
Theory, Practice, and a Tool for BSP
Performance Prediction

Jonathan M. D. Hill 1, Paul I. Crumpton I and David A. Burgess 2

1 Oxford University Computing Laboratory, UK.
2 SCCM, Stanford University, CA94305, USA.

Abstract. The Bulk Synchronous Parallel (BSP) model provides a the-
oretical framework to accurately predict the execution time of parallel
programs. In this paper we describe a BSP programming library that has
been developed and contrast two approaches to analysing performance:
(1) a pencil and paper method; (2) a profiling tool that analyses trace
information generated during program execution. These approaches are
evaluated on an industrial application code that solves fluid dynamics
equations around a complex aircraft geometry on IBM SP2 and SGI
Power Challenge machines. We show how the profiling tool can be used
to explore the communication patterns of the CFD code and accurately
predict the performance of the application on any parallel machine.

1 I n t r o d u c t i o n

The efficient implementation of complex algorithms onto parallel machines is an
arduous task. The resulting performance is often only known once this task has
been completed, which is unsatisfactory considering the implementation effort.
In this paper the Bulk Synchronous Parallel (BSP) [6, 8] approach to parallel
computing is introduced and the ability to accurately predict the performance
of BSP applications is discussed. To illustrate the BSP approach, a state-of-
the-art Computational Fluid Dynamics (CFD) application is considered which
models the flow of air past an aircraft. A simple cost model is derived and then
compared with the actual code by analysing the output from a BSP performance
tool. The output from the tool can then be "replayed" to quantitatively predict
the performance of the application on any parallel architecture.

For the application developer the advantages of a BSP library in compari,
son to conventional message-passing systems such as PVM and MPI are: (a) the
BSP cost model is straightforward and accurate; (b) the library eliminates the
possibility of deadlock from parallel code; (c) the communication is based upon
one-sided remote memory access; (d) the library optimises global scheduling of
communication; (e) the library is smaller and simpler than PVM or MPI. Fur-
thermore, the BSP profiling tool depicts the parallel computation and can be
used to predict a code's performance on another machine. The BSP approach
to parallel programming is applicable to all parallel architectures: distributed
memory architectures, shared memory multiprocessors and networks of work-
stations. It provides a consistent and portable framework for parallel software
development.

698

The structure of the paper is as follows. First we introduce the BSP compu-
tational model in w This provides the necessary background to cost model the
CFD application in w In w we use a BSP library and profiling tool to visualise
and analyse parallel performance, and conclusions are drawn in w

2 T h e B u l k S y n c h r o n o u s P a r a l l e l c o m p u t a t i o n a l m o d e l

A BSP calculation consists of a sequence of supersteps. Each superstep can be
decomposed into three phases: processor-memory pairs perform a number of
computations on data held locally at the start of a superstep; processors com-
municate data into other processor's memories; all processors barrier synchronise
at the end of a superstep. The essence of BSP cost modeling is that the cost of
a series of supersteps is simply the sum of the costs of each separate superstep.
The cost of p processes executing a single superstep is the sum of: (a) the com-
putational cost of the process that takes the longest time to perform its local
sequential computation; (b) the communication cost of the global exchange of
data; and (c) the synchronisation cost. It is realistic to cost entire BSP algo-
rithms in terms of formulae with structure:

execution cost (in flops) = computation + communication + synchronisation

= a + ~g + 71 (1)
execution time (in secs)= (a + ~g + 71)/s (2)

where 7 is the number of supersteps performed by an algorithm, a is the ac-
cumulated cost of the local computations of the 7 supersteps and ~ is the to-
tal communication cost. These terms are application-dependent costs. The BSP
parameters s, l, and g are architecture-dependent constants that capture the
performance of a parallel machine:

s is the speed of computation of a process in flops.
l is the synchronisation latency cost in units of s.
g is the number of flops/word required for all processors to simultaneously

communicate a message.

Flops are used as the unit of cost so that algorithms can be costed in an architec-
ture independent way. The use of the parameters s and I is relatively intuitive but
the interpretation of g is not so obvious and is discussed in the next subsections.

2.1 T h e s tandard "Penci l and Paper" B S P m o d e l of g

In traditional message-passing systems such as PVM and MPI the cost of com-
munication has to be considered by analysing individual sender-receiver pairs.
This can be both time consuming and difficult to calculate especially prior to the
development of parallel software. In contrast, the BSP model considers all the
individual communications that occur within a superstep as a single monolithic
unit. The cost of these communications is accurately modeled by analysing the

699

process with the largest amount of data entering or leaving itself. If h words is
the largest accumulated size of all messages either entering or leaving a process
within a superstep, and since g is defined to be the number of flops required
for all processors to simultaneously communicate a single word, then the com-
munication cost in flops is modeled as hg. Patterns of communication of this
form are termed h-relations and form the basis of costing communication in the
BSP model. For example, an h-relation with cost hg can be realised by each
of p processes having a single message of size h coming in and out of them. In
contrast, if p processes communicate data of size hiP into a single process then
p messages will enter tha t process and the communication pattern also realises
a hip • p = h-relation with a cost of hg flops. This method of costing communi-
cation is accurate for suitably large values of h (see w The values of the BSP
machine parameters considered in this paper are shown in Table 1.

Machine s
flops

SGI Power Challenge 55 million 1
2
4

IBM SP2 (using switch) 26 millioni 1
2
4
8

IBM SP2 (using ethernet) 26 million 1
2
4
8

Table 1. BSP machine parameters

flops ps
136 2.5
627 11.4

1248 22.7
223 8.6

2386 91.8
4159 160.0
8340 320.8

222 8.5
20120 773.8
48476 1864.5
23120 ~581.5

g [32-bit word] I N�89]
flops/word]ps/wordlwords]

0.41 0.0071 64 I
7.61 0.14[8 I
7.4 0.13] 9

7.51 0.29 61
7.7] 0.30 61
7.8 0.30 61

'1.3 0.05 71
183.5 7.1 31
384.1J 14.8 51

1645.31 63.3 21

s, l and g for p processors (see in w

2.2 T h e ref ined B S P m o d e l of g to account for m e s s a g e l a t e n c y

In the previous section the definition of g was based on a suitably large h-relation.
The standard BSP model makes no distinction between the costs of one process
sending h messages of size one or a single message of size h. However, on a real
parallel machine there is a start-up latency associated with every message so
the actual communication cost is dependent on message size. Miller [7] refined
the standard BSP cost model using Hockney's model [5] to accurately include
the effect of message granularity in the communication cost. In the refined BSP
model, g is defined as a function of the message size x:

where g~ is the asymptotic communication cost for very large messages (g re-
ported in Table 1 is gr162 and NI is the size of message that produces half the

2

optimal bandwidth of the machine so g(N�89 = 2goo. The incorporation of N�89

700

into the original BSP cost model of w undermines the bulk properties as-
sumed when costing h-relations, It's introduction would make cost analysis as
complex as in message passing systems as each seperate message size occurring
in a superstep would have to be taken into account. One way of overcoming this
problem is to provide an implementation of the BSP programming library that
coalesces small messages together. The effect of this scheme is that at-most a
single message will leave or enter a process during each superstep, and the cost
hg(h) can therefore be attributed to the superstep. As a consequence, for simple
"pencil and paper" modeling it is sufficient to use the standard BSP cost model.
However, the BSP profiling tool described later in this paper uses the refined
model hg(h) for accurate cost modeling and performance prediction.

3 P e n c i l a n d P a p e r B S P c o s t m o d e l o f C F D a p p l i c a t i o n

We demonstrate the effectiveness of the BSP approach with a complex Com-
putational Fluid Dynamics (CFD) application. This application simulates an
inviscid flow over an aircraft on an unstructured tetrahedral mesh using an edge
collapsing multigrid technique [2]~

Grid 1 Grid 2 Grid 3

Fig. 1. Sequence of 3 grids for an aircraft configuration.

The underlying CFD method uses a 3D unstructured tetrahedral grid that
tessellates the computational domain around an aircraft, see Figure 1. The two
main components of the algorithm are a "smoother" and a sequence of succes-
sively coarser grids. The smoother is an explicit iterative method that converges
to a fixed solution. The main computational cost is two loops over the tetrahedra
which consist of: (a) gathering information from the four vertices of each tetra-
hedron; (b) performing a large quantity of arithmetic; (c) scattering information
from the tetrahedra to the vertices. The multigrid method cycles through the
grid sequence in a W-shape as will be seen in the profile of Figure 3.

For unstructured grid applications the computational cost of a smoother
iteration (in flops) is directly proportional to the number of cells N within a
particular tetrahedral grid. Thus the cost is C1N flops where C1 is the flop
count per cell. Hence the total computational cost of smoothing on the finest
mesh at the beginning and end of the multigrid W-cycle is 2C1N. The cost of

701

smoothing the first coarse grid in the W-cycle is 4CINr, where r (0 < r < 1) is
the reduction fraction describing the fewer cells on the coarser grid. Thus on a
sequential machine the computational cost is:

Ns,~d,

sequential computational cost = ~ 2i CI Nr i -I .

To execute this in parallel the grids are partitioned and placed on the proces-
sors. For p processors each process owns (N/p) cells of the finest grid and each
partition has an exterior surface proportional to (N/p) ~ cells, where 7 < 1. The
parallel smoothing cost in flops of a single grid can thus be expressed as

parallel smoothing cost = CI + C~ g + Cs l

where I and g are the BSP parameters, C2 is the amount of data (in words) that
is exchanged between partitions and C3 is the number of synchronisations per
smoothing iteration. The cost of a multigrid W-cycle can be then written as

Wcycle cost = ~ 2 i [CI + Cs + Csl (4) parallel
i l l

Equation (4) represents a rather simplistic model and only contains the main cost
terms of W-cycle multigrid on a parallel machine. The assumptions made inthis
model are: the tetrahedra are partitioned perfectly; the communication cost of
the grid transfer operations is negligible; the execution of boundary conditions is
negligible. Because of these assumptions we expect the cost model to be optimistic.
To improve the accuracy of the model more information about the particular
application is required. If a sequential code already exists then by profiling the
code on a given machine an accurate computational time can be determined. If
data partitioning information is also known then the number of cells per partition
and the number of vertices on partition boundaries can be used to accurately
determine the computation and communication costs respectively. It is worth
noting tha t converting the sequential multigrid cost model to a BSP parallel
cost model is a straightforward task and gives good qualitative information.

In this "paper and pencil" study, execution times are contrasted for the IBM
SP2 configured to use either ethernet or a high-performance switch. The grid
dependent values are N = 7.5 x 105, r = 1/8 and Ngrids -~ 3. The algorithmic
constants of the smoother are estimated to be C1 = 400, C2 = 15 and C3 = 2.
Figure 2 plots NIp against IBM SP2 cost in flops, using the simplistic cost model
in Equation (4). The values of I and g for 8 processors are used so I = 8340 and
g = 8 for switch, and I 223120 and g -- 1645 for ethernet. The graph clearly
portrays that for ethernet communication to be effective with 8 processors at
least 10 e fine grid tetrahedra need to be placed on each processor, whereas for
the switch communication only l0 s are needed per processor. This would be
invaluable information for a prospective user looking to purchase a parallel ma-
chine, who presumably would have some idea of the target problem size. In

702

jml0"

'I" ' l i = Inn

(a) IBM SP~. using the switch (b) IBM se2 using ethernet

Fig. 2. Cost model predictions of the multigrid CFD code using Equation (4).

addition, the cost model might predict the futility of parallelising a favoured
algorithm or parallel strategy, which could prove to be essential. The scalability
of an algorithm as p becomes large can also be studied using this technique. This
approach is by no means revolutionary, but the simplicity, portability and accu-
racy of the BSP model gives an application programmer a significant advantage
over message-passing modeling.

4 R e s u l t s f r o m a B S P l i b r a r y a n d p r o f i l i n g too l

A number of researchers are currently forming a World-Wide Standard BSP
Library [3] by synthesising several low-level BSP programming approaches that
have been pursued over the last few years [4, 7]. They propose a library called
BSPlib to provide a parallel communication library based around a SPMD model
of computation. The results described in this paper have been obtained using
the Oxford BSP toolset implementation of BSPlib.

The implementation of the multigrid CFD application was carried out in
FORTRAN 77 using the OPlus (Oxford Parallel Library for Unstructured Solvers)
high-level programming framework [1]. The OPlus library uses the Oxford BSP
toolset for communication. OPlus removes the burdens of parallelisation from the
application programmer by handling data partitioning, I/O and the organisation
of the data transfers.

Profiling of parallel execution is valuable for evaluating performance and pre-
dicting performance on other machines. Both performance evaluation and pre-
diction with message-passing software is difficult. With the BSP approach it is
greatly simplified as all the BSPlib communication is carried out simultaneously
within a BSP superstep. The profiling tool that we have developed graphically
exposes three important pieces of information: (a) the elapsed time taken to per-
form communication; (b) the pattern of communication; (c) the computational
elapsed time.

Figure 3 shows a prediction profile that compares the actual execution on
IBM SP2 (with switch communication) in the top graph with predicted cost in

7 0 3

llWO

!-
~ 4

4 ~ 4

~ 4

4.~ 44',6 4 ~ , a

~ / ' .W mee~dl elemed ~ ~1 ~1 m

SP2 w ~ Bw/tch Jnd pr~/ct/an

i I 1 1 i 11
I 1 i l l

l t ~ 1~4

llli lll

TmFeb 6 ~ ;~6 1096

i i ' ~ "

i ' m - .

i i - - - ,

i , - - -~

Fig. 3. Comparing actual and predicted cost of W-cycle on IBM SP2 with switch.

the lower. The match between practice and prediction is close, although there
are a few discrepancies where some communications take longer than expected.

The salient features of figure 3 are that the white space between the bars
represents the elapsed time of the process that takes the longest time to perform
its local computation phase of a superstep, whilst the bars in the top graph show
the total sizes of all the communications leaving a process during a superstep.
The elapsed time taken to perform communication is visualised by the width of
the communication bars. The size of the h-relation is identified by the thickest
band in the bar, which is easily seen in Figure 4. The label found at the top
left-hand corner of each bar is the number of the superstep and in the legend the
superstep label identifies the position in the code. It is clear that computation
dominates the overall time, as the pencil and paper BSP model predicted for
the IBM SP2 using the switch as shown in Figure 2(a).

A major advantage of the Oxford BSP profiling tool is to predict the perfor-
mance of codes on other parallel machines. This is simply achieved by plugging
the BSP parameters of the appropriate machine into the tool. Figure 4 shows
the result of this exercise when the profile data generated from the execution
of the code using the IBM SP2 with switch is used to predict the performance
of the code when ethernet is used. The top graph shows the actual cost on the
IBM SP2 with switch and the lower graph predicts the cost of a IBM SP2 with
ethernet. Normally the reverse process would be performed when the cost of a
code running on a network of workstations is used to predict the cost of the

704

mN-I

leOO.i
I III IIII

1111 l m ~

Predictln~ ~ h e m ~ costs from the switch costs

112 ~ . M . , f ~01

Fig. 4. Predicting the cost on ethernet from data gathered on the switch.

code on a real parallel machine. The tool predicts tha t the W-cycle will take
26625 - 23275 = 3350Mflops, which is equivalent to 128 seconds on the SP2
with ethernet. Figure 5 shows the actual cost of 101 seconds for the W-cycle
using ethernet communication. The theoretical model shown in figure 2 shows
an expected difference between the switch and ethernet as a factor of approxi-
mately three at Nip = 9.3 x 103. This factor is only an approximation, as many
assumptions were made when costing the algorithm by hand. The tool predicts
tha t ethernet will be a factor seven (i.e, 128/17 = 7.5 as shown in figure 3) slower
than switch communication. The actual experimental ratio is 101/17 = 5.9.

5 Conclusions

The BSP approach has a simple cost model, is deadlock-free and is portable. In
general, cost-modeling applications gives a rough ball-park figure of the cost on
any parallel machine and configuration size. The role of the profiling tool aids
simplistic pencil and paper cost modeling, and it effectively predicts the cost of
an algorithm on any parallel machine.

A c k n o w l e d g m e n t s

This work was performed within Oxford Parallel with financial support from Rolls-
Royce plc, EPSRC and NSF grant ECS-9527123. We gratefully acknowledge the use
of the unstructured grid generator of Jalme Peraire and Joaquim Peiro. We would also
like to thank Bill McColl, Mike Giles, David Skillicorn, and Bob McLatchie.

705

1886.12 mp~ndl ehtp~d time r ~ 1 m

SP2 with MlwrnM network
Tim ~ 6 00".40~041~6

730 748 768 7U 778 780 ~ I~0 810

[] , - - .

I ~ t

M

Fig. 5. Observed performance of a "W-cycle" over ethernet.

References

I. D. Burgess, P. Crumpton, and M. Giles. A parallel framework for unstructured grid
solvers. In Computational Fluid Dynamics ECCOMAS'9~, pages 391-396. John
Wiley & Sons, 1994.

2. P. Crumpton and M. Giles. Implicit time accurate solutions on unstructured dy-
namic grids. AIAA Paper 95-1671, 1995.

3. M.W. Goudrean, J. M. D. Hill, K. Lang, B. McColl, S, B. Rao, D. C. Stefanescu,
T. Suel, and T. Tsantilas. A proposal for the BSP Worldwide standard library,
April 1996. See mm.bsp-vorldvide, org for more details.

4. M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsantilas. Towards e~ciency
and portability: Programming with the BSP model. In Proc. 8th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1996.

5. R.W. Hockney. Performance parameters and benchmarking of supercomputers.
Parallel Computing, 17:1111-1130, 1991.

6. W. F. McColl. Scalable computing. In J. van Leeuwen, editor, Computer Science
Today: Recent Trends and Developments, number 1000 in Lecture notes in Computer
Science, pages 46-61. Springer-Verlag, 1995.

7. R. Miller. Two approaches to architecture-independent parallel computation. D.Phil
thesis, Oxford University, Michaelmas Term 1994.

8. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, August 1990.

