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The aim of this paper is to provide better understanding of a few approaches that have
been proposed for treating nonequilibrium (time-dependent) processes in statistical me-
chanics with the emphasis on the interrelation between theories. The ensemble method,
as it was formulated by Gibbs, has great generality and broad applicability to equi-
librium statistical mechanics. Different macroscopic environmental constraints lead to
different types of ensembles, with particular statistical characteristics. In the present
work, the statistical theory of nonequilibrium processes which is based on nonequilib-
rium ensemble formalism is discussed. We also outline the reasoning leading to some
other useful approaches to the description of the irreversible processes. The kinetic ap-
proach to dynamic many-body problems, which is important from the point of view of
the fundamental theory of irreversibility, is alluded to. Appropriate references are made
to papers dealing with similar problems arising in other fields. The emphasis is on the
method of the nonequilibrium statistical operator (NSO) developed by Zubarev. The
NSO method permits one to generalize the Gibbs ensemble method to the nonequi-
librium case and to construct a nonequilibrium statistical operator which enables one
to obtain the transport equations and calculate the transport coefficients in terms of
correlation functions, and which, in the case of equilibrium, goes over to the Gibbs dis-
tribution. Although some space is devoted to the formal structure of the NSO method,
the emphasis is on its utility. Applications to specific problems such as the generalized
transport and kinetic equations, and a few examples of the relaxation and dissipative
processes, which manifest the operational ability of the method, are considered.
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1. Introduction

We may say that equilibrium statistical mechanics is mainly statistical,

whereas the nonequilibrium statistical mechanics is mainly mechanical.
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