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Abstract. The Bulk Synchronous Parallel (BSP) model provides a the- 
oretical framework to accurately predict the execution time of parallel 
programs. In this paper we describe a BSP programming library that has 
been developed and contrast two approaches to analysing performance: 
(1) a pencil and paper method; (2) a profiling tool that analyses trace 
information generated during program execution. These approaches are 
evaluated on an industrial application code that solves fluid dynamics 
equations around a complex aircraft geometry on IBM SP2 and SGI 
Power Challenge machines. We show how the profiling tool can be used 
to explore the communication patterns of the CFD code and accurately 
predict the performance of the application on any parallel machine. 

1 I n t r o d u c t i o n  

The efficient implementation of complex algorithms onto parallel machines is an 
arduous task. The resulting performance is often only known once this task has 
been completed, which is unsatisfactory considering the implementation effort. 
In this paper the Bulk Synchronous Parallel (BSP) [6, 8] approach to parallel 
computing is introduced and the ability to accurately predict the performance 
of BSP applications is discussed. To illustrate the BSP approach, a state-of- 
the-art Computational Fluid Dynamics (CFD) application is considered which 
models the flow of air past an aircraft. A simple cost model is derived and then 
compared with the actual code by analysing the output from a BSP performance 
tool. The output from the tool can then be "replayed" to quantitatively predict 
the performance of the application on any parallel architecture. 

For the application developer the advantages of a BSP library in compari, 
son to conventional message-passing systems such as PVM and MPI are: (a) the 
BSP cost model is straightforward and accurate; (b) the library eliminates the 
possibility of deadlock from parallel code; (c) the communication is based upon 
one-sided remote memory access; (d) the library optimises global scheduling of 
communication; (e) the library is smaller and simpler than PVM or MPI. Fur- 
thermore, the BSP profiling tool depicts the parallel computation and can be 
used to predict a code's performance on another machine. The BSP approach 
to parallel programming is applicable to all parallel architectures: distributed 
memory architectures, shared memory multiprocessors and networks of work- 
stations. It provides a consistent and portable framework for parallel software 
development. 



698 

The structure of the paper is as follows. First we introduce the BSP compu- 
tational model in w This provides the necessary background to cost model the 
CFD application in w In w we use a BSP library and profiling tool to visualise 
and analyse parallel performance, and conclusions are drawn in w 

2 T h e  B u l k  S y n c h r o n o u s  P a r a l l e l  c o m p u t a t i o n a l  m o d e l  

A BSP calculation consists of a sequence of supersteps. Each superstep can be 
decomposed into three phases: processor-memory pairs perform a number of 
computations on data held locally at the start of a superstep; processors com- 
municate data into other processor's memories; all processors barrier synchronise 
at the end of a superstep. The essence of BSP cost modeling is that the cost of 
a series of supersteps is simply the sum of the costs of each separate superstep. 
The cost of p processes executing a single superstep is the sum of: (a) the com- 
putational cost of the process that takes the longest time to perform its local 
sequential computation; (b) the communication cost of the global exchange of 
data; and (c) the synchronisation cost. It is realistic to cost entire BSP algo- 
rithms in terms of formulae with structure: 

execution cost (in flops) = computation + communication + synchronisation 

= a + ~g + 71 (1) 
execution time (in secs)= (a + ~g + 71)/s (2) 

where 7 is the number of supersteps performed by an algorithm, a is the ac- 
cumulated cost of the local computations of the 7 supersteps and ~ is the to- 
tal communication cost. These terms are application-dependent costs. The BSP 
parameters s, l, and g are architecture-dependent constants that capture the 
performance of a parallel machine: 

s is the speed of computation of a process in flops. 
l is the synchronisation latency cost in units of s. 
g is the number of flops/word required for all processors to simultaneously 

communicate a message. 

Flops are used as the unit of cost so that algorithms can be costed in an architec- 
ture independent way. The use of the parameters s and I is relatively intuitive but 
the interpretation of g is not so obvious and is discussed in the next subsections. 

2.1 T h e  s tandard  "Penci l  and  Paper" B S P  m o d e l  of  g 

In traditional message-passing systems such as PVM and MPI the cost of com- 
munication has to be considered by analysing individual sender-receiver pairs. 
This can be both time consuming and difficult to calculate especially prior to the 
development of parallel software. In contrast, the BSP model considers all the 
individual communications that occur within a superstep as a single monolithic 
unit. The cost of these communications is accurately modeled by analysing the 
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process with the largest amount of data  entering or leaving itself. If h words is 
the largest accumulated size of all messages either entering or leaving a process 
within a superstep, and since g is defined to be the number of flops required 
for all processors to simultaneously communicate a single word, then the com- 
munication cost in flops is modeled as hg. Patterns of communication of this 
form are termed h-relations and form the basis of costing communication in the 
BSP model. For example, an h-relation with cost hg can be realised by each 
of p processes having a single message of size h coming in and out of them. In 
contrast, if p processes communicate data  of size hiP into a single process then 
p messages will enter tha t  process and the communication pattern also realises 
a hip • p = h-relation with a cost of hg flops. This method of costing communi- 
cation is accurate for suitably large values of h (see w The values of the BSP 
machine parameters considered in this paper are shown in Table 1. 

Machine s 
flops 

SGI Power Challenge 55 million 1 
2 
4 

IBM SP2 (using switch) 26 millioni 1 
2 
4 
8 

IBM SP2 (using ethernet) 26 million 1 
2 
4 
8 

Table  1. BSP machine parameters 

flops ps 
136 2.5 
627 11.4 

1248 22.7 
223 8.6 

2386 91.8 
4159 160.0 
8340 320.8 

222 8.5 
20120 773.8 
48476 1864.5 
23120 ~581.5 

g [32-bit word] I N�89 ] 
flops/word]ps/wordlwords ] 

0.41 0.0071 64 I 
7.61 0.14[ 8 I 
7.4 0.13] 9 

7.51 0.29 61 
7.7] 0.30 61 
7.8 0.30 61 

'1.3 0.05 71 
183.5 7.1 31 
384.1J 14.8 51 

1645.31 63.3 21 

s, l and g for p processors (see in w 

2.2 T h e  ref ined B S P  m o d e l  of  g to  account  for m e s s a g e  l a t e n c y  

In the previous section the definition of g was based on a suitably large h-relation. 
The standard BSP model makes no distinction between the costs of one process 
sending h messages of size one or a single message of size h. However, on a real 
parallel machine there is a start-up latency associated with every message so 
the actual communication cost is dependent on message size. Miller [7] refined 
the standard BSP cost model using Hockney's model [5] to accurately include 
the effect of message granularity in the communication cost. In the refined BSP 
model, g is defined as a function of the message size x: 

where g~  is the asymptotic communication cost for very large messages (g re- 
ported in Table 1 is gr162 and NI  is the size of message that  produces half the 

2 

optimal bandwidth of the machine so g(N�89 = 2goo. The incorporation of N�89 
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into the original BSP cost model of w undermines the bulk properties as- 
sumed when costing h-relations, It's introduction would make cost analysis as 
complex as in message passing systems as each seperate message size occurring 
in a superstep would have to be taken into account. One way of overcoming this 
problem is to provide an implementation of the BSP programming library that 
coalesces small messages together. The effect of this scheme is that at-most a 
single message will leave or enter a process during each superstep, and the cost 
hg(h) can therefore be attributed to the superstep. As a consequence, for simple 
"pencil and paper" modeling it is sufficient to use the standard BSP cost model. 
However, the BSP profiling tool described later in this paper uses the refined 
model hg(h) for accurate cost modeling and performance prediction. 

3 P e n c i l  a n d  P a p e r  B S P  c o s t  m o d e l  o f  C F D  a p p l i c a t i o n  

We demonstrate the effectiveness of the BSP approach with a complex Com- 
putational Fluid Dynamics (CFD) application. This application simulates an 
inviscid flow over an aircraft on an unstructured tetrahedral mesh using an edge 
collapsing multigrid technique [2]~ 

Grid 1 Grid 2 Grid 3 

Fig. 1. Sequence of 3 grids for an aircraft configuration. 

The underlying CFD method uses a 3D unstructured tetrahedral grid that 
tessellates the computational domain around an aircraft, see Figure 1. The two 
main components of the algorithm are a "smoother" and a sequence of succes- 
sively coarser grids. The smoother is an explicit iterative method that converges 
to a fixed solution. The main computational cost is two loops over the tetrahedra 
which consist of: (a) gathering information from the four vertices of each tetra- 
hedron; (b) performing a large quantity of arithmetic; (c) scattering information 
from the tetrahedra to the vertices. The multigrid method cycles through the 
grid sequence in a W-shape as will be seen in the profile of Figure 3. 

For unstructured grid applications the computational cost of a smoother 
iteration (in flops) is directly proportional to the number of cells N within a 
particular tetrahedral grid. Thus the cost is C1N flops where C1 is the flop 
count per cell. Hence the total computational cost of smoothing on the finest 
mesh at the beginning and end of the multigrid W-cycle is 2C1N. The cost of 
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smoothing the first coarse grid in the W-cycle is 4CINr, where r (0 < r < 1) is 
the reduction fraction describing the fewer cells on the coarser grid. Thus on a 
sequential machine the computational cost is: 

Ns,~d, 

sequential computational cost = ~ 2i CI Nr i -I .  

To execute this in parallel the grids are partitioned and placed on the proces- 
sors. For p processors each process owns (N/p) cells of the finest grid and each 
partition has an exterior surface proportional to (N/p) ~ cells, where 7 < 1. The 
parallel smoothing cost in flops of a single grid can thus be expressed as 

parallel smoothing cost = CI + C~ g + Cs l 

where I and g are the BSP parameters, C2 is the amount of data (in words) that 
is exchanged between partitions and C3 is the number of synchronisations per 
smoothing iteration. The cost of a multigrid W-cycle can be then written as 

Wcycle cost = ~ 2 i [CI + Cs + Csl (4) parallel 
i l l  

Equation (4) represents a rather simplistic model and only contains the main cost 
terms of W-cycle multigrid on a parallel machine. The assumptions made inthis 
model are: the tetrahedra are partitioned perfectly; the communication cost of 
the grid transfer operations is negligible; the execution of boundary conditions is 
negligible. Because of these assumptions we expect the cost model to be optimistic. 
To improve the accuracy of the model more information about the particular 
application is required. If a sequential code already exists then by profiling the 
code on a given machine an accurate computational time can be determined. If 
data partitioning information is also known then the number of cells per partition 
and the number of vertices on partition boundaries can be used to accurately 
determine the computation and communication costs respectively. It is worth 
noting tha t  converting the sequential multigrid cost model to a BSP parallel 
cost model is a straightforward task and gives good qualitative information. 

In this "paper and pencil" study, execution times are contrasted for the IBM 
SP2 configured to use either ethernet or a high-performance switch. The grid 
dependent values are N = 7.5 x 105, r = 1/8 and Ngrids -~  3. The algorithmic 
constants of the smoother are estimated to be C1 = 400, C2 = 15 and C3 = 2. 
Figure 2 plots NIp against IBM SP2 cost in flops, using the simplistic cost model 
in Equation (4). The values of I and g for 8 processors are used so I = 8340 and 
g = 8 for switch, and I 223120 and g -- 1645 for ethernet. The graph clearly 
portrays that for ethernet communication to be effective with 8 processors at 
least 10 e fine grid tetrahedra need to be placed on each processor, whereas for 
the switch communication only l0 s are needed per processor. This would be 
invaluable information for a prospective user looking to purchase a parallel ma- 
chine, who presumably would have some idea of the target problem size. In 
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(a) IBM SP~. using the switch (b) IBM se2 using ethernet 

Fig. 2. Cost model predictions of the multigrid CFD code using Equation (4). 

addition, the cost model might predict the futility of parallelising a favoured 
algorithm or parallel strategy, which could prove to be essential. The scalability 
of an algorithm as p becomes large can also be studied using this technique. This 
approach is by no means revolutionary, but the simplicity, portability and accu- 
racy of the BSP model gives an application programmer a significant advantage 
over message-passing modeling. 

4 R e s u l t s  f r o m  a B S P  l i b r a r y  a n d  p r o f i l i n g  too l  

A number of researchers are currently forming a World-Wide Standard BSP 
Library [3] by synthesising several low-level BSP programming approaches that 
have been pursued over the last few years [4, 7]. They propose a library called 
BSPlib to provide a parallel communication library based around a SPMD model 
of computation. The results described in this paper have been obtained using 
the Oxford BSP toolset implementation of BSPlib. 

The implementation of the multigrid CFD application was carried out in 
FORTRAN 77 using the OPlus (Oxford Parallel Library for Unstructured Solvers) 
high-level programming framework [1]. The OPlus library uses the Oxford BSP 
toolset for communication. OPlus removes the burdens of parallelisation from the 
application programmer by handling data partitioning, I/O and the organisation 
of the data transfers. 

Profiling of parallel execution is valuable for evaluating performance and pre- 
dicting performance on other machines. Both performance evaluation and pre- 
diction with message-passing software is difficult. With the BSP approach it is 
greatly simplified as all the BSPlib communication is carried out simultaneously 
within a BSP superstep. The profiling tool that we have developed graphically 
exposes three important pieces of information: (a) the elapsed time taken to per- 
form communication; (b) the pattern of communication; (c) the computational 
elapsed time. 

Figure 3 shows a prediction profile that compares the actual execution on 
IBM SP2 (with switch communication) in the top graph with predicted cost in 
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Fig. 3. Comparing actual and predicted cost of W-cycle on IBM SP2 with switch. 

the lower. The match between practice and prediction is close, although there 
are a few discrepancies where some communications take longer than expected. 

The salient features of figure 3 are that the white space between the bars 
represents the elapsed time of the process that takes the longest time to perform 
its local computation phase of a superstep, whilst the bars in the top graph show 
the total sizes of all the communications leaving a process during a superstep. 
The elapsed time taken to perform communication is visualised by the width of 
the communication bars. The size of the h-relation is identified by the thickest 
band in the bar, which is easily seen in Figure 4. The label found at the top 
left-hand corner of each bar is the number of the superstep and in the legend the 
superstep label identifies the position in the code. It is clear that computation 
dominates the overall time, as the pencil and paper BSP model predicted for 
the IBM SP2 using the switch as shown in Figure 2(a). 

A major advantage of the Oxford BSP profiling tool is to predict the perfor- 
mance of codes on other parallel machines. This is simply achieved by plugging 
the BSP parameters of the appropriate machine into the tool. Figure 4 shows 
the result of this exercise when the profile data generated from the execution 
of the code using the IBM SP2 with switch is used to predict the performance 
of the code when ethernet is used. The top graph shows the actual cost on the 
IBM SP2 with switch and the lower graph predicts the cost of a IBM SP2 with 
ethernet. Normally the reverse process would be performed when the cost of a 
code running on a network of workstations is used to predict the cost of the 
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Fig.  4. Predicting the cost on ethernet from data  gathered on the switch. 

code on a real parallel machine. The tool predicts tha t  the W-cycle will take 
26625 - 23275 = 3350Mflops, which is equivalent to 128 seconds on the SP2 
with ethernet. Figure 5 shows the actual cost of 101 seconds for the W-cycle 
using ethernet communication. The theoretical model shown in figure 2 shows 
an expected difference between the switch and ethernet as a factor of approxi- 
mately three at Nip = 9.3 x 103. This factor is only an approximation, as many 
assumptions were made when costing the algorithm by hand. The tool predicts 
tha t  ethernet will be a factor seven (i.e, 128/17 = 7.5 as shown in figure 3) slower 
than switch communication. The actual experimental ratio is 101/17 = 5.9. 

5 Conclusions 

The BSP approach has a simple cost model, is deadlock-free and is portable. In 
general, cost-modeling applications gives a rough ball-park figure of the cost on 
any parallel machine and configuration size. The role of the profiling tool aids 
simplistic pencil and paper cost modeling, and it effectively predicts the cost of 
an algorithm on any parallel machine. 
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Fig.  5. Observed performance of a "W-cycle" over ethernet.  
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