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'In a previous worki> the Siegert theorem was extended to vector interactions in nuclear 
beta decays on the basis of the conserved vector current hypothesis. It was already shownn 
that the experimental data of RaE are consistent with the conserved vector current hypothesis. 
The purpose of this note is to give the general formulae for arbitrary order of forbidden 
transitions, since it is highly desirable to investigate as many other non-unique forbidden 
beta decays as possible. Through this note the validity of non-relativistic approximation is 
assumed for the. motion of nucleons in nuclei, so that our formalism is completely analogous 
to the conventional theory of nuclear radiative transitions. 

§ 1. Introduction 

About ten years ago several authors2>,B>,4> evaluated the ratio of the nuclear 
matrix elements,*> 

B (a)/(1-)=- (aZ/2R)A (1) 

where a is 1/137. According to Pursey2> A"-'2, whereas according to Ahrens 
and Feenberg3> (for short AF) A"'l. First let us discuss the origin of their 
disagreement. We start from the identity, 

A A A 

[HN, i:E•±ir,J = :E•±,pjM + [V +H~+Hn-p, i:E•±ir,], 
i=l i=l i=l 

(2) 

in which '+ ( L) corresponds to the negatron (positron) emission, He represents 
the Coulomb energy, Hn-p the neutron-proton mass difference, and the nuclear 
potential V is assumed to be charge-independent for simplicity. Since (p) / M 
corresponds to (a) in the nbn-relativistic approximation, we obtain from (2) 

NR 
B=(a)/(ir) = (p)/(M(ir)) 

A A 

=- (Wo=F2:5me) -(fl [V +He, i:E•±ir,] /i)/(fli:E•±,ri/i), 
i=l i=l 

(3) 

*> The notations here follow those in the new textbook by E.]. Konopinski (to be published). 

The reduced matrix elements, (a:), (;.> and (/aX;/), correspond to the conventional Konopinski
Uhlenbeck notations in the following way : 

(a:)<->-Ja, (r)=(;:)/R<->Jr and (/aX~)=(/aXr/)/R<->-Jaxr. 
(R: the nuclear radius) 
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where W 0 stands for energy difference between the initial and final nuclei. 
Equation (3) can. be simplified if we assume the validity of the so-called AF 
approximation, 

and 
A A 

(fl [V, iL:;-r±iri] li)= {(fiVIf)-(iiVIi)}(fli:Er±irili). (4b) 
i=1 i=l 

The meaning of this approximation has previously been discussed in detail.3l 

Roughly speaking, this approximation is expected to be valid if the nuclear 
wave functions are not very different from the shell model wave functions. 
Equation ( 4b) enables us to make use of the semi-empirical formula for nuclear 
binding energy. Then we are led to the well-known AF formula, 

B=(a)/(ir)=- ( W 0 =f2.5m.± 1.·2-~~=f0.7 a:), (5) 

(for e'~'), 

where the Coulomb term 1.2aZ/R was obtained by the assumption of uniform 
charge distribution within a sphere with radius R and -0.7aZ/R represents the 
semi-empirical estimate for the nuclear potential contributions. On the other 
hand, Pur.sey2l assumed a specific type of exchange potentials in order to calculate 
the quantity (fl [V, iL:;r ±iri] li) and obtained a value much smaller than AF's 
semi-empirical estimate. 

Now let us recall the Siegert theorem5J,BJ in the electromagnetic transitions 
of nuclei. For instance, the electric-dipole transition can be described by the 
operator 

(6) 

which is not equal to the classical electric-dipole operator pJ M in the presence 
of exchange forces. Corresponding to Eq. (2) _an .identity holds : 

A A A 

[HN, iL:;r.iri] = L:;r.ipi/M + [V, iL:;r.iri]. 
i=l i=l i=l 

(7) 

It is noticed that He and Hn-p commute with '•i· The Siegert theorem, which 
is a representation of charge conservation, tells us that the correct electric-dipole 
interaction, i.e. the left-hand side of Eq. (7), consists of the classical interaction 
L:;r.ipJM and the term arising from non-commutability of the nuclear potential 
V with L:;r.iri. If V is a two-body potential, the term [V, iL:;r.iri] represents a 
sort of two-body radiative interaction. 

Recently, the conserved vector current (for short CVC) hypothesis in beta 
decay was proposed by Feynman and Gell-Mann.7l Since the CVC hypothesis 
is just an analogue of charge conservation in the electromagnetic interaction, 
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the assumption of CVC enables us to apply the Siegert theorem to beta decay 
with slight modifications. Namely, Eq. (7) suggests that B in Eq. (3) must be 
replaced by the following quantity : 

NR A 

Bava = {(p)/M + (J [V, i:E-r±iri] Ji)}/(ir) 
i=l 

Furthermore, using the AF approximation, Eq. (4a) leads to 

AF ( aZ) Bava = - W 0 =F 2.5m. ± 1.2R , (for e'~'), (9) 

where again the factor 1.2 was obtained by assuming uniform charge distribu
tion. 

The V<iJ.lidity of eve can be checked by direct comparison of Eq. (9) with 
the quantity B obtained from the analysis of experimental data in first forbidden 
transitions. This method is entirely different from the weak magnetism method.8> 

However, one should bear in mind that the only difference b~tween Eqs. (9) 
and (5) comes from the potential contribution. Therefore, if the AF estimate, 
Eq. (4b), is very wrong and the true value of (fl [V, iL.:;r ±iri] Ji) is negligibly 
small by some unknown reasons, B ·becomes Bava in Eq. (9). 

More systematic derivation of the formula (9) and its extension to higher 
forbidden transitions is discussed in § 2. 

§ 2. Vector interactions in general forbidden beta decays 

Let us denote the leptonic field (e, r ,.!) ) or (iJ, r ,.e) by L,.. In the presence 
of external L,., the modified Hamiltonian6>· 9> of the nuclear system is written as 
HN{L,.}. Because the coupling with the leptonic field is very weak, we may 
legitimately neglect higher order terms in the expansion, 

(10) 

where H(lJ depends linearly on L,., and H(2J quadratically. Hereafter, we restrict 
our attention to the second term HN(lJ {L,.} only. The Hamiltonian HN can be 
divided into two parts : charge-independent part Hr and charge-dependent part 
Hu. 

where 

and 

Hr=T+V, 

Hu=Hc+Hn-p• 

(11) 

The Hu(1J {L,.} might represent a sort of radiative correction due to Coulomb 
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forces .in nuclei and is simply omitted here in accordance with the conventional 
theory. 

Now if we assume the validity of the eve hypothesis, the charge-independent 
part H 1 {L"} becomes perfectly analogous to the isovector part of electromagnetic 
interactions ; z-component of every isovector in electromagnetic interaction cor
responds to the ±-component in beta decay interaction. Let us study the space 
part L of a four vector Lw Any L can be decomposed into the divergence-free 
F and the irrotational gradG. 

H 1 {F+gradG} =H1 {F} +H1 {gradG} 

(12) 

where 
A 

9J= ~'±i Cv G(r,). (12a) 
i=l 

The explicit form of G(r) depends on the multiplicity of the leptonic field. 
Expanding the second term of Eq. (12) with respect to g) and comparing with 
Eq. (10), we obtain 

H/1>{F+gradG} =H/1>{F} +i[9J, Hr] 

(13) 

Let us refer to the first term H/1> {F} as magnetic interaction and the second 
term i[9J, H 1] as electric interaction. 

2.1. Electric interactions 

As an illustration let us assume that the leptonic field L" is a plane wave. 
Except for a normalization factor and spinor parts, L is expressed as 

L = u exp (- ik · r) . (14) 

The multipole expansion6> is obtained by expanding the exponential factor in 
powers of (k·r). 

(15) 

where 

(15a) 

and 

WJ=J(k·r)J-1/ (J + 1) !, (15b) 

provided that k represents a unit vector k=k/k. Inserting Eq. (15) into Eq. 
(13), we obtain, 

co 

H/1> {L} = i~ (- ik) J-1 {H1 (1J { [ (u X k) X r] WJ} - [HN- H 1z, g)J]}, (16) 
J=1 
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where ff)J is referred to as the electric 2J-pole moment operator: 

fi)J= :ECv(u·ri) (k·riY- 1< ±dJ! 
i 

It is easily proved that fi)1 = Cv TI (u · r,) r ±i and 

agrees with Eq. (8). 
The other term, 

JYlJ=- (J/(J+1)!)H/1l{[(uxk) xr] (k·r)J-1}, 

(16a) 

(17) 

(18) 

is referred to as the magnetic 2J-pole moment operator, which cannot be written 
explicitly unless we know details of the system. Both ff)J and JY[J are elements 
of tensors of rank J, but they have opposite parities. It is also remarked that 
the only formal difference between eve theory of beta decay and electromagnetic 
theory is the appearance of Hu in Eq. (16). 

It is straightforward to extend the above consideration to the more realistic 
case including the Coulomb distortion of electron field. For that purpose it is 
sufficient to establish the correspondence between nuclear matrix elements in 
the CVC and conventional theories, because such a Coulomb effect modifies only 
the expansion coefficients of Eq. (15). However, as the bases of expansion it 
is more convenient to introduce the well-known spherical harmonics YJM and 
the spherical vector harmonics10l T/i.c instead of Eqs. (15a) and (15b), 

(19) 

In the conventional theory*l there appear two types of reduced matrix elements, 

<iJ rJ YJ) and <h-La. TJL). 

Now, noticing the identity 

one can easily prove that the external leptonic field GJ(r) =rJYJM(r) corresponds 
to the reduced nuclear matrix element, <iJ-1rJ-1a· T/-1). According to the 
same prescription as Eq. (3) to Eq. (4b), we can write down the semi-empirical 
estimate,4l 

AF- ( W 0 =t= 2.5m. ± 0.5 ~Z ) for e"'. (21) 

*l These notations follow those of Konopinski (Joe. cit.). For example, (Y0) = (1) /v' 4rr and 
(iY~)=(ir)v'3/4rr. R and A (KU notation) correspond to (iJrJYJ) and (iLrLa·Tl!+1L) respectively. 
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On the other hand, if eve is correct, we must replace B(J) by Bac.;b according 
to Eq. (13): 

B~9a=(fi [HN-Hrr, ir'5.:.:,r/YJM(~)r±JJ li)/(fjiJ'5.:.:,1-/YJM(~) '±Jii) 
j j 

(22a) 

AF- ( W 0 =t= 2.5m. ± 1.2 ~Z ) for e'f. (22b) 

If we set J = 1, Eqs. (21) and (22) are reduced to Eqs. (5) and (9). 

2.2. Magnetic interactions 

First let us assume that the nuclear potentials are velocity-independent. As 
a consequence of the Golden rule,6l p-'>p-evr±L, we are led to the interac
tion Hamiltonian, which is quite analogous to the radiative interaction. 

H/-l{L} =- (Cv/4AM)J.:.:,{(p1 -p~c) · (r±1 L1 -rHL~c) 
J,k" 

The last term is referred to as weak magnetism. BJ Again let us study the plane 
wave case. Inserting the expansion Eq. (15) into Eq. (23), we obtain the ex
pression for ordinary magnetic moments, 

'-5J.·Vor<l) = (Cv/2M(J -1)!) '5.:.:,r±1 [(1/J + 1) {(uXk·l1) (k·r1)J-1 

j 

+ (k·r1)J-1 (uXk·l1)} + (1+pp-fln) (uXk·u1) (k·r1)J-1], 

where 

l1=r1 x (p1 - L:.:,p&/M). 
k 

(24) 

The ordinary moment ~J(ora) does not contain the complicated effects of velocity-
dependent potentials or exchange currents. 

It is instructive to compare the expression Eq. (~4) with the conventional 
notations in forbidden beta decays. For J = 1, 

~1 = (Cv/2M) .I;r±J{ (u Xk·l1) + (1 + flp- fln) (u Xk·u1)} 
j 

which corresponds to (jaxri)NR(a)/M-(Irxpi)/M. The only difference is 
a new factor (1+pp-f1n) =4.7 appearing in the right-hand. Usually (jaxrl) 
is classi:fie'd as a second forbidden nuclear matrix element, but its rank is one, 
so that it gives a small correction to the allowed beta decay. By virtue of the 
factor· 1 + flp- flm the so-called weak magnetism8l has been used for the purpose 
to check the validity of eve. 

Generally it is clear that ~J corresponds to (irJa. T/). 
Besides the ordinary magnetic moment ~J(ora), there should exist several 
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kinds of complicated but possibly small modifications, which cannot be uniquely 
determined by the requirement of gauge invariance. It is known that electric 
moments depend only on the charge distribution, while magnetic moments are 
related also to the current distribution. At any rate situation is completely the 
same as in the radiative transition,6l in so far as CVC is assumed. Since every 
knowledge of the radiative transition is easily translated in the beta transition, 
only some important information is recapitulated here. 

The principal point is that any momentum-dependence of the nuclear po
tential modifies the form of nuclear magnetic moments. For instance, velocity
dependent term in V must be modified according to the standard prescription, 
p~ p- Cvr ±L. The reasonably well-established examples of exchange currents 
are the space exchange current,11l which arises from space exchange potentials, 
and the spin exchange current.12l The latter is closely connected with the spin
exchange potentials, but the explicit form cannot be obtained by the standard 
prescription, since momentum-independent term involving rotL may appear in 
H(IJ {L} without affecting the gauge invariance. Exchange currents are probably 
two-body effects and of short range comparable to the nuclear force range. 

Another example is the quenching effect of the intrinsic anomalous magnetic 
moments due to the Pauli principle.13l If such an effect is real, similar effect 
should occur in beta decay, too.1l 

Current information6l in nuclear physics shows t~at the exchange moment 
is different from zero, but not big enough to change the qualitative aspect of 
ordinary magnetic moments. 

§ 3. Conclusions and discussions 

(a) Electric beta decay 

It was shown in § 2 that the conventional matrix element (iJ-IrJ- 1a· T/-1) 

should be replaced by a slightly different nuclear matrix element : 

J(iJ-lrJ-la. T/-1) eve <I [HN-Hu, VEr/YJM<~) '±J] I> 
- J 
=- (Wo=r2.5m.)(iJrJYJ)=r(I[Hc, iJI;r/YJM(~)r±,JI) 

j 

(25) 

for e+. 

The ratio B(JJ as shown in Eqs. (21) and (22) is useful to check t:he validity 
of CVC hypothesis. It is highly desirable to investigate many non-unique 
forbidden transitions experimentally. ~ 

In this paper " the finite nucleon size effect " was omitted, although the 
electron scattering experiment by Hofstadter revealed the fact that nucleons 
have finite extensions ('"'"' 1/ (2m .. )). It seems improbable1l for such an effect to 
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Table I. Vector nuclear matrix elements 

Conventional theory 

(bare-nucleon 

coupling theory) 

eve theory 

allowed 1st- 2nd- J-th forbidden 

longitudinal part-its retarded effect 

(1) (ir) (r2Y2 ) 

transverse part-its retarded effect 
(a) (ira·T2I) (iJ-IrJ-Ia·T/-1) 

1''----______ magnetic effect 

[small correction] <laXrl> 
etc. etc. 

allowed 1st- 2nd- J-th forbidden 

longitudinal part-its retarded effect 
(1) (ir) (r2Y2) 

transverse part-its retarded effect 

<I[HN-HII, SD1]!) <I[HN-Hu, iD2ll> <I[HN-Hrr, SDJ]I> 
1' weak magnetism 

[small correction] including space- and 
spin-exchange currents, 
quenching effect, etc. 

all 
etc. etc: 

All the nuclear matrix elements are understood that they 
include the finite nucleon size effect. 

be significant in beta decay, but it is easily taken into account if we replace 
A A 

the density operator p(r)=L;a(r-ri)•±i by p'(r)=L;f(r-ri)•±i (f(r) stands 
?..=1 ?..=1 

for finite extension). 

(b) Magnetic beta decay 

Since the situation is completely analogous to the radiative transitions, the 
ordinary magnetic transition operator, Eq. (24), should be modified by the space
exchange, spin-exchange contributions, quenching effect, and so on. 

However, the weak magnetic beta decay is usually not important. The 
reason lies in the fact that in beta decay the axial vector interaction is equally 
important, which causes the strong magnetic beta decay. 

All the results are tabulated in Table I. 
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