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THEORY OF VORTICITY GENERATION BY SHOCK WAVE
AND FLAME INTERACTIONS

INTRODUCTION

The interaction of pressure waves with density gradients is a fundamental

source of long-lived vorticity in fluids (Chu and Kovasznay, 1957, and Picone

and Boris, 1983). This mechanism is particularly important in combustion,

since the release of chemical energy produces both pressure and density

disturbances in the fluid. These disturbances then interact, producing

significant vorticity. The rotational motion associated with the vorticity

field enhances mixing and introduces additional fluctuations in the flow

variables. The scale lengths which characterize these secondary fluctuations

are roughly one-half those of the local density gradients which exist prior to

interacting with given pressure waves (Picone and Boris, 1983). Because the

structures and sizes of the fluid interfaces change under the influence of the

newly generated vorticity, local reaction rates change, amplifying the effects

of the fluctuations and producing more local pressure waves. The process thus

continues, progressively reducing the length scales of inhomogeneities in the

flow field. Through this mechanism, a flow which is originally laminar can

quickly become turbulent. Such phenomena occur in almost every nonidealized

high Reynolds number flow.

In this paper, we focus on the interaction of a weak, planar shock wave

with an azimuthally symmetric region characterized by density and temperature

distributions similar to those found in an expanding flame. Our calculations

are two-dimensional and correspond to a cylindrical flame. This problem

contains the essential features of vorticity generation by pressure wave and

flame interactions. Ignoring the flame dynamics is acceptable for calculating

the large-scale vorticity distribution, since the transit time of the shock

Manuscript approved February 1, 1984.



across the heated region is quite short compared to the time scale of flame

propagation. Markstein has studied a similar case experimentally for a

reactive medium, using a long, vertical shock tube with a 30 cm combustion

chamber at the bottom and a diaphragm 90 cm from the top. Figure I shows

Schlieren photographs from one of Markstein's experiments. A weak shock

(pressure ratio - 1.3) passes through a roughly spherical flame approximately

15 cm from the bottom of the chamber, which contains a stoichiometric mixture

of n-butane and air. In the first frame, we see the incident shock less than

I cm from the flame boundary. The flame actually appears to be more oblong

than spherical. In the second photograph, for which time is defined to be

0.10 ms, we see a curved rarefaction wave moving upward from the flame while

the upper flame boundary has been compressed by the flow behind the incident

shock. By 0.40 ms, a vortex ring has formed due to the interaction of the

shock wave and the flame. The enhanced flow at the center of the ring pulls

unreacted gas through the flame, causing the gas to ignite. As the newly

ignited gas emerges, a fine-grained turbulent burning zone develops (apparent

at 0.70 ms).

To analyze the fluid-dynamic aspects of vorticity generation, we will

study the closely related situation in which a planar shock interacts with a

hot, low density region in a nonreactive fluid. Past treatments of this

problem have relied on the linearization of all or part of the relevant

equations or have used a perturbation expansion (Rudinger, 1958, and

Markstein, 1964). Those approaches are valid for cases with vanishingly small

perturbation amplitudes and time scales but cannot provide a quantitative

picture of the large scale flows which result from the initial asymmetries,

for which the characteristic length scale is the flame radius and the

interaction time scale Is finite.
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In the next section, we outline a simple nonlinear theory of vorticity

generation by shock wave and flame interactions. We then present the results

of a two-dimensional numerical simulation of the nonreactive case. The

simulation provides a clear picture of the formation of a vortex ring. The

calculation also provides a calibration of constants arising in the theory.

Finally, we dis,.uss the shock wave and flame interaction as a mechanism for

developing and enhancing turbulence and for determining the set of turbulent

scales observed experimentally.



NONLINEAR THEORY

Equation (I) gives the rigorous, inviscid equation for the time evolution

of vorticity,

dý

d--+ v + (Zpx VP)/P 2 , (1)

where v is the fluid velocity, ! = V x v is the vorticity, p is the density,

and P is the pressure. All variables are functions of the position r and

time t. Equation (1) provides a direct mechanism for the generation of

vorticity by shock wave and flame interactions, since the right hand side

contains a source term which is proportional to the cross product of the

density and pressure gradients. Whenever the local pressure and density

gradients are misaligned, the source term will be nonzero and the production

of vorticity will occur. In Fig. 1, the experimental case of interest, the

pressure gradient associated with the planar shock is parallel to the axis of

the shock tube while the density gradient of the spherical flame is directed

approximately radially outward from the center. Large scale vorticity in the

form of a vortex ring results from the interaction.

An estimate of vorticity generation in the nonreactive case by this

mechanism requires the integration of Eq. (1) in both space and time. We

may, however, simplify our task by working in two dimensions (Cartesian),

since the induced rotational flows, which are cylindrically symmetric, differ

from those of a vortex ring by geometrical factors of order one (see sentence

• • 4
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following Eq. (5) below). We then exploit the fact that after the shock has

passed through a circular region of density variation in the x-y plane, the

residual flow field consists of a pair of vortices of strength ± K ± K

(Picone and Boris, 1983). Figure 2 defines the notation for this section and

the Appendix. For the purpose of integrating Eq. (1) analytically, we align

the x-axis with the direction of propagation of the shock and place the origin

at the center of the density depression. The quantity So denotes the radius

of the heated region, and the vortices will be centered at (x,y) - (0, ± y),

where So. That is, in the case of a planar shock propagating downward

through a circular heated region in a two-dimensional vertical chamber, there

4 will be one vortex on either side of the vertical axis of the chamber. The

pair of vorticies will be roughly centered on the heated region, and the

associated rotational flows iill be oppositely directed. The strength of one

vortex at time t is equal to the integral of the vorticity over the half plane

containing the vortex. For the case of interest, the vortex strength is

K (t) = dy f dx •z(x,y,t), (2)

which satisfies the equation (see the Appendix)

dK~ ri- 00 ~i•Z f --- dy-f dx: [(Qp x 17P)z/p21. (3)
dt 0 ay 0 dx

j In a formal sense, the residual vortex strength is then

K lim K (t). (4)
z

t +~
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In practice, the generation of vorticity occurs over a finite time

interval (-T/2, T/2). For an azimuthally symmetric density depresssion with a

characteristic radius So, the time interval T is approximately equal to 2S 0 /W,

where W is the average velocity with which the shock propagates across the

region. Because this time is much shorter than the time required for the

resulting rotational flows to affect the density gradient appreciably, we may

ignore the feedback effects of the vorticity on the generation process.

Given the value of K, we may compute the fluid velocity along the line

bisecting the vortex pair by summing the flows induced by each vortex

separately. Because the azimuthal velocity of an isolated vortex filament has

the magnitude jvI =K KI/2ir, where r is the radial distance from the center

of the filament, we obtain

v (x,O) = ICI Y/7(x 2 + j2). (5)

Notice that the maxiumum value is IKI/ry, which agrees closely with 1I'C//2y,

the corresponding velocity for a vortex ring. We may define the mixing time

scale Tmix as the interval over which a fluid element travels from (-So, 0) to

(SO,O) under the influence of the residual flows. Integrating Eq. (5) gives

Tmix = 2rS0(S 0
2 /3 + y 2 )/I Kiy " (6)

In Fig. 1, we notice that the compression of the hot region by the flows

behind the shock has reduced the distance that the fluid elements must travel

to reach the lower edge of the heated region. Thus our Tmix will be

larger than the actual transit time.

=•6



In the Appendix, we compute the integral in Eq. (4) for the case of a

planar shock passing through a cylindrically symmetric density depression like

that in Fig. 1. We find that, prior to the return of the reflected shock

from the end of the shock tube,

2 2 v2(I - v 2 /2W) So Yn(p/P 0 ) f

2 v 2 (W - v 2 /2) (T/2) Zn(p/ P) f, (7)

where f < I is a form factor which varies with the initial density profile.

In Eq. (7), v 2 is the flow velocity behind the shock in the laboratory frame;

W is the shock velocity; p is the ambient density of the unburned medium;

and P0 is the density at the center of the spherical flame. For a shock of

pressure ratio 1.3 and y = 1.4, the Rankine-Hugoniot relations give us v2 :4 W/6

and W - 1.12 c , where c is the ambient sound speed prior to passage of the
s S

shock. In our simulation So= 2.5 cm, p/pP0  9.5 , and c s 3.4 x I04 cm/s.
s

Equation (7) gives us a vorticity strength of K < 6 x 10 4cm 2/s. For y < So,

the time scale T . for a fluid element to be pulled from one side of the

heated region to the other (Ax = 2S 0 ) under the influence of the residual

vorticity is < 900ps. This is consistent with the simulation results (Fig. 5)

and with Markstein's experiment (Fig. 1), which shows that fluid is pulled

through the center of the burning zone prior to the arrival of the reflected

shock approximately 600ps after the vorticicy is generated. We note again

that in the spherical case the fluid velocity through the center of the vortex

ring is 50% higher than that for the two-dimensional model which we have used

here. Thus the shorter time scale (T ) of Markstein's experiment is
mix

consistent with the estimate given above. Because the region of density

variation is no longer azimuthally symmetric, the reflected shock should

increase the number of vortex centers.

7
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NUMERICAL SIMULATION

We have used the two-dimensional reactive shock model (Oran et al.,

1983), which is based on the code FAST2D (Book et al., 1981), to simulate the

interaction between a weak planar shock and a cylindrically symmetric density

depression in air. The algorithm employs time-step splitting in conjunction

with flux-corrected transport (FCT) (Boris and Book, 1976) to solve the

equations for conservation of mass, momentum, and energy. The reactive shock

model also contains algorithms for chemical kinetics, energy release, and

thermal and molecular diffusion. We have calibrated the code extensively

through studies of shocks on wedges in nonreactive fluids (Book et al., 1981)

and studies of detonation cell structure, which required models of energy

release (Oran et al., 1983). In the present simulations, we used Cartesian

geometry and did not include chemical reactions or diffusive transport

processes.

The Cartesian grid consisted of 150 x 50 cells of dimension 0.2 cm on

each side. The grid remained fixed throughout the calculation. Thus the

simulated chamber was 30 cm x 10 cm, as in Markstein's experiment. We have

aligned the x-axis with the axis of the shock tube. The simulation had inflow

boundary conditions with v = (v 2 ,0) at the side from which the shock

propagated, where v2 is the velocity behind the shock in the laboratory frame.

The other boundaries were reflecting. A typical timestep was Ats = l1s,

where the subscript s indicates simulated time. Figure 3 is a density contour

diagram approximately 90ps (simulated time) aftei the simulation began. The

density contours run from 3.0 x 10-4 to 1.26 x 10-3 g/cm3 in equal increments.



Figure 4 shows the initial density and temperature profiles more clearly. The

density profile had the convenient functional form

p(r) = p + (p 0- p)/[I+(r/S 0) 2 j 2  " (8)

The shock pressure ratio was 1.3, again similar to Markstein's experiment

(Rudinger, 1958, and Markstein, 1964), and the shock moved from top to bottom.

The ambient pressure was 1.0 atm, and the ratio of principal specific heats

c /c ) was constant at the value 1.4. The ambient density (p.) and
p v

temperature (Tm) were 1.17 x 10-3 g/cm3 and 300K, respectively, while the

minimum density (p0 ) and peak temperature (TO) were 1.24 x 10-4 g/cm3 and

2840K. To compare simulation times (ts) with those in Markstein's

experiment, one should subtract approximately 150ps from the simulated time.

Figures 5-7 show the evolution of the density, pressure, and vorticity,

respectively. The x-axis is vertical to facilitate comparisons with Fig. 1;

thus the shock initially propagates downward in the figures. There are

striking similarities to the experimental photographs (Fig. 1). Figure 4

shows that the density distribution is compressed by the shock and the entire

heated region is pulled toward the bottom of the chamber by the flows behind

the shock. The reflected rarefaction wave and curved transmitted shock are

clearly visible in Fig. 6. The curvature of the latter occurs because of the

increased sound speed inside the heated region. An interesting feature is the

Mach structure caused by reflection of the curved shock by the chamber. The

sequence of density diagrams clearly demonstrates the effects of the vortex

pair, which has pulled ambient gas from the top of the heated region to the

bottom in a time T . < I ms, consistent with both Fig. 1 and our theory. The

9



vorticity contours in Fig. 7 show the existence of two long-lived vortices

which are equal in magnitude and oppositely directed. Sometime after

the shock has passed through the heated region (ts - 500ps), the simulation

gives a vortex strength K - 3 x 104 cm2 /s, which is consistent with the

theoretical estimate.

Another point of considerable interest is the enhancement of the

vorticity by subsequent shocks. The vorticity has a maximum magnitude of

approximately I.1 x 104 s-! just before the reflected shock strikes the heated

region (ts = 7221ls), and 1.8xl04 s-1 afterward (ts = 1.4 ms). Note the

reduction in size and the increased number of the vortex centers between those

times in Fig. 7, indicating the role of successive pressure waves in the

evolution of a structure more like that found in turbulent ilows.

Because the release of chemical energy was not included in the

calculation and because of the resolution limitations of the calculation,

several noteworthy differences exist between the experiment and the

simulation. First we notice in the density contour diagrams that the heated

region spreads and that the innermost contour disappears by ts = 600tis,

indicating that cooling occurs as the ambient gas is pulled through the center

by the vortices. In a reactive medium, the ambient gas would ignite, at least

maintaining the temperature and producing pressure waves, which would hasten

the transition to turbulence. The reactions would also alter the reflected

shock. Figure 1 (t = 0.70 ms) shows that the reflected shock wave actually

emerges as a dark band above the vortex ring. Finally, the limited resolution

of the calculation and the omission of three-dimensional effects have

prevented much of the cascade to small scale turbulence, which appears in Fig.

1. Despite these limitations, the simulation has revealed major fluid-dynamic

effects in shock wave and flame interactions.

10



COMPARISON WITH RAYLEIGH-TAYLOR INSTABILITY THEORY

Previous analyses of shock wave and flame interactions have used or have

suggested using a modified version of conventional Rayleigh-Taylor instability

theory (see, for example, Rudinger, 1958, and Markstein, 1964). Indeed,

Markstein (private communication) has pointed out that such an analysis, with

proper choices of parameters, gives a result similar to Eq. (7). In the usual

Rayleigh-Taylor picture, the length scale of the initial perturbation is

infinitesimal or "small", while the source term in Eq. (1),

S = 7P x 7P/o 2  (9)

is nonzero for a "long" period of time compared to the growth rate of the

perturbation. Markstein (1964) modified this to account for the short time

scale of the shock passage through a perturbed (rippled) flame boundary. He

demonstrated the phenomenon experimentally by passing a smooth flame through

a wire grid to perturb the flame boundary prior to the arrival of a planar

shock. As expected, the small ripples in the flame surface were amplified by

the perturbed flow field caused by the shock. These features were, however,

soon overwhelmed by nonlinear effects. Because the unperturbed flame was

hemispherical, the passage of the planar shock produced large scale vorticity,

which obliterated the smaller features.

In this paper, we have been concerned with the more general, nonlinear

description of vorticity generation. Thus we are addressing situations in

which the length scale of the perturbation is finite (flame radius) and the

source term is also nonzero over the time period during which the shock passes

through the entire flame. Because both scales are finite, we require a



nonlinear integration of Eq. (1), which covers the entire spectrum of inviscid

vorticity-generating phenomena. We note that, even for perturbations of small

spatial and temporal extent, the analysis of the flow field over long time

periods must include nonlinear effects.

SUMMARY

We have presented both an analytic theory and numerical simulations of

the vorticity generated by a planar shock wave passing through a hot region

similar to that of a flame. In order to extract the basic fluid-dynamic

mechanism in this interaction, we have restricted our work to two dimensions

and have excluded chemical reactions. This is a good approximation for the

calculation of the large scale vorticity distribution, since the laminar flame

moves much slower than the shock. Our analysis has shown that, after the

shock passes through the flame, a residual rotational flow field remains.

This flow field is equivalent to that of a vortex pair (or a vortex ring in

three dimensions) characterized by a circulation K (Eq. 7). The separation

y of the filaments is < So, the radius of the heated region. We have also

defined and computed a mixing time scale for the vorticity distribution which

is consistent with Markstein's experiment (Fig. 1) and the simulations.

Our numerical simulations of a planar shock interacting with a

cylindrically symmetric region of reduced density used our reactive shock

model, which is based on the FAST2D computer code. The computer model was

identical to that used previously to study detonation structure (Oran et al.,

1983); only the boundary and initial conditions were different. From the

simulations, we have determined the time development of the flow field as well

as the flows which remain after the shock has passed through the flame. The

simulations agree well with experiment and theory, and show that conventional

12



V Rayleigh-Taylor instability theory does not provide an adequate description of

V vorticity generation. The source of large scale vorticity for the case

studied here is the initial large-scale misalignment of pressure and density

gradients present in the fluid.

The general framework presented in this paper applies to vorticity

generation by any pressure perturbation interacting with a density gradient.

Examples of this phenomenon include sound waves or shocks passing through

flames, hot spots, or boundary layers; the key ingredient is the misalignment

of the pressure and density gradients as the interaction occurs. We conclude

that pressure waves produced in one portion of a reacting medium will generate

or enhance turbulence as the waves encounter density fluctuations within the

medium. The scale lengths of the additional turbulence will be less than the

spatial size of the original density fluctuations. We have thus described and

demonstrated a mechanism for producing turbulence in reactive systems and have

developed a framework for calculating the strength and the scales on which the

turbulence is generated.
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APPENDIX - PLANAR SHOCK INTERACTION

We will analyze the case shown in Fig. 2 by considering (in two

dimensions) a planar shock interacting with a circular heated region. The

symbol W denotes the velocity of the shock through the burning zone. and P2'

v2, and P 2 are the density, fluid velocity, and pressure behind the shock.

The corresponding quantities ahr d of the shock are pl, v,(-, 0), and P,. The

hot gas has a radius So, and the time t E 0 occurs when the shock reaches the

center of the burning zone. Here we will assume that the shock is weak

(pressure ratio P1Pj - 1.3) and that the pressure and density ratios do not

change significantly when the shock enters the burning zone. The circular

shape of the hot flame and the elevated speed of sound in the interior of the

flame cause the shock to become curved upon passing through the heated region.

Our analysis will not account for this curvature. We represent the flow field

of the shock as follows:

CP ]P2 P fs,O,W,t) (Al)

vI v]12 -v1•

where s and 0 define the position of a point relative to the center of the

heated region, a is a parameter defining shock thickness, fa satisfies the

relation

r1 - h(cosO) , t = 0

lim f (s cos0/Wt - 1) t < 0 (A2)

1+i I h(s cosO/Wt - 1) , t > 0,

14



and h(u) is the unit step function,

0 u < 0

h(u) . (A3):1 ,u>0

To insure the consistency of f. in the limit a + 0, we choose h(0) = 1/2.

Having set the initial conditions, we must now derive an equation for the

circulation or vortex strength K (t) from Eq. (1) in the main text. We note

that the vorticity is generated in the region containing the heated gas,

denoted here by F, which corresponds to the flame. The region F and the

associated residual vorticity then move with the fluid behind the incident

shock after the shock has passed through the flame. Given a volume of fluid

Q(t) containing the region F, we have (Meyer, 1982)

f + V dV. (A4)
(t) t (t)

In this paper, we are considering only variations in the x-y plane, so that

S0, x = 0 and E Vv 0. Since the integrands do not vary with z,

Eqs. (1) and (A4) give us

d d

(t) W () f • dA(t) f [(Vp x VP) /p ] dA(t). (A5)
A(t) A(t) Z

To determine the vorticity generated by a shock passing through F, we

need to integrate eq. (A5) over the interval T during which the shock

interacts with F. In the case which we are considering, F has a radius So

15



2.5 cm. The interaction (shock transit) time will then be quite short

compared to the time scales of flame propagation and vortex-induced rotationel

motion. The area A(t) containing F and nonzero vorticity will change due to

the motion of the fluid behind the shock and the compression of fluid elements

by the shock. For weak shocks these will also be small effects, and we will

assume that A(t) - A0 , where A0 is the area :ontaining F prior to the arrival

of the shock. In other words, we assume that the Jacobian matrix of the

transformation from dA(t) to dA0 is approximately the identity matrix. Thus

we obtain

t

1 (t) f dt' f dx dy [(P x VP)z /p 2 . (A6)
z -Tz/2 A

0

To compute Kz(t) for a single vortex in the upper half plane, we use

t 0

z(t) f dt f dx f dy [(Vp x p)z/p2 (A7)

CO -00 0

In Eq.(A7), we have extended the limits of the integrals to the entire half

plane and t + -- for convenience in performing the theoretical calculations.

This is reasonable as long the intensity of the interaction drops off rapidly

as time decreases from t = -T/2.

We will compute the vortex strength in Eq.(A7) in the limit that the

shock has infinitesimal thickness (a + 0). We assume for convenience that the

density profile of the heated region is given by

16



p(s, t)= P exp [-g(s/S0, t) Xn(p.p 0 )], (A8)

where s is the displacement from the center of the region and g(s/S 0 ,t) is a

function defined so that g(O,t) = I and lim g(s/S 0 ,t) = 0. For brevity weS+÷*

will use g(s) = (s/S 0 ,t) in subsequent equations. In the limit a + 0, t*e

source term in Eq. (1) for t < 0 becomes

1 s" SCosO
1 2 Vp x VP = - e sine ln(-) 6(s -1) x

S - a PO Wt

(A9)

2 s cose
-v2s cose v 2 h( W -1)

Wt 2  
+ Wt

since the derivative h'(u) - 6 (u). To derive Eq. (A9), we have computed VP

from the equation of motion

dv

P 1
~= --- Vp .(At0)

In computing K from Eqs. (A7) and (4) (main text), we notice that the

integral over the interval (- =,0) for t < 0 is identical to that over the

interval (0,-) for t > 0, so that we need only double the result for either

interval to determine the residual vortex strength. (In practice the time

integral is negligible outside the interval (-T/2, T/2), where T is the time

scale of the shock and flame interaction.)
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Equation (A7) now gives us

PC' ,0 "0* "g$

K 2 in (-)f dt f de(-sin6) f ds s{ 0 (s cosePIT/asWt I) x (All)

2 s cose

v 2 h( I) v 2s cos6
[ - Wt wt2 1}

With a change of variables to 0 = '3 cose/Wt - i, Eq. (All) becomes
2

P. 0 a- v 2 h(0) v 2  Wt
2 In (-) I dt f dO(- sine - (AI2)

-_ 7I/2 , 01 [O wt t ýose (A12)

Application of the chain rule ot differentiation results in

ag wt g (AI3)

T 0 = cos 6 7s s=Wt/cosA

which permits a change of variables to C = Wt/cose. Equation (A12) is then

2
p• 0 v2 h(0) v2 CO a

K 2 in (-) f dt Wt [ - f d AgT0O_ wt t -Wt

P"C
i2 n (-•)v2[W V2/2] fdt g(Wt). (A14)

0

Because W > v 2 and P,. > p , we see that the direction of the vorticity in Eq.S~0

(AlI) agrees with that in Figs. 1 and 5. We may define a form factor f by

f 2 f dt g(Wt), (A15)
"t0

where T 2 SOW, so that

P

(A16)

P"
- 2 v 2 ( - v 2 /2W) So Zn -) f.

p0
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Note that we have previously defined g(s) g(s/S 0 ). For a Gaussian form,

g(s/S0) = exp s2/S02) (A17)

we have f Iir/2, while for a square wave

g(s/So)={ 1 s/S0

s/S 0 > 1 (A18)

f 1. For the Bennett profile used in the simulation, Eq. (8), f will be

less than V/I12 (Picone and Boris, 1983).

I
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0.00 ms 0.10 0.40 0.70

1.10 ms 1.50 2.50 3.50

MARKSTEIN (1964)

Fig. 1. "Interaction between a shock wave and a flame of initially roughly

spherical shape. Pressure ratio of incident shock• wave 1.3; stoichiometric

n-butane-air mixture ignited at center of combustion chamber 8.70 ms before

origin of time scale." (Rudinger, 1958 and Markstein, 1964) (Reprinted by

permission of Pergamon Press, Inc.).
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THEORETICAL CALCULATION NOTATION

HEATED REGIONO2,, P2, V2 • SHOCK
P , , P , v, /-- T w - x s -w t

ph, P1, V,

)~ so

P AMBIENT

X

Fig. 2. Diagram defining terms for calculation of vort.- strength in the

section on theory and in the appendix.
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NUMERICAL SIMULATION
ts-9.4 X 10%s

0.0 y(cm) 10.0

SHOCK FRONT

M-1-12

(cm)

HEATED REGION

PRESURE: latin

TEMPERATURE: 300K

30.0
Fig. 3. Density contour diagram shortly after the simulation began. The

dimensions of the chamber are similar to those in Fig. 1. Gas flows into the

chamber from the top boundary.
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NUMERICAL SIMULATION
15INITIAL CONDITIONS1.5oo

3000

SHOCK
It 

2500

U 1.0

I 2000 P

0.5 1000

500

0.01 , E
5 10 15 20 25

X(cm)

Fig. 4. The density and temperature distributions at simulation time ts=O

show the shock at the left and the heated region in the center of the grid.
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DENSITY CONTOURS

0.19 ms 0.38 0.49 0.6030.0

L.._...____• ._I -•._---

0.01

0.0 (cm) 10.0

0.72 ms 1.11 1.40 1.88

if I

Fig. 5. Density contour diagrams at given times ts. In the first three

frames the six contours range from 3 x 10-4 to 1.5 x 10-3 g/cm3 in equal

increments while in the last five, the contours range from 3 x 10-4 to

1.6 x 10-3 g/cm3 . Notice the Mach structure at the channel boundary at

ts=384ws2
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F

PRESSURE CONTOURS

30. 0.19 ms 0.38 0.49 0.60

0.00
0.0 fcm) 10.0

0.72 ms 1.11 1.40 1.88

, I

I.---,. • ,

SI, V;, ' /
" " V .' , ]~

,/ •', ',..I

Fig. 6. Pressure contour diagrams at given times t s In the first three

frames the contours range from 1.02 x 106 to 1.35 x 106 dyne/cm2 in equal

increments. In the last five the range is 1.3 x 106 to 1.8 x 106 dyne/cm2 .

Again notice the Mach structure prior to reflection at the bottom boundary.
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VORTICITY CONTOURS

0.19mS 0.49
30.0

0.0
0.0 (CM) 10.0

0.72 ms 1.40

Fig. 7. Vorticity contour diagrams at given times ts. The ranges of

vorticity values (respectively from earliest to latest times) are - 3 x 103

±1. - X 104 S-1, + 1.1 X 104s-
1 , and ± 1.8X 104s-1. The number of

vortex centers and the peak vorticity increase after the reflected shock

passes through the heated region (last frame), as anticipated. Corresponding

vortices in each frame are oppositely directed and oriented to pull fluid from

top to bottom.
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