights the large contributions from 

out-of-tube vibrations in BNNTs and out-of-plane vibrations in MLBN.  Such 

contributions are shown to be smaller in larger diameter BNNTs and in MLBN than in 

SLBN due to the breaking of a 2D selection rule from nanotube curvature and interlayer 

coupling respectively.  The κL for MLBN decreases monotonically from SLBN with 
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increasing number of layers and converges to κL for h-BN within a few layers.  For 

differing chirality BNNTs, κL exhibits a non-monotonic diameter dependence and 

converges to the κL of SLBN for large d nanotubes due to vanishing curvature and 

recovery of the 2D selection rule in SLBN.  We also show that around room temperature 

anharmonic phonon scattering is the dominant mechanism limiting κL, and is responsible 

for the lower κL in BNNTs and MLBN compared to SWCNTs and MLG despite large 

isotopic impurity scattering.  We have shown that BNNTs have a temperature dependent 

isotope effect with large enhancements to κL for isotopically pure BNNTs despite 

stronger phonon-phonon scattering. 

ACKNOWLEDGEMENTS 

LL acknowledges support from the NRC/NRL Research Associateship Program and from 

DARPA.  DAB acknowledges support from the National Science Foundation under grant 

number 1066634.  



 18

APPENDIX A 

Azimuthal Selection Rule for BNNTs  –  There are two momentum selection rules for 

BNNTs with chiral indices (n1, n2) [12,13, 18]: 

                     Kqqq +′′=′±              ( ) [ ]gllll K mod+′′=′±     (A1) 

where q is the wavevector along the nanotube axis, −π a < q ≤ π a,  a is the length of the 

unit cell, l is the angular quantum number which takes on the integer values l=0, ±1, 

…+g/2, and K is a reciprocal lattice vector.  Here, χgcd

2

221

2

1 /)(2 nnnnng ++=  is the 

number of two-atom unit cells in the translational unit cell of each BNNT where ngcd is 

the greatest common divisor of n1 and n2, and 3=χ  if ( ) gcd21 3/ nnn −  is an integer; 

otherwise 1=χ  [39-41].  Note that g reduces to 2n for armchair (n, n) and zig-zag (n, 0) 

BNNTs.  In, Eq. A1, the mod function keeps Kll +′′  between – g/2+1 and g/2.  For 

Normal scattering processes, K = lK = 0 .  For Umklapp scattering processes, aK π2±=  

and the integer plK ±= , where p is given by [13, 39-41]: 
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2

2
 Frg n
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nn
g

nng

n
p

nnn χϕ

χ

χ
  (A2) 

where Fr[x] is the fractional part of the rational number x, and [ ]yϕ  is the Euler function.  

For armchair and zig-zag BNNTs np = . 

2D Selection Rule for SLBN  –  For strictly 2D systems, such as SLBN, a selection rule 

on phonon-phonon scattering arises from reflection symmetry of the lattice potential 

energy, Φ, with respect to its equilibrium value [17, 22]: 
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∞
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Φ=Φ   (A3) 

Here,  specifies the instantaneous location of the 
th

 atom in the 
th

 unit 

cell,  and  give the equilibrium position and the displacement from equilibrium, 

and iα  are Cartesian components. The n
th

 order interatomic force constants (IFCs) are 

given by:  where the derivative is evaluated at 

the equilibrium lattice positions.  In Eq. A3, the 2=n  term gives the harmonic potential 

energy, while the 3=n  term leads to three-phonon scattering.   

     The potential energy must be invariant under the symmetry operations of the lattice 

[42].  Equating like terms in the expanded potential before and after the z-axis reflection 

operation on a 2D lattice lying in the x-y plane leads to the following condition [17, 22]:  

,   m odd     (A4)  

where m is the number of z-components in the string, .  This condition constrains 

the IFCs for all orders; in particular, third-order IFCs such as );;( 332211 κκκzzzΦ  must 

vanish.  In SLBN, only even numbers of out-of-plane (z-component) phonons can be 

involved in a three-phonon scattering process which leads to severe phase space 

limitations and enhanced κL.  

APPENDIX B 

Phonon Boltzmann Transport Equation  –  The BTE is a set of coupled equations for the 

phonon lifetimes, τλ  [12-15, 17]: 

                        τλ = τλ
0 (1+ Δλ )       (B1) 

where 0τ  are phonon lifetimes within the relaxation time approximation, given by: 

  
 

r κ =
 

R κ +
 

u κ κ   

  
 

R κ   
 

u κ

  
Φα1 ...αn

( 1κ1;... nκn ) =
∂ nΦ

∂u1( 1κ1)...∂un ( nκn )
0

  Φα1 ...αn
( 1κ1;...; nκn ) = 0

α1...αn
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1/τλ

0 ≡ (+ )Γλλ 'λ ''

(+)

λ ',λ ''

∑ +1/2 (− )Γλλ 'λ ''

(−)

λ ',λ ''

∑ +1/τλ
bs +1/τλ

iso                   (B2) 

where the sums are over the scattering phase space for processes that satisfy the 

conservation conditions and the ±  corresponds to the two possible types of three-phonon 

processes [16].  Here, τλ
bs = L /2 | v λα | is the boundary scattering time and iso

λτ
 
is the 

scattering time due to isotopic impurities given by [30]: 

                            ∑ ∫
′

′
∗

′ −⋅′
Ω

=
κ

λλλκκλκλλ ωωδω
π

π
τ

j
x

iso eeqdg )(
)2(2

/1
2

2                   (B3) 

where Ω  is the unit cell volume and κλe  is the eigenvector for the 
thκ  atom in mode λ .  

The integral is 1D, 2D, or 3D with x=1, 2, or 3 for BNNTs, SLBN and MLBN, and h-BN 

respectively.  In Eq. B3, gκ =
1

m κ
2

f iκ (miκ − m κ )
i

∑ 2

, is a mass variance parameter with 

κif  and κim  being the concentration and the mass of the i
th

 isotope of the κth
 atom, and 

κm  being the average mass.  For boron atoms 310366.1 −×=Bg  and we take 0=Ng  for 

nitrogen atoms. The isotope scattering is treated here in the relaxation time 

approximation.  In principle, this scattering can also enter the iteration process [43, 44].  

However we find that this does not change the resulting Lκ . 

     The Γλ ′ λ ′ ′ λ 
(± )  in Eq. B2 are intrinsic anharmonic scattering rates determined via Fermi’s 

golden rule for three-phonon scattering [12-15, 17]: 
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 with matrix elements:  
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where ( )'''','',0 κκκαβγ llΦ  are third-order anharmonic IFCs, the eακ
λ  are phonon 

eigenvectors, N0 is the number of unit cells in the crystal, and ),( jq−⇒− λ .  In Eq. B1, 

λΔ  is an inelastic mode coupling term given by: 

 Δλ = (+)Γλλ 'λ ''

(+) (ξλλ ''τλ '' − ξλλ 'τλ ')
λ 'λ ''

∑ +
1

2

(−)Γλλ 'λ ''

(−) (ξλλ ''τλ '' + ξλλ 'τλ ' )
λ 'λ ''

∑   (B6) 

where ξλλ' = vλ 'ωλ ' /vλωλ .   

     A grid of points is defined throughout the Brillouin zone and for each λ on the grid, 

the phase space of λ′, λ′′ is found numerically using a root-finding algorithm.  The 

boundary, isotopic impurity, and anharmonic scattering rates are calculated from Eq. B3 

and B4 which allows determination of  τ λ
0  (RTA) from Eq. B2, 0=Δλ .  The full solution 

to the BTE with 0≠Δλ  is found using an iterative scheme where τλ
(0) = τλ

0  is the zero
th

 

iteration.  Plugging this into Eqs. B1 and B6 yields τλ
(1).  The iteration scheme is 

continued until the calculated κL from Eq. 2 differs negligibly on successive iterations.  
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Figure Captions 

 

Figure 1  Calculated κL for MLBN .vs. layer number (solid black circles).    Also shown 

are the per branch contributions for ZA (red triangles), TA (green squares) and 

LA (blue diamonds) branches.  The corresponding estimated h-BN values are 

shown by the horizontal dashed lines.  The calculated κL for isotopically pure 

MLBN is also shown (hollow black circles).  For all cases, L=10μm and 

T=300K.   

Figure 2  Lκ  and branch contributions to Lκ  summed over l for each j .vs. d for a variety 

of zigzag (triangles), armchair (circles) and chiral (squares) BNNTs.  j=1, 2, 3 

and total correspond to red (higher), green (lower), blue (lowest) and black 

shapes (highest), respectively.  The horizontal lines show the associated 

contributions to SLBNκ  for the ZA, TA, and LA modes as well as the total.  For 

all cases, L=3μm and T=300K.   

Figure 3  Calculated κL .vs. T for a (10,10) SWCNT (red; upper) and a (10,10) BNNT 

(black; lower) with isotopically pure (dashed) and naturally occurring (solid) 

carbon and boron abundances.  For all cases, L=3μm.  The inset shows 

κSWCNT/κBNNT .vs. d for similar isotopically pure armchair nanotubes with 

T=300K. 

Figure 4  Isotope enhancement factor, P, as a function of temperature for BNNTs (black 

solid curve) and SWCNTs (red dashed curve). 
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