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Abstract

The optical properties of three-dimensional crescent-shaped gold nanoparticles are stud-

ied using a transformation optics methodology. The polarization insensitive, highly efficient,

and tunable light harvesting ability of singular nanocrescents is demonstrated. We extend our

approach to more realistic blunt nanostructures, showing the robustness of their plasmonic

performance against geometric imperfections. Finally, we provide analytical and numerical

insights into the sensitivity of the device to radiative losses and nonlocal effects. Our theoret-

ical findings reveal an underlying relation between structural bluntness and spatial dispersion

in this particular nanoparticle configuration.
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Localized surface plasmons (LSPs) have the ability to beat the diffraction limit, which allows

them to collect and concentrate light into deeply subwavelength volumes with high efficiency.

This remarkable property, which is a clear manifestation of their hybrid electromagnetic-wave

and surface-charge nature, is strongly dependent on the geometry, material characteristics, and

environment of the metal nanoparticle sustaining them. The exploitation of the sensitivity of LSPs

to all these circumstances has made possible an unprecedented control of light and light-matter

interactions at the nanoscale. This fact has driven the emerging field of plasmonics,1 and has

already yielded a wide range of novel LSP-based photonic devices.2,3

During the last number of years, intense research efforts have been devoted to devise, fabricate,

and characterize plasmonic nanostructures with different functionalities.4 Among the profusion of

designs investigated, dielectric core, metallic shell nanoparticles (usually termed nanoshells) have

stood out for their extreme tunability.5 The appropriate choice of the inner dielectric material and

the relative sizes of the core and the shell allows the tailoring of the of the LSPs supported by the

structure within the whole optical spectrum.6,7 From an experimental side, these metallodielectric

compounds have proven to be particularly accessible through a broad range of nanofabrication

techniques.8,9 From a theoretical perspective, the optical properties of spherical core-shell geome-

tries can be described accurately using Mie’s theory,10 yielding a remarkable agreement with ex-

perimental observations.11,12 More recently, sophisticated numerical treatments beyond classical

electromagnetics have been also developed.13,14 All these factors have made possible the real-

ization of nanoshell plasmonic devices in technological areas as diverse as molecular sensing,15

cancer therapy16 and fluorescence microscopy.17

Nanoshells present a large effective cross section, which enables them to interact strongly with

light. However, their LSP resonances do not yield to near-field hot spots as intense as those pro-

duced by structures with very small or sharp geometry features, such as dimer or trimer nanoan-

tennas.18 Lately, a strategy to improve the focusing performance of nanoshells has been proposed.

It consists in breaking the symmetry of the nanostructure by displacing the center of the dielectric

core and the metal shell.19 Note that this also adds new structural degrees of freedom, increas-
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ing the tunability of the device.20–22 Experimental reports indicate that the nanoparticles resulting

from this operation (usually termed nanoeggs or nanocups, depending on the inter-center distance

relative to the shell radius) exhibit larger near-field enhancements than nanoshells, while retain-

ing similar extinction efficiencies.23–25 So far, an analytical treatment of these reduced symmetry

nanostructures is still lacking, and only numerical methods make a quantitative description of

their optical properties possible.26,27 Moreover, whereas the hybridization concept28 yields a clear

physical picture of the LSPs of the nanoshell, its insightfulness diminishes with increasing degree

of structural asymmetry.

Recently, a transformation optics (TO) approach29 able to unveil hidden symmetries in com-

plex plasmonic devices has been developed. The method was first devised to describe analytically

the optical response of two-dimensional (2D) nanostructures,30,31 but it has been also successfully

applied to the case of a dimer of touching nanospheres.32 In this Letter, we extend this three-

dimensional (3D) framework to crescent-shaped nanoparticles (nanocrescents). This geometry

arises when the displacement of the dielectric core in a nanoshell is such that it leads to a single

point where the metal thickness vanishes. The singular character of this geometry has prevented its

rigorous treatment using hybridization or numerical methods thus far.19 On the contrary, our TO

method yields analytical expressions for all the significant electromagnetic magnitudes in nanocre-

scents, revealing the efficient and tunable (polarization insensitive) light harvesting performance

of the device over the whole optical spectrum.

By truncating singular 2D nanostructures, experimentally feasible geometries are obtained

which can be described quasi-analitically using TO.33,34 This procedure is transferred to 3D in this

Letter, demonstrating the robustness of blunt, nanocup-like plasmonic devices against structural

defects. Our approach sheds light into the spectral discretization originating from edge rounding

in nanocups, and proves that these non-singular structures retain the ability to collect and concen-

trate light efficiently. Finally, the radiative reaction concept35 provides us with analytical insight

into the emergence of radiation losses as the nanostructure size becomes comparable to the inci-

dent wavelength. On the other hand, numerical calculations36,37 enable us to investigate nonlocal
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Figure 1: (a) Sketch of the problem under study, the optical properties of gold nanocrescents

illuminated with arbitrarily polarized light. The geometry is defined by three parameters: the outer

and inner radii of the gold shell, Ri and Ro, respectively, and the bluntness radius, Rb. (b) Disk

geometry and dipole-like source obtained from the inversion of the original system.

effects in sub-nanometer thick shells, quantifying the impact of spatial dispersion on the absorption

and field enhancement performance of the device. Our theoretical results show that bluntness and

nonlocality modify the optical characteristics of perfect nanocrescents in a very similar way, reveal-

ing an underlying relation between these two distinct physical effects in this particular nanoparticle

configuration.

Figure 1(a) shows the general problem under study, the interaction of arbitrarily polarized light

with a crescent-shaped gold nanoparticle. The device is defined by three geometric parameters: Ri

and Ro, which correspond to the inner and outer radii of the asymmetric shell, respectively, and

Rb, which measures the structural bluntness. In the limit Rb → 0, a perfectly-shaped nanocrescent

is obtained, which presents a singular vertex where the thickness of the gold shell vanishes. In

any other case, this vertex is removed, and a hole of radius Rb is drilled in the metallic shell at

this position. First, we restrict our attention to nanoparticles much smaller than the incoming

wavelength (Ro ≪ λ ), which enables us to work within the near-field (quasi-static) approximation.

Throughout this work, the gold permittivity, εM(ω), is modelled using experimental data.38

Figure 1(b) renders the structure and electromagnetic source obtained from the inversion of

Figure 1(a), as indicated between the two panels. Note that unprimed (primed) coordinates denote
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original (transformed) coordinates, and g is an arbitrary length constant. The transformation maps

the original nanocrescent into a disk geometry of thickness g2(Ro −Ri)/2RoRi and radius g2/Rb .

The disk radius becomes infinite under the inversion of a perfectly-shaped crescent (Rb = 0). The

incident fields convert into a dipole-like point source located at the origin of the inverted frame,

and separated a distance g2/2Ro from the disk. Contrary to its 2D counterpart,39 this operation

does not only act on illumination and geometry, but also modifies the material properties of the

gold structure and its environment. Thus, the permittivities in Figure 1(b) are not the original ones,

but have acquired a spatial dependence proportional to (g/r′)2 under the inversion.32

The r′-dependence of the inverted permittivities prevents the exact calculation of the quasi-

static electric fields in the transformed frame. Specifically, fields continuity cannot be imposed at

all points within the transformed disk surface. However, an approximate treatment of the problem

is possible, and analytical expressions for all the relevant electromagnetic magnitudes in the cres-

cent frame can be obtained. In the case of singular geometries (Rb = 0), this procedure is carried

out in three steps. First, fields continuity is imposed only at the crescent vertex (ρ ′ → ∞ in the

transformed frame). Second, only the surface plasmon pole contribution to the quasi-static fields

is kept, neglecting the excitation of evanescent surface waves in the system. Finally, the mismatch

of the displacement field at the nanocrescent surface far from the singularity is taken into account

by introducing artificial surface charge corrections to the initial calculation. See the Supporting

Information and Ref. 40 for a more detailed description of the solving strategy. This TO method

yields the following expressions for the absorption cross section of perfect nanocrescents:

σ z
abs =

16πω

3c

(

2Roτ

1− τ

)3

Re

{

εM(ω)α(ω)

1− ε2
M(ω)

[

2α(ω)+
1

2τ
(1− τ)

]

e−2α(ω)τ/(1−τ)

}

, (1)

σ
y
abs =

32πω

3c

(

2Roτ

1− τ

)3

Re

{

εM(ω)α2(ω)

1− ε2
M(ω)

e−2α(ω)τ/(1−τ)

}

, (2)

where Equations (1) and (2) correspond to axial (electric field parallel to z-direction) and normal

(electric field perpendicular to y-direction) polarizations, respectively. Note that we have intro-
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duced the parameter τ = Ri/Ro, which measures the gold shell thickness, and

α(ω) =
1

2
ln

{

εM(ω)−1

εM(ω)+1

εM(ω)− εC

εM(ω)+ εC

}

, (3)

which governs the wavevector of the plasmonic modes supported by the nanocrescent. εC in Equa-

tion (3) stands for the dielectric constant filling the core of the nanoparticle. In contrast to 2D

crescents,39 the absorption spectra for axial and normal illuminations present differences.

Figure 2(a) shows the absorption cross section of an air-filled perfect gold nanocrescent with

Ro = 10 nm and τ = 0.85 (note that more realistic dielectric cores are considered below). The

left (right) panel renders σabs under axial (normal) illumination. Solid lines plot analytical TO

predictions, whereas dots correspond to numerical calculations. All the simulations presented in

this work were performed using the highly adaptive meshing algorithm implemented in COM-

SOL Multiphysics. For comparison, the spectrum for a 10 nm radius nanosphere is also shown.

Figure 2(a) demonstrates that nanocrescents present a larger and spectrally much broader cross

section than solid nanoparticles. Our theoretical results are in good agreement with simulations

at low frequencies, but overestimate σabs at frequencies near the crescent dipolar LSP resonance

(∼ 450 THz). This is caused by the plasmon pole approximation intrinsic to Equations (1) and (2).

Moreover, our TO approach also fails to reproduce the broad absorption band in the nanocrescent

spectra above 500 THz, related to the emergence of interband transitions in the gold dielectric

function.

Our TO method also yields analytical insight into the near-field characteristics of gold nanocre-

scents. The left inset of Figure 2(a) renders the z-component of the electric field, Ez, within the

symmetry plane of the crescent at 300 THz (axial polarization). It shows that the efficient absorp-

tion performance of the device originates from the excitation of plasmonic modes which propagate

towards the vertex of the crescent. The group velocity of these electromagnetic waves decreases

as they approach this geometric singularity, leading to an intense concentration of electromagnetic

energy which is only truncated by metal absorption. Within the x = 0 plane (see Figure 1), the TO
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Figure 2: (a) Absorption cross section of a perfect gold nanocrescent (Ro = 10 nm, τ = 0.85) under

axial (left) and normal (right) illumination. Solid (dashed) lines render analytical (quasi-analytical)

predictions, and dots correspond to numerical simulations. The solid sphere spectrum is plotted

in black dashed-dotted line. The inset shows Ez/E0 at 300 THz in saturated colors ranging from

-100 (blue) to 100 (red). (b) Field enhancement versus θ [see right inset in panel (a)] evaluated

at 300 THz for axial (top) and normal (bottom) polarization. Color solid (grey dashed) lines plot

analytical (numerical) results. The inset renders |Ez/E0| versus the incident frequency and θ for

both polarizations.

expression for the field enhancement in the vicinity of the nanocrescent vertex reads

Ez

E0
=

√
2π

(

2τ

1− τ

)3 α2(ω)

1− ε2
M(ω)

e−α(ω)τ/(1−τ)

(1+ cosθ)3/2
×

×
[

εM(ω)+1

εC +1
eα(ω)+

εM(ω)εC +1

εC +1

]

J0,1

(

α(ω)τ
1−τ

sinθ
1+cosθ

)

, (4)

7



where J0 (J1) denotes the zero (first) order Bessel function of the first kind, which must be used

for the case of axial (normal) illumination. Equation (4) is evaluated at the external boundary of

the nanoparticle, parameterized by the angle θ as indicated in the right inset of Figure 2(a). Note

that the electric field distribution is azimuthally independent for incident polarization parallel to

the crescent axis.

Figure 2(b) plots the field enhancement in the vicinity of the nanocrescent singularity (Ro = 10

nm, τ = 0.85) for axial (top) and normal (bottom) illumination (300 THz). Color solid lines render

Ez/E0 obtained from Equation (4), whereas numerical calculations are shown in grey dashed lines.

Theory and simulations are in remarkable agreement (except for a small angular shift), which

validates the physical approximations behind our TO calculation. The inset of Figure 2(b) displays

|Ez/E0| as a function of the incident frequency and the angle θ . Interestingly, the theoretical

prediction shows that the electric fields for both polarizations have the same magnitude, revealing

the polarization independent nanofocusing ability of 3D nanocrescents. This effect can be easily

understood through Equation (4), as the asymptotic forms of the Bessel functions at the crescent

vertex (θ → 180◦) differ only in a phase term. The field enhancement contourplot illustrates the

balance between geometric focusing and absorption damping taking place in the nanostructure. At

low frequencies, the large metal permittivity and small absorption lead to a strong localization of

the electromagnetic energy at the crescent singularity. On the other hand, the electric fields are

damped at positions further from this point with increasing frequency. This effect not only shifts

the maximum in |Ez/E0| to smaller θ , but also widens its angular extension. Importantly, our TO

calculations indicate that the value of the maximum field enhancement (∼ 103) is independent of

the incident frequency below the dipolar LSP.

Up to here, we have described the ability of gold crescents to convert radiation from the far to

the near-field with high efficiency within a broad frequency window. We investigate now the tuning

possibilities of the nanostructure. Taking advantage of the insensitivity of the device performance

to the incident polarization, we restrict our analysis to axial illumination in the following (see

the Supporting Information for more details on normal illumination). Figure 3(a) explores the
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Figure 3: (a) Electric field enhancement versus θ evaluated at 300 THz for air-filled nanocrescents

with Ro = 10 nm and different Ri. The inset renders σabs as a function of the incident frequency

and τ in log scale. (b) Absorption spectra for crescents (Ro = 10, τ = 0.85) filled with different

dielectric cores. Solid lines (dots) correspond to analytical (numerical) results. The inset plots

|Ez/E0| versus θ at 300 THz for the geometries in the main panel.
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dependence of the crescent nanofocusing ability on the shell thickness. Theoretical Ez/E0 at 300

THz is plotted versus the angle θ for Ro = 10 nm nanoparticles of various τ . The thickening of the

gold cover (reduction of Ri) increases the field localization at the crescent singularity, which also

leads to higher Ez/E0 values. The inset of Figure 3(a) renders σabs as a function of the frequency

and τ . It shows the red-shifting of the absorption maximum with the shell thinning. This trend

can be understood in terms of the transformed disk, whose thickness is proportional to (1− τ)/τ .

Crescents with larger τ map into thinner disks, which increases the binding (and therefore lowers

the frequency) of the surface plasmon modes supported by the system.

Figure 3(b) shows the absorption spectra for nanoparticles with Ro = 10 nm, τ = 0.85, and

different dielectric cores, εC. The TO predictions given by Equation (1) (solid lines) are in very

good agreement with numerical results (dots). We can observe that increasing εC has a similar

effect on the cross section as increasing τ . This can be interpreted again as a consequence of

the tightening of the plasmonic modes in the inverted structure due to the presence of a higher

dielectric environment. Note that the crescent core maps into the semi-infinite volume z′ > g2/R
i

in the transformed frame. The spectra in Figure 3(b) also show a notable reduction of σabs just

above the absorption maxima. The origin of this effect can be clearly identified in Equation (3).

At frequencies satisfying −εC < εM(ω) < −1, the real part of α(ω) (which gives the surface

plasmon propagating wavevector) vanishes. This means that the gold nanocrescents do not support

plasmonic modes able to collect the incident light within this spectral window, which causes their

small effective cross section. The inset of Figure 3(b) plots |Ez/E0| at 300 THz in the vicinity of

the crescent singularity. It demonstrates the tunability of the light concentration profile by means

of the dielectric medium filling the core. Finally, we remark that the dependence of the spectral

characteristics of nanocrescents on τ and εC makes their tunability throughout the whole visible

spectrum possible.

Perfectly-shaped nanocrescents are an idealization of the actual nanoparticle designs achiev-

able experimentally. Although their analytical study has provided us with deep physical insight,

we focus our attention now on more feasible nanostructures. Specifically, we address the question
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of how the light harvesting capabilities of these devices are modified when their singular ver-

tex is removed. As shown in Figure 1(a), we consider the blunt geometry that results from the

drilling of a circular hole of radius Rb at the crescent vertex (note that the spherical inner core

remains unaltered). Such nanocup-like structures have been realized experimentally using various

nanofabrication techniques.21,23

Our TO approach enables us to describe the optical properties of blunt nanocrescents or nanocups.

As discussed above, these lead to disks of finite radius in the transformed frame, see Figure 1(b).

Contrary to perfect crescents, nanocups cannot be linked to infinite plasmonic structures, which im-

plies that they do not exhibit the continuous response of the singular geometry. Thus, the electric

fields for blunt nanocrescents cannot be expressed in terms of a single plasmon pole contribution,

but as a superposition of standing surface waves. Under the inversion, surface plasmon modes are

excited by the transformed dipole-like source and propagate away within the flat disk faces. These

are perfectly reflected at the disk edges (re-irradiation effects are neglected within the near-field

approximation), and travel back and forth until being damped due to metal absorption. There-

fore, due to the finite size of its transformed counterpart, the surface plasmon modes supported by

nanocups are no longer continuous, but discrete at different resonant frequencies. Using the quasi-

analytical TO approach summarized in the Supporting Information, the absorption cross section

for blunt nanocrescents can be written as

σ z
abs =

4πω

c
R3

oIm

{

lmax

∑
l=0

αlBl

}

, (5)

where αl corresponds to the l-th zero of the zero order Bessel function and Bl is a coefficient

calculated by appropriately applying boundary conditions at several discrete points along the cres-

cent surface. The parameter lmax corresponds to the number of terms needed in Equation (5) to

reach convergence (∼ 10− 50, increasing with smaller Rb). In the Supporting Information, the

derivation of the cross section for normal illumination is also provided. The color dashed lines

in Figure 2(a) plot the spectra obtained from Equation (5) for perfect crescents. They show that

11



0.1

0.2

0

0.05

0.15

R
b
/R

o

frequency (THz)

(a)

frequency (THz)

σ
a
b
s
 (

n
m

 )2

500 700600200 400300

200 400 600 800 1000
10

10

10

10

0 100 200 300 400

160 163 166 169 172 175
−300

−200

−100

0

100

200

300

400

f=319THz

f=374THz

f=240THz

E
z
/E

0

(b)
Ez/E0

-30

30

0
θ

θ (degree)

2

1

0

-1

Figure 4: (a) Quasi-analytical TO (solid line) and numerical (dots) absorption cross section for a

blunt nanocrescent with Ro = 10 nm, τ = 0.85, and Rb = 1 nm. The inset renders σabs in nm2 as a

function of the incident frequency and the ratio Rb/Ro for the Ro and τ values in the main panel. (b)

Ez/E0 versus θ for the three lowest absorption maxima in panel (a). Solid lines (dots) correspond

to TO (numerical) calculations. The inset shows the field enhancement within the crescent middle

plane at 374 THz.

our quasi-analytical predictions are in excellent agreement with simulations even above the dipolar

LSP resonance. This is due to the fact that they are no longer based on the plasmon pole approx-

imation, and have taken into account the contribution from all electromagnetic modes, including

evanescent surface waves.

The main panel of Figure 4(a) plots the TO quasi-analytical (solid line) and numerical (dots)

absorption cross section for a blunt crescent with Ro = 10 nm, τ = 0.85, and Rb = 1 nm. The spectra

display four distinct resonant peaks below the dipolar LSP, resulting from the plasmonic mode

discretization described above. For larger bluntness radii, the intensity of these absorption maxima

increases while their spectral position blue-shifts. This is illustrated in the inset of Figure 4(a),

which renders σabs in nm2 versus the incident frequency and the ratio Rb/Ro. For small bluntness

(Rb < 0.02Ro), the absorption spectra exhibit the continuous broadband behaviour characteristic

of singular nanocrescents. For larger truncations, a well defined array of resonances appear, which

govern the light collection properties of nanocups when Rb and Ro are comparable.

In order to gain physical insight into the plasmonic resonances arising in the absorption spec-
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Figure 5: (a) Quasi-analytical absorption cross section as a function of the incident frequency and

τ = Ri/Ro for nanocups with Ro = 10 nm, Rb = 1 nm, and εC = 1. The inset shows the spectra for

τ = 0.5 (green), 0.7 (red) and 0.85 (black). (b) σabs as a function of the incident frequency and the

dielectric core for blunt crescents with Ro = 10 nm, τ = 0.85 and Rb = 1 nm. The inset shows the

absorption spectra for different εC: 1 (black), 2 (red) and 12 (green).

trum of gold nanocups, we analyze now the nanofocusing performance of these devices. Fig-

ure 4(b) plots Ez/E0 versus θ (see inset) at the three lowest absorption maxima for the nanocrescent

considered in panel (a). Both theoretical and numerical results are shown, in solid lines and dots,

respectively. The electric field profiles demonstrate that each plasmonic mode features a distinct

number of spatial oscillations along the nanocrescent surface. This is in excellent agreement with

the standing wave picture introduced above. Note that for the three resonances, the maximum of

Ez/E0 takes place at the nanocup edge. Importantly, although the structure truncation diminishes

the focusing efficiency, field enhancements up to 400 are obtained for the geometry considered in

Figure 4. The inset of Figure 4(b) renders Ez/E0 within the crescent middle plane evaluated at 374

THz. See the Supporting Information for a similar study on nanocups under normal illumination.

Figure 5(a) investigates the dependence of the absorption properties of blunt nanocrescents

on the thickness of the gold shell. It renders σabs (in nm2) versus the incident frequency and

the parameter τ for 10 nm outer radius nanocups with Rb = 1 nm and εC = 1. The contourplot

indicates that the sensitivity of the absorption behavior against structural imperfections diminishes
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with increasing thickness of the gold shell (decreasing τ). For thin nanocrescents, the cross section

displays multiple high intensity resonances, which emerge already at low frequencies. The shell

thickening shifts these resonances towards the dipolar LSP (∼ 450 THz), where all merge for

τ < 0.6. This trend is accompanied by an overall reduction of the absorption cross section, as

evidenced in the inset of Figure 5(a). The absorption spectrum for three shell thicknesses is plotted,

τ = 0.5 (green), 0.7 (red) and 0.85 (black), demonstrating that the disappearance of the discrete

surface plasmon resonances results in the degeneration of the nanocrescent cross section to the

spectrum of a solid nanosphere. Thus, in order to optimize the light-harvesting performance of 3D

gold nanocups, the shell thickness must be appropriately designed. It should be neither too small

(in order to achieve a considerable field enhancement) nor too large (so that the structure supports

LSP resonances at the operation window). For instance, for a nanocup with a 10nm outer and a

1 nm bluntness radii, our theoretical approach predicts that the optimum shell thickness range is

0.7 < τ < 0.85.

An additional degree of freedom is introduced in Figure 5(b), which explores the variation of

σabs with the dielectric constant filling the core of nanocups with Ro = 10 nm, τ = 0.85 and Rb = 1

nm. It is apparent that increasing εC results in a red-shifting of the absorption maxima, which is

similar to the perfect crescent behaviour observed in Figure 3(b). This effect is accompanied by

the suppression of the continuous absorption band above 500 THz, which again can be explained

in terms of the frequency window in which Re{α(ω)} = 0 in Equation (3). As a result of the

reduction of σabs above 500 THz, the discrete absorption resonances shift to lower frequencies,

while their intensity reduces. This trend can be clearly seen in the inset of Figure 5(b), which plots

the cross section for nanocups with εC = 1 (black), 2 (red) and 12 (green). Calculations for normal

incident polarization are provided in the Supporting Information, showing a similar behaviour.

Radiation losses emerge for crescent dimensions comparable to the incident wavelength. In

order to describe this additional damping channel in 3D nanostructures, we must go beyond the

near-field approximation. With this purpose, we use here a self-consistent methodology based on

the optical theorem. Detailed calculations (described in the Supporting Information) show that the
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prediction is shown in black solid line. The inset shows |Ez/E0| versus θ evaluated at 400 THz for

perfect crescents with outer radius as indicated by the color code in the main panel.

nanocrescent cross section corrected in this way takes the following form

σ z
abs =

4πω

η2(ω)c
R3

oIm

{

lmax

∑
l=0

αlBl

}

(6)

where η(ω) =
∣

∣

∣
1− 2i

3

(

ω
c

)3
R3

o ∑
lmax

l=0 αlBl

∣

∣

∣
is the so-called radiative reaction factor.35 Note that the

second term in η(ω) describes the occurrence of radiative damping. When the structure dimen-

sions are small, ωRo/c ≪ 1, and this term vanishes. In this limit, Equation (6) reduces to the

quasi-static expression.

Figure 6 depicts the normalized-to-volume absorption cross section for singular crescents with

different outer radii, Ro: 10 (red), 30 (cyan), 50 (green), 100 (orange), and 200 (blue) nm. The

good agreement between the quasi-analytical and numerical results for Ro ≤ 100nm demonstrates

the validity of our TO approach. When Ro ≥ 200nm, our theoretical predictions differ from the

numerical simulations due to the appearance of the retardation effects that have been ignored in

our treatment. As indicated by Figure 6, the absorption behavior of the 3D crescent remains insen-

sitive to size effects for Ro ≤ 50 nm. Note that the black solid line plots the analytical normalized

spectrum obtained from Equation (1), which is independent of the nanocrescent outer radius. For
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Figure 7: (a) Absorption cross section of gold nanocrescents with Ro = 10 nm and τ = 0.85. The

red (blue) line renders the nonlocal (local) spectrum for the singular (blunt) geometry with Rb = 0

(Rb = 1.4 nm). The singular local cross section is plotted in black line. The inset shows nonlocal

σabs/R3
o for singular crescents with 10 (red) and 40 (green) nm outer radius, together with the

nonlocal spectrum for a 10 nm radius solid nanosphere (black). (b) Field enhancement versus θ
for the lowest absorption maximum (290 THz) in the nonlocal (red) and blunt (blue) spectra in

(a). The lower inset shows Ez/E0 for the three lowest nonlocal resonances in (a). The upper panel

plots the maximum |Ez/E0| versus frequency for Ro = 10 (red) and 40 (green) nm perfect crescents

within the nonlocal approximation.

larger dimensions, radiative damping reduces σabs, while shifting to lower frequencies the cross

section maximum. The inset of Figure 6 shows the electric field enhancement at 400 THz for

crescents with Ro as indicated by the color code in the main panel. Dots plot numerical calcula-

tions, and solid lines render |Ez/E0| obtained from Equation (4), divided by the radiative correction

factor η(ω). The field enhancement maximum in Figure 6 only decreases by a factor of 2 when

Ro increases from 10nm to 50nm. This indicates that 3D nanocrescents are much more robust to

radiative losses than their 2D counterparts.39

So far, we have treated the optical properties of gold crescents within the usual local description

for the metal permittivity. However, recent studies41–44 demonstrate the emergence of significant

quantum phenomena in plasmonic devices shaped on sub-nanometer length scales. Specifically,

nonlocal effects in the metal dielectric function give rise to an effective smearing out of the nanos-

tructure boundaries. This reduces the binding of LSP modes and diminishes the achievable field

enhancements.36,45 Here, we investigate the impact that nonlocality has on the absorption and
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focusing performance of nanocrescents using a quasi-3D, spatially dispersive, finite element nu-

merical method (see the Supporting Information for further details).

Figure 7(a) compares the cross section of a singular crescent (Ro = 10 nm, τ = 0.85) treated

within the nonlocal description (red line) and the local approximation (black line). The introduc-

tion of spatial dispersion leads to the emergence of discrete resonant peaks which are reminiscent

of those found for blunt geometries (see Figure 4). The blue line in Figure 7(a) renders the local

absorption cross section for a nanocup with Rb = 1.4 nm. Importantly, the bluntness radius has

been chosen so that the metal thickness at the cup edge is twice the longitudinal plasmon decay

length (δLP = 0.1 nm for gold). These two spectra (red and blue lines) present not only a quali-

tative, but a quantitative resemblance, which gives us physical insight into the impact that spatial

dispersion has on the device. This indicates that the surface plasmon modes travelling towards the

nonlocal crescent vertex undergo reflection when reaching shell regions thinner than 2δLP. Within

the nonlocal description, the surface plasmon modes lose their ability to accommodate to the metal

boundaries in the sub-nanometer regime. As radiation losses are negligible for small nanoparticles,

these modes suffer reflection in a similar way as it happens in truncated geometries.

Our interpretation of spatial dispersion in gold nanocrescents is supported by the inset of Fig-

ure 7(a). It compares nonlocal σabs/R3
o for singular crescents (τ = 0.85) with Ro = 10 (red) and 40

(green) nm. Similarly to the nanocups in Figure 5, Figure 7(a) indicates that bigger nanocrescents

develop a larger number of less defined nonlocal resonances. This can be linked to the effective

expansion of the shell area where the gold thickness is comparable to δLP. For Ro > 40 nm, the

nonlocal maxima blur and a continuum spectrum is recovered. Importantly, both nonlocal cres-

cents exhibit a larger and broader cross section than the 10 nm radius nonlocal nanosphere plotted

in black dashed line.

We analyze in Figure 7(b) the impact of nonlocality on the field enhancement ability of gold

crescents. The main panel shows Ez/E0 versus θ for the lowest resonance (290 THz) in the non-

local (red) and blunt (blue) spectra in Figure 7(a). The electric field associated to the plasmonic

modes supported by both crescents changes sign only once as they approach θ = 180◦. Moreover,
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the maximum field enhancement takes place at the same position (θ = 172◦) in both cases. This

allows us to extend the link between nonlocal and bluntness effects discussed above from the far

to the near field. Note that the maximum in Ez/E0 is 4 times larger for the blunt nanocup than

for the nonlocal crescent. This can be related to the lighting rod effect,1 which does not occur in

the singular geometry. The lower inset of Figure 7(b) compares Ez/E0 for the three lowest non-

local resonances in Figure 7(a). Whereas the lowest resonance oscillates once in the vicinity of

the crescent vertex (red), the second (blue) and third (violet) present two and three oscillations,

respectively.

Finally, we investigate to which degree nonlocal effects and radiative losses limit the field en-

hancement that can be achieved in nanocrescents. Whereas the former govern the optical properties

of small devices, the latter become relevant in large ones. The main panel of Figure 7(b) demon-

strates that, once spatial dispersion is taken into account, the field enhancement in a 10 nm outer

radius crescent at its lowest resonance reaches a maximum value of 34. On the other hand, the

inset of Figure 6 indicates that radiation effects are not significant for Ro ≤ 50 nm. The nanofo-

cusing performance of the device should be optimized for dimensions between these two cases.

This is shown in the upper panel of Figure 7(b), which plots the maximum |Ez/E0| as a function

of frequency for the nonlocal crescents in the inset of Figure 7(a). Note that the angular posi-

tion of |Ez/E0|max shifts with frequency. Importantly, whereas the maximum field enhancement

for Ro = 10 nm (red) is 60, |Ez/E0|max = 130 is predicted for 40 nm outer radius nanocrescents

(green).

Summarizing, we have introduced a set of highly versatile TO solutions revealing the elec-

tromagnetic properties of 3D nanocrescents. Our approach incorporates both bluntness effects,

inevitable in any nanofabrication strategy, as well as radiative damping, significant in devices

whose dimensions lead to the scattering of electromagnetic energy into the far field. Applying

these methods, we have obtained deep insights into how geometric and material aspects govern

the performance of crescent-shaped light harvesters. Finally, a spatially dispersive treatment of

Maxwell’s equations was used to determine the impact of nonlocal effects in subnanometer shells.
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Crucially, we find that, despite adverse effects such as structural imperfections, radiation losses, or

nonlocality, field enhancements of more than two orders of magnitude take place in realistic gold

nanocrescent designs.
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