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ABSTRACT

Sengupta, Parijat Ph.D., Purdue University, December 2014. Theory of topological
insulators and its applications. Major Professor: Gerhard Klimeck.

An important pursuit in semiconductor physics is to discover new materials to

sustain the continuous progress and improvements in the current electronic devices.

Traditionally, three material types are in use: 1) Metals 2) Semiconductors 3) Insula-

tors. All the three material types are classified according to the energy gap between

conduction and valence bands derived from band theory of solids. Recent theoreti-

cal predictions and confirmed by experimental observations have provided evidence

that there exists materials which behave as insulators in the bulk but possess gapless

conducting states on the surface. These new class of materials are called topologi-

cal insulators (TI). In this work, the electronic structure of TIs would be explained

specifically answering the two important questions: 1) What distinguishes a topolog-

ical insulator from a normal insulator? 2) Why topology is related to the study of

insulators?

This thesis examines HgTe and Bi2Te3 as 2D and 3D TIs respectively. Design

principles for utilizing HgTe based 2D TIs as a switch and tuning the critical width is

explained. Further the surface states, which are the counterpart of the edge states in

a 3D TI depend on thickness of the film, orientation, inequivalent surface termination,

spin-momentum locking etc. Using a four-band k.p model, some of these features are

investigated. Further, peculiarities in the electronic structure of TIs do not allow a

classical methods of band structure calculation possible. A new approach which does

not distinguish between electrons and holes will be presented that efficiently computes

the self-consistent band structure of TIs.
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Almost all known topological insulators are a direct outcome of strong spin-orbit

coupling. As a break of this trend, wurtzite based nitrides are shown to possess 2D

topological insulator states. The strong internal polarization of wurtzite crystal is

used to invert the bands and create a 2D TI.

As an application of TIs, the current-voltage characteristics of a Bi2Te3 transistor

that utilize the highly mobile surface states is simulated. The characteristics show

that in addition to high mobility, it also offers a low-power option for designing a

transistor in a fast switching environment. Additionally, a comparison between the

I-V characteristics of silicon and graphene ultra-thin bodies further demonstrate the

low-power utility of such devices. Difficulties with a transistor that operate exclusively

with TI surface states are also highlighted.

In the last part of the work, topological insulator nanostructures are considered.

In particular, TI nanowires and nanoribbons which distinctly exhibit various manifes-

tations of well established phenomenon in condensed matter physics such as AB and

SdH oscillations, WAL, Kondo effect etc. are studied. The influence of an external

magnetic field on surface states is also discussed. Finally, the proximity effect of su-

perconductors that induce a bandgap opening in a TI-SC heterostructure is computed

with a modified form of the BdG Hamiltonian.
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1. A PRIMER ON TOPOLOGICAL INSULATORS

1.1 Introduction

An important pursuit in semiconductor physics is to discover new materials to

sustain the continuous progress and improvements in current electronic devices. Tra-

ditionally, three material types are in use: 1) Metals 2) Semiconductors, which are

insulators but can be made conducting under suitable conditions such as doping and

temperature and 3) Insulators. All the three material types are classified according

to the energy gap between conduction and valence bands derived from band theory

of solids. Recent theoretical predictions and confirmed by experimental observa-

tions have provided evidence that there exists materials which behave as insulators

in the bulk but possess gap-less conducting states on the surface. These states, in a

time-reversal invariant system are protected against perturbation and non-magnetic

disorder. Such materials are now known as topological insulators (TI) [1, 2].

Another way of viewing topological insulators is through the concept of order

so widely-prevalent in modern condensed-matter physics. Traditionally, our under-

standing of phases of matter such as solids, liquids has been based on the associated

symmetries of the system. This idea is clearly seen in the phase transition of liquid

atoms with rotational and translational symmetry into a crystal with discrete sym-

metries (e.g. translational, discrete rotational, inversion, etc.). More complex phases

describable by the paradigm of symmetry breaking include ferro-magnets (rotational-

symmetry breaking) and superconductors (broken-gauge symmetry). Despite the con-

siderable success enjoyed by the Landau-Ginzburg theory of spontaneous-symmetry

breaking, several notable exceptions exist that elude such as a description. Histori-

cally, the integer quantum hall effect (QHE) discovered in 1980 by Klaus Von Klitzing

while examining the behaviour of electrons confined in two dimensions and subjected
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to a strong perpendicular magnetic field and an in-plane electric field is regarded as

the first deviation from the symmetry-breaking theory. In this particular experiment,

the measured Hall conductance turned out to be in exact quantized fundamental units

of e2/h.

σ = νe2/h (1.1)

where ν assumes any integer value. Klaus von Klitzing also discovered that the two-

dimensionally confined electron gas possesses a Hall resistance (Fig. 1.1) that shows

a plateau like structure. This is remarkable not only because it deviates significantly

from a classical linear Hall resistivity plot, the quantization described by Eq. 1.1 is

independent of microscopic details,type of material used and purity of the sample.

Impurities and other imperfections do not change the Hall resistivity behaviour. A

complete quantum mechanical analysis of this problem as given by Macdonald is

included in the appendix .

The 2DEG of a Si-MOSFET used in the QHE experiment when exposed to a

strong magnetic field creates Landau levels with discrete energies forcing the electrons

to move in a cyclotron orbit. The electrons executing harmonic oscillator motion are

separated by energy levels En = (n + 1/2)h̄ω that allow for the system to be an

insulator when the Fermi energy is placed within the energy gap. Thus far, the

quantum Hall sample is a true bulk insulator unless the chemical potential is aligned

with one of the Landau levels. However, the experimental observation of the quantized

nature of Hall conductivity is seemingly at odds with this picture. The resolution

of this problem can be achieved by edges of the sample that host electronic states

propagating in a chiral manner. The quest to understand this remarkably precise Hall

quantization has spawned the theoretical developments that is at the heart of current

world-wide focus on topological insulators. One of the primary accomplishments has

been the recognition that the plateaus (which give the quantized conductance)have

topological significance and cannot be explained with the bulk electronic structure.

It can be explained in terms of topological invariants known as Chern numbers [4,5].
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Fig. 1.1. Quantum Hall effect in a InGaAs-based heterostructure
measured at 30mK [3]. The diagonal component of resistivity shows
regions of zero resistance corresponding to each QHE plateau. The
Hall resistivity is quantized in units of h/e2 divided by an integer.

An integer quantum Hall phase is protected from being deformed into a phase with

different topology in the same way a torus is protected from being deformed into a

sphere [6, 7]. The only time such a change is possible is through a phase transition

where the gap in the energy spectrum closes in a critical fashion. The Quantum Hall

effect will not be elaborated in greater detail here; the interested reader can refer to

extensive original literature available [8–11].
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The QHE edge states are now easily understood in terms of the Laughlin pic-

ture [12] and composite fermions [13], but it is the realization that such edge states

can be present in absence of a time reversal breaking magnetic field has led to the

new field of topological insulators. The key difference from quantum hall systems is

the absence of a magnetic field and production of double-degenerate edge states -one

for each spin- as opposed to single current carrying state in the Quantum Hall effect

(Fig. 1.2). In the following sections, a simple model will be presented which captures

the essence of topological insulators in an otherwise insulating sample. Further de-

tails of topological insulators and their subtleties will be presented in the succeeding

chapters.

Fig. 1.2. A quantum Hall system contains a chiral state propagating
along the edge of the sample, where backscattering is prohibited. The
red colour around the edge of the box denotes a single channel for
electrons to move forward. In a quantum spin Hall system the edge
states are helical, and back scattering remains forbidden with an odd
number of right or left-moving channels at each part of the sample.
In contrast to the quantum hall phenomenon, the quantum spin hall
system has two channels around the edge. The two channels are
marked by red and blue. Each channel supports the movement of
electron with a unique spin projection. This figure has been taken
from Ref. [14]
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Until the prediction and experimental discovery of topological insulators, the

quantum hall effect was the only known realization of topological state in existence.

Compared to the rich variety of traditional broken-symmetry states beginning from

the ubiquitous solid-liquid and gaseous phases to superconductivity, one is led to the

obvious question: should there not be other topological states remaining to be dis-

covered? In particular, the quantum hall insulator requires a large magnetic field for

its existence. A natural question to ask is whether a magnetic field, which breaks

time-reversal symmetry, is a necessary condition to obtain a topological state. The

first answer to this question was provided by the independent theoretical prediction

by Kane and Mele [15, 16] and Bernevig and Zhang [17] of a new state of mat-

ter; the 2D time-reversal invariant topological insulator or quantum spin Hall (QSH)

insulator. This state displays robust quantized properties but does not require a

time-reversal symmetry breaking magnetic field for its observation. The remarkable

proposal of Kane and Mele is based on the spin-orbit interaction of graphene and is

mathematically

1.2 Quantum spin Hall state and 3D topological insulators

The quantum spin Hall state and quantum Hall effect differ fundamentally. Though

they both exhibit chiral edge states, the presence of time reversal symmetry in QSH

significantly alters the overall behaviour. In this model (Fig. 1.3), there are two edge

states propagating in opposite directions with opposite spin. Because of time reversal

invariance, an electron with spin-up traveling anti-clockwise must have a counter-

part in spin-down electron traveling clockwise. Roughly speaking, the QSH state

can be viewed as two copies of the quantum Hall state with opposite Hall conduc-

tances, opposite spin and magnetic field. Such an arrangement can originate from

spin-orbit coupling which creates a momentum-dependent
−→
B field. In a pair of re-

markable papers that appeared in Physical Review Letters in 2005, Kane and Mele

motivated by the earlier work of Haldane [18] on the so-called quantum anomalous
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Hall (QAH) effect proposed the QSH to exist in graphene. This proposal turned out

to be practically unrealizable because of graphene’s low spin-orbit coupling. Soon

after, Bernevig, Hughes, and Zhang put forward a more realistic set-up with HgTe

and CdTe quantum wells [17]. They predicted that the HgTe-based quantum well

heterostructure can host pair of counter-propagating edge states which are related

to each other through time-reversal symmetry. The prediction was verified by the

Molenkamp group at University of Wuerzburg, Germany in 2007 [19].

Fig. 1.3. A quantum Hall system (a) has a left and right moving set
of electrons along the two edges of the quantum Hall bar. A QSH (b)
on the other hand has a left and right moving set of electrons on each
edge. Both edges now have two group of electrons moving in opposite
directions but with anti-parallel spin. This figure is from Ref. [20]

It is now natural to enquire if there exists a 3D version of the QSH state. In

2008, a 3D system (Bi0.9Sb0.1) which guarantees the presence of surface states was

discovered through ARPES experiments [21]. It was found that the states have a

linear dispersion, close the bandgap on the surface and retain a gapped spectrum

in the bulk. Several theoretical predictions [22, 23] preceded this experiment and

they were all related to the spin-orbit coupling of the material. Following the initial
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discovery several other compounds that possess a bandgap closing surface state were

discovered. Prominent examples of such compounds are Bi2Te3, Bi2Se3, and Sb2Te3.

In brief, the 3D topological insulator has a tunable parameter (the intrinsic spin-orbit

coupling) that enables transition from a topologically non-trivial to trivial insulator.

When the topological insulator has an interface with a trivial insulator a band gap

closing state is present on the surface.

1.3 Effective Hamiltonians

ARPES experiemnts [24, 25] have shown that several 3D topological insulators

have surface states that consist of a single Dirac cone (Fig. 1.4) at the Γ point.

Similarly, a Dirac dispersion also governs the edge states of a 2D topological insulator

(QSH system). For the two cases, an effective energy Hamiltonian can be written in

the simplest form. A QSH edge state (Eq. 1.2) is given as

H = h̄vfσxky (1.2)

while a 3D TI surface state is characterised by Eq. 1.3

H = h̄vf (σxky − σykx) (1.3)

3D TIs allow momentum to be in any in-plane directions while 2D TIs are confined

to one-dimensional
−→
k space.

The Hamiltonian of Eq. 1.3 can be diagonalized to obtain the eigen vectors and

eigen states as

E = h̄vf |
−→
k | (1.4)

and

|ψk〉 =
1√
2
(±ie−iθ| ↑〉+ | ↓〉) (1.5)

It is easy to see from Eq. 1.5 that the spin-momentum relationship is uniquely deter-

mined. The spin is always perpendicular to the momentum vector due to additional
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Fig. 1.4. Dispersion relationship for Sb2Se3 (a), Sb2Te3 (b), Bi2Se3 (c)
and Bi2Te3 (d) on the [111] surface. All the tellurides and selenides
except for Sb2Se3 have a linearly dispersing surface state at the Γ
point. Figure taken from [25]

i prefactor in the eigen vector. Every momentum direction is locked to one spin di-

rection. The spin-momentum locking gives the helical character to the surface states

of a topological insulator.

This concludes a simple introduction to the paradigm of topological states as a

way of classifying phases of matter. The 2D and 3D variants of topological insula-

tors that exist, the materials that have been experimentally verified to possess such

characteristics were introduced. Additionally, their relationship to the quantum Hall

system which is a precursor to the current research on topological insulators was ex-

amined. In Chapter 2, the reason behind existence of edge states in a QSH system

and surface states in a 3D topological insulator from a electronic structure perspective

will be thoroughly addressed.
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2. ELECTRONIC BAND STRUCTURE OF

TOPOLOGICAL INSULATORS

2.1 Introduction

In condensed matter physics, electronic structure theory [26] allows a description

of the energy bands electrons occupy in a crystalline solid. It helps to explain the

macroscopic properties of materials such as electrical and thermal conductivity, opti-

cal absorption etc. Generally, calculating the complete energy profile is an intractable

problem because an electron at any instant is subjected to interaction with the nucleus

and the surrounding electron cloud. Several approaches have been adopted, notably

the assumption that a single-particle picture instead of a many-particle formalism can

reproduce the essential details correctly. This chapter introduces the tight-binding

and k.p semi-empirical approaches to obtain the energy dispersion relationship for

topological insulators. Using results determined by these two methods and also ex-

amining the electronic Hamiltonian, key properties of topological insulators will be

pointed out.

As mentioned in Chapter 1, Kane and Mele proposed graphene a monolayer

of carbon atoms as a possible candidate for the observing protected edge states

without an external magnetic field. Unfortunately, this proposal turned out to be

unrealistic because the spin-orbit gap in graphene is extremely small. This effect was

also independently proposed in semiconductors in the presence of strain gradients, but

this proposal also turned out to be hard to realize experimentally. Soon afterwards,

Bernevig, Hughes, and Zhang initiated the search for the QSH state in semiconductors

with an inverted band structure, and predicted a quantum phase transition in type-

III HgTe/CdTe quantum well between a trivial insulator phase and a quantum spin

hall phase (QSH) governed by the thickness of the well. The QSH state was observed
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experimentally observed in 2007 by König at the University of Wüzburg, Germany.

The HgTe/CdTe well structure is described in detail in the next chapter. Simple

mathematical arguments are presented in this section which lead us to the desired

form of the Hamiltonian for topological insulators.

The Lorentz force, which drives the quantum hall state and is the immediate

theoretical precursor to QSH and 3D-topological insulators, attributes a ~A · ~P term

in the Hamiltonian. In terms of the symmetric gauge the vector potential ~A can be

written as:

~A = ~B/2(y,−x, 0) (2.1)

where ~B is the applied external magnetic field. which then gives a Hamiltonian of

the form [17]

H ∝ (xpy − ypx) (2.2)

Therefore, Bernevig et. al. argued, the goal is to look for another force in na-

ture which produces a similar Hamiltonian. The obvious candidate is the spin-orbit

coupling force. Its Hamiltonian is of the form

Hspin−orbit = ~E × ~P · σ (2.3)

where σ is the Pauli spin matrix. Instead of an external ~B field, an external ~E

field is used which preserves time reversal symmetry. If one considers a ~E field of the

form E(~x+ ~y), the corresponding Hamiltonian becomes:

Hspin−orbit = ~Eσz(xpy − ypx) (2.4)

The form of ~E considered is assumed to be confined in a two dimensional plane (along

with the particle momentum), therefore only the z component of the spin enters the

Hamiltonian.

Equation 2.4 is exactly identical to the representative equation (eq. 1.3) shown

in Chapter 1. This therefore points that spin-orbit coupling may be an essential

requirement in obtaining topological insulator states.
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2.2 Band inversion in topological insulators

The necessary condition for a compound to behave as a topological insulator is an

odd number of band inversions [27] between the conduction and valence bands. This

band inversion (explained in more detail in the next section) can be brought about

by primarily by spin-orbit coupling which exerts a significant influence in compounds

with heavy elements. An illustration of band inversion is shown in Fig. 2.1 and

Fig. 2.2. An energy gap which emerges at the points the conduction and valence

bands cross each other is called band anti-crossing. When such an inversion happens

an odd number of times in the complete Brillouin zone, a topological insulator is

formed. This must be though differentiated (Fig. 2.3) from the well-known Rashba

spin-orbit splitting. The Rashba effect is related to the conduction and valence bands

and can be smoothly deformed in to the bulk bands which is equivalent to a fully

gapped structure.

Fig. 2.1. Band dispersion of GaAs at the Γ point.

2.3 Bulk boundary correspondence

This deep connection between the bulk and boundary which manifests itself in

the form of robust surface states can be intuitively understood in the following way.

If we have a smooth interface between two materials with opposite signs of the bulk

band-gap, (strictly speaking these are called as belonging to two different topological
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Fig. 2.2. Band dispersion of HgTe at the Γ point. The lowest point
of the conduction band is below the top of the valence band. This is
opposite to normal sequence of bands, for example, in GaAs. Such an
ordered system of bands is called band inversion.

Fig. 2.3. Schematic surface states of a Rashba split system (left) and
a topological insulator. The point of intersection of bands is a time
reversal invariant (TRIM) point which Kramers degenarate. Fig is
from Ref. [28].

classes) the band structure changes slowly as a function of position across the inter-

face. The energy gap has therefore to vanish somewhere along the way, otherwise the

two materials would belong to the same topological class. It then follows that there

exists mid-gap surface states bound to the interface. The surface of a crystal can

be viewed as an interface with vacuum which is considered to be a normal ordered

material.

A better way of representing vacuum is to consider the surface of the topological

insulator. The surface is a thin slice of the bulk material which is tightly confined.

Due to confinement effects, electrons are pushed above the holes. As a consequence,

the ordering of bands at the surface changes from an inverted to normal material.
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This is purely a confinement effect and no other physics enters the picture. But the

bulk, at certain points is still inverted. An interface is therefore created between a

normal and inverted material. This leads to the formation of mid-gap states. In

the following section the idea of Time-Reversal-Invariant-Momenta (TRIM) points

will be introduced. TRIM points are important because the mid-gap surface state is

always formed at one of these points and there must be an odd number of crossings

of the surface bands and Fermi-level between two TRIM points. An even numbered

crossing will destroy the surface state and make the system fully gapped. It is easy to

visualize though why an odd number of crossings is necessary to have a surface state

bearing in mind the basic notion that such a state joins the conduction and valence

band together.

2.4 The TRIM points and the Z2 invariant

In the bulk of a three dimensional material, time-reversal symmetry holds.This

means that eqn( 2.5) is true.

E
(

~k, ↑
)

= E
(

~−k, ↓
)

(2.5)

Additionally, if inversion symmetry holds the following relation is also true.

E
(

~k, ↑
)

= E
(

~−k, ↑
)

(2.6)

If both equation( 2.5) and equation( 2.6) are simultaneously satisfied, bands are

spin degenerate at the same ~k point.

E
(

~k, ↑
)

= E
(

~k, ↓
)

(2.7)

In general, inversion symmetry is satisfied at special points in the Brillouin zone.

These high symmetry points satisfy eqn( 2.7). For reasons explained below they

are known as Time Reversal Invariant Momenta (TRIM) points. When the surface

bands close the gap, the conduction and valence bands meet at a certain point on

the surface (in k-space). Now each conduction and valence band has two components
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corresponding to the spin projections. The two components would meet at one of

the TRIM points for both conduction and valence bands. But since these points are

stable when time symmetry is maintained, the crossing of bands at TRIM points is

robust and impervious to non-magnetic perturbations. Presence of a magnetic field

would destroy the time symmetry and a gap would open up compared to the zero

band-gap system. On a surface which is two dimensional there are four such TRIM

points: (π, 0) , (π, π) , (0, π) , (0, 0). There is another important property of topological

insulator: The surface bands intersect the fermi-level an odd number of times between

two TRIM points. A trivial insulator has an even number of crossings. This has led

to the classification now known as the Z2 number.

The two cases between a trivial and topological insulator can be distinguished by

defining an index

Nk = m mod 2 (2.8)

where Nk is the number of Kramers pair of edge states that cross the Fermi energy.

The expression for the index given in eqn( 2.8) simply means m+ 2p, where p is any

integer. If Nk is even, then m = 0, whereas m = 1 corresponds to Nk is odd. Since

there are only two possible values of m, m is termed as being a Z2 invariant. Z2 is

the group with two elements, namely 1 and 0 and hence is the simplest non-trivial

group.

2.5 Topological insulator family of compounds

2.5.1 2D topological insulators: The HgTe family

HgTe is a 3D topological insulator which will be described in the next section.

Here 2D topological insulators which host an edge state and found in the HgTe/CdTe

quantum well heterostructure will be briefly explained. A full description is Chapter

3 of this thesis. In 2006, Bernevig, Hughes, and Zhang predicted that HgTe quantum

wells would be 2D topological insulators. The HgTe quantum well is sandwiched

between two CdTe barriers. CdTe has a band structure near Γ point similar to
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GaAs sketched in Fig. 2.1. The conduction and valence bands in CdTe are separated

by a large band gap of around 1.6 eV. Mercury being a heavier compound has a

larger Darwin component [29, 30] that in conjunction with spin-orbit coupling shifts

the p-type valence bands above the s-type conduction band at Γ point. The cubic

symmetry of HgTe ensures that the p-type bands are degenerate at the Γ point. HgTe

is therefore a zero band-gap semiconductor [31, 32] with inverted band structure.

HgTe opens a bandgap when the cubic symmetry is broken by destroying the

crystal periodicity. An easy way of accomplishing this is reduction in dimensionality.

An HgTe quantum well is a 2D periodic structure and has a finite bandgap at the Γ

point. At a quantum well thickness smaller than the critical value, HgTe has a finite

positive bandgap like CdTe and possesses no edge states. When the well thickness

is increased, the structure reverts back to an inverted band order and exhibits edge

states.

While an eight-band k.p Hamiltonian describes the full set of six valence (including

spin split-off) and two conduction bands and their mutual interaction through the

off-diagonal terms, it is sufficient to focus on bands that exclusively take part in the

inversion process [33, 34]. This interaction of bands is governed by the coupling of

conduction and valence states, represented through a linear term as shown in (6.3).

H(k) = ǫ(k) +

















M0 +M2k
2 A(kx + iky) 0 0

A(kx − iky) −M0 +M2k
2 0 0

0 0 M0 +M2k
2 A(−kx + iky)

0 0 A(−kx − iky) −M0 +M2k
2

















(2.9)

where

ǫ(k) = (C0 + C2k
2)I4×4 (2.10)

describes band bending. 2M0 = -E g0 corresponds to energy gap between bands and

is negative in the inverted order bands.

This Hamiltonian is written in the basis of the lowest quantum well subbands

|E+〉, |H+〉, |E−〉, and |H−〉 . Here, ± stands for the two Kramers partners. The
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sign of the gap parameter M determines if it is a trivial insulator (M > 0) or a

topological insulator (M < 0). Experimentally, M is tuned by changing the quantum

well width.

It must be mentioned here that the well know GaSb/InAs broken gap heterostruc-

ture is also a 2D topological insulator [35,36]. The band inversion in this system is not

due to spin-orbit coupling but an odd arrangement of conduction and valence band

edges. The conduction band edge of InAs (Fig. 2.4) at the Γ point falls energetically

below the valence band edge of GaSb. This class of 2D topological insulators will not

be pursued further in this thesis.

Fig. 2.4. Conduction and valence band edge for GaSb and InAs. The
conduction band edge of InAs lies below the valence band edge of
GaSb creating an inverted band order. Topological edge states have
been observed in GaSb/InAs quantum wells [37].

2.5.2 Three dimensional topological insulators

3D topological insulators were predicted immediately after the theoretical predic-

tion of quantum spin hall effect in 2006. Several key papers [38, 39] pointed to the

possible existence of surface states. BixSb1−x was the first predicted 3D topological

insulator which was subsequently observed by the Hasan group at Princeton through

ARPES experiments [21, 40, 41]. The 3D topological insulators can be grouped in
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to three categories. They are s-p, p-p, and d-f. Of these three groups, the second

group of p-p type will be discussed more extensively in this thesis. The genesis of this

nomenclature lies in the inversion of orbitals involved in the bulk band structure.

2.5.3 s-p type

HgTe is the primary example of s-p type 3D topological insulator. The Γ6 state

in HgTe are below the Γ8 state thus making it an inverted material. The non-trivial

topological behaviour of HgTe was first worked out Bernevig, Hughes, and Zhang

and topological invariants were computed by Fu and Kane [42].The important point

is that s and p orbitals at the Γ point have opposite parity values. The occupied s

state is Γ−
7 while p states form Γ+

7 and Γ+
8 . Closely related to HgTe, the half-Heusler

group of compounds [43, 44] are topological insulator materials [45, 46]. They are of

the form XYZ where Y and Z form a zinc-blende structure. X and Y are rare earth

or transistion metals and Z is a main group element. Few other compounds of the

s-p type topological insulator class are KHgSb [47,48], Na3Bi [49], and CsPbCl3 [50].

2.5.4 p-p type

The simplest examples of p-p type topological insulators are Bi2Se3, Bi2Te3, and

Sb2Te3. They consist of a single Dirac cone as their surface states. Of these three

compounds, Bi2Se3 has been widely studied because of an energy-gap of 0.3 eV which

is larger than the energy scale at room temperature. As an illustration of the crystal

structure of these compounds, Bi2Te3 is chosen as an example. The undoped Bi2Te3 is

a narrow band-gap semi-conductor with a rhombohedral crystal structure. The unit

cell contains five atoms, with quintuple layers ordered as Te(1)-Bi-Te(2)-Bi-Te(1). As

shown in Fig.2.5, the crystal has a layered structure stacked along z direction with

five atoms in one unit cell. The five atoms can be grouped as two Bi atoms and

three Te atoms. The Bi atoms are equivalent. Further, the three Te atoms include

two equivalent Te atoms (Te1) and an in-equivalent Te2 atom. The Te2 atom is the
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Fig. 2.5. Model sketch of Bi2Te3 crystal structure. The unit cell
contains five atoms ordered as Te(1)-Bi-Te(2)-Bi-Te(1).

centre of inversion for this unit cell. Each atomic layer forms a triangle lattice, which

has three possible positions, denoted as A, B and C, as shown in Fig.2.6. Along the

z direction, the triangle layers are stacked in the order A-B-C-A-B-C. For example,

in one quintuple layer, the Te1 atoms occupy the A node; in the next quintuple

layer, the Te1 atoms do not occupy node A but will be located at nodes B or C. A

complete description of the electronic structure of these compounds by taking Bi2Se3

as an example is available in literature [51]. It suffices to state here that the strong

spin-orbit-coupling in Bi2Se3 leads to band inversion at the Γ point. The orbitals

involved in this band formation are of p-type.

2.6 Tight-binding model for p-p type 3D topological insulators

The quintuple layer crystal structure is imported to a twenty band tight binding

model for 3D TIs. All parameters for these calculations were obtained from a orthog-
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Fig. 2.6. The in-plane triangle lattice has three positions A,B,and C
marked by different colours.

onal tight-binding model with sp3d5s∗ orbitals, nearest-neighbour interactions, and

spin-orbit coupling [52]. Dispersion relationships (Fig. 2.7) obtained from the tight

binding model was spin resolved along the quantized growth axis to identify spin po-

larization of the bands. For a strong topological insulator behaviour, it is mandatory

to have strong spin-polarized surface bands. A MATLAB script used to obtain the

spin-polarization of bands is included in Appendix.

Surface states are usually modeled analytically by a simple Hamiltonian (Eq. 2.11)

of the form

HSS = vf

(−→
k ×−→σ

)

(2.11)

This equation correctly reproduces the linear dispersion, spin-polarization, and the

geometric Berry phase of π [54]. It has been experimentally observed [55] though and

explained with a phenomenological k.p theory [53] that the Fermi surface of Bi2Te3 is

not a circular contour but a warped structure at energies away from the Dirac point.

The same behaviour (Fig. 2.8) is also reproduced with the twenty-band tight binding

model. It is important to note here that additional cubic terms of the form given in
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Fig. 2.7. The surface states of a topological insulator computed with
the twenty-band tight binding method. The conduction and valence
bands are connected together by a cone of states at the Γ point.
The meeting of the conduction and valence bands is usually a linear
dispersion also known as a Dirac cone. The colour bar indicates the
spin-polarization of the bands. The surface state bands are completely
spin polarized.

Eq. 2.12 are not needed. The full symmetry of the Hamiltonian is captured in the

tight-binding model.

H = h̄vf (σxky − σykx) +
λ

2

(

k3+ + k3−
)

(2.12)

The k3 correction preserves time reversal and the C3v point-group symmetry and

breaks the isotropic surface state Hamiltonian.

A simplified k.p Hamiltonian using the method of invariants can also be con-

structed (Eq. 9.1) in terms of the four lowest low-lying states |P1+z ↑〉, |P2−z ↑〉,
|P1+z ↓〉, and |P2−z ↓〉. Additional warping effects [53] that involve the k3 term are

omitted in this low-energy effective Hamiltonian. A fuller description of this Hamil-

tonian is given in Chapter 7 (Topological nanostructures).
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Fig. 2.8. The warping of the constant energy contour in to a snow-
flake structure at energies away from the Dirac-point. This figure has
been produced with a twenty-band tight binding model and matches
well with the experimental data reported in literature (Fig. 2.9).

Fig. 2.9. Snow-flake like Fermi surface of the surface states on Sn-
doped Bi2Te3 observed in ARPES. The figure on the right shows a
set of constant energy contours at different energies. Figure is from
Ref. [53]
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H(k) = ǫ(k) +

















M iA1kz 0 A2k−

0 −M A2k− 0

0 A2k+ M −iA1kz

A2k+ 0 −iA1kz −M

















(2.13)

where

ǫ(k) = (C +D1k
2
z +D2

(

k2x + k2y
)

)I4×4

M =M0 − B1k
2
z − B2

(

k2x + k2y
)

k± = kx ± iky (2.14)

This review of electronic structure of topological insulators introduced the idea of

topologically non-trivial materials, band inversion, TRIM points, and the Z2 invariant.

Several topological insulators have been discovered but it is crucial to find more that

have suitable properties. A large band-gap is essential, until now the largest band

gap is 0.3 eV in Bi2Se3. Later chapters examine the problem of transport using these

surface states.
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3. DESIGN PRINCIPLES FOR HGTE BASED

TOPOLOGICAL INSULATOR DEVICES

3.1 Introduction

In this chapter the topological insulator properties of CdTe/HgTe/CdTe quantum

wells are theoretically studied. CdTe-HgTe-CdTe quantum wells which were the first

predicted TIs are 2-D topological insulators (2D TI). Unlike their 3D counterpart,

they possess bound states at the edge of the quantum well. The CdTe/HgTe/CdTe

quantum well behaves as a topological insulator beyond a critical well width dimen-

sion. It is shown that if the barrier(CdTe) and well-region(HgTe) are altered by

replacing them with the alloy CdxHg1−xTe of various stoichiometries, the critical

width can be changed. The critical quantum well width is shown to depend on tem-

perature, applied stress, growth directions and external electric fields. Specifically,

the transition from an NI to a TI through external adiabatic parameters, adjustable

lattice constants, or modulation of the electron-hole band coupling is the underly-

ing theme. Based on these results, a novel device concept is proposed that allows

to switch between a normal semiconducting and topological insulator state through

application of moderate external electric fields.

3.2 The 8-band k.p method for HgTe/CdTe quantum well heterostruc-

ture

An HgTe quantum well flanked by CdTe barriers has been shown to have edge

states with topological insulator properties. TI behaviour is possible because CdTe

is a normal insulator and is placed in contact with an inverted insulator HgTe. A

representative sketch of the device is shown in Fig.3.1. CdTe is a wide band gap
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semiconductor (Eg = 1.606 eV) with positive energy gap (NI) and a small lattice

mismatch of 0.5% with HgTe. CdTe, because of similar lattice constants is chosen as

the barrier for the HgTe well region though in principle any normal ordered material

would suffice. The normal valence and conduction band are reversed in their energetic

order in HgTe as indicated in Fig. 3.1 and explained in the next paragraph.

Fig. 3.1. Sketch of a CdTe/HgTe/CdTe quantum well heterostructure.
The lowest conduction band (CB) state is labeled with E1 and the
highest valence band (VB) state with H1.

The inversion of bands for the CdTe/HgTe/CdTe heterostructure is achieved

through the HgTe component. Both CdTe and HgTe belong to the zinc blende (ZB)

structure with Td point group symmetry. The highest valence and lowest conduction

band is made up of p and s orbitals respectively. A normal band order at Γ has

lowest conduction band (j = 1/2) with Γ6 symmetry above the top of the valence

bands (j = 3/2) with Γ8 symmetry. The Γ6 state has s-type symmetry and the Γ8

state has p-type symmetry. In a normal ordered material Γ6 state is energetically

higher than the Γ8 state. This order is reversed in bulk HgTe at the Γ point due

to the high spin-orbit coupling and a significant Darwin term contribution. [56] The

strong spin orbit coupling pushes the valence bands upwards while the Darwin term

shifts the s-type conduction band down. The Darwin term can only influence the

s-type bands. [57] The combined effect of spin orbit coupling and Darwin term yields
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an inverted band order at the Γpoint which flips the order of the high-symmetry Γ6

and Γ8 points for HgTe. [58]The energy gap at Γ which is defined as

Eg = E(Γ6)− E(Γ8), (3.1)

therefore turns out to be negative for HgTe. The normal and inverted band struc-

tures of CdTe and HgTe are illustrated in Fig. 3.2(a) and Fig. 3.2(b) respectively.

Throughout it is assumed that local impurities at surfaces and interfaces do not alter

the fundamental ordering of bands. This assumption is valid as long as impurities

only perturb the bandstructure but do not dominate it.

Fig. 3.2. Bulk band structure of CdTe (a) and HgTe(b). The ordering
of the conduction and valence bands near the band gap at the Γ point
in HgTe (Fig. 3.2b) is opposite to the one in CdTe (Fig. 3.2a). In
HgTe, the hole state Γ8 is above the electron state Γ6.

The electronic properties of the 〈001〉 CdTe/HgTe/CdTe heterostructures are cal-
culated within an 8-band k.p framework that includes a linear coupling between

conduction and valence bands. [59, 60] Compared to other electronic models, this

method combines the many band aspect of empirical pseudopotential or tight bind-

ing methods with the efficiency of envelope function approximations. In addition, the

k.p method is particularly valid around the Γ point where the relevant physics of all
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devices of this paper is determined. In contrast to most other empirical methods,

parameters for the present CdTe/HgTe material system are well established for the

k.p framework.

In the calculations presented, the z-axis is normal to the heterostructure and is

also the confinement direction. The valence band edge Ev, Luttinger parameters, and

other related material properties are collected in Table 3.1. The boundary conditions

are imposed by setting the wave function to zero at the edge of the device. When the

CdTe/HgTe/CdTe structure is grown along a different axis the 〈001〉 Hamiltonian is

rotated accordingly. Strain is added to the electronic Hamiltonian using deformation

potentials defined in the Bir-Pikus method. [61, 62] This method requires to add to

the Hamiltonian

{Hstrain}ij =
3

∑

α,β=1

Dαβ
ij εαβ, (3.2)

with the strain tensor εαβ and the deformation potential operator Dαβ
ij . All non-

vanishing electric fields in are considered to be applied along the confinement direc-

tion. Non-vanishing fields are included in the Hamiltonian as their corresponding

electrostatic potentials which are solved with Dirichlet boundary conditions.

Table 3.1
8-band k.p parameters for CdTe and HgTe. Ev, Eg, Pcv, and Vso are
in units of eV. The remaining Luttinger parameters are dimensionless
constants and the effective mass is in units of the free electron mass.

Material Ev γ1 γ2 γ3 m∗ Eg Pcv Vso

CdTe -0.27 5.372 1.671 1.981 0.11 1.606 18.8 0.91

HgTe 0.0 -16.08 -10.6 -8.8 -0.031 -0.303 18.8 1.08

3.3 Results

Comparison with experiment: band gap and critical width: Experiments

report that a CdTe/HgTe/CdTe quantum well heterostructure with a well width
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under 6.3 nm exhibits a normal band order with positive Eg. [63,64]. The calculation

of the present work confirms that the conduction states at Γ are indeed located above

the valence states and the energy gap is positive (Fig. 3.4(a)). All band structure

parameters used to reproduce the experimental observation were valid at 0 K. When

the well width is exactly 6.3 nm, a Dirac system [65] is formed in the volume of the

device (Fig. 3.3).

Fig. 3.3. Band structure of HgTe quantum well of thickness 6.3 nm.
At this width, the lowest conduction band (E1) and highest valence
band (H1) at the Γ point are equal.

Beyond this critical well width of 6.3 nm, the heterostructure has its bands fully

inverted. The band profile has a reverse ordering of the s-type and p-type orbitals

(Fig. 3.4(c)) and Eg < 0.

Accordingly, a nano-ribbon of width 100.0 nm formed by quantizing the quantum

well in its in-plane direction has a positive band gap (as shown in Fig. 3.4b). Simi-

larly, a nanoribbon of width 100.0 nm constructed out of an inverted quantum well

possesses gap-less TI edge states. The band structure of this situation is illustrated

in Fig. 3.4(d).

The corresponding absolute value of the squared edge-state wave functions is plot-

ted in Fig. 3.5. The absolute value of the wave functions for the two edge states is
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Fig. 3.4. Bandstructure of a HgTe quantum well of thickness
5.5 nm(a). A HgTe nano-ribbon formed out of this quantum well
of thickness 5.5 nm and height of 100 nm shows a positive band gap.
Fig. 3.4c shows the bandstructure of an inverted quantum well of
thickness 10.0 nm. The corresponding quantum wire has a linearly
dispersing (Dirac-cone) edge states (d).

maximum at the edge and gradually decay in to the bulk. This establishes that they

belong exclusively to the edge states. In conclusion, the band-gap closing Dirac cone

shown in Fig. 3.3 marks the transition from a positive band-gap to a negative one.

Band nature at finite momenta: The inversion of bands in the volume of the

well is necessary for edge states with topological insulator behaviour. It is important

to note however, that the process of inversion happens only at the Γ point. In the

inverted dispersion plot (Fig. 3.4c), for momenta different from the Γ point, the band

labeled with ”H1” progresses from p to s-type. Similarly the band labeled with ”E1”

changes character from s to p. Both the bands, at a finite momentum acquire atomic

orbital characteristics associated with a normally ordered set of bands. TI behavior

is therefore restricted to a special set of momentum points where the band structure
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is inverted. These set of points are collectively called the time-reversal-invariant-

momentum (TRIM) points. [38]

Fig. 3.5. Absolute value of the wave functions |ψ|2 of the two edge-
states of Fig. 3.4d.

Well thickness continuously tunes the TI properties: With increasing

well width, the band gap decreases continuously until the HgTe well thickness reaches

6.3 nm (see Fig. 3.6). This is due to the diminishing confinement of the well’s s and

p-type bands. For well thicker than 6.3 nm, the confinement is small enough such

that the inverted band ordering of HgTe is restored and the absolute value of the

negative band gap is increasing (see Fig. 3.6).

At a HgTe well width of 8.2 nm, the s-type band drops even below the second

confined p-type state. This re-ordering of bands with well thickness is summarized

in Table 3.2 and illustrated in Fig. 3.6.

3.3.1 Stoichiometric and Temperature Control of Critical Width

In the previous sections, it has been shown that the effective band gap of the

CdTe/HgTe/CdTe quantum well depends on the confinement and consequently on the

band gap difference of the well and barrier materials. Both, alloying and temperature
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Table 3.2
Orbital character of the top most valence band and lowest conduc-
tion band in CdTe-HgTe-CdTe heterostructure depending on the well
width dQW . The critical well width dc is the equal to 6.3 nm.

HgTe Well thickness Highest Val.Band Lowest Cond.Band

dQW < dC p-type s-type

8.2 nm > dQW > dC s-type p-type

dQW > 8.2nm p-type p-type

Fig. 3.6. Absolute value of the band gap of a CdTe/HgTe/CdTe
quantum well as a function of the well width. Well widths larger than
6.3 nm produce inverted band structures and can be exploited for
topological insulator devices.

are known to influence the effective band gap. The band gap of CdxHg1−xTe as a

function of temperature [66] T and stoichiometry x is given by

Eg = −304 +
0.63T 2

11 + T
(1− 2x) + 1858x+ 54x2. (3.3)

A plot for the band-gap variation for the CdxHg1−xTe alloy is given in Fig. 3.7.

When the quantum well material of the original CdTe/HgTe/CdTe structure is

substituted by CdxHg1−xTe alloy, the critical width becomes temperature and x de-
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Fig. 3.7. Calculated band gap of bulk CdxHg1−xTe as a function of
stoichiometry and temperature. At x=0, the bulk band gap of HgTe
(−0.303 eV) is reproduced.

pendent. This is shown in Fig. 3.5 (a). Remarkably, all critical widths are equal or

larger than the intrinsic critical width of 6.3 nm. Higher concentration of CdTe in

the quantum well reduces the Darwin contribution from HgTe. Therefore, the band

inversion requires a wider HgTe region.

Alternatively, replacing the barrier material with CdxHg1−xTe also allows tun-

ing the confinement and consequently the critical width. It is shown in Fig. 3.7(b)

that this replacement yields critical widths smaller then the intrinsic 6.3 nm if the

temperature is allowed to attain values below 100 K. For a Cd molar concentration

of x = 0.68 and T = 0 K, the critical width dropped to 4.4 nm. This is due to the

enhanced Darwin contribution to the electronic properties with increased Hg content.

3.3.2 Critical widths under different growth conditions

Apart from alloy stoichiometry, the confinement also depends on the well and

barrier masses. A way to tune these effective confinement masses is by growing the

quantum well in different directions. The different masses then give different effective
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Fig. 3.8. Critical widths to get inverted band struc-
tures of CdTe/Cd1−xHgxTe/CdTe quantum wells (a) and
CdxHg1−xTe/HgTe/CdxHg1−xTe quantum wells (b) as a function of
temperature and stoichiometry x.

well confinement and accordingly different critical widths. This dependence is illus-

trated in Fig. 3.9. It shows the critical width of the CdTe/HgTe/CdTe quantum well

in a sequence of growth directions. The critical widths of the 〈111〉 and 〈110〉 growth
directions are 5.52 nm and 5.72 nm respectively. Both these values are smaller than

the 〈001〉 grown quantum well critical width of 6.3 nm.

Alternatively, uniaxial stress can also tune the effective confinement masses. As

representative cases, CdTe/HgTe/CdTe quantum wells were grown along 〈001〉, 〈110〉,
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Fig. 3.9. Critical widths of CdTe/HgTe/CdTe heterostructures grown
along 〈N11〉 direction as a function of N (a). The bandgap closing
for 〈100〉, 〈110〉, and 〈111〉 grown CdTe/HgTe/CdTe at different well
widths is shown in (b). Band gap closing at different well dimensions
give the corresponding critical width.

and 〈111〉 directions. Each quantum well was then subjected to uniaxial stress along

〈001〉, 〈110〉, and 〈111〉 directions. Uniaxial stress along 〈001〉, 〈110〉, and 〈111〉 was
employed on three sets of CdTe/HgTe/CdTe quantum wells grown along 〈001〉, 〈110〉,
and 〈111〉. The behaviour of the critical width for each case is shown in Fig. 3.10.

The ideal stress orientation for each growth direction is summarized in Tables 3.3 and

3.4.

3.3.3 Application of an external electric field

The application of an external electric field changes the confinement and the band

properties of the well states. In particular, the Rashba (structural inversion asym-

metry) effect gets enhanced by electric fields in growth direction. [67] Figure 3.11

shows the critical width as function of the external electric field applied in the growth

direction. The critical width decays with increasing field for all considered tem-
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Table 3.3
The optimal tensile stress and growth conditions for
CdTe/HgTe/CdTe quantum wells to achieve the least (L), highest
(H) and intermediate (I) critical width, respectively.

Tensile uniaxial stress

Growth Axis 〈001〉 〈110〉 〈111〉
〈001〉 L H I

〈110〉 L H I

〈111〉 H L I

Table 3.4
The same list of conditions as in Table 3.3 but under compressive stress.

Compressive uniaxial stress

Growth Axis 〈001〉 〈110〉 〈111〉
〈001〉 H L I

〈110〉 H L I

〈111〉 L H I
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Fig. 3.10. Critical widths of CdTe/HgTe/CdTe heterostructures
grown along 〈111〉 (a), 〈110〉 (b), and 〈001〉 (c) direction with uniaxial
stress applied along 〈111〉 (solid), 〈110〉 (dashed) and 〈001〉 (dash-
dotted) direction. Key observations are summarized in Table 3.3 and
table 3.4.

peratures. The Rashba effect that supports the band inversion of HgTe gets in-

creased by the electric field. Consequently, smaller well widths are required to invert
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the CdTe/HgTe/CdTe quantum well band structure when external electric fields are

present.

Fig. 3.11. Critical width for CdTe/HgTe/CdTe quantum wells with
varying strength of external electric fields in growth direction.

Since external electric fields can tune the critical width, the concept of a TI-switch

is obvious: A CdTe/HgTe/CdTe quantum well with a well width that is close, but

below the critical width can be switched by electric fields between normal and inverted

band order. Such a switching band structure is expected to yield significant changes

in the surface conductance, due to the unique transport properties of topological

insulator states.

A first prototype of such a switch can be observed in Fig. 3.12 which shows effective

band gaps of CdTe/HgTe/CdTe quantum wells for various well thicknesses under

externally applied electric fields. Within the plotted range of electric field magnitude,

the CdTe/HgTe/CdTe quantum well with a width of 6.0 nm switches between normal

and inverted band ordering. It is worth mentioning that this switching behavior can

be observed in CdTe/HgTe/CdTe quantum wells grown in 〈001〉 and 〈111〉 direction.
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Such topological insulator based devices under an external electric field can be

employed to act as a circuit element in a fast digital environment. When the bandgap

is closed and TI properties are turned on, a high Fermi velocity for the carriers, (which

is an essential attribute of TIs) on surface is able to transmit an electric signal faster

than a conventional inter-connect. A seamless transition from a topological insulator

to normal insulator using an external electric field as demonstrated above and shown

in Fig. 3.12 enables it to forbid an easy passage of charge/electric signal. A normal

insulator with a finite band gap will behave as an open circuit element.

Fig. 3.12. Effective band gap of CdTe/HgTe/CdTe quantum wells
of different well thicknesses as a function of applied electric field in
growth direction. The dashed line depicts the delimiter between nor-
mal and inverted band structures.

3.4 Conclusion

The present work investigates the conditions under which band inversion can

occur in a CdTe/HgTe/CdTe quantum well heterostructure. It is shown that this

band inversion is essential for topological insulator properties. In agreement with

experimental results, it is found that the HgTe quantum well has to be thicker than

6.3 nm to exhibit topological insulator properties. It is examined in detail how the
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critical width depends on various device parameters such as the growth direction, alloy

stoichiometry, temperature, uniaxial stress, and external electric fields. In particular

the external fields allow to switch the topological insulator properties of 〈001〉 grown
CdTe/HgTe/CdTe quantum wells. This result proposes a new class of switching

devices.
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4. NUMERICAL STUDY OF SURFACE STATES OF A

TOPOLOGICAL INSULATOR

4.1 Introduction

Bi2Te3 and Bi2Se3 are well known 3D topological insulators. Films made of these

materials exhibit metal-like surface states with a Dirac dispersion. In this chapter

the influence of physical and chemical attributes of such films on the the surface-

state dispersion is investigated. At low film thickness, the surface states couple to

each other to form Dirac hyperbolas and a band gap is opened. Dispersion of these

states is also impacted by growth conditions, particularly the substrate. Asymmetric

growth conditions are simulated and a Rashba-type splitting of the Dirac cones is

observed in agreement with experiment. Low film thickness and asymmetric growth

conditions together lead to formation of displaced Dirac-hyperbolas. The surface

states are spin-polarized with no out-of-plane component and locked perpendicular

to the momentum vector. The spin-polarized components are shown to have unequal

strength when asymmetry is present in the film.

4.2 Surface states of 3D topological insulator

Surface states in a 3D topological insulator are characterized by a linear dispersion

and a Dirac cone on each surface. The surface states in a 3D TI film depends on the

film-thickness, substrate and chemical properties of its surfaces. A film is a quantum

well with in-plane periodicity and confined along z-axis. Asymmetric growth condition

primarily arising because of a substrate on which the film is grown creates two non-

degenerate Dirac cones at the Γ point corresponding to each surface. Further, in the

low limit thickness, the surfaces of a 3D-TI couple to each other to open a finite band-
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gap. The Dirac cone with massless fermions then change to massive Dirac hyperbolas.

Additionally, under a combination of growth asymmetry and thin film conditions, the

two Dirac cones give rise to four sets of Dirac hyperbolas.

The surface states of a 3D TI also possess a unique helical characteristics which

means that the spin is perpendicularly locked to the momentum. The spin-locking

at right angles give rise to fundamentally new phenomena such as the anomalous

quantization of magneto-electric coupling, charge fractionalization in a Bose-Einstein

condensate, states that are their own antiparticle, which are not possible with con-

ventional Dirac fermions found in graphene-like materials. [68–70] Further, as a con-

sequence of the symmetry of the Hamiltonian, the spin is confined to the plane in a

3D-TI. [71,72] The spin-polarization is computed for both symmetric and asymmetric

3D-TI films. It is found that the two spin components are of different strength, this

difference is determined to be a function asymmetry present in the film.

Finally, a Snell’s law like refraction condition is derived for transmission of Dirac

electrons at the boundary of two 3D topological insulators. The transmitted electrons

(equivalent to refraction in optics) suffer a change in momentum when they travel

across the boundary. The change in momentum depends on the Fermi-velocities of

the two topological insulators. A maximum angle of incidence is derived beyond

which the electron beam does not transmit across the boundary and suffers “total

internal reflection”. The spin being locked to momentum, upon transmission across

the boundary changes its in-plane polarization. By appropriately choosing the Fermi

velocities in the two TIs, the desired amount of spin-polarization after refraction can

be obtained.

4.3 Four-band k.p method for 3D topological insulators

The dispersion of Bi2Te3, Bi2Se3, and Sb2Te3 films are calculated using a 4-band

k.p Hamiltonian. The 4-band Hamiltonian [73] is constructed (Eq. 4.1) in terms of

the four lowest low-lying states |P1+z ↑〉, |P2−z ↑〉, |P1+z ↓〉, and |P2−z ↓〉. Additional
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warping effects [53] that involve the k3 term are omitted in this low-energy effective

Hamiltonian.

H(k) = ǫ(k) +

















M(k) A1kz 0 A2k−

A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)

















(4.1)

where ǫ(k) = C +D1k
2
z +D2k

2
⊥, M(k) = M0 + B1k

2
z + B2k

2
⊥ and k± = kx ± iky. For

Bi2Te3 and Bi2Se3, the relevant parameters are summarized in Table. 5.1.

Table 4.1
4-band k.p parameters [51] for Bi2Te3 and Bi2Se3.

Parameters Bi2Te3 Bi2Se3

M (eV) 3.4 3.2

A1 (eV Å) 5.6 5.3

A2 (eV Å) 10.5 10.8

B1 (eV Å2) 24.6 22.5

B2 (eV Å2) 30.1 28.9

C (eV) 37.8 34.0

D1 (eV Å2) 0 0

D2 (eV Å2) 0 0

Two variants of a topological insulator film are considered. The first is a free-

standing symmetric thin-film of Bi2Se3. Two exactly degenerate Dirac cones are

formed for a symmetric film. The second thin film considered is assumed to grow on a

substrate which induces an asymmetry between the two surfaces. The asymmetry can

be explained by assuming that the top surface is exposed to vacuum while the bottom

surface is fixed to the substrate. Inversion symmetry therefore does not hold [74, 75]
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for such a TI film. This asymmetry is simulated by adding a small symmetry-breaking

potential to the Hamiltonian along the confinement direction. It can also be viewed

as a simple way of creating two chemically distinct surfaces. The Dirac cones, one

on each surface, are therefore no longer degenerate. They are now split as a function

of the applied symmetry-breaking potential and positioned at distinct energies. This

splitting is similar to a Rashba-split [76] in presence of structural inversion asymmetry

(SIA). The asymmetry of the surfaces causes the SIA.

The thin-films considered previously were assumed to be suitably thick to forbid

the coupling of the two Dirac cones on each surface. In the limiting case of an ultra-

thin film, hybridization of the two surfaces occur. The spin-resolved bands of one

surface will mix up with the components of opposite spin from the other surface at a

limiting thickness. Since bands with identical quantum numbers cannot cross, a gap

opens up at the Dirac point.

When the conditions of ultra-thin film and asymmetry are simultaneously fulfilled,

it is observed that the two surface bands offer another instance of Rashba-type split-

ting. To explain this phenomenon, first a low thickness film is considered. The two

degenerate massless Dirac cones in this case would mix and open a finite band-gap

as explained above. Each Dirac cone can now be represented as a massive spin-

degenerate Dirac hyperbola. [77] If an additional asymmetry is imposed through a

potential, the spin degeneracy of each Dirac hyperbola is broken and the bands split

along k‖ in opposite directions. The degeneracy is only maintained at the Γ point.

The conventional Rashba-type splitting follows exactly the same pattern, for example

in an asymmetric GaAs quantum well. [78]

A hallmark of the surface bands of a 3D-topological insulator is their intrinsic

complete spin-polarization and locking of the spin perpendicular to the momentum.

Within the framework of the 4-band k.p Hamiltonian, expectation value of the three

spin-polarized vectors is computed. The operators for the three spin-polarizations are

given by Eq. 4.2 and Eq. 4.3 in the Pauli representation σi {i = x, y, z}.



43

Sx =

















0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

















; Sy =

















0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

















(4.2)

Sz =

















1 0 0 0

0 1 0 1

0 0 −1 0

0 0 0 −1

















(4.3)

The above matrices are written under the basis set ordered as |P1+z ↑〉, |P2−z ↑〉,
|P1+z ↓〉, and |P2−z ↓〉. The expectation value for each spin-polarization operator is

calculated in the usual way in Eq.( 4.4)

〈Si〉 =
∫

ψ∗Siψdτ (4.4)

where {i = x, y, z}
The spin-polarization on the surface of a 3D-TI determined using Eq.( 4.2, 4.3, 4.4)

serves as the basis of a spin-polarizer. The proposed spin-polarizer is constructed by

placing two 3D-TIs together. A sketch of this arrangement is shown in Fig. 4.1. This

twin-material spin-polarizer must be designed with two distinct TIs. Alternatively,

a single TI can be used but the two sections (Fig. 4.1) must be of different film-

thickness. For results presented in this paper, Bi2Se3 and Sb2Te3 have been selected

as the constituent materials. The underlying principle in choosing different materials

or the same material with varying thickness is to ensure that Fermi-velocities for the

Dirac fermions are different in the two separate material domains. The reason for

this choice will be evident in the argument below.

A simple relationship which connects the incident momentum of the electron to

that of the transmitted momentum across the junction can be calculated as follows.

The electrons that occupy the topological insulator state are Dirac fermions [79] and

described by the Dirac equation.
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H = −ivf [σx∂z − σy∂x] (4.5)

where vf is the Fermi-velocity. The Fermi-velocities vf1 and vf2 in each region are

considered to be positive. To set up the problem, it is assumed that the k1 vector

in region I is incident at the interface at an angle θ1. The wave vector k1 from

region I is transmitted to region II as wave vector k2 at an angle θ2. Conservation

of energy and momentum yields: k1sinθ1 = k2sinθ2 and k1vf1 = k2vf2. Combining

both the conservation relations, the following equation relating the angle of incidence

and refraction in each region to their respective Fermi-velocities can be written. The

inverse of the Fermi-velocities serve as the quantum mechanical analogue of “refractive

indices”.

v1sinθ2 = v2sinθ1 (4.6)

The Fermi-velocities are computed numerically by evaluating the expression
1

h̄

∂E

∂k
.

The energy dispersion is obtained by diagonalizing the 4-band k.p Hamiltonian in

(Eq.( 4.1)).

Fig. 4.1. Schematic of the spin-polarizer with two TIs, TI1 and TI2.
α and β denote the angle of incidence and refraction respectively.

4.4 Results

In this section, results are derived for several possible situations arising in a topo-

logical insulator thin film. The simplest case of a sufficiently thick Bi2Se3 film is
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first examined followed by the dispersion relationship of an ultra-thin film. Next,

asymmetric growth conditions and low-limit thickness results are presented. The

spin-density on the surface from the TI states are computed and their dependence

on asymmetric growth conditions and an external bias is demonstrated. The opti-

cal analogues of “refraction” and “total-internal-reflection” is introduced followed by

specific calculations for spin-polarization.

4.4.1 Free-standing symmetric 3D-TI thin films.

The dispersion for a 20.0 nm thick film which is approximately seven quintuple-

layers is shown in Fig. 4.2a. The Dirac cone is formed at an energy equal to 0.213

eV confirming that it is indeed a mid-gap state. The bulk band-gap of Bi2Se3 is

approximately 0.3 eV at the Γ point. In contrast to the thick-film dispersion, Fig. 4.2b

shows the band profile of a 3.0 nm (approximately a single quintuple-layer) Bi2Se3

film. In the case of a thin-film the two surface states hybridize. The hybridization

occurs because each state has a definite localization or penetration length. When the

penetration length is in the order of film thickness, the two states mix-up and and a

gap is opened. For a low thickness film whose surfaces hybridize, the two branches

that split to open up a finite band-gap (Fig. 4.2b) are the Dirac hyperbolas.

Fig. 4.2. Topological insulator surface states (Fig. 4.2a) around 0.2
eV for a 20.0 nm thick (around 7 quintuple layers) Bi2Se3 film. The
dispersion of the thin film (Fig. 4.2b) shows two Dirac hyperbolas
when the surface states hybridize.
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The band-gap which opens up is not a constant but depends on film thickness.

In fact the penetration depth can be written as ξ = h̄vf/M , where M is the bulk

band gap and vf is the Fermi-velocity. The finite band-gap is plotted in Fig. 4.3 for

various Bi2Se3 film-thickness. The band gap opening is high for thinner films because

the penetration of the surface states is maximized and a complete hybridization takes

place. The band-gap opening can also be compared between various 3D-TIs. As a

numerical example, the band gap opening in a 5.0 nm thin-film is 0.0084 eV and

0.0629 eV in Bi2Se3 and Sb2Te3 respectively. This difference in band-gap for two

dimensionally-identical films can be explained by evaluating the penetration length

which is inversely proportional to the bulk band-gap. Sb2Te3 has a smaller bulk band-

gap at Γ, assuming that Fermi velocities are comparable, the surface states in Sb2Te3

are more delocalized than Bi2Se3. As a result of greater delocalization, complete

hybridization occurs and gives a larger band gap opening.

This band-gap opening can also be thought of as internal magnetization. A mag-

netic field will destroy time reversal symmetry and create a positive band-gap at the

Γ point on the surface. Since an identical effect can be seen for low-thickness thin

films, hybridization due to a certain penetration length can be seen as an internal

magnetic field.

Fig. 4.3. Band-gap opening as a function of Bi2Se3 film thickness.
Band gap opens because the two surfaces hybridize.
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4.4.2 Asymmetric thin films of 3D-TIs

Asymmetry can be created in the thin film by applying an electric field along

the confinement direction. This field mimics the asymmetry produced due to two

different surfaces or a film grown [80] on a substrate. The substrate provides the

asymmetry. An example of a real arrangement of atoms in a Bi2Te3 thin film with

Bi and tellurium surface termination is shown in Fig. 4.4. Under ideal conditions

(ignoring impurity effects), a dipole is formed between the two surfaces which then

host a single Dirac cone as shown in Fig. 4.5. The separation of the Dirac cones on

each surface depends on the asymmetry induced by the potential.

Fig. 4.4. A Bi2Te3 thin film with two different surfaces. The two
surfaces have Bi and Te termination thus making them chemically
inequivalent

A more interesting dispersion relationship arises in the presence of an asymmetric

potential in an ultra-thin film. This situation can be broken in to two parts and

results obtained above can then be combined. For an ultra-thin film whose surfaces

have hybridized, two massive Dirac hyperbolas are created. Each hyperbola is spin-

degenerate as shown in Fig. 4.5. If film asymmetry impresses an electrostatic potential

breaking inversion symmetry, the two Dirac hyperbolas will now split in to four sets

of Dirac hyperbolas (Fig. 4.6). The spin degeneracy of the Dirac-hyperbolas is only

maintained at the Γ because it happens to be one of the time-reversal-invariant-

momenta (TRIM) points. [38, 81]
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Fig. 4.5. A Bi2Se3 thin film with built-in asymmetry. Asymmetry in
this film was artificially introduced by using a small potential along
the confinement direction. The two Dirac cones are now separated in
energy

Fig. 4.6. An ultra-thin Bi2Se3 film with asymmetry. The two Dirac
hyperbolas from the ultra-thin film in presence of asymmetry are now
spin-split. They form four copies, two from conduction and valence
band and maintain degeneracy only at the Γ point

4.4.3 Spin Polarization of the 3D-TI surface

The spin polarization vector on the surface of a 3D topological insulator is locked

to momentum perpendicularly and is confined to the plane. There is no out-of-plane

component. Simulations using Eq.( 4.2, 4.3) described in Section 4.3 exactly capture

this experimental observation. The spin-polarization on the surface of a 20.0 nm thick
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Bi2Se3 film is shown in Fig. 4.7. For a symmetric free-standing film, the spin-up and

spin-down components of the in-plane spin-polarization are exactly anti-parallel.

Fig. 4.7. The spin polarization confined to the place in the vicinity of
the Γ point for a 3D-TI. The spin is locked to momentum (which is a
radial vector on the circle) shown by the tangential lines on the plot.

The spin-polarization shown in Fig. 4.7 was computed by choosing for a k-vector of

magnitude 0.01 nm at various polar angles.For each such vector, the spin-polarization

obtained was perpendicular with a zero out-of-plane component. The red-arrows in

Fig. 4.7 denote the direction of spin-polarization and is always tangential to the circu-

lar contour traced out by the k-vector. Interestingly, if spin-polarization is measured

in an asymmetric 3D-TI film, the two anti-parallel spin components are no longer

of same strength. The amplitude of each spin-component is now a function of the

asymmetry expressed as an electric potential. The two surfaces of a 3D-TI therefore

have unequal spin-amplitudes.

4.4.4 Spin polarization at interface of two 3D TIs

The arrangement of two 3D-TIs placed together as shown in Fig. 4.2 is considered.

Results for this arrangement will draw upon the conclusions presented in the previous

sub-sections. The spin was shown to be locked to momentum perpendicularly. Since

k2 = k1
sinθ1
sinθ2

and using Eq. 4.6, the transmitted wave-vector k2 and the “angle of re-
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Fig. 4.8. Spin-up and spin-down components are of unequal strength
in an asymmetric thin film. The difference in amplitude between the
two components increase with higher field/asymmetry.

fraction” of the electron beam can be uniquely determined. For each such “refracted”

beam, the spin polarization in region II will change in accord with the helical pattern.

By suitably controlling the angle of incidence, the spin polarization in region II can

be tuned as desired.

A concrete example is now presented that illustrates the above method. Bi2Se3(region

I) and Sb2Te3 (region II) films of thickness 100.0 nm are selected as the two 3D-TIs for

regions I and II respectively. Using the Hamiltonian in Eq. 4.1, the dispersion relation-

ship is computed. The Fermi-velocities extracted from the dispersion relationships for

Bi2Se3 and Sb2Te3 films yield vBi2Se3 = 2.721×106 m/s and vSb2Te3 = 4.081×106 m/s

respectively. Both the films have been assumed to be symmetric and free-standing.

An electron beam from region I is incident at an angle θi = π/6. The magnitude of

|kI | vector is set to 0.01 nm−1. This beam, after suffering refraction at the interface

will change magnitude and continue to region II. The new magnitude would be equal

to |kII | = 0.0066 nm−1 making an angle θ2 = 48.6◦.

The spin polarization in region I is given by βspinI
= tan−1(Sy/Sx) where the spin

polarization vector S =





Sx

Sy



. For the numbers chosen, βspinI
evaluates to 118.41◦.

The corresponding spin polarization in region II is equal to 72.59◦. Therefore by
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choosing the correct |k| vector and the angle of incidence, the final spin polarization

in region II can be predicted. Looking at it the other way, for a desired final spin

polarization, the input parameters in region I can be uniquely determined.

It is noteworthy here to point out that an effect similar to the “total internal

reflection” in optics can be observed. The relation described in Eq. 4.6 suggests that

the beam of electrons from TI region I can continue to TI region II only when the

following condition holds.

0 ≤ v2
v1
sinθ1 ≤ 1 (4.7)

where v1 and v2 are the two Fermi-velocities. Using the pre-computed values of v1

and v2, an upper bound for θ1 can be deduced. For the specific case considered here,

v1 and v2 are equal to 2.721×106 m/s and 4.081×106 m/s respectively. The angle of

incidence θ1 therefore has an upper-limit set to 41.81◦. For any angle of incidence

θ1 > 41.81◦, the electron beam will suffer “total internal reflection” and not pass to

region II. All important “observables” and input parameters are collected in Table 5.2

Table 4.2
Observables and input-parameters for the spin-polarizer shown in Fig. 4.1

Observables Bi2Se3 Sb2Te3

θ1 30◦ -

θ2 - 48.6◦

|k| vector 0.01 nm−1 0.0067 nm−1

Spin pol. 0.8367 0.6309

Polz. angle 120◦ 138.59◦

Tot. Internal. Refl. 41.81◦ -

In constructing this table, the magnitude of the incident |k| vector and the angle

of incidence was set to 0.01 nm−1 and π/6 respectively. The table can be filled for
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different |k| vectors and the angle of incidences by using the momentum and energy

conservation relation described in Section 4.3.

4.5 Conclusion

This work utilised thin-films of 3D-topological insulators to demonstrate the in-

fluence of thickness, growth conditions on the nature of the topologically protected

surface states. Films in the limit of the low-level thickness have their surfaces hy-

bridized and opens up a band-gap and the Dirac cone changes to a Dirac hyperbola.

Further, films grown on a substrate or with chemically distinct surfaces produce two

Dirac cones which are separated in energy. When conditions of substrate or surface

asymmetry are combined, the Dirac cones change in to four sets of Dirac hyperbolas.

The spin which is polarized and locked to momentum giving a helical character to

the surface states were examined for both free-standing and asymmetric films. The

spin-polarization was found to be different for the two orientations; one of the spin

projection gains strength in the presence of a symmetry-breaking potential. Finally

the spin polarization at the interface of two 3D-topological insulators is worked out.

A Snell’s like-law for Dirac electrons was derived to determine the electron momen-

tum after it crosses the first region. The spin-polarization in the second topological

insulator region can be controlled by choosing the correct angle of incidence and a

choice of |k|-vector.
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5. THE ELECTRON-CORE MODEL

5.1 Introduction

Many modern semiconductor devices and materials yield band structures that do

not allow a distinction between electrons and holes. Primary examples of such devices

and materials are broken-gap super-lattices and topological insulators. This work in-

troduces the concept of a novel charge self-consistent full-band atomistic tight binding

method that avoids usage of holes. The key idea of this method is to consider every

eigen state as an electronic state and superimpose a positive bed of charges to main-

tain overall charge neutrality. The ion charge is determined by solving the Schrödinger

equation of the bulk material. To demonstrate this method, the charge self-consistent

band structure of a 9.0 nm thick Bi2Te3 layer is calculated. This method is also ap-

plicable for transport calculations in band to band tunneling structures and broken

gap devices.

5.2 Why topological insulators need another model?

Standard semiconductor devices and materials are electronically represented through

a dispersion relationship. The dispersion relationship assumes that the semiconduc-

tor has well-defined regions for electrons (conduction band) and holes (valence band).

The conduction states are energetically higher than valence bands and separated by

a finite positive energy gap. Recently, several devices and materials that have gener-

ated considerable interest due to their unique electronic properties do not possess the

positive-energy separated conduction and valence bands. Primary examples of such

devices and materials are the broken-gap super-lattices [82,83], tunnel FETs [84,85],

and the newly discovered topological insulators. The GaSb-InAs heterostructure is
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an example of a broken-gap device because the lowest conduction band edge in InAs

falls energetically below the highest valence band edge of GaSb.Similarly, topological

insulators (TIs) have a cone of states on the surface that connect the conduction and

valence bands together.

The bulk bands in broken-gap devices and surface bands in TIs, therefore can-

not have their conduction and valence bands unambiguously defined. Since the ac-

curate prediction of device characteristics and material properties needs charge self-

consistent calculations, it is imperative to devise electronic structure calculation mod-

els for materials where an explicit differentiation between electrons and holes is not

possible. Traditional methods therefore need substantial modification to address this

issue.

In this regard, several approaches to handle devices and materials where a unique

distinction between electrons and holes is not possible have been put forward. These

approaches primarily rely on effective-mass calculations [86] or use an eight-band k.p

Hamiltonian [87]. In these models it was tacitly assumed that electrons and holes are

distinguishable. A charge self-consistent k.p envelope-function method that avoids

the concept of holes [88] was developed and applied to a GaSb-InAs superlattice

to compute energy-gaps, effective masses, optical-transition energies etc. This work

continues the concept of Ref. 88 and introduces a charge self-consistent full-band

atomistic tight binding method that avoids usage of holes. This method is also

applicable to transport calculations in band to band tunneling structures and broken

gap devices. This method is applied to a 9.0 nm thick Bi2Te3 film with both identical

and inequivalent surface termination.

5.3 Charge self-consistent tight binding model

In this section, a new method, needed to accurately model broken-gap devices

and topological insulators within an atomistic framework is introduced. This descrip-

tion is based on a coupled Schrödinger-Poisson charge self-consistent scheme. The
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Schrödinger equation is set-up within a twenty-band sp3d5s∗ basis set. In a tradi-

tional self-consistent calculation, the total charge density is split as a contribution

from electrons and holes (Eq. 5.1). Eigenstates of the Schrödinger equation close

to the Fermi-level are occupied by electrons and holes according to the Fermi-Dirac

function. In the case of a heterojunction with laterally Bloch periodic boundary

conditions, the total space charge at any lattice site x is given as

ρtraditional(x) =

∫

ΩBZ

d2k||

{

∑

|Ψn,k|2 [1− f (En,k)]

−
∑

|Ψn,k|2 f (En,k)
}

, (5.1)

In contrast to the traditional approach, in the proposed method every eigen state

of the full band tight binding Schrödinger equation is considered as an electronic

state, independent of its occurrence either in the valence or conduction band. In

equilibrium, the states are filled by a single Fermi distribution. In addition, a positive

charge (ρcore) is assumed for every tight binding lattice site, i.e. for every ion core

(Eq. 5.2). It is important to clarify that the positive charges do not form a continuous

distribution, rather they are discretely arranged corresponding exactly to the atomic

description of the device under consideration. The total space charge at a lattice site

x is therefore given as

ρelecton−core(x) = −
∫

ΩBZ

d2k||
∑

|Ψn,k|2 f (En,k) + ρcore (x) . (5.2)

The first step in this method is to compute the positive charges accurately. In or-

der to do so, every material’s atom is considered a positive ion charge that depends on

the specific tight-binding model and the corresponding material parametrization. The

Schrödinger equation of the bulk material is solved to compute a quantum mechan-

ical electron density on each atom. The electron density on every atom is defined

as the product of the squared absolute value of the eigen state amplitude and its

occupancy probability. The resulting atom-resolved electron density is assumed to

agree precisely with the positive ion charge density. This guarantees that the charge

self-consistent bulk band structure is in complete agreement with the empirically de-

termined parametrization. It is tacitly assumed that the positive ion charge density
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determined from a bulk Hamiltonian holds well for confined devices made out of the

same material.

Table. 5.1 below shows a representative calculation for GaAs. Ga and As atoms

represent the positive ion charges in this case. Two tight-binding models [89,90](sp3d5s∗

and sp3s∗) are considered. As a further check, the results are compared to a DFT

calculation. While performing the DFT calculation, it is assumed that a point within

the unit cell of GaAs crystal belonged either to Ga or As depending upon their rel-

ative closeness to the atom. A point in real-space of the GaAs unit cell closer -

for example - to Ga, was assumed to carry charge that contributed to the eventual

electron density of Ga.

Table 5.1
Two different bulk charge calculation method is shown. Using DFT
and sp3d5s∗ and sp3s∗ models the charge on cation and anion is com-
puted. Note that the sum of charges is always equal to eight since
three and five valence electrons from Ga and As respectively partici-
pate in the bonding.

Charge

determination

methodology

Charge on each atom

Gallium Arsenic

DFT 3.4865 4.5135

sp3s∗ 2.765 5.234

sp3d5s∗ 3.297 4.702

To apply this method to a confined device, the corresponding tight-binding Hamil-

tonian is constructed and diagonalized for eigen states. The quantum mechanical

electron charge is computed using Eq.( 5.3) where symbols have their usual meaning.

n(z) =
N
∑

i=1

1

(2π)2
d2k||

∑

|Ψn,k|2f(En,k) (5.3)

The key point here is that in bulk the total charge density per atom is zero since

it is explicitly assumed that the quantum mechanical electron density is counter-
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balanced by an equal positive ion density. But each atomic node of a device (which is

different from bulk configuration) which is supposed to hold positive charge density

equal to bulk will not have an exact amount of electron density to counter-balance.

An excess charge density will therefore accumulate. The total excess charge density

on every atom node in a heterostructure is then a sum of atomically resolved electron

densities and the material dependent ion charges (Eq. 5.4). The excess charge density

which gives only a perturbative potential can be calculated using Eq.( 5.4). Unlike

a realistic device/heterostructure, in bulk all electrostatic effects are covered by the

empirical tight-binding parameters. This is explained by noting that the magnitude

of the quantum mechanical electron density is a direct outcome of the chosen tight-

binding parameters. Further, the positive charge density assigned to each node is

equal to the quantum mechanical electron density.

ρexcess = q [−n(z) + ρbg(z)] (5.4)

The excess space charge is used to determine the electrostatic potential via Pois-

son equation (Eq. ??). Since all fully occupied electronic states of the tight binding

electron representation are explicitly included in the calculation, electrostatic screen-

ing effects of even deeper lying electrons are ignored and the dielectric constant in

the Poisson equation is assumed to be equal to unity. [91]

A dielectric constant, which essentially signifies the response of the electrons to

an external electrostatic perturbation is therefore redundant in this method. In a

traditional approach where few states around the Fermi-level are considered, the

response of the core electrons is included through the dielectric constant. Any value

for the dielectric constant in the current method (which considers all core and valence

electrons), that is different from unity, would entail that the response/screening effects

of core electrons is counted twice in the electrostatic calculations.

It is important to note that within an eight-band k.p approach as demonstrated in

Ref. 88, the dielectric constant cannot be set to unity. The eight-band k.p Hamiltonian

calculates the eigen spectrum using a limited basis set around a high-symmetry point.
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The response of all the electrons can therefore not be accounted for in a self-consistent

charge calculation. A position dependent dielectric constant is used. Tight-binding

based methods, on the other hand, span the whole Brillouin zone and all eigen states

are included in calculations allowing the dielectric constant to be set to unity.

In these calculations, it is assumed that the core ions are rigid and do not move

from their positions. In actual microscopic world, the atomic displacements of the

core ions marginally contribute to the electrostatic response of the system.

5.4 Results

The method outlined in the previous section is applied to Bi2Te3 quantum wells(thin

film). Bi2Te3 is a narrow band-gap semiconductor (Fig. 5.3) with interesting surface

properties.

On its surface, the bulk band-gap is closed by Dirac fermion-like states(Fig. 5.1)

that are robust to non-magnetic perturbations. Such states, cannot be classified

definitely as electrons or holes. The proposed method therefore seeks to model these

states without attributing a particular electron or hole character to them. A thin

film modeled by this method is shown in Fig. 5.2. This film has inequivalent surface

terminations. The surfaces were chosen to terminate with Bi and Te1 atoms.

In Section 5.4, a positive background ion charge was calculated that helped in

restoring charge neutrality. GaAs was used as a test case and such background ion

charges were computed (Table. 5.1). By following the same approach, core ion charges

for Bi2Te3, based on an sp3d5s∗ tight-binding parameter set [52] are collected in

Table. 5.2. Bi2Te3 has three different atoms in its rhombohedral crystal structure [92].

These positive ion charges will be applied as a background charge to the atomic nodes

of the thin film.

A self-consistent calculation is carried out which yields the charge profile and po-

tential landscape for two thin films that differ in their surface termination. When a

thin film has different surface atom arrangements (similar to Fig. 5.2), a spatially-
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Fig. 5.1. The surface states of a topological insulator. The conduction
and valence bands are connected together by a cone of states at the
Γ point. The meeting of the conduction and valence bands is usually
a linear dispersion also known as a Dirac cone

Fig. 5.2. The target structure for applying the all-electron model. It
is a 9.0 nm thick Bi2Te3 ultra-thin body oriented along the x-axis.The
two surfaces have Bi and Te termination thus making them chemically
inequivalent

dependent electrostatic potential (Fig. 5.4a) is obtained and the charge on each atomic

node (Fig. 5.4b) is oscillatory. This oscillatory pattern is common to tight-binding

calculations. Moreover, this structure gives rise to an intrinsic dipole moment rep-

resented through a change in polarity of charge at the two surfaces. The bismuth

terminated surface has a charge roughly equal to 0.25(e). Te1 surface changes polar-

ity and the charge is computed to be -0.15(e).
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Fig. 5.3. Bulk band structure of Bi2Te3 according to parameterization of Ref. 52 .

Table 5.2
Background positive ion charges for Bi2Te3. These charges have been
calculated using a sp3d5s∗ tight-binding model

Atom type Positive ion charge(e)

Bi 3.89882

Te1 6.52157

Te2 7.15921

The thin film with identical surfaces (both surfaces are Te1 terminated) has a

much smoother and symmetric potential and charge distribution about the centre of

the device along x -axis (which is the direction of confinement) as shown in Fig. 5.5a

and Fig. 5.5b respectively. Both the Te1 surfaces have a charge of around 0.25(e). The

symmetric potential landscape corresponding to this charge ensures that there is no

dipole moment unlike the thin film with Bi and Te1 termination. Nevertheless, the

electrostatic potential obtained through these self-consistent calculations for both

the thin films can be considered as a smooth perturbation. This perturbation is
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essentially a correction to the electron-electron interaction already covered by the

empirical tight-binding parameters for a bulk calculation.

An interesting feature when the termination is bismuth and tellurium compared

to an all-tellurium terminated device is the charge distribution in the volume of the

device. When there is inequivalent termination, a finite spatially-dependent potential

is present in the structure. To maintain charge neutrality under the influence of this

potential, the atomic core charges fluctuate with opposite polarity. This is the origin

of the spikes in the charge distribution. Each spike with a certain polarity is the net

charge on a cation or anion.

Fig. 5.4. The spatially-dependent electrostatic potential (Fig. 5.4a)
and charge on each atomic node is plotted against the x coordinate
of the Bi2Te3 thin film. This thin-film has Bi and Te termination on
the surfaces. An oscillating charge pattern (Fig. 5.4b) is obtained for
inequivalent surface termination.

The all-tellurium device in contrast has a smooth charge profile with no electro-

static potential in the bulk. The only finite potential is at the edge of the device. It

was postulated in Sec. that the present model uses a positive charge background that

completely neutralises the electron density on each atom. The all-tellurium device

therefore has approximately zero charge on each cation and anion in the presence of

a zero potential. The charge only accumulates at the edge in direct correspondence

to the finite potential there.

When the thin film is confined along the z -axis, a constant charge is obtained

throughout the film except at the boundaries (Fig. 5.6a). The potential profile is

completely flat and constant (Fig. 5.6b). For the film considered, the potential was
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determined to be 0.079 V. This lack of asymmetry in charge and potential profile

compared to those obtained from confinement along the x -axis is an attribute of

the layered structure of Bi2Te3. Bi2Te3 possesses a hexagonal symmetry in the x-y

plane. Such hexagonal planes are stacked along the < 111 > direction to give it the

layered structure. When confinement is along the x -axis, the hexagonal symmetry

is disturbed. This loss of symmetry generates an intrinsic dipole moment which

manifests as an electrostatic potential which is more pronounced when the surfaces

are distinct due to inequivalent atomic termination. In the other case considered,

confinement along z -axis preserves the x-y in-plane symmetry. Charges of oppsoite

polarity build-up at the two edges similar to a parallel plate capacitor. In a direct

analogy to a parallel-plate capacitor, in the volume of the device the electrostatic

potential is position-independent.

Fig. 5.5. The electrostatic potential and charge is now plotted against
the x -coordinate of the device. The device is again a Bi2Te3 thin film
but with tellurium termination on both surfaces. The potential and
charge is constant in the volume of the device.

By using the potential determined in Fig. 5.4a for the thin film with different

surfaces, the twenty-band tight-binding Schrödinger equation is solved to yield a spin

resolved self-consistent band structure. The colours in the dispersion plot (Fig. 5.7)

depict the spin polarized surface bands typical of topological insulators. The Dirac-

cones correspond to the topologically protected states on the two surfaces. The Dirac-

cones are shifted in energy due to the inequivalent surfaces chosen for the Bi2Te3

thin film. They are hence positioned at different points for each distinct surface
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Fig. 5.6. The charge and potential profile (Fig. 5.6a) for a thin-film
confined along the z -axis. The potential is of constant magnitude
while the charge changes value only the edge of the device. The
charge in the volume of the device is zero (Fig. 5.6b)

on the energy scale. The spin-polarization is along the x -axis which is in accord

with experimentally observed result. The spin of the electrons in the vicinity of the

topologically protected state has been verified to be completely in-plane with zero

out of plane component. [93]. The self-consistently calculated bandstructure when

compared to the simple tight-binding result (Fig. 5.1) shows that the Dirac cones

have shifted down in energy. This shift in energy demonstrates that a self-consistent

calculation is necessary for accurate determination of the surface bands in a Bi2Te3

thin film topological insulator.

This asymmetry is also reflected in the self-consistent band structure plotted for

the two thin films with confinement along the x (Fig. 5.7a) and z -axis(Fig. 5.7b).

The band structure for the x -axis confined film does not possess the symmetry of

its z -axis counterpart. These plots are therefore in agreement with the electrostatic

results discussed above. The band structures are computed by using standard 20-

band sp3d5s∗ tight-binding. Two key observations can be made about the dispersion

plots for two different directions of thin-film confinement. 1) The energy separation

between Dirac cones get enhanced. 2)The band curvatures change which mean that

the Fermi velocity of Dirac states are different. This has a direct impact on mobility

of the surface states. Dirac points now also move below the Fermi level in to the bulk

DOS.
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Fig. 5.7. The charge self-consistent, twenty-band tight-binding elec-
tronic dispersion for a Bi2Te3 thin film with Bi and Te1 surfaces is
shown here. The Dirac cones are separated in momentum-space. The
colour bar indicates the intensity of spin polarization of the TI surface
bands.

5.5 Conclusion

A charge self-consistent tight-binding method is developed targeted towards broken-

gap devices and super-lattices. Topological insulators that exhibit similar ambiguity

as broken-gap devices as regards to distinction of electrons and holes are therefore

ideal candidates for application of this method. Standard approaches to compute the

dispersion of broken-gap devices are inadequate since they make an explicit demarca-

tion between electrons and holes. The proposed method seeks to correct this problem

by assuming that all states are filled with electrons against a positively charged back-

ground. The positively charged background is essential to fulfill the condition of

charge neutrality. A self-consistent Schrödinger-Poisson is needed to obtain the accu-

rate dispersion relation. While the method is attractive to deal with the traditional

broken-gap devices and the newly discovered topological insulators, it is much more

computationally demanding. In the traditional method, only a small set of states

around the Fermi-level are chosen. The filled valence states are not included in the

actual calculation. In contrast, the suggested tight-binding based electronic structure
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calculation technique accounts for all filled states in a charge self-consistent calcula-

tion. The downside of this method is the requirement of a large number of states to

fill with electrons. It is therefore, a more demanding and computationally expensive

method.
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6. TOPOLOGICAL INSULATOR WITH

WURTZITE-BASED NITRIDES

6.1 Introduction

The surface states of a topological insulators is the direct outcome of band in-

version. The inversion of band in the bulk is primarily due to spin-orbit coupling.

Compounds of heavy elements such as Hg, Bi which possess significant spin-orbit

coupling are well-known topological insulators. This chapter looks at another class

of materials that despite nominal spin-orbit coupling also exhibits topological insu-

lator states. In Chapter 2, the GaSb/InAs heterostructure [35] was briefly touched

upon. The peculiar band alignment of the conduction and valence band edges in that

heterostructure leads to band inversion. Wurtzite based nitrides which have a strong

spontaneous polarization can also have inverted band states under appropriate con-

ditions. These conditions, suitable materials, and quantum structures are discussed

in this chapter. To begin, a brief description of the wurtzite crystal structure and the

intrinsic spontaneous polarization is included followed by detailed electronic structure

calculations that show how a TI state can be formed.

6.2 The wurtzite crystal

The wurtzite unit cell is show in Fig. 6.1. It consists of two inter-penetrating hcp

lattices. The sites marked as A and B can be occupied by X or nitrogen atom. Here

X denotes either Ga, Al, or In atom. The nitrogen atom at A or B is internally

displaced by a distance u. The strong electro-negativity difference between X and N

atoms coupled with its small size results in the electron cloud in the metal-nitrogen

bond preferentially shifted towards the nitrogen atom. Each metal-nitrogen bond
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Fig. 6.1. Unit cell of the wurtzite crystal. The primitive unit cell
contains four atoms.

in a tetrahedral arrangement therefore creates a dipole moment which in a perfect

wurtzite crystal vectorially sums to zero. A perfect wurtzite crystal has an internal

u parameter equal to (
8

3
)0.5. Almost every crystal deviates from this number and a

resultant dipole moment along the c-axis which coincides with [0001] direction exists.

A sketch of this uncompensated internal dipole moment is shown in Fig. 6.2.

6.3 Internal polarization and topological insulators

In addition to spontaneous polarization, piezoelectric polarization which arises in

a strained system contributes to the total internal electric field. The task, therefore is

to derive ways to facilitate band inversion with this internal electric field. A common

trait of compounds with band inversion is a narrow band gap. In the wurtzite class

of compounds discussed here, InN with an approximate band-gap of 0.68 eV can be

a possible candidate for inverted band order due to internal polarization. It is im-

portant to note here that spontaneous polarization is a material parameter cannot be

altered but piezoelectric polarization which is strain dependent can be tuned assum-

ing psuedomorphic deformation. For example, an InN film grown on a GaN substrate
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Fig. 6.2. Spontaneous polarization due to crystal asymmetry in
wurtzite lattice [94].

can be biaxially strained to create piezoelectric field in InN. To quantitatively estab-

lish band inversion, the electric field must be computed. A sketch of a such a system

with InN well and GaN barrier is shown in Fig. 6.3.

6.4 Calculating the spontaneous and piezoelectric fields

The quantitative calculation of the electric field in the GaN/InN/GaN heterostruc-

ture can be deduced from the following relations. The first set of equations give

the internal electric field.
−→
E denotes the electric field, ǫi is the dielectric constant



69

Fig. 6.3. Schematic of the GaN/InN/GaN heterostructure with di-
mensions of the well(InN) and barrier(GaN) regions. The direction of
the arrows point to the effective piezoelectric and spontaneous polar-
ization present in the heterostructure.

in a certain region of the heterostructure and σi stands for bound surface charge

density(C/m2). These equations follow directly from Gauss law.

ǫ1E1 = σ1 (6.1a)

ǫ2E2 − ǫ1E1 = σ2 (6.1b)

ǫ3E3 − ǫ2E2 = σ3 (6.1c)

The charge at each interface can be computed from the set of equations below

σ1 = σsp(GaN) (6.2a)

σ2 = −σsp(GaN) + σsp(GaN) + σpz (6.2b)

σ3 = −ǫ2 (6.2c)

σ4 = −ǫ1 (6.2d)

The potential drop (Fig. 6.4) over the InN 3.0 nm wide well is considerably large.

This potential must now be added to the Hamiltonian to check if indeed a band
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Fig. 6.4. The potential drop of 3.827 V over the quantum well. GaN
and InN are lattice mis-matched by 11 % and strongly contributes
to the internal field. GaN was assumed to be relaxed and InN was
biaxially strained. The spontaneous polarization of both GaN (-0.034
C/m2) and InN (-0.029 C/m2) are evenly matched and is a weak
contributor.

inversion can occur. A schematic of this polarization field aided band inversion is

shown in Fig. 6.5.

Fig. 6.5. Schematic of the GaN/InN/GaN broken-gap heterostruc-
ture. The encircled region shows the part of the InN quantum well
where the conduction band edge falls below the valence band edge.
The potential drop similar to a p-n junction induces the bending of
the conduction and valence band edge.
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6.5 Eight-band k.p Hamiltonian for wurtzite

The final Hamiltonian can then be written as:

H = H8×8 + Vsp+pz +Hstrain (6.3)

In Eq. (6.3), the total Hamiltonian is a sum of the 8-band k.p Hamiltonian for

wurtzite [95, 96], the electrostatic potential obtained using Eq. (6.1) and Eq. (6.2)

and the strain Hamiltonian. The strain Hamiltonian [97] is computed using the Bir-

Pikus deformation potential theory. The band profile of a GaN/InN/GaN quantum

well heterostructure is first computed (Fig. 6.6. The width of the InN quantum well

is set to 3.0 nm. In a normal ordered wurtzite material, the Γ1 symmetry point is

energetically placed over Γ6. For the band structure shown in Fig. 6.6, the sequence is

just reversed demonstrating the inverted band profile. Band-gap closing edge states

Fig. 6.6. Band structure of the GaN/InN/GaN broken-gap het-
erostructure. The symmetry of the orbitals at the Γ point is reversed.

which are Dirac-cones (Fig. 6.7 must therefore be found when a nano-ribbon is con-

structed from the inverted quantum well by quantizing one of its in-plane periodic

axis. The edge states are also determined to be spin-polarized indicated by the two
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different colours of bands. The nano-ribbon is chosen to be 100.0 nm wide to prevent

mixing of the edge states. Additionally, the wave functions of the two edge states

Fig. 6.7. Band structure of the GaN/InN/GaN 100.0 nm nano-ribbon.
The two surface bands have opposite spin-polarization distinguished
by two different colours.

were computed. The wave functions (Fig. 6.8) peak at the edges and decay rapidly

in to the bulk

6.6 Edge states under influence of electric and magnetic field

The Dirac cones in a GaN/InN/GaN heterostructure are degenerate. Under the

influence of an external electric field or magnetic field (Fig. 6.9), the two degenerate

Dirac cones split in energy and separate along the energy axis (Fig. 6.10). Similarly

when an external B field is applied along the z-axis, the two degenerate Dirac cones

shift along the x-axis (Fig. 6.11). The B-field acts as a horizontal gate. From the

original Γ point, the two Dirac cones are not situated at kx = -0.013 1/nm and -0.032

1/nm.
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Fig. 6.8. The wave function of the edge state in GaN/InN/GaN 100.0
nm nano-ribbon shows a maximum at the boundary and decays in
the bulk. A conclusive proof that the edge states are fully localized

Fig. 6.9. A GaN/InN/GaN nanoribbon of 100.0 nm width is confined
along y and z axes. Electric and magnetic field is applied along the
y and z axes. The magnetic field is added to the Hamiltonian using
a Landau gauge.
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Fig. 6.10. Band structure of the GaN/InN/GaN broken-gap het-
erostructure under electric field = 1.5 MV/cm. The two Dirac cones
are now positioned at 3.842 meV and 4.187 meV

Fig. 6.11. Band structure of the GaN/InN/GaN under an external
magnetic field of 10 T along the z-axis.

6.7 Conclusion

A GaN/InN/GaN heterostructure with topological insulator edge states is perhaps

only a few known instances where spin-orbit coupling effects do not play a part.
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GaSb/InAs broken gap heterostructure and strain-induced topological band order in

cubic semiconductors [98] are the other experimentally verified cases. It is important

to note here that the width of the InN quantum well is a vital number. A very thin

InN quantum well will change the inverted band order to normal because of sheer

geometric confinement effects while a very wide quantum well diminishes the electric

potential. An optimal value of InN well must be chosen that preserves the inverted

band order and also thick enough to allow strain to be considered as pseudomorphic.
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7. TOPOLOGICAL INSULATOR NANOSTRUCTURES

7.1 Introduction

Topological insulator nanostructures offer significant advantages over bulk materi-

als. The most crucial advantage of a nanostructure is the increased surface-to-volume

ratio. This holds more true for TI nanostructures because the surface states are the

most important feature of these materials. Research groups worldwide have synthe-

sised TI nanostructures [99, 100]. This chapter utilizes the information presented in

the preceding chapters to construct useful devices that can be applied in the semi-

conductor industry. As a first example, the current-voltage characteristics of a TI

ultra-thin body is examined. A possible use of this could be as components of a

fast-switching low-power circuit environment. It is imperative to mention that TI

surface states offer electronic mobility values that far outweigh those of Silicon, the

current material extensively used in industry [101, 102]. As a comparative measure,

Si has mobility of 1400 cm2/V.s while a Bi2Te3 thin film has been experimentally

determined to have around 10,200 cm2/V.s. The high mobility of TI surface states

arise because of the protection from back-scattering.

7.2 Current-voltage characteristics of a Bi2Te3 ultra-thin body

An UTB constructed out of Bi2Te3 is shown in Fig. 7.1. The structure is geomet-

rically confined along the z-axis. Open boundary conditions (transport direction) is

along the x-axis. The y-axis is assumed to be periodic. The temperature of operation

is 300 K.

An external voltage was applied between the two contacts placed along the x-axis.

These two contacts serve as source and drain. The transmission profile of this device
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Fig. 7.1. Topological insulator ultra-thin body confined geometrically
along z-direction and measures 8.942 nm. Contacts are placed along
x-axis and this dimension is 1.972 nm. The y-axis is periodic

(Fig. 7.2) under the applied external voltage was computed within the non-equilibrium

Green’s function formalism. Using the transmission data, current in the device as a

function of the external voltage Fig. 7.4) was computed by a direct application of the

Landauer-Büttiker formalism. As a guide to the eye, the dispersion of the ultra-thin-

body is shown in Fig. 7.3. External bias, with reference to Fig. 7.3 is applied between

0.0 and 0.2 eV to completely cover the TI surface states. Similar current-voltage plots

were compared with graphene (because of identical linear dispersion) and Silicon. The

current-voltage characteristics of Silicon reveal that at low values of external voltages,

current is negligible. A TI ultra-thin body on the other hand delivers sufficient current

(Fig. 7.5) at a low source-drain bias. A comparable graphene device also delivered

current which was six-fold less than its TI counterpart.

TI surface states can deliver current at low biases because of their semi-metallic

character. The transistor fabricated out of a TI, therefore, is present in a turn-on

state by default. Silicon, at low biases has zero or negligible density of states since

they possess a finite band-gap unlike the zero-gap metal-like states of TI.

While, the aforementioned low-power attribute of TI based transistors is attrac-

tive, it also presents a significant challenge to turn-off this device. Leakage losses in a

permanently turned-on device would far offset the potential benefits of a TI transis-
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Fig. 7.2. Transmission profile of the TI ultra-thin body. The dis-
tinguishing feature of this transmission plot is the flat profile in the
region of surface states.

tor. There are multiple ways, theoretically, to turn off a TI device. Under the action

of an external magnetic field, the band-gap closing states would separate and form a

finite gap. By placing the fermi-level within the gap, the device can be turned off. In

a real miniaturized semiconductor chip, an external magnetic field would be hard to

apply without impacting the performance of the neighbouring electronic circuitry. A

more sophisticated way of opening a band-gap is through a TI-superconductor het-

erostructure. The behaviour of a topological insulator in presence of a superconductor

is covered in Chapter 8.

7.3 Topological Insulator nanowires

Topological insulator nanoribbons have been studied to understand fundamen-

tal condensed matter physics with Dirac fermions. Significant studies have included
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Fig. 7.3. Energy band diagram for the ultra-thin body. It is assumed
that the application of a moderate electric field preserves this band
structure. The energies on this plot serve as a guide to position the
fermi-level. The two colours indicate spin polarization of the bands.
The colour bar signifies the intensity of spin polarization. The TI
surface bands are completely spin polarized as expected.

Ahronov-Bohm oscillations [103,104], weak anti-localization [105], SdH oscillations [106]

etc. High-resolution TEM imaging and 2D Fourier transformed electron diffrac-

tion measurements demonstrate that the samples are single-crystalline rhombohedral

phase and grow along the [1120] direction.

7.4 Results and Discussion

Bi2Te3 has been reported as a strong topological insulator with a Dirac node at its

surface. In this section, nanowires constructed out of this material are described and

their properties analyzed with respect to geometry, dimension, and growth direction.
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Fig. 7.4. I-V characteristics for the TI ultra-thin body shown in
Fig 7.1. At low bias values, the current delivered is sufficiently large
compared to traditional semiconductor materials.

Nanowires are chosen as a target application because they can act both as active

devices and wire connectors.

7.4.1 Cylindrical Nanowires

The first nanowire structure considered is a 6.0 nm diameter cylinder. This device

was found to have a Dirac crossing at 0.06 eV (Fig.7.6). The crossing is identified to

possess topological behaviour by observing its spin-polarized nature. The two bands

that cross at this energy are strongly spin-polarized as indicated by their distinct

colours. The colurs of the band on the dispersion represent the spin polarization. To

test for the robustness of these states at smaller dimensions, the previously simulated

cylinder diameter was scaled by 50%. At 3.0 nm diameter, no topological states

were observed. States in the mid-gap region did not show the characteristic band
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Fig. 7.5. Comparison of the I-V characteristics of ultra-thin bodies
made out of Bi2Te3, graphene, and silicon.

gap closing Dirac cone. Instead, a clear energy difference was seen between the

states denoting a normal insulator behaviour. The disappearance of topologically

protected surface states is explained by examining the device structure carefully.

At small dimensions, the distinction betwen surface and volume is unclear, surface

states penetrate the bulk and hybridize to give an all-equivalent surface atom chain.

Therefore, to obtain strong topological states, a threshold dimension for a given device

geometry is a necessary requirement.

7.4.2 Squared Nanowires

Electronic transport at the nanoscale regime is widely studied on squared cross-

sectional nanowire based devices. Therefore, it is important to determine whether

topological insulator nanowires can be an attractive material for the semiconductor
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Fig. 7.6. Spin polarized dispersion of a 6.0 nm Bi2Te3 cylindrical
nanowire. The Dirac crossing is at around 0.06 eV. The colour bar
on the right indicates the strength of spin polarization.

industry. To that end, a squared nanowire with a 6.0 nm edge was simulated. The

simulation structure is shown in Fig.7.7. Unlike, a cylinder, this structure possesses

two very different surface atom arrangement. The two different surfaces are maked

as ”A” and ”B” on Fig.7.7 Thus, unlike a cylinder, there are two different surfaces

and a significant change in the band structure is expected. Analysis of the spin

polarized bands reveal a very weak degree of polarization (Fig.7.8). Since topological

insulators exhibit strongly spin-polarized bands, it is therefore safe to conclude that

surface states in a squared nanowire will not have properties associated with TIs.

The absence of strong spin polarized bands can be thought of as an outcome of the

reduced symmetry of the squared wire. Because of reduced symmetry, surface atomic

arrangement is not unique as a cylinder.
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Fig. 7.7. Surface atom arrangement on a 6.0 nm squared cross-
sectional nanowire. Two surfaces with distinct atom arrangement
are alphabetically marked.

Fig. 7.8. Spin polarized dispersion for a square cross-sectional
nanowire. Spin polarization is weak for this structure. The edge
of this device is set to 6.0 nm.

7.4.3 Composite nanowires

In the previous two subsections, it was demonstrated how through simulation,

topological insulator states were observed for cylindrical nanowires. Squared cross-
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sectional nanowires were determined to be unsuitable for topological insulator based

devices. It is therefore interesting to find the behaviour of a device that has both cylin-

drical and square cross sections. Two cases are considered: 1). Rectangular nanowire

with a cylindrical face (Fig.7.9a) and 2). Cylindrical nanowire with a rectangular bot-

tom surface (Fig.7.9b). For case 2), topological surface states were identified and were

Fig. 7.9. Fig.6a is the cross-sectional view of a rectangular nanowire
with a cylindrical face. Fig.6b shows a cylindrical nanowire with rect-
angular bottom surface. The dimensions for both the structures are
mentioned on the plot.

strongly spin polarized (Fig.7.10). Case 1) with a predominantly square cross-section

(Fig.7.9b) does not show a strongly polarized surface band dispersion. These obser-

vations are consistent with earlier predictions about the lack of topological surface

states in squared wires.

7.5 Growth Direction of nanowires

Growth direction for nanowires significantly affect their electronic properties. The

cases studied so far have been on wires that were grown along the c-axis. Fur-

ther simulation runs were conducted on 6.0 nm diameter cylindrical nanowires grown

along <110> and <111>. <110> wires are not topological insulators. <111> wires
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Fig. 7.10. Spin polarized dispersion for the structure of Fig.6b.

have highly spin polarized dispersion confirming them as strong topological insulators

(Fig.7.11). The spin axis is taken to be the growth direction <111>.

Fig. 7.11. Spin polarized dispersion for a 6.0 nm diameter cylindrical
wire grown along <111> axis. Dirac cones are present around 0.01
eV.
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7.6 Conclusion

The present work investigates geometric conditions under which Bi2Te3 cylindrical

nanowire can be grown to maximise the benefits afforded by topological insulators.

Nanowires demonstrate topological insulator behaviour when dimensions are above

a certain threshold. This threshold value is approximately 5.0 nm in diameter for

a cylindrical nanowire. Wires which do not satisfy this criterion cannot be used as

TI materials. Further, the shape of wire plays a significant role in ascertaining if a

certain device is a TI. It was found that cylindrical wires are strong TIs while squared

nanowires have weak spin polarized bands and hence unsuitable for TI applications.

Composite nanowires continue the trend; strong TI behaviour is observed when the

device is primarily cylindrical. Lastly, the direction of growth axis was another param-

eter that can be manipulated to create topological surface states. Calculations reveal

wires grown along <001> and <111> directions demonstrate TI features. <110>

grown wires do not have spin-polarized surface bands.
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8. SUPERCONDUCTORS AND TOPOLOGICAL

INSULATORS

8.1 Introduction

It is now well established that doping of Cu or Pb can add superconducting states

to Bi2Se3. The proximity effect at the interface between a superconductor and topo-

logical insulator has attracted considerable attention [107,108]. Because of proximity

effect, when a TI surface state is closely placed with a superconductor (Fig. 8.1),

the superconductor’s wave functions can penetrate into the topological surface states

(Fig. 8.2) and turn them in to superconducting states. A superconductor has an

intrinsic energy gap between the Fermi-level and the superconducting ground state.

As noted before in Chapter 7, this could be a possible way to open a band-gap in a

topological insulator. In this chapter, a modified version of the BdG Hamiltonian for

a 3D-TI and s-wave superconductor is presented.

8.2 Hamiltonian for 3D TI and s-wave superconductor heterostructure

Before a complete Hamiltonian for a TI-superconductor heterostructure can be

written, the conventional BCS description [110,111] of an s-wave superconductor must

Fig. 8.1. Schematic of a TI grown epitaxially on a superconductor
(left) and a superconductor film layered on a TI film [109].
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Fig. 8.2. Cartoon of Cooper pair transfer from the superconductor to
topological insulator [109].

be examined. The BCS Hamiltonian in its simplest form can be written by starting

with a Hamiltonian (Eq. 8.1) that describes a many-Fermion system interacting via

a spin-independent interaction potential.

H =
∑

σ

∫

d3xψ+
σ (x)

(−h̄2∇2

2m
− µ

)

ψσ(x) +
1

2

∑

σσ
′

∫

d3xd3x
′

V (x, x
′

)ψ+
σ (x)ψ

+
σ (x

′

)ψσ(x)ψσ(x
′

)

(8.1)

In momentum space and finite volume, the following substitutions can be made

ψ(x) =
1√
Ω

∑

q

eik·x, V (x) =
1

Ω

∑

q

eik·xVq (8.2)

The Hamiltonian in Eq. 8.1 can therefore be now written as

H =
∑

kσ

εka
+

kσakσ +
1

2Ω

∑

σσ
′

∑

kk
′
q

Vqa
+

k+q,σa
+

k
′−q,σ

′akσak′σ′ (8.3)

By restricting to paired fermions with zero total momentum and opposite spin, the

BCS Hamiltonian can be written as

H =
∑

kσ

εka
+

kσakσ +
1

Ω

∑

kk
′

Vk−k
′a+

k
′
↑
a+
−k

′
↓
ak↑a−k↓ (8.4)

The spectrum of this Hamiltonian when solved using the Bogoliubov transforma-

tion [112] yields a band structure [113] with a gap (Fig. 8.3) in the spectrum. For

studying proximity effect between a superconductor [114, 115] and a topological in-

sulator, the 4-band k.p model (introduced in Chapter 2) and the BCS Hamiltonian

is used in conjunction. The fundamental assumption (experimentally verified) of the
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Fig. 8.3. Band structure of a simple s-wave superconductor calculated
with the BdG Hamiltonian. In calculating this spectrum the Fermi-
level was set to 0.7 eV and the pair potential is equal to 0.1 eV. The
superconducting gap in the spectrum is clearly visible.
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BCS Hamiltonian is the formation of Cooper pairs which are electrons with zero total

momentum and spin. Superconductivity which is induced on the TI side of the TI-SC

heterostructure must therefore agree to this principle. At this point it is worth men-

tioning again that the four orbitals participating in the electronic bonding process are

|P1+z ↑〉, |P2−z ↑〉, |P1+z ↓〉, and |P2−z ↓〉. The composite Hamiltonian for the TI-SC

structure similar to the BdG Hamiltonian can now be written as

HTS =





HT − µ ∆

∆∗ µ− THTT
−1



 (8.5)

In Eq. 8.5, µ denotes the Fermi-level and T is the time reversal operator. HTS is the

composite Hamiltonian and HT represents the 4-band k.p Hamiltonian. ∆ is the pair

potential given in the BCS formulation. For the s-wave superconductor considered

here, the pair-potential is just a number. The analytic representation of pair-potential

changes to a
−→
k dependent quantity if p or d -type superconductors are considered.

The pair potential ∆ connects the two electrons with opposite momentum and spin.

For the case of a TI, which is turned in to a superconductor, the orbitals with opposite

spin and momentum are paired. The two sets of orbitals in the 4-band TI Hamiltonian

are therefore coupled by two pair potentials. The full TI-SC Hamiltonian HTS in the

basis set |P1+z ↑〉, |P2−z ↑〉, |P1+z ↓〉, |P2−z ↓〉, −|P1+z ↑〉, −|P2−z ↑〉, −|P1+z ↓〉, and
−|P2−z ↓〉 can be now written as

HTS =









































ǫ+M A1kz 0 A2k− 0 0 ∆1 0

A1kz ǫ−M A2k− 0 0 0 0 ∆2

0 A2k+ ǫ+M −A1kz −∆1 0 0 0

A2k+ 0 −A1kz ǫ−M 0 −∆2 0 0

0 0 −∆∗
1 0 −ǫ−M A1kz 0 A2k−

0 0 0 −∆2∗ A1kz −ǫ+M A2k− 0

∆∗
1 0 0 0 0 A2k+ −ǫ−M −A1kz

0 ∆∗
2 0 0 A2k+ 0 −A1kz −ǫ+M









































(8.6)
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Fig. 8.4. Band structure of a TI and s-wave superconductor het-
erostructure calculated with the modified BdG Hamiltonian. In cal-
culating this spectrum the Fermi-level was set to 0 and the pair po-
tential ∆1 and ∆2 was assumed to be to 0.1 eV. The TI chosen is a
8.0 nm thick Bi2Se3 film.

where where ǫ(k) = C+D1k
2
z +D2k

2
⊥, M(k) =M0+B1k

2
z +B2k

2
⊥ and k± = kx± iky.

In the above Hamiltonian, the Fermi-level µ has been set to zero. The dispersion for

the TI obtained in the presence of a superconductor is shown in Fig. 8.4. The pair

potentials were assumed to be zero beyond two layers. A more accurate calculation

presented in the next section does not require this empirical assumption.

8.3 Self-consistent calculation of the order parameter

A more rigorous calculation of the pair potential or order parameter can now be

set-up through a self-consistent calculation. The pair potential ∆1, for instance is

given as

∆1 = f(z)

∫

dk‖〈ψ1↑(k‖, z)ψ1↓(−k‖, z) (8.7)

In eq. 8.7, ψ1↑ and ψ1↓ refer to the wave function components in the 8 × 1 column

vector that correspond to |P1+z ↑〉 and −|P1+z ↓〉.
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The order parameter when computed as a function of the confined direction shows

a rapidly decaying behaviour. This is expected as the penetration of the supercon-

ductor wave function is limited to a few layers on the surface.

8.4 Conclusion

The proximity effect between an s-wave superconductor and topological insulator

has been investigated. In setting up the Hamiltonian for the TI-SC heterostructure,

strong coupling between the superconductor and TI has been assumed. While this

coupling has modified the TI surface states by opening a band gap, a similar pattern

can also be observed on the superconductor side. Modification of superconducting

properties in the presence of a TI has not been considered in this thesis.
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9. FUTURE WORK

9.1 Current trends in topological insulators

The discovery of topological insulators has opened up extensive experimental and

theoretical research by several groups across the world. Potential future applications

that include areas as diverse as thermoelectrics, spintronics, and quantum computing

are being explored. It is beyond the scope of this thesis to include several topics

that themselves on their own stand merit as a complete body of work. This chapter

summarizes a few such key items that have been not been covered here. A short

description of the problem and a possible approach has been outlined.

9.2 Electron-phonon scattering on topological insulator nanowires and

ultra-thin bodies

All the terminal characteristics of the topological insulator ultra-thin bodies cal-

culated so far have been under ballistic conditions. An electron on the surface is

assumed to zip across the two contacts of the device without suffering any scattering.

Simulation of realistic electron transport require that scattering on the surface be ac-

counted for to better match experimental results. The next few sections would outline

a plan to set-up electron scattering on the surface of topological insulators [116].

Modeling the electron-phonon scattering depends on choosing a correct form of

the Hamiltonian. To compute the scattering rates, a 4x4 k.p model can be used to

accurately reproduce the Dirac surface states. A 4x4 k.p model (eqn 9.1) is more

numerically tractable than a twenty-band tight binding Hamiltonian. In carrying out

a detailed temperature dependent resistivity, it is assumed that electron-phonon scat-

tering is the dominant source of quasi-particle decay and back scattering. Electron-
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electron interactions are indeed expected to give sub-leading order corrections at finite

temperatures. The model Hamiltonian given in Chapter 2 is repeated here again for

convenience.

H(k) = ǫ(k) +

















M iA1kz 0 A2k−

0 −M A2k− 0

0 A2k+ M −iA1kz

A2k+ 0 −iA1kz −M

















(9.1)

where

ǫ(k) = (C +D1k
2
z +D2

(

k2x + k2y
)

)I4×4

M =M0 − B1k
2
z − B2

(

k2x + k2y
)

k± = kx ± iky (9.2)

The next part in setting up the program of electron-phonon scattering is to model

the phonons using elastic continuum theory. Previous work on related materials have

shown that isotropic elastic continuum theory provides a reasonable approximation.

Using a low-energy electronic Hamiltonian and an isotropic elastic continuum

approach for the phonons, with the deformation coupling providing the dominant

interaction, the electron-phonon coupling can be computed. In short, three different

Hamiltonian have to be modeled to address the scattering problem (eq. ??).

Htot = Helectronic +Hphonon +Hel−ph (9.3)

9.3 Spin transport in topological insulators

Topological insulators are strongly driven by a high measure of spin-orbit cou-

pling. The existence of metallic Dirac-fermion surface states char- acterized by an

intrinsic spin helicity: the wave vector of the electron determines its spin state. A net

spin density is thus produced upon driving a charge current at the surface of a TI.
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Considerable effort has been devoted recently to possible applications of this property

in constructing spin-based devices.

The striking feature of the surface states of topological insulators is the helicity of

the spin polarization vector. The spin polarization vector, along the constant energy

contours is defined in eqn( 9.4).

~P
(

~k
)

= 2/h̄
[

〈S
(

~kx

)

〉, 〈S
(

~ky

)

〉, 〈S
(

~kz

)

〉
]

(9.4)

The expectation values of spin operators is given by

〈Sαi

(

~kx

)

〉 = h̄/2〈ψi

(

~k
)

|σi|ψi

(

~k
)

〉 (9.5)

are the two-component spinor wave functions. σi denotes the Pauli matrices. The

recent spin- and angle-resolved photo-emission spectroscopy (spin-ARPES) experi-

ments have indeed indicated a one-to-one locking of the momentum and the direction

of spin polarization vector pointing along
(

~k × ~z
)

From the point of view of technological applications, an attractive feature of the

TI materials is the intrinsic spin polarization of the current carried by the topological

surface states. To model the spin transport in the simplest form, a drift-diffusion type

equation is considered. The equations( 9.6, 9.7) assumes that the two spin projections

serve as the electrons and holes.

J↑ = n↑eµ↑E + eD↑
dn↑

dx
(9.6)

J↓ = n↓eµ↓E + eD↓
dn↓

dx
(9.7)

The related continuity equations for the up-spin and down-spin electron densities

are given by eqn( 9.8, 9.9)

dn↑

dt
=

−n↑

τ↑↓
+
n↓

τ↓↑
+

1

e

d

dx
J↑ (9.8)

dn↓

dt
=

−n↓

τ↓↑
+
n↑

τ↑↓
+

1

e

d

dx
J↓ (9.9)
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The driving electric field is ~E, the electron charge is e and the mobilities of up-spin

and down-spin electrons are given by µ↑ and µ↓ respectively.

τ↑↓ and τ↓↑ denote the in-out scattering rates for the spin population. For a

topological insulator, the correct spin-flipping mechanism to accurately determine

the scattering rates have to be investigated.

9.4 Ferromagnetic materials: An efficient way of controlling the TI sur-

face states

For real device applications, an efficient way of controlling the surface states is

of utmost importance. It has been proven theoretically that TIs can have many

exotic physical properties related to the breaking of time reversal symmetry. Of the

many possibilities explored, introduction of a ferromagnetic material is considered

particularly promising. The exchange interaction with a proximate magnetic field

can affect the TI surface states more effectively than an external magnetic field.

A thin strip of ferro-magnetic layer is deposited on the top surface of a TI. The

electron transmission through a single ferro-magnetic barrier can be made significantly

dependent on the mutual orientation of the current ~J and the magnetization. For

instance, in-plane magnetization of the ferromagnetic layer induces a shift in the Dirac

cone of the surface states in contact away from the Brillouin zone centre. When the

displacement is in the direction of ~J , the introduced magnetic barrier is not expected

to affect electron transmission substantially. Moreover, orientating the magnetization

vector perpendicular to the TI surface leads to a finite band gap. Thus, a single

ferromagnetic barrier with variable magnetization appears to be sufficient to modulate

the electrical current on the surface of a TI.

9.5 Andreev reflection at a topological insulator superconductor interface

A metal/superconductor interface reflects an incident electron from the metal as

a positively charged hole with opposite spin. In the process a Cooper pair is formed
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in the superconductor. This electron-hole conversion is known as Andreev reflec-

tion. Andreev reflection coefficient [117] for different classes of topological insulator

in presence of disorder, both magnetic and non-magnetic can be computed. Further,

experiments have already been reported that show suppression of Andreev reflection

within the superconducting gap. This experimental result is explained by noting that

the surface state of a TI is spin-polarized and spin is locked to momentum perpen-

dicularly. This spin-momentum locking allows only one spin polarization of electrons

(which does not satisfy the Cooper pair requirement) thus eliminating Andreev re-

flection.
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A. MATLAB SCRIPT FOR EVALUATING SPIN

POLARIZATION

This appendix contains the MATLAB script for evaluating spin polarization of TI

surface states. Please note that this script only works with the output files produced

by the NEMO5 simulator [118].

clear all

name = ’TI_ex1’;

k= load([name,’_k_distance.dat’]);

kmax = max(k);

kmin = min(k);

k = k - (kmax+kmin)/2;

e = load([name,’_energies.dat’]);

s = dlmread([name,’_spin_projection.dat’]);

sigma_Pauli_x = [0, 1; 1, 0];

sigma_Pauli_y = [0, -i; i, 0];

sigma_Pauli_z = [1, 0; 0, -1];

n = [1, 0, 0]; % spin quantization axis (input)

% a3 = [1 1 1]/sqrt(3);

% a2 = [1 -1 0 ]/sqrt(2);

% a1 = [1 1 -2]/sqrt(6);

% n =a1*n0(1)+a2*n0(2)+a3*n0(3);

n = n/norm(n);

sigma = n(1) * sigma_Pauli_x + n(2)*sigma_Pauli_y + n(3)*sigma_Pauli_z;

n = size(e);

n_bands = n(2);
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k_points = n(1);

figure; hold on;

set(gca, ’FontSize’, 16)

for band = [1:n_bands]

s1 = s(:,(band-1)*3+1:band*3);

spin = s1(:,1) - s1(:,3);

for kind = [1:k_points]

s_matrix = [s1(kind,1), s1(kind,2); s1(kind,2)’, s1(kind,3)];

sp = trace(sigma * s_matrix);

spin(kind) = sp;

end

Emin = min(e(:,band));

Emax = max(e(:,band));

if ((Emin > -3) && (Emax<3))

scatter(k, e(:,band),20, spin,’filled’);

end

end

xlabel(’wave vector [1/nm]’);

ylabel(’Energy [ev]’);

hcb = colorbar;

set(hcb, ’FontSize’, 16);

box on;

caxis([-1,1]);

colormap cool;

xlim([min(k) max(k)]);

hl = line([min(k) max(k)],[0, 0]);

set(hl,’LineWidth’, 2);

set(hl,’color’, [0 0 0]);
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