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Theory of Two-Dimensional Multirate Filter Banks

GUNNAR KARLSSON, MEMBER, IEEE, AND MARTIN VETTERLI, MEMBER, IEEE

Abstract—New results are presented on two-dimensional finite-im-
pulse-response filter banks for multirate applications. The theory is
valid for all sampling lattices, and conditions for alias-free and perfect
signal reconstruction are derived. Synthesis structures for paraunitary
and nonparaunitary polynomial matrices are derived, which yield per-
fect reconstruction filter banks. The degrees of freedom are given for
these systems. Linear phase conditions are posed on the polyphase form
of filter banks, which is used to derive a design structure for the re-
stricted, but important, case of linear phase filter banks.

I. INTRODUCTION

IN RECENT years, subband coding has gained attention
as a powerful method for compressing still images and
video (see, for example, [22], [26], {28]. [9]. [12], [14],
[27], and [2]). The technique of subband coding is ex-
plained in Fig. 1. A signal is passed through a bank of
band-pass filters, the analysis filters. Owing to the re-
duced bandwidth, cach resulting component may be sub-
sampled to its new Nyquist frequency, thus yielding the
subband signals. Following that, each subband would be
encoded, transmitted, and, at the destination, decoded.
To finally reconstruct the signal, each subband is upsam-
pled to the sampling rate of the input. All upsampled com-
ponents are passed through the synthesis filter bank, where
they are interpolated, and subsequently added to form the
reconstructed signal.

Most of the previously reported work on subband cod-
ing of images has relied on separable processing. How-
ever, it is only proper that two-dimensional signals, such
as images, should be processed with truly two-dimen-
sional systems. The advantage with nonseparable filters
is that the subband analysis may have directional proper-
ties which are not limited to the vertical and horizontal
directions of separable filters, and general. nonrectangu-
lar subsampling patterns can be used. In addition, non-
separable filters can have better frequency characteristics
than their separable counterpart: consider that a non-
separable impulse response with M X M coefficients has
M? free variables while its separable counterpart has only
2M. Multidirectional subband analysis can thereby be ob-
tained which may give enhanced coding performance. For
example, a separable paraunitary filter bank (to be ex-
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Fig. I. A subband coding system consists of filter banks. sample rate con-

versions. and compression. The latter is commonly performed by PCM.
DPCM, DCT. vector quantization, or any combination thereof.

plained in Section V-A) cannot have linear phase response
in the case of separable subsampling by a factor 2 in each
dimension, while the nonseparable counterpart can pos-
sess both of these properties. Filter bank theory for one-
dimensional systems has been thoroughly researched. For
an overview of recent results, which are pertinent to the
theory of this paper. the reader is referred to [18], [23],
[19], [7], and [24] and references therein. Discussions on
two-dimensional filter banks related to the present work
have appeared in [20], [1], [25], [2], [13]. [14], and {3].

Subband analysis and synthesis may be approached with
two levels of quality in mind: alias-free and perfect signal
reconstruction. Alias-free reconstruction means that the
system is shift-invariant in the absence of coding loss. In
this case it is also possible to eliminate amplitude and
phase distortion, which is referred to as perfect recon-
struction. The subband coding system in Fig. 1 may be
viewed as consisting of three distinct parts where the first
is the filter banks which are used for analysis and synthe-
sis of a signal. the second is the sample rate conversion
of the subbands (i.e., the subsampling and upsampling),
and the third part is the encoding and decoding of the sub-
bands. In this paper the focus is on the former two parts;
no coding results are included. The theory pertains mainly
to perfect reconstruction filter banks with finite impulse
responses and critical subsampling. The sampling struc-
tures of the input and the subsampling must be represent-
able as lattices, and structures which can only be repre-
sented as unions of shifted lattices will not be considered.

The outline of the article is as follows. Section Il covers
the general two-dimensional subsampling and upsam-
pling. Given this, the related polyphase decomposition of
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a filter bank is derived in Section III. In Section IV, the
input/output relationship of the entire subband analysis
and synthesis system is derived in the polyphase domain,
upon which we pose conditions for alias-free and perfect
signal reconstruction. Section V gives structures which
can be used for designing perfect reconstfuction filter
banks. In Section VI we derive a test condition in the
polyphase domain for the linear phase response of two-
dimensional systems, which is used to develop a design
structure for linear phase systems.

We will adhere to the following notation. Matrices are
denoted by boldface italic capital letters (e.g., A), deter-
minants by vertical bars (e.g., |A|), and column vectors
by an overbar (e.g., @). Functions in the space domain
are named by lowercase letters with their z-transform
equivalent given in capital letters.! The exceptions to this
naming convention are N, which denotes the subsampling
factor, and Wy, which denotes the Nth root of unity (i.e.,
Wy = e/*/N)y_ Functions in the polyphase domain [6]
are indicated by the subscript p. The axes of the input
lattice are n, and 1, and the axes on the subsampling lat-
tice are u, and u,. Matrix transpose is marked by super-
script T, ® is the Kronecker matrix product [10], and all
other notations are explained in the text or given by their
context.

II. Two-DIMENSIONAL SUBSAMPLING

An integral part of subband coding is the subsampling
of the analyzed signal and the reciprocal upsampling be-
fore the synthesis. For one-dimensional signals, uniform,
or equidistant, sampling structures are most common. In
two-dimensions the counterpart is a signal sampled on a
uniform grid with one sample located at each vertex point
of the grid. In this article such a grid will be referred to
as a lattice. For a good introduction to lattice theory the
reader is referred to [S], which, however, goes much be-
yond the knowledge needed for this article.

Assume a two-dimensional signal which is defined on
an arbitrary sampling lattice. A subsampling of this signal
can be seen as a linear transformation from the input lat-
tice to a subsampling lattice (i.c., the subsampling lattice
is a coset of the input lattice) [8]. The subsampling should
not be restricted to be along the axes of the input lattice,
which corresponds to scaling, but also rotation of the axes
should be possible. Thus, given a location (u,, 4>) on the
subsampling lattice, the corresponding location (ny, na)
on the sampling lattice of the input is given by

n u dy d,
( ‘>=D< '>, whereD:<“° °'>. (1)
n, Uy dyy dy

All elements dj; are integers, and we will require that d,
=0,dg > 0,d,, > 0,and 0 < dy; < dyo. (The require-
ment that d,, = 0 makes the axes n; and u, collinear.)
The requirements do not lead to loss of generality since a

'The two-dimensional 7 transform of a discrete-space function. a(n,,
na). s defined as A(2). 2) = 5. L BN e aCmom)n Mn

"

given sublattice can be described by more than one D ma-
trix [5], as shown in Example 1. (In » dimensions, D is
upper (or tower) triangular with nonzero elements on the
main diagonal [5].) Hence, we have just chosen a form
that will simplify our analysis (especially the definition of
the polyphase decomposition in Section III.) The different
transformation matrices for a given sublattice are all re-
lated to one another by matrices with integer elements and
unity determinants [5], [8]. The subsampling factor is
given by the determinant of D, and, owing to the afore-
mentioned restrictions, it is equal to N = |D| = dyd,;.
It is important to note that the subsampling factor does
not uniquely determine the subsampling structure. This is
illustrated in Example 1 for the case of N = 4, where D,
and D, describe the same subsampling lattice, while Ds
describes a completely different lattice (obtained by one-
dimensional subsampling). Consequently, these two cases
will yield entirely different conditions for the filter bank
design.

For a system with critical subsampling, where the num-
ber of samples is conserved, the number of subbands is
equal to the subsampling factor [23]. Only critically sub-
sampled systems will be considered in this article. The
effective subsampling factors along the directions n, and
n, (i.e., the distance between two samples along those
axes) can be found to be N, = dy and N,, = ¢ dpod)i /do,
for dy; > 0, where c is the smallest integer such that N,
is integer, and N,, = dyy and N,, = d,, for dy, = 0. Note
that N # N, N,, except when the subsampling is separa-
ble.

Assume that a signal x(n,, n,) is subsampled, as de-
scribed by D in (1) with the aforementioned restrictions,
and immediately upsampled by D~ '. The resulting signal,
y(ny, ny), can be expressed as the input signal modulated
by a function f(n, n,), which is defined on the input
lattice, /. The function has to be unity-valued at the points
of the subsampling lattice, f(n,, ny) = 1, (n;, ny) € §,
and zero at all other points of the input lattice, f(n,, ny)
=0, (n;,nm)eS(=1I\S), where § I (the symbol \
denotes set-minus). It is easily verified that f(n;, n,) can
be written as

1 doo—1 dhi—1
f(nl’ n2) - N Z Z
k=0 =0

: ik

exp { —j2m(n, ny)(D™7) )
1 doo—1 dn—1

- — Z demk+(ll)unzlftlu|n:k
N =0 =0 N (2)

where Wy, is the Nth'root of unity [13], [14], [3]. If the z
transforms of x(n,, ny) and y(n,, n,) are X(z,, z») and
Y(z,, 2»), respectively, then, following the modulation
theorem, the output can be expressed as

doo—1 diy =1

Z Z X( W;l:/llkzl’ W/Q(dm/_‘[m“Zg).

1
Y s 2) = —
(21, 22) N k=0 1=0
(3)
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This expression for the modulation will be used to derive
the behavior of the entire subband coding system in Sec-
tion IV. The z transform expressions for a subsampled
signal and upsampled signal, respectively, are given in
the Appendix. There it is also shown that Y(z,, z5) in (3)
is a polynomial in powers of z$* and z%'z¢".

III. POLYPHASE REPRESENTATION OF Two-

DimEeNsiONAL FILTER BANKS

For the defined subsampling pattern, the analysis filters
can be decomposed into polyphase components. This is a
generalization of the familiar one-dimensional polyphase
concept [6]. The polyphase components together cover all
the points on the input lattice, where each polyphase com-
ponent is formed from the points of a coset of that lattice.
Let the coefficients of the impulse analysis filter bank be
indexed as h;(n,, n,), where i is the filter index (i € [0,
N — 1] for critical subsampling), and n, and n, are the
row and column indices of the impulse response. Given
(1), the polyphase components of the ith filter can be de-
fined as

H,;z_/.‘l(lh 25)
= Z Z h((k + dooul + d0|u2, ! + dllul)
H| =~ 3= —00 AN > W_/
. Zrmzzﬂa (4)
where k =0, -+ ,dyg—land! =0, -+, d,, — 1.

So, k and / span a unit cell of the input lattice, as illus-
trated in Fig. 2. The z transform of the impulse response
is calculated from the polyphase components by [13], [14]

_ T _

H(z1, ) = Z\(2)) Hpi(zlllm’ Z‘llmzlzm) Zy(z2)

vec [Hpi(Z‘t/m» Z({()'Z‘zl“)]rzz(zz) ® ZI(ZI)'
(5)

The vec [ -] operator creates a column vector out of a ma-
trix by stacking the columns on top of one another (i.e.,
for a matrix with N rows, its element a; becomes element
a; 4 ;v of the column vector), and vec [XYZ |7 = vec (Y|’
« Z ® X" [10]. In the above expression, the polyphase
components of analysis filter / are given in matrix form:

H,(z,, 5)

H,o0(z1,20) - Hooun -1z 22)
fllii.(l(nl*l.O(Zlv ZZ) e H[,,'J/m—l.d”~|(zl, ZZ)
(6)
and
Zl(zl) = (1 Z;I - zlﬂlwwl)r
ZZ(Zg) = (] Zz_l N ZQ_‘IH+I)TV (7)

The analysis filter bank, which is a column vector of the
impulse responses, H,, can be expressed in terms of its

o O @€ 0 0 o © 0 O
e O d;;=2 O 0 O e
I 3 4 5 6
o 4TS
o o2elo0
e 03 o
o o420
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Fig. 2. Hexagonal subsampling on a rectangular lattice. The circles denote
samples of the input of which the shaded ones are retained in the sub-
sampling. The shaded rectangle is a unit cell—a polyphase component
will be defined tor cach location in this cell (see Section [11).

polyphase components as
H(ZI’ %) = H,y(z(llm~ Z‘IIUIZ(ZI”) 22(22) ® 21(21) (8)

where all polyphase components of the filter bank form a
polynomial matrix of size N X N:

vee [HIIU(ZI' Zz)]

vec |H, (2, )
H,,(Zl‘zz) = [ ’I: ! ]

’ T
vec [HpN~|(ZI~ ZZ)]

Analogously, the bank of synthesis filters, G(z;, z,), is
defined as

E(Z] Zz) — z|—tl(x1+lz—dn+|G (Zrll(m Z(]I(szg’lll)
’ 2 i ’ 2
(") ® Zy(z"). (10)

This representation will be used next when considering
the input/output relationship of the entire subband coding
scheme; the analysis, subsampling, upsampling, and
synthesis. The polyphase decomposition of a four-chan-
nel filter bank for hexagonal subsampling is given in Ex-
ample 2.

IV. SuBBAND ANALYSIS AND SYNTHESIS
An input signal, X(z;, z,), is split into subbands by a
bank of analysis filters. The resulting subbands are then
subsampled and upsampled, synthesis filtered, and re-
combined to form the output signal X(zy. z2). as shown
in Fig. 1. By (3), (8), and (10). this whole system, from
input to output, can be described by

. 1 — T
X(z, 22) = N G(z1, 22)

doo=1 diy—1

Z Z p W*u'niz , W—(t/mj*dmi)z
=0 j=0 ( N 1 N 2)

—diti =(dowj—dni)
X(Wy'g,, Wyt %)
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1 — _
=A™ ez @ 2

T[:(lelms Zrllmzr?fl!)

doo—1 diy—1

Z Z 22( W};(zl(lrj*t/mi)zz)

i=0 ;=0

® ZI(WN‘KIIII'ZI) X( Wﬁ"“"zl, W,;(xl(n)jftlml)zz).
(11)

In the second equality we used the transfer matrix T,,
which is defined as

do dorduy — do doiodiy T Sdw L dodit
Tp(zl L 2zet) = G/;(ZI N4 ) H/;(w L 2izst).

(12)

Note that the polyphase matrix H), is unaffected by the
modulation since its elements are polynomials in powers
of z{® and z®'z¢" [13], [14]. The polyphase equivalent of
the system in Fig. | is illustrated in Fig. 3, which corre-
sponds to the second equality of (11). The system be-
comes shift invariant if the aliasing terms are eliminated
(i.e., the terms for i # 0 orj # 0). The following con-
dition is necessary and sufficient for aliasing cancellation.

Lemma: The transfer matrix in (12) represents an alias-
free system if and only if

22(12—1)7 ® ZI(ZI—I)T T;)(Zzllm’ zzllmzlen)

= T(z, ) Zoz") ® Z(z7") (13)

where T(z,, 2») is a scalar-valued polynomial. This con-
dition implies that Zo(z3') ® Z,(z7") is a left eigenvector
of T,(z™, z{"z9"), with the corresponding eigenvalue
T(z). 22). _

Proof: Sufficiency is shown by moving Z,(z5 ') ®
Z,(zf')T inside the summations in (11). For fixed / and j
within a unit cell (i.e., 0 = i < dyyand 0 < j < d,))
we get

(ZZ(ZZ—I)T ® Zl(zl—l)'l')(zz( W/Q(‘AM'/‘(/“”)Q)
® z](W[;(h“Q))

dii—1 doo = |

. —(dwj = doriym —dnin
= 2 Wy 2 Wy

m=0

=0,/ #0 =00 #0

N,

= N

(The product (A ® B)(C ® D) = AC ® BD if ail ma-
trix products are defined [10].)

The necessity of (13) is shown as follows. Let the right-

hand side of the equation be replaced by a general row

vector, V(z,, ZE)T. If this vector is moved inside the sum-

mation of (11), then for fixed i and j the condition for
aliasing cancellation yields that

(=0 (14)

otherwise.
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©
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Fig. 3. The system described by (11) with T, defined in (12). If the box
were replaced by short circuits of each branch. it would correspond to
T, = 1. Note that the product of delays is the same along all horizontal
branches.

do—1 dn =1

22

m=0 n=0

_ {V(Zh )

0, otherwise

I/m + m/oq)( 21, 2 ) ( W‘/(/I ‘ lzr : )"1 ( W‘()\‘II(NU' —di )Z{ ! )”

i=j=0
’ (15)

where V,, ; ,u0(21, 22) are the polynomial elements of v,
and V(zy, z2) is an arbitrary polynomial. In order to get
cancellations, the elements of V have to be of the form
Vi cnae2ts 22) = T inan( 215 22)21'25. The condition in
(15) is then met only if all the T’s are equal, in which
case T(z,, 2o) = V(z,, z») and the cancellation of terms
is given by (14). This, in turn, means that 17(2,, Zg)TCHH
be written as the right-hand side of (13) where T(z,, 2,)
= V(z, 22). U

Note that the condition given in (13) does not stipulate
a certain matrix structure. In the case of separable sub-
sampling (i.e., dy; = 0), the structure has been shown to
be block pseudocirculant in z; where each block is pseu-
docirculant in z; [15}. This form is generally not valid for
nonseparable subsampling, as shown in Example 3 (ex-
cept in its most restricted form: T(z,, z2) Iy, i.c., a di-
agonal matrix with one unique polynomial element).

After cancellation of the aliasing terms in (11), the sys-
tem is linear and shift-invariant and can be represented by
a (scalar) transfer function. In order to get perfect recon-
struction, where the output from the system is a perfect
replica of the input signal, it is necessary and sufficient
that T(z,, z») = z7'z5. i.e.. a monic monomial. Hence,
the transfer function only causes a shift of the input, and
(11) is reduced to

Xz 2) = o™ a2 ) X2 2)

_ om—dow+1_n—dun+1
=3 ) X(z1, 22).

(]

(16)

The system does not produce any spectral, phase. or am-
plitude distortion! A similar result, given in the Fourier
domain, appears in [25]. In the remainder of this paper,
we will concentrate on perfect reconstruction systems ob-
tained by transfer matrices of the form T,(zy, z0) = T
(z1, 22) Iy.
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V. Two-DIMENSIONAL PERFECT REconsTrucTiON FIR
FIiLTER BANKS

In the following sections, we are going to look at design
structures which meet the condition for perfect recon-
struction derived in the previous section. Application of
the proposed structures to actual filter bank design is pres-
ently under investigation and therefore not included here.

A desirable property for the analysis and the synthesis
banks is that they should both consist of finite-impulse-
response filters. Then we do not have to be concerned
with stability issues, which are most intricate in the two-
dimensional case [4]. Given that the analysis filter bank
is FIR, then the synthesis (i.e., inverse) bank of a perfect
reconstruction system is FIR if and only if the determinant
of the polyphase matrix of the analysis filter bank is a
monominal in z; and z,.

We shall obtain perfect reconstruction by two means:
paraunitary systems and invertible nonparaunitary sys-
tems. Design of filter banks based on both types of sys-
tems will be studied in the following subsections. Before
that, we shall compare how constrained these systems
types are. Generally speaking, the more free variables
available for the design, the closer, or more easily, a de-
sign goal can be met. In Table I we show the number of
free variables for a polyphase matrix of size N X N whose
elements have highest power m, in z, and m, in z,. The
system with FIR filters in both banks is constrained only
through its determinant, which should be a monomial. The
determinant of the polyphase matrix is a polynomial with
N(Nm; + 1)(Nm, + 1) terms, of which all but one term
are constrained to zero. The expressions in the table for
the paraunitary and invertible nonparaunitary systems are
derived in the subsections that follow.

A. Paraunitary Systems for Perfect Reconstruction
Filter Banks

If we wish to have impulse responses which are equal
in both filter banks (within a reversal in the directions n,
and n,), then we should impose a paraunitary condition
on the polyphase matrix [20]. However, this also means
that the system is highly constrained, as shown in Table
I. For the real-valued two-dimensional case, the para-
unitary condition is given by

H,(z', ") Hy(2,2) = I (17)

Consequently, the synthesis filters can be chosen as G,(z,,
23) = F(z;, ) H,(z', z7''), where F(z,, z,) is a monic
monomial of powers so that G, is causal. Note that (17)
holds for H,,(z‘]"", z‘.’"'z‘gl“ ) as well, as needed for (11). (A
paraunitary matrix is, by definition, unitary on the unit
bicircles, z; = ¢ and z, = e**. Thus, the property
will not be affected by the powers of z; and z,.)

1) Filter Bank Design by a Cascade Structure: For the
purpose of constructing paraunitary systems of any de-
gree, we will first propose a design structure of the matrix
H,(z), z,) based on a factorization method. Design of
one-dimensional systems can rely on the fact that all

929

TABLE I
THE NUMBER OF FREE VARIABLES FOR POLYPHASE MATRICES OF VARIOUS
SysTeMs TYPES

Sysiem type Free variables N=4,m =m)=1
Unconstrained system N2 (m,y + 1)(my + 1) 64
Analysis and synthesis FIR N2 + N(N - 1)m, +m,) 40
Invenible FIR sysiem (det D= 0) | N2 + (2N - D(my +my) - 1 29
Paraunitary FIR system (N-D(N + 2(my + my)) /2 12

The unconstrained type gives the maximally available number. Note that
D refer to the inverse system in (26).

polynomials, which appear as elements in a polyphase
matrix, can be decomposed into first-order factors over
the complex field. The same is generally not true for two-
dimensional polynomials. However, when both the anal-
ysis and the synthesis filter banks are FIR, the polyphase
matrices can in fact be factorized: A polynomial matrix,
R(z,, z;), which has a determinant that can be factorized
k

|R(z1. 22)| = ’_I;II Ri(z, 22) (18a)
can itself be factorized so that
k
R(z1, ) = ,I=I| Ri(zi, z3) and
|R(2. 22)| = Ri(z1, 22) (18b)

where ®;(z,, z,) are arbitrary polynomials [16, theorem
4.2]. (The coefficients of the polynomial matrix elements
can belong to any field, but the factorization is not unique,
and it does not extend to systems with three or more di-
mensions [4].)

As mentioned above, FIR perfect reconstruction sys-
tems have |H,(z;, 2,)| = cz;™'z; ", where ¢ = 1 for
paraunitary systems. We therefore know that the above
factorization exists. Based on this fact, we can construct
a two-dimensional design structure which lets us build a
paraunitary polyphase matrix from simple factors. The
method is a straightforward generalization of the one-di-
mensional factorization given in [21]. The design struc-
ture is given by

w—1
H)(z,2) =Hy 11 {1-(1 - z"Yaa]}

{r-(0 -2z"9797} (19)
where Hj is an orthogonal matrix of size N X N, %, =
{1,or0}and 75, = {1,0r 0}, vi e [0, w — 1]. All
column vectors #; and 7; have length N. Note that we have
to allow /% = 0 and 7/7; = 0 so that we can get neigh-
boring factors in the same variable. The system may have
different orders in z; and z,, say w, and w», respectively,
which is accommodated by having w — w, factors in (19)
where %, = 0 and w — w, factors where 7, = 0. Note that
the entire system is nonseparable since the factors do not
commute. The orthogonal matrix, H,, may be arbitrarily
applied by premultiplication or postmultiplication (all the




930 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH. AND SIGNAL PROCESSING. VOL. 38 NO. 6, JUNE 1990

systems yielded by postmultiplication may equally well
be found by premultiplication) [14].

The cascade structure resembles the factorization that
we would expect from (18b). However, we do not know,
at this point, how complete this design structure is: nor
do we know the importance of any excluded system.
Completeness aside, the cascade structure also has other
shortcomings. A certain length of the cascade. say w, fac-
tors in 2, and w in 2, will give systems of highest orders
anywhere in the range (1 - - wy)inzyand (1 - - w»)
in z-. Every pair of orthogonal vectors u; will lower the
degree in g, and, analogously. orthogonal vectors 7, lower
the degree in z,. Thus, to design a paraunitary matrix of
a given order. one has to allow cascades of much higher
order which can be reduced to the desired order by appro-
priate orthogonality constraints. The advantage of the
structure is that the filter bank design can be performed
iteratively, with one factor at a time. Although the struc-
ture has the outlined shortcomings, it may nevertheless
yield useful nonseparable filters.

2) Design Based on Paraunitary State-Space Descrip-
tion: Since the previous structure may not generate all
possible FIR paraunitary systems of a given degree, we
will seek to design polyphase matrices from the state-
space description as an alternative. The derivation is a
generalization of [7] where it is performed for one-dimen-
sional systems.

The N X N matrix transter function of a two-dimen-
sional system can be written as [17]

lellll 0 -
H[?(:]~:2) =D+ C 0 I —A B (20)

where A is an m X m matrix, D has size N X N, C has
size N X m, and B has size m X N, and m = m; + m,.
The system consists of FIR filters if A is lower (or upper)
triangular with all elements on the main diagonal equal to
zero. That is,

0 -0
¥ 0 ---0

A= . . . .| = L. (21)
£ .- % 0

(The asterisk marks elements which are not required to be
zero.) The transfer function in (20) is paraunitary if the
p X p matrix

N m

m(B A>
R =
N\D C

is orthogonal. which is verified in (46) to (48) of the Ap-
pendix. (In 1-D. this is necessary and sufficient and known
as the lossless bounded-real lemma [18].)

Doganata ef al. give a design structure for orthogonal
matrices, R. which have the submatrix A of the form given

(22)

by 21) [7}):
0 i+
R = H H (‘r‘);{v,' and @,/ =1

i=p-2 j=p—1I

forO0<i<mN+i=<j<p. (23)

In the above, p = N + m and @, ; is a rotation matrix,
which is an identity matrix except for rows i/ and j, which
are given by

01 i j p—1
if0 0---cosf,; -+ —sinf; ---0
) o - (29)
J\O O -+ sing,;; cos 9, ; --- 0

For R in (23), the number of free variable (angles in this

case) is
m+ N m + 1
e (M) -
2 2

N+ 2(my + my))(N = 1).

(25)

The outlined design method is less tractable for filter bank
design than the cascade structure. The issue is that, in this
method, one first designs an orthogonal matrix. This ma-
trix has then to be partitioned into the submatrices, [A,
B, C. D}, which can be subsequently used in the state-
space description to find the polyphase matrix. In short,
the indirect effect on the filter properties of a particular
angle in R may be hard to foresee. However, the structure
may give filter banks not obtainable from the cascade
structure.

B. Nonparaunitary Systems for Perfect Reconstruction
Filter Banks

Next we will search for analysis and synthesis FIR
structures which are not paraunitary. Paraunitary systems
are appealing mainly because the analysis and synthesis
filter banks are the same. However, this property is ob-
tained at a cost: the system is highly constrained. Since
none of these constraints pertain to the frequency re-
sponses of the filters, we may end up with poorly per-
forming filters only because we impose constraints which
simplify the design procedure. By going over to non-
paraunitary systems, less structural conditions are im-
posed, so one has to accept the occurrence of undesirable
effects. The first potential problem is that the inverse sys-
tem may not correspond to a filter bank with clearly de-
fined frequency characteristics. Secondly, the synthesis
filters, it is feared, may be of vastly larger size than the
analysis filters. The first problem can be avoided by spec-
ifying design goals for both filter banks. However, the
design will be more complex than in the paraunitary case
since, in effect, two filter banks are to be designed simul-
taneously. Then we shall see that for the proposed design
structure, which is mildly constrained, the size of the
largest synthesis filter will not exceed that of the largest
analysis filter.
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1) Design Based on State-Space Description of Inverse
System: Given the state-space description of an analysis
filter bank, as in (20), the synthesis filter bank for perfect
reconstruction could be taken simply as the transpose of
the inverse system, i.e., G,(z), 25) = H,(z,, 2)" 7. The
inverse of the “‘forward’” system in (20) is given by

H(z.2) ' =D -D'C (Z'I"” 0
P 0 ZZIm;

=1
-A+ BD"C} BD™' (26)
provided that D is nonsingular [11]. If the *‘forward”’ sys-
tem is FIR, the inverse system will be FIR if BD™'C =
L, (cf. (21)). Let C = DE, where E has dimensions N X
m, just as C. Hence, the condition for FIR becomes BE
= Ly, which can be written more explicitly as

[rp—" -_— T_ - _
(bO bl co bm—]) (6’0 e - em—l)

=Ly=ble,=0, j=ivie(0,m]. (27)

At this point, we can note that the highest powers of the
inverse system in (26) are no higher than those of the
“forward”’ system, namely z;™' and z;" (the lower
power is still 0 in both z; and z,). These powers are given
by the inverse of the determinant of the matrix {diag
(z)I zI) — A + BE}. Furthermore, all its cofactors
have positive powers of z; and z, which are strictly lower
than the determinant. Therefore, H,"' does not contain
positive powers of z; or z,. In short, the synthesis filters
will not be larger than the analysis filters.

Given (27), we can determine the number of free vari-
ables we have for a FIR system whose inverse is also FIR.
We get that B has Nm — m(m + 1) /2 free variables (b,
has N — m free variables, b, has N — m + 1, and so on).
E, which is unconstrained, has Nm free variables, D has
N? -1 (one constraint to force nonsingularity), and, fi-
nally, A has m(m ~ 1) /2 free variables (its first column
has m — 1, the second m — 2, and so forth). The total
number is therefore

F,=N"+ (2N - l)m - 1

=N+ (2N = 1)(m +m) — 1. (28)

Clearly, the nonparaunitary system has considerably more
free variables than the paraunitary system (cf. (25) and
Table I), which is an indication of how well a specific
design goal can be met.

The only limitation with the described design method
in (26) and (27) is that it presumes that the matrix D is
nonsingular. It is not clear what this condition implies in
terms of restricted filter properties. For example, the ma-
trix D is singular for paraunitary systems (the only re-
quirement is that D'D + B'B = I). It is worth noting
that the constant terms of the matrix transfer function, H,,
come from D. These terms correspond to the filter coef-
ficients within the first unit cell (i.e., h;(n,, n,y) for 0 <
n <dgand0 = n, <d,Vvie[0,N - 1]).

C. Discussion of Design Based on the Smith Form

The polyphase matrix of a system can be written in its
Smith form [16]:

H,(z2), 22) = R(z), 22) A(z), 22) (21, 22).  (29)

R(z,, 2o) and S(z,, 2,) are matrices with determinants as
functions of z, only, namely ®R(z,) and 8(z,), respec-
tively. The Smith form is A(z,, z;) = diag (Ag A * * ¢
Anv—1), where the polynomials \;(z,, z;) are monic and
such that \; divides N, .,. Recall that the determinant of
H,(z,, z;) is a monomial in z; and z,. If the determinant
of the Smith form is £(z;, z,), then

|H,(21. 22)| = ®(22) £(21, 22) 8(22) = ez ™2™
(30)

This implies that ®, 8, and £ are all monomials. In par-
ticular, it implies that all the N\;'s are monomials; thus,
the Smith form is paraunitary. Consequently, for every
nonparaunitary perfect reconstruction FIR system, there
exists a Smith-form equivalent paraunitary system, and
when both R(z,, z,) and S(z,, z,) are paraunitary, so is
Hp(zh Z2)'

By analogy with the one-dimensional case, we propose
that R(z,, z,) and S(zy, 2,) could be designed as products
of finite numbers of elementary matrices, each corre-
sponding to an elementary row or column operation (see
[11]). There are three types of elementary row and col-
umn operations:

1) Multiply a row by a polynomial in z, (i.e., R = diag
(L---1 P(z) 1:---1)).

2) Permute two rows (R is constructed from an identity
matrix by exchanging rows k and /).

3) Add one row, multiplied by an arbitrary polynomial,

to any other row (i.e., R(z(, 2,) =1+ Q(zy,z,); ;, where
i, j is the row and column location of the polynomial, and
i#j).
Elementary matrices of type 2 and 3 have determinants
equal to unity, and only type 1 has a determinant as a
function of z,. Since the determinant is limited to be a
monomial, we get that P(z,) = azy' (a is an arbitrary
constant ). The inverse of the unimodular matrices would
then be given by a cascade of the inverse elementary ma-
trices. Note that these also belong to the three categories
above. Lastly, we wish to point out that we do not know
if the three elementary matrix types are sufficient to con-
struct all two-dimensional matrices which have one-di-
mensional determinants.

VI. LINEAR PHASE SYSTEMS

When images are subband coded it is often desirable to
have filters with linear phase response. With nonlinear
phase response, coding loss can result in phase error in
addition to amplitude error. However, phase error is usu-
ally regarded as more visible in images than amplitude
error [8]. It should therefore be avoided by using linear
phase filters. In what follows, a condition will be derived
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to test filter banks for linear phase in the polyphase do-
main, as given by the previously discussed design pro-
cedures, and a structure is developed for direct design of
linear phase filter banks.

A. Linear Phase Conditions for FIR Filter Banks

Assume that h;(n,, n,) is a coefficient in the two-di-
mensional impulse response of filter i and that the filter
has finite size M, X M,, specified on the input lattice. If
the filter has linear phase response, the coeflicients have
the foliowing symmetry:

hi(ny, m) = +h (M, —ny — 1, My —ny — 1). (31)

The possible sign change appears if the impulse response
has odd symmetry. The sign is thus either + or — for the
entire filter. This condition is easily translated into the
z-transform domain [14]:

Hi(z), 2) = 7" 5" (27 ). (32)

The condition of (31) is in fact valid for any shape of the
impulse response. In the general case, M, and M, are the
dimensions of the parallelogram which bounds the im-
pulse response on the input lattice, and the points outside
the impulse response are taken to be zero.

The aim is to see how the condition in (31) translates
for the polyphase representation of the filter bank. For a
coeflicient h;(n,, n,), contained in polyphase component
(k, 1), the corresponding coefficient h; (M, — n, — 1,
M, — n, — 1) is contained in polyphase component (k’,
") and the two are related by

[M,—k—lJ

k' M —k—1 doo

<I’>=<M7—Il>_D LM—I—]J
(33)

D is the subsampling matrix of (i), and |a | gives the
integer part of a. The polyphase index k' should be eval-
uated modulo dy, and the index /' modulo d,,. By analogy
with (32), the linear phase condition for polyphase com-
ponent (k, /) becomes

Hpi.k,[(zls 22) = izr“"‘""‘ +timin)

Zz_(lﬂmux +U:n"n)Hpi.k'.l'(Zl_ 1 , sz 1 ) (34)

The highest and lowest powers of z, in the polyphase
component are denoted by u,,,, and u, ;. respectively,
and analogously for z,.

The size of a finite impulse response can be defined on
the input lattice, or the filter size can be specified in terms
of unit cells on the subsampling lattice. The former case
can become cumbersome for nonseparable subsampling,
and the reader is referred to [14], where it is treated. Thus,
we shall only be concerned with the latter case, which is
in fact more likely with the design procedures previously
described. So, assume filter size given in terms of unit
cells, say w, along u, and w, along u,. In this case,
polyphase component (&, /) is defined by (4) for 0 < u,
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< wyand 0 =< u, < w,. The region of support for the
impulse response is bounded on the input lattice by M, =
widy + (w» — 1)dy, and M>» = w»d,,. The relation be-
tween polyphase components (k', ") and (k. 1), as given
by (33), isreduced to k' = dyy — k — land I' = d,, —
! — 1. The linear phase condition for an entire filter bank
is then given by

H,(z,2) = 7™ """V diag (£1 -+ - £1)

H,(z', % ). (35)

The diagonal matrix has value —1 in row / if the ith filter
has odd symmetry (as given by (31)). J is a matrix with
unit elements along the antidiagonal and it corresponds to
the reordering of the polyphase components. Example 4
illustrates the linear phase condition for a filter bank when
hexagonal subsampling is being used.

B. Design of Linear Phase Systems

Aided by the linear phase condition of the previous sec-
tion. it is possible to design linear phase systems. Assume
that we already have a linear phase perfect reconstruction
system, H,(z,, z,). which meets the condition of (35). In
order to create a filter bank with larger impulse responses
the matrix H,(z,, z;) is multiplied by the ‘‘extension”’
E,(z/, 22). The new system should remain a perfect re-
construction one with linear phase. The filters of the new
system are bounded by M| x Mj, which will be set to
pidoy + (ua — 1)dy X podyy, where ) = wyand py =
w,. When the linear phase condition is imposed. we get

}I,,(Z], ZZ) E,;(Z]. 12)
= zl—(ul—l)zz—i;u‘l) diag (il NN
x H(zr' 27" ) Ey (' DI (36)

It is assumed that the symmetries of the filters are not
affected by the extension (i.e., the diagonal matrix of
+1's is unaffected). Then, by comparing (36) with (35),
the following condition on E,(z,. z,) falls out:

+1)

E,;(Zl~ Zg) — Zlf(m7\\'|)Z{(;szn'z)JEp(Zl—I‘ Z’_;I)J. (37)
We assume that E,(z;, 2,) can be designed as
E(z). 22) = Az, ) E (38)

where A is an N X N diagonal matrix with monic mono-
mials as elements and where E is an N X N scalar matrix
with elements ¢;. The condition in (37) then leads to

E=JEJ] = €ij = EN—i— 1) (N-j~1) (39)
Furthermore, we get
Az, z) = 5T A (7 i) (40a)
where each element §; must meet
bi(21,20) = 27" " T ey (2 z"). (40b)

It is therefore possible to iteratively design linear phase
filter banks which give perfect reconstruction by the struc-
ture

(41)



KARLSSON AND VETTERLI: THEORY OF TWO-DIMENSIONAL MULTIRATE FILTER BANKS 933

where E meets (39), and A(z,, 2») is a diagonal matrix
of delays which meet (40b). When H, is paraunitary and
E is orthogonal, the system is paraunitary; otherwise it is
nonparaunitary. In the paraunitary case, the inverse sys-
tem is given by

G,(21,22) = F(z), %) Hy(z7 ) Az & )E
(42a)

where the monic monomial F(z,, z,) should be chosen so
that the synthesis system remains causal. For an invertible
system, the synthesis is given by

G,(z1. ) = F(z1,22) Hy(z1, ) Az, 27 )E™7
(42b)

provided that E is nonsingular (the superscript —~T de-
notes the transposed inverse).

The design structure in (41) is a generalization of the
one-dimensional iterative method for the design of linear
phase nonparaunitary filter banks, given by Vetterli and
Le Gall in [24]. The above method is not complete in that
certain solutions cannot be reached. Nevertheless, the
structure seems promising and may yield useful linear
phase paraunitary filter banks, as illustrated in Example
5.

VII. CoNCLUSIONS

This paper has presented new results on the theory of
general two-dimensional multirate filter banks. The mul-
tirate theory is general, with no restrictions on the ge-
ometries of the input and subsampling lattices. By decom-
position of a filter bank into its polyphase components,
the input/output relation of a subband analysis and syn-
thesis system is determined leading to necessary and suf-
ficient conditions for alias-free and perfect signal recon-
struction. Then, working on the polyphase decomposition,
design structures were given which gave rise to the design
of two-dimensional perfect reconstruction filter banks.
The four design structures treated in this paper are for
paraunitary as well as nonparaunitary systems. The ad-
vantage with paraunitary systems is that the synthesis fil-
ter bank has the same properties as the analysis bank.
Nonparaunitary systems are interesting mainly for their
higher number of free variables compared to their para-
unitary counterpart. For both types of systems, a nonsepa-
rable system has more free variables than does a compa-
rable separable system.

A condition was derived to test these filter banks in the
polyphase domain for linear phase, which also permitted
us to develop a restricted design structure for linear phase
systems. This structure was illustrated in an example
which pointed out one case where nonseparable systems
have properties unobtainable by separable systems. In this
case, a paraunitary linear phase system was given which
in two dimensions only exists in the nonseparable case.

Itis hoped that the described work will help and inspire
more research in nonseparable filter banks. Such work is
currently under way and preliminary results are presented
in Example 5.

APPENDIX
In the z-transform domain, subsampling by N, as given
by the subsampling matrix D, can be expressed as
doo—1 dn—1

Y(z), o) = N EO /go

X( Wﬁdnkz:/dm’ W};(d(m/—dmk)zl—dm/Nzé/dl|)'
(43)
The reciprocal upsampling gives

Y(z1, 22) = X(z{", z{"25"). (44)
One way to verify the above is to substitute the expression
in (44) into (43). The resulting expression is reduced to
X(z,, 2), since upsampling followed by subsampling by
the same pattern is an identity operation.

Next we show that the polynomial in (3) can only con-
tain powers of z™ and z"z¢"". We show it for a monomial
X(zy, 22) = 2978 by determining the powers a and b for
which Y(z;, z,) # O:

1
_de a
Y(z,22) = Wy
(21, 22) N k=0 1=0 ( )
. —(dool — dork) b
(W 2,)
Zqu doo — 1 di—1
_ LlIk2 —(dna—dorh) —bl
= 2 Wy k 2wy
N k=0 1=0
-
=0forb + jdi
a_jdn doo—1
- 25 I—(u —jdork
(1[)0 Py aon
-~
= fora — jd01 # idw
- i i
— (le/m) (Zzllmzlen) . (45)

We have thereby proven the statement for a monomial and
by superposition it is clear that it holds for any two-di-
mensional polynomial. D
Finally we show that orthogonality of the matrix R in
(22) is indeed sufficient to ensure that the system in (21)
is paraunitary.
Let the m X N polynomial matrix Q(z,, z,) be defined

as
= {(Z'I”” ‘ > - A}A]B (46)
0z, ) = 0 o, .

Then we can write

<diag(zll,zzl)Q(z|,zz)>_<B A>< 1 >
H (2. ) “\D ¢/\Q(z, 2)
S H__/

~—

Wiz ) R
(47)

where H\,(z,, z2) is the transfer function in (21). Since R
is assumed to be orthogonal, we have that W(z; ', zZHT
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W(z,. 2») is reduced to
;

— —i\T _ —-
00z ") Qi) + Hy(zi ' ') Hylzr )
— _INT
=0z =" 0 o) +1 (48)
from which the statement immediately follows. O

EXAMPLES
Example 1
Hexagonal subsampling can be described by either D,
or D, below, of which we opt for the form D,. This sub-
sampling is also illustrated in Fig. 2. The two matrices
are related to one another by a matrix with integer ele-
ments and determinant equal to 1:
(02
and
0 2

11
D2 =
-2 2
1 0
D, = D, .
11
D, gives subsampling by factors 2 and 4 in the directions
of n, and n,, respectively. Note that a one-dimensional
subsampling by N = 4, as given by D; = diag (4 1),
cannot be related to the truly two-dimensional structures
given above; thus, it gescribes a completely different sub-
lattice. -

D,

Example 2
For hexagonal subsampling the analysis filter bank is
described by its polyphase components as

2 2 2
H;O.O,O(thlzz) T H,()‘1_1(2’.1’Z|Z
! !

[ 1)

)

ITI(ZI’ 7) =

2

H/}J,OAO(Z 1» 012

1910

) e lel.l(z%* ZIZ%)

Example 3

For hexagonal subsampling, the following form of T,
is sufficient to meet the condition for aliasing cancellation
in (13):

To(2). 22) (

Ti(zi, Z:)Zfl To(z,.

Ti(z), 22 n!' Dz,
(

-1
Tz, )z Tz,

T.(z.2) =

which yields
1z 2 lez)Tp(Z%’ ZIZ%)
= [Ty}, 2123) + 2z 'Ti(zt, 2123)
+ 23 ' T2 1i23) + 2 ' Tz 2izd)]

(1 71 2 un)
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M, =4

]
Polyphase components
k,1)=(0,0)

o

& D=@01
® & D=(@1,0

LV R S

® &k D=1

Fig. 4. Region of support for the impulse response of Example 2 with hex-
agonal subsampling. M, X M, = 5 x 4. The indices (&, /) refer to the
four polyphase components.

Example 4

For hexagonal subsampling, choose w; = 2 and w, =
2 in (35), which gives M, X M, = 5 X 4. From (33) we
getk’ =1 — kand I’ = 1 — [. This impulse response is
illustrated in Fig. 4. If we assume that the first two filters
are symmetric and the other two are antisymmetric, the
linear phase condition becomes

Hy0.0(210 22) = 2 'z Hyo (2" 2 h)

H,o.0. (21, 22)

—1_—1 -1 -1
1 22 Hpo.l.o(Z| L2 )

Hyoolzio22) = =27 ' Hys oz v 22 )

Hp}.(n(zh Z:)

1l

11 -1 -1
—Z1 2 Hpm.o(zu .73 ).

Example 5

A four-subband system would be designed by matrices
of the forms

€y €or € €3
€l €)1y € €3
E = :
€3 €p € €y
€ny €xn € €
) Ty(z1, 22) Ti(z). 22)
) Ty(z1, 2 7' Tz )
z)lefl T()(Zh 1’:) ) TI(ZI, :3)
)it Tz 2)a! Tz )
Zy (XZ{‘S 0 0
0 217 0
A(Zp Zg) = oo R
0 0 'm0
0 0 0 bl‘ﬂ,{i
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where n = —a + (u — w)), &= =y + (u — W), 7
= -6+ (pp —wy),and § = —f + (u; — wy). The
powers « and +y can be in the range O - - - (4, — wy), and

B and 6 can be in the range O * * * (u, — w,) (see (40b)).

A specific design example of a nonparaunitary linear
phase filter bank is given here for w, = w, = Oand u, =
py = It

Hp(zlv 2)

1 1 11 1 0 0 0

1 -1 1 -1 7' o 0

I O . 1>< 0 z' 0

-1 -1 1 0 0 z'y'
A

Qy a; a, a3

S © ©

r

g

a q a3 a
a ay ay o
a; a a 4q

-
E

As given by (6), the four polyphase components of the
first filter become

Hpo(zl» 7) = <

The other three filters have polyphase components which
are similar; only sign changes make the polynomials dif-
ferent. If we evaluate the polyphase matrix for a separable
subsampling pattern with N = 4 and D = diag (2 2),
" then we get the filters

ay, a, a, a

a as a4y a

H, =
a, a4y ay a
d a, a, a
ay a, a, Qy
a as as a
H, =
—-a, —ay —ay —a
—4y —a; —a; —aq

a, a, —a; —4a,
a ay —a; —&
HZ =
a, ay —a; —d
ap a, —a; —q
(2 a, —a —q
a a; —a; —a
H3 =

—a; —a; as ap

—4y —a a 2]

Note that the filters are nonseparable when a; # a,a,.
The matrix E, which is not orthogonal, was chosen to
obtain the symmetries in the filters. The synthesis filters
are given by

G,(z1, ) =z 'z WAz, 5 )E.

E ™! retains the structure of E so that the synthesis filters,
G, * - * G;, have the same symmetries as the analysis fil-
ters above. In Fig. 5, the frequency-amplitude response
of Hy is plotted for three different sets of coefficients. In
(a) and (b) the impulse responses are separable and in (c)
nonseparable. While the separable cases have either good
stopband rejection or a smooth amplitude response, the
nonseparable case gives a reasonably good compromise
between stopband rejection and smoothness.

ay + @zt +az' +az'nt oa @z Foan + azzf'Zz">

- -1 -1 = _ - -
@+ apz Fan' +tan'y' at+an' s +ay's!

A paraunitary system can be obtained in this example
if the E matrix is chosen as

ap a) a as

a, —qy —da; a,
E =

G, —az —4q a;

as a a Ay

with

21—a(2,—af
Gy = 18073 2
aé+a%

There are no paraunitary linear phase filter banks in the
two-channel 1-D case [24]; thus, no separable solution
exists in the four-channel 2-D case. However, the struc-
ture above gives four-channel paraunitary linear phase fil-
ter banks and thereby demonstrates the greater freedom
offered by nonseparable systems.

2 2
an = azl—ao—a,
3= = i 2

ad + a?
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(©)

Fig. 5. Two-dimensional amplitude-frequency response of separable versus nonseparable pertect reconstruction linear phase
filters for separable subsampling by 2 in each dimension. Comparison of the low-pass filters. H,. (a) Separable filter with
good out-of-band rejection but nonsmooth frequency response. The filter coeflicients are ay = 1, a; = a; = 3, and ¢, = a,
- a> = 9. (b) Separable filter with smooth frequency response but poor out-of-band rejection. The coefficients are q,
=a, =2,anda; = a, * a, = 4. (¢) Nonseparable filter with smooth frequency response and out-of-band rejection comparable
to (a). In this case, the filter coefficients are @, = 1. a4, = ¢> = 3. and a, = 6.

=1.4q
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