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Abstract

Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these
cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience
and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies
are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is
possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using
the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or
turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.
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Introduction

Turbulence is ubiquitous, and is particularly prominent in

engineered cardiovascular devices as well as pathophysiological

blood flow. There is strong evidence that turbulence impacts the

environments of erythrocytes and platelets on the cellular level

[1,2] in a manner physically distinct from that known in simple

laminar shear flows such as in a viscometer. While our physical

understanding of the structure of turbulence and its universal

properties has received significant attention in the past [3–7], there

is no theory that links the statistical properties of turbulence to

shear stresses physically experienced by cells transported in whole

blood flow. Shear stress acting on cell membranes is a critical

mechanical cue that regulates biological activity [7–10] and

therefore a theory relating turbulence to shear stress environment

of cells is necessary.

In turbulent blood flow, the complex spatio-temporal fluctua-

tions of shear stress leads to hemolysis and platelet activation

[11,12]. Such phenomena are critical when designing life saving

devices such as artificial hearts, ventricular assist devices, stents,

grafts, and heart valves. The phenomena can further impact

disease such as in the case of an aortic stenosis or atherosclerosis.

Current models that predict stress experienced by blood cells are

purely empirical and based on classic experiments [12] that yield

paradoxical results under laminar and turbulent conditions [13].

For a comprehensive review of studies on turbulent blood flow

related hemolysis and platelet activation, the reader is directed to

Refs [12,14–17]. As discussed in Ref [12], despite many of these

studies, there has not been a solid physically justifiable connection

made between turbulence and the shear stress acting on blood cells

and platelets. A strong requirement of a physical theory is that it

should make a link, in a manner independent of laminar and

turbulent regimes of flow because the pertinent parameter is flow

at the length scale of individual cells, where it is considered

laminar. Another aspect that is important to consider is the notion

of universality of turbulent structures despite the intermittency

issue [6]. Do the universality properties of turbulence hold in the

most complex of blood flows considering Newtonian and non-

Newtonian properties of blood? If so, will the distribution of shear

stress acting on blood cells and platelets be universal? Here the

term ‘‘universal’’ is used not to imply homogeneous isotropic

turbulence (HIT), but rather loosely to emphasize the significant

agreement between the distributions of instantaneous dissipative

scales in complex in-homogeneous shear flows with the distribu-

tions observed in HIT as well as the robust presence of inertial

range scaling[18–21].

The goal of this work is to address the above by introducing a

unified (in the sense of laminar vs. turbulent) physical theory to: (1)

identify the relevant dynamic properties of flow that link to the

predicted shear stress experience by cells based on fundamental

physical arguments. We achieve this for the special case of blood,

but the underlying physical arguments may hold for any cell

suspension constrained to the Newtonian regime of its rheology,

(2) theoretically consider the relevance of non-Newtonian effects

on the smallest scale turbulent structures for blood based on order

of magnitude arguments; and (3) test the ‘‘universality’’ of small

scale structure of turbulent flows in one of the most complex

turbulent blood flow problems (flow through a bileaflet mechanical

heart valve) and experimentally examine the universality of the

predicted shear stress distribution, thus testing the robustness of

the theory. Since we lack the capability to experimentally measure

shear stress on individual cells transported in a turbulent flow, we

use the new theoretical framework to resolve inconsistency in

published hemolysis data in laminar and turbulent pipe flow as a
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surrogate validation of the theory. Finally, we note that the

theoretical framework presented in this work is not limited only to

blood cells, but applies to any case of suspended cells that are

sufficiently smaller than the smallest scales of turbulent motion.

Methods: Theoretical Construction

Theoretical development is initially constrained to turbulent

flows where the smallest turbulent eddies are greater than the size

of the red blood cell (RBC), i.e. the instantaneous minimum size of

turbulent eddy is always.O(10 mm). This is an important limit, as

it is not possible to physically represent turbulent eddies smaller

than the size of the biggest cells with the single-phase approxima-

tion of blood. In fact, the single-phase approximation may very

well be susceptible to errors even when local eddies are within two

or three times the size of the red-blood cell, i.e. ,25 mm. For now,

let us accept this as a limitation and later discuss repercussions of

this assumption. Nevertheless, for turbulent eddies .25 mm, the

single-phase continuum representation of blood may be consid-

ered valid [12]. It is also important to underscore that using a

continuum single-phase model of blood cannot be equated to the

assumption of RBCs passively seeded on to a continuous medium.

On the contrary, the single-phase representation of blood ‘‘lumps’’

all effects of the physical reality into the constitutive rheology of

blood.

The theoretical construction is next focused on whether small

scale (dissipative) turbulent structures may be considered Newto-

nian or non-Newtonian. This is done through order of magnitude

arguments combined with existing knowledge about blood

rheology. Subsequently, we introduce basic arguments with

respect to the nature of turbulent scales of motion in turbulent

blood flows expected in the cardiovascular system and artificial

devices. Finally, physical arguments are introduced that link

turbulence statistics to the distribution of laminar shear stresses

acting directly on cells.

Newtonian vs Non-Newtonian
It is well known that whole blood significantly deviates from

Newtonian behavior when local bulk shear rates are below the

order of 100 s21 [22–24] or when a vessel diameter is less than

100 mm [25]. Now, consider the instantaneous turbulent dissipa-

tive length scale, g, defined such that the local instantaneous

velocity increment (difference), dug, across two points in space

separated by g is such that the local Reynolds number defined as

Figure 1. Schematic of blood cells in a turbulent ‘‘eddy’’.
doi:10.1371/journal.pone.0105357.g001
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gdug

n
*1. This instantaneous length scale is the definition of the

local turbulent dissipative scale and may be regarded as an

‘‘instantaneous’’ Kolmogorov scale [18–20,24,26,27]. Note that

no assumptions of local isotropy or homogeneous turbulence are

being made in this framework. For such a small dissipative length

scale, which in a way is the true measure of the actual size of the

smallest eddy, the shear rate within such an eddy can be estimated

as _ccg*
dug

g
*

n

g2
. Thus the shear rate within such an eddy is set

purely by n and g. Now, non-Newtonian behavior of blood dictates

that n is dependent on _ccg, which is physiologically O(1) cSt. It is

easy to show that the range of _ccg*
n

g2
corresponding to eddies of

sizes 10mmvgv100mm is O 102s{1
� �

v�ccgvO 105s{1
� �

. Based

on these order of magnitude estimates, it follows that instanta-

neous turbulent eddies in the range 10mmvgv100mm in any

cardiovascular blood flow will always be in the Newtonian regime

considering _ccgwO 100s{1
� �

. In other words, any consequence or

damage occurring to the cells within these eddies happens while

the eddy itself behaves as a Newtonian fluid.

Scales of Motion
With the notion of blood being Newtonian for turbulent eddies

10 mm and above, let us examine the scales of turbulent motion for

the smallest scales, without the assumption of isotropy or

homogeneity. Recall that turbulent flow is characterized by

complex spatio-temporal fluctuations, ui, superimposed with the

mean velocity field, Ui. These spatio-temporal fluctuations have

been phenomenologically represented as turbulent eddies of

varying length scales. It is important to clarify that physically

there are no circular ‘‘eddies’’, but the term eddies only refer to the

Fourier analogy of representing the fluctuating field as an

summation of kinetic energy over ‘‘eddies’’ ranging from the

smallest possible scales to the integral length scale. The turbulent

kinetic energy (per unit mass), k~
1

2
SuiuiT, is transferred across

from large to the small scales (so called energy cascade) with

viscous dissipation occurring at the smallest eddies. The

Kolmogorov length scale, gK: n3=SET
� �1=4

, where n is the

kinematic viscosity and e is the average local kinetic energy

dissipation rate (per unit mass), corresponds to the characteristic

eddy size based on e. The velocity scale of this eddy equals

ugK~n=gK , and therefore the Reynolds number,
ugK gK

n
of the

Kolmogorov eddy is unity. In the context of blood damage, several

studies have focused on the relevance of the Kolmogorov eddy to

predict the capacity of turbulent flow to damage blood cells

(reviewed in [12]). While gK in theory represents the average size

of the dissipative eddies (for the case of HIT), it does not, in itself,

reflect the smallest eddy in a turbulent flow in realistic turbulent

flows. In fact, there exist eddies that are a fraction of the

Kolmogorov eddy, so called sub-Kolmogorov eddies, arising from

the inherently intermittent nature of the instantaneous energy

dissipation rate field [5,6]. Intermittency is a property of all

turbulent flows which broadly refers to the fluctuations of the

fluctuating velocity gradient tensor sij:
1

2
Lui=LxjzLuj=Lxi
� �

and

consequently for e~2nsijsij . With energy dissipation rates propor-

tional to the square of velocity gradient tensor, the fluctuations in e

Figure 2. Shear Stress (tp) as a function of eddy size g plotted for increasing hematocrit based on the equation derived using
energy balance.
doi:10.1371/journal.pone.0105357.g002
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are far greater and intense, with very large departures from its

average. Physically these large positive fluctuations in energy

dissipation occur due to local vortex stretching that generate

momentarily intense shear regions over very small length scales,

much smaller than the Kolmogorov scale itself. In other words,

when the energy dissipation rate is locally above the mean energy

dissipation magnitude, the corresponding eddy size is sub-

Kolmogorov. Thus, the true depiction of micro-environment of

cells in realistic turbulent flows corresponds to their tumultuous

experiences in a spectrum of dissipative eddies ranging from sub-

Kolmogorov scales all the way to the Taylor micro-scale that

demarks the largest of the dissipative eddies [6]. Recent turbulence

literature estimate the smallest sub-Kolmogorov scales to be of

roughly Re
1=4
L times smaller than the Kolmogorov scale

[23,26,28]. Here ReL~
k1=2L

n
is the local turbulence Reynolds

number defined by the integral length scale, L, and the local

turbulent kinetic energy. To date, studies addressing turbulence in

blood flow have not taken into consideration the issue of

intermittency or the sub-Kolmogorov fluctuations thereby ignor-

ing the most damaging aspects of turbulent flow. In this study, we

will consider sub-Kolmogorov fluctuations using direct measure-

ments through the definition of the instantaneous turbulent

dissipative length scale, g[18–20,24,26,27], while constraining

our analysis only to flows where the smallest sub-Kolmogorov

gw10mm.

Local Energy Dissipation and Shear Stress Acting on

Cells. Based on the above picture of scale distributions without

invoking assumptions of isotropy or homogeneity, and introducing

the notion of sub-Kolmogorov scales, it is now possible to consider

a link between macroscopic properties of blood dynamics or eddy

scales to the local shear stress acting on blood cells. Figure 1

illustrates a schematic of RBCs in a hypothetical dissipative scale

eddy of size g. Recall that the velocity scale of this eddy is dug~
n

g
to yield the condition of locally unit Reynolds number. Given the

length scale and velocity scale, the instantaneous energy dissipa-

tion rate corresponding to this smallest eddy is
du3g

g
~

n3

g4
.

Looking at Figure 1, let us now assume that almost all of this

energy dissipation physically occurs through viscous straining of

plasma fluid between cells and that the rate of energy lost in lysing

or activating cells is negligible in comparison to heat generation

within plasma. This is a valid assumption if (a) it is known that a

very small fraction of cells lyse/activate per unit time, and (b) the

strain rate of cell membrane deformation is much smaller (by at

least an order of magnitude) than the strain rate of plasma

surrounding the cell. The relative difference in the strain rates of

the cell membrane and the surrounding plasma represents the

efficiency of energy transfer from the fluid to strain-energy stored

into the cell membrane. Both (a) and (b) seem valid as hemolysis/

activation in most device and physiological flows occur over

prolonged duration and the magnitude of free hemoglobin

released is relatively very small compared to the total hemoglobin.

In particular, the second condition is valid for cases when blood

cells are lysed over a prolonged exposure to shearing forces as

opposed to instantaneous lysis which has been observed for whole

blood shear stresses .450 Pa [29,30]. Complex cardiovascular

devices such as the bileaflet mechanical heart valves imposes shear

Figure 3. Schematic of the valve and points of interest upstream and downstream of the valve.
doi:10.1371/journal.pone.0105357.g003
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stresses in the range,15 Pa [14]. Furthermore, (b) is supported by

the relatively low energy dissipation for both cytoplasm and

membrane deformation in a RBC tank treading in flow,

corresponding to O(10215–10213 watts) for shear rates O(102),

which extrapolates to O(1028 watt) for shear rates reaching

105 s21 [31,32].

Given these assumptions, which appear reasonably valid, the

rate of energy dissipated within the eddy shown in Figure 1, e, may

be approximated to the rate of energy dissipated in the fluid that

surrounds cells. The following equation represents the energy

balance in watts:

erBVg*mp _cc
2
p 1{Hð ÞVg ð1Þ

Where rB is the density of whole blood, Vg is the volume of the

eddy, mp is the dynamic viscosity of plasma, _ccp is the strain rate in

the plasma surrounding blood cells, and 0vHv1 is the fractional

hematocrit. It is easy to verify that both sides of the equation have

units of power. In the above equation, if the plasma dynamic

viscosity is known, then it is straight forward to estimate the viscous

shear stress, tp~mp _ccp, within the plasma surrounding the cells as a

function of energy dissipation rate. Strictly, the cells experience tp,

not tB which can be estimated as tB~mB _ccB~mB
nB

g2
. Clearly, it is

evident from a physical basis that the relevant dynamical property

of blood flow that dictates tp is the local energy dissipation rate, e.

Recognizing that it is easier to measure grather than e, we solve

equation 1 for tp~mp _ccp after substituting e~
n3B
g4

to give:

tp~
nB

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmp

1{Hð Þ

r

ð2Þ

The above equation relates the instantaneous dissipative scale g
in a general turbulent blood flow to the corresponding shear stress

acting on cells. It is important to note that tp and tB are off by a

factor tp=tB~
mp

mB 1{Hð Þ

� �1=2

. For typical values, tp is about 80%

of tB but may easily exceed tB if locallyHw1{
mp

mB
. Local

variations in hematocrit under turbulent straining may produce

large discrepancies between tp and tB.

Figure 2 presents the theoretical estimate of shear stress tp using

equation 2 over a range of turbulent eddy sizes 10mmvgv103mm
and hematocrit 0vHv0:8. As shown in this figure, tp ranges

1021–105 dyne/cm2. We must note here that we extrapolate

equation 1 for g as low as half the size of the RBC. It is interesting

to note that for an g about 5–6 mm, equation 1 predicts a shear

stress between 400–500 N/m2, a magnitude well known to

instantly lyse RBCs [29,30]. This illustrates that the tp prediction

of equation 1 up g approaching 10 mm appears to asymptotically

reach the instantaneous lysis value of 400–500 N/m2 [29,30].

Furthermore these shear stresses correspond to the release of

serotonin from platelets, demonstrating granule release, a process

involved in platelet activation [33].

In real turbulent flows, g is a dynamically fluctuating quantity in

space and time, around the statistical measure gK: n3B=SET
� �1=4

.

Substituting gK in equation 2 will only represent an average shear

Table 1. Basic Turbulence Parameters Upstream.

y/R k (m2/s2) L (mm) ReL g0 (mm) gk (mm)

Acceleration 20.04 8.06E-03 521 13.35 81 75

20.15 8.81E-03 561 15.05 80 73

20.25 7.83E-03 580 14.66 84 77

20.36 9.24E-03 485 13.33 75 70

Peak 20.04 5.25E-03 416 8.61 88 83

20.15 4.76E-03 283 5.58 82 78

20.25 5.39E-03 338 7.09 82 78

20.36 5.50E-03 303 6.42 79 75

Deceleration 20.04 8.38E-03 512 13.38 79 73

20.15 9.04E-03 447 12.14 74 69

20.25 7.40E-03 491 12.07 81 76

20.36 7.43E-03 595 14.64 86 79

Regurgitation 20.04 7.53E-03 365 9.06 74 70

20.15 9.11E-03 285 7.77 65 61

20.25 7.48E-03 346 8.56 74 69

20.36 7.57E-03 317 7.89 72 67

Diastole 20.04 9.46E-02 7396 650.03 70 57

20.15 9.55E-02 4004 353.50 59 49

20.25 9.60E-02 7438 658.48 70 57

20.36 5.60E-02 2746 185.69 64 55

doi:10.1371/journal.pone.0105357.t001
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Table 2. Basic Turbulence Parameters Downstream.

y/R k (m2/s2) L (mm) ReL g0 (mm) gk (mm)

Acceleration 0.70 5.07E-03 669 13.61 102 94

0.38 2.70E-02 1558 73.08 71 62

0.27 2.16E-02 1543 64.81 77 68

0.17 1.54E-02 1875 66.48 91 81

0.06 9.70E-03 903 25.42 88 80

20.04 1.23E-02 1474 46.70 93 83

20.15 2.09E-02 1651 68.12 79 70

20.25 2.11E-02 2252 93.53 86 75

20.36 2.16E-02 1183 49.68 71 63

20.67 1.60E-02 484 17.49 62 57

Peak 0.70 3.32E-03 255 4.21 91 87

0.38 1.09E-01 3537 333.25 54 45

0.27 9.38E-02 2740 239.76 53 45

0.17 9.84E-02 2907 260.54 53 45

0.06 5.75E-02 2212 151.56 60 51

20.04 5.67E-02 1833 124.73 57 49

20.15 1.16E-01 3873 376.51 54 45

20.25 9.54E-02 2321 204.83 50 43

20.36 1.05E-01 2159 199.75 47 41

20.67 1.13E-02 423 12.88 67 62

Deceleration 0.70 4.70E-03 719 14.10 107 99

0.38 2.61E-02 2009 92.67 77 67

0.27 2.30E-02 2163 93.81 82 72

0.17 2.54E-02 1273 57.99 68 61

0.06 2.53E-02 2004 91.04 78 68

20.04 2.76E-02 2021 95.91 76 66

20.15 2.33E-02 1468 63.99 74 65

20.25 2.41E-02 1369 60.69 71 63

20.36 2.21E-02 1701 72.27 78 69

20.67 1.70E-02 1122 41.76 76 68

Regurgitation 0.70 8.42E-03 269 7.05 66 62

0.38 1.00E-02 10392 296.89 172 145

0.27 9.61E-03 9143 256.12 168 143

0.17 9.17E-03 12616 345.11 188 158

0.06 8.35E-03 7423 193.75 167 143

20.04 9.18E-03 4613 126.30 142 122

20.15 7.72E-03 16109 404.49 213 179

20.25 7.63E-03 8359 208.61 179 152

20.36 6.40E-03 6622 151.36 178 153

20.67 2.23E-03 888 11.98 148 138

Diastole 0.70 3.53E-03 376 6.39 99 94

0.38 1.00E-02 10392 8.16 94 89

0.27 9.61E-03 9143 7.40 93 88

0.17 9.17E-03 12616 6.42 96 91

0.06 8.35E-03 7423 5.33 98 93

20.04 9.18E-03 4613 4.68 95 90

20.15 7.72E-03 16109 5.66 103 98

20.25 7.63E-03 8359 5.96 105 100

20.36 6.40E-03 6622 4.24 103 99

20.67 2.23E-03 888 2.15 110 108

doi:10.1371/journal.pone.0105357.t002

Theory to Predict Shear Stress on Cells in Turbulent Blood Flow

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e105357



stress acting on RBCs and is perhaps insufficient to reflect the

intense fluctuations of the dissipation rate that would correspond

to sub-Kolmogorov scale eddies. Thus, to fully capture the

statistical nature of shear stress acting on RBC membranes, it is

necessary to characterize the probability density function of tp
denoted P(tp). P(tp) is related to the probability density

function of g, Q gð Þ, through conservation of probability as:

P(tp)~Q gð Þ
dg

dtp
. Recent turbulence literature indicates that Q gð Þ

may be universal despite the highly intermittent fluctuations of the

instantaneous dissipation rate field [18,19]. Analytical forms for

this universal distribution exist with good agreement for experi-

ments and simulations [24,27]. The key point relevant here is that

P(tp)may be universal in the strongly turbulent regions of blood

flow through devices, and estimated using a simple change of

variables as:

P(tp)~{
1

2
C1=2t{3=2

p Q
Lt1=2p

C1=2

 !

ð3Þ

Where C~nB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmp

1{Hð Þ

r

.

The above arguments and physical construction not only

provides a mathematical relationship between g(as a surrogate for

e), and tp, but also yields P(tp). However, how does this

relationship link turbulence statistics to tp? The most common

Figure 4. Probability density function Q(g) during acceleration, peak, and deceleration phases at the points of interest upstream
(top row) and downstream (middle row). Closure and mid-diastole phases for points of interest upstream are shown in the bottom row.
doi:10.1371/journal.pone.0105357.g004

Theory to Predict Shear Stress on Cells in Turbulent Blood Flow

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e105357



and perhaps paradoxical turbulence statistic in the context of

blood damage has been the Reynolds stress tensor rSuiujT. This

has been extensively discussed in the past (and key issues reviewed

in [12]) with the note that while it does appear to relate to

predicting cell damage, there is no consensus with respect to the

physical relationship between rSuiujT and tp. An alternate model

to estimate tp based on cell relative velocities between adjacent

eddies has been proposed [12] but in our opinion this lacks the

physical justification for existence of such intense velocity jumps

(more severe than the smallest sub-Kolmogorov event) over sub-

micron scales. Nevertheless, based on the phenomenological

arguments made earlier with the hypothetical eddy, it is easy to

see that it is the total energy dissipation rate that directly dictates

tp. One feasible explanation we can offer to explain the robustness

of Reynolds shear stress in predicting blood damage is that for

regions in equilibrium, the average rate of energy dissipation, e is

related to Reynolds stress given by the equation (proof in [34]):

E&{SuiujT
dUi

dxj
, where

dUi

dxj
is the mean strain rate tensor.

Plugging this approximation in equation 1 and ensemble

averaging it, the root mean square of tp is given by:

St2pT
1=2
& {

mprB

1{H
SuiujT

dUi

dxj

� �1=2

ð4Þ

The above discussion is presented for completeness and offers to

reconcile the rather paradoxical issue (so far) of why Reynolds

shear stress has been effective in capturing blood damage potential

of turbulent blood flows [12]. The reconciliation that we offer

through equation 4 is that it is not the Reynolds stress itself, but the

product of the Reynolds stress and the local strain rate that

determines the energy passed on to the cascade and hence the total

energy dissipation rate, which as we have shown should ultimately

set the viscous shear stress acting on blood cell membranes. A

rough order of magnitude verification of equation 4 can be made

based on the contour scale bars in Ref. [14] that experimentally

quantifies the Reynolds shear stresses in a heart valve flow. By

setting Reynolds shear stress in equation 4,100 N/m2 (i.e. O(100)

N/m2), and substituting mp to be ,1023 Ns/m2 and mean strain

rate to be O(1000) s21, we get St2pT
1=2 14N=m2. This strikingly

agrees with the range of viscous shear stress reported in Ref. [14]

to be 15 N/m2. This agreement demonstrates further that

Reynolds shear stress when combined with the mean strain rate

can relate as an order of magnitude estimate to viscous shear stress

acting on blood cells. The most comprehensive representation of

shear stress acting on cells however is undoubtedly the hypoth-

esized universal distribution function P(tp).

A Test of Universality and Quantification of P(tp). With

the reasonableness of the Newtonian assumption for physiological

turbulent eddies, we interrogate the most complex turbulent blood

flow problem — the pulsatile turbulent field surrounding a bileaflet

mechanical heart valve using high-resolution phase-locked particle

image velocimetry to calculate P(tp) and assess its universality.

Turbulence in mechanical heart valve flows has received enormous

attention in medical research with unresolved issues in relation to

the applicability of Reynolds shear stresses on blood cells [12].

Briefly, a bileaflet mechanical heart valve was experimentally

subjected to physiological aortic conditions and the instantaneous

turbulent velocity field was captured in the vicinity of the valve

during representative phases of the cardiac cycle. Points of interest

within the measurement region where complexity is expected

(Figure 3) were further interrogated to quantify the probability

density function Q gð Þ and the corresponding probability density

function of the shear stress,P(tp) for a hematocrit of 48%.

Particle Image Velocimetry (PIV) of Bileaflet Mechanical

Heart Valve. Experiments are similar to that described in Ref.

[35]. The fluid was seeded with polyamide tracer particles (Dantec

Dynamics, Denmark) distributed in the 5 to 30 microns range. A

laser sheet illuminated the central plane normal to the b-datum

line. The laser was generated using the Photonics Industries

DM40-527 diode-pump Q-switched laser (Photonics, Bohemia,

Figure 5. Normalized probability density function Q(g/g0) at the points of interest upstream and downstream at all phases
compared to published isotropic result.
doi:10.1371/journal.pone.0105357.g005
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NY) with optics to covert the output beam into an expanded laser

sheet. The laser had an initial thickness of approximately 1 mm,

which was focused down to less than 200 microns within the

measurement region using a spherical lens ( f= 1 m). The valve

was oriented such that the measurement plane bisected both

leaflets at the central plane of valve model. A Photron Fastcam

SA3 CCD high speed video camera (Photron, San Diego, CA)

synchronized to the laser system via a high speed controller (HSC)

(LaVision, Ypsilanti, MI) captured focused images of the

illuminated polyamide particles within the laser sheet in the

measurement plane. The image area of interest was 1.5D wide and

1D tall with the valve body centered. Image distortion due to

curvature of the acrylic tube was compensated in-situ with a

calibration plate consisting markers placed in a regular square grid

with 1 mm spacing. The DaVis calibration algorithm (LaVision

Inc, Germany) automatically tracks the markers and a map to

evaluate the corrected image. Corrected image generated of the

calibration plate verified successful calibration and distortion

correction. The PIV setup achieved a raw data spatial resolution of

roughly 27 mm/pixel. PIV measurements were performed in

double-frame mode with a laser pulse separation time,

Dt = 500 ms. This ensured adequate particle displacements in the

range of 10–15 pixels thus maximizing the accuracy of instanta-

neous velocity measurements to within 2% error.

Figure 6. Probability density function of instantaneous shear stress (tp) during acceleration, peak, and deceleration phases at the
points of interest upstream (top row) and downstream (middle row). Closure and mid-diastole phases for points of interest upstream are
shown in the bottom row.
doi:10.1371/journal.pone.0105357.g006
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Images were pre-conditioned by first subtracting the minimum

image from every image acquired. Instantaneous two-dimensional

velocity field was calculated from the raw particle images using

cross-correlation processing with a multi-pass scheme. The initial

interrogation window size for the multi-pass scheme was at 32632

pixels, which progressively reduced to 868 pixels. Interrogation

window overlap was fixed at 50%. Post-processing of the vector

data included a median filter that rejected vectors outside 3

standard deviations of the neighbor vector. Gaussian smoothing

was used to reduce noise in the vector data. An in-house Matlab

code was developed to post-process these raw velocity measure-

ments to derive statistical properties, specifically PDFs.

Peak locking index was calculated to be between 0.02–0.19.

Peak locking index is defined as 4Dw{
1

4
D where w is the first

moment of the probability distribution function of the absolute

fractional distance in pixels to the nearest integer pixel displace-

ment. If the probability distribution is uniform in the pixel

displacement range 0 to 0.5, then the pixel locking index is zero,

indicating no pixel locking. A value of 1 indicates 100% pixel

locking (i.e. no sub-pixel displacements recorded). Our range of

0.02–0.19 for peak locking index is far below 0.25, which is the

threshold for minor peak locking artifacts.

Error Considerations. The sources of error in our mea-

surements are due to resolution as well as random error. Random

errors are addressed in this study through statistical averaging of

repeated measurements (N = 500) and statistical comparisons. This

section briefly outlines the errors in accuracy due to limited

resolution of the measurement techniques at hand. The conser-

vative error estimate in velocity is ,2% (i.e. particle displacements

may be off by 60.2 pixels out of total displacement of 10 pixels).

Laser pulse timing errors are negligible in comparison.

Validation. In order to check if the valve chamber and the

acrylic model valve provide equivalent results to clinical quality St.

Jude Medical valve, Figure 5 of Ref. [35] compares non-

dimensionalized leaflet kinematics, and the downstream velocity

profile at x/D = 0.33 during peak systole to published results for a

clinical quality St. Jude Medical valve [36].

Calculation of Q gð Þ and P(tp). PDFs of the local dissipation

scale, Q gð Þ was calculated for each interrogation point in Figure 3.

The approach is similar to that previously described [20,37] with

the qualifying condition for g being 0:9v
gdug

n
v2. Briefly, the

instantaneous g is estimated from the local velocity increment

between PIV velocity measurement points. We have shown in Ref.

[37] that a significant portion of the local dissipative scale PDF,

Q gð Þ may be derived if the velocity measurement resolves a

sizeable portion of the dissipative range; i.e. PIV resolution well

resolves the Taylor microscale. Given that the PDF is derived from

the histogram of the occurrence of g, and that the measured

variable in the above inequality is dug, it is straight forward to

propagate the percent error in the instantaneous velocity of the

PIV measurements to the uncertainty in the PDF. Our uncertainty

of 2% in velocity translates to an uncertainty of 2.8% in dug.

Given that the inequality is the only qualifying criteria, the

uncertainty in the PDF may be achieved by perturbing the upper

and lower limits of the inequality. To be conservative, we

recalculated the PDFs by incorporating a 10% variation in the

limits and found that the resulting PDFs with this additional 10%

uncertainty in duginsignificantly influenced the shape of the PDF.

Figure 7. Probability density function of instantaneous normalized shear stress (tp/tK) for all points of interest at all phases. Notice
the close data collapse for tp/tK above 0.5. The probability of tp.0.5tK is about 0.36 (shaded region).
doi:10.1371/journal.pone.0105357.g007
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The PDF P(tp) was determined by directly calculating the

occurrences of tp for every occurrence of g using equation 2. Non-

dimensionalization parameters were calculated for each interro-

gation point and are listed in Tables 1 and 2.

Results: Dimensional Pdfs of g and tpfor Flow Near

a Bileaflet Mechanical Heart Valve

Figure 4 presents the probability density function Q gð Þ at points

of interest (defined in Figure 3) during specific phases of the

cardiac cycle. Upstream of the valve, the peak of Q gð Þ
(representing the mode of the fluctuating g) is consistently observed

to be between 100–200 mm during forward flow. The smallest

eddies captured in the distribution function are in the range 50–

70 mm. The same characteristics are observed upstream of the

valve during closure phase. However, during mid-diastole, there is

a significant change in Q gð Þ with respect to the varying location of

points. In particular, except for the furthest location from the

centerline, the locations closer to the centerline correspond to a

significant leftward shift of Q gð Þ. For these locations, the mode of

g is in the range 80–90 mm, with the smallest g about 40 mm.

Downstream of the valve, there is significant variation in Q gð Þ
characteristics as a function of the lateral position relative to the

centerline during acceleration, peak, and deceleration phases

(Figure 4). The smallest g is between 40–50 mm and the mode of g
between 90–200 mm. Positions located within the side orifice jets

above and below the centerline do not show significantly different

Q gð Þ characteristics compared to the upstream forward flow

characteristics.

The above shifts in Q gð Þ characteristics clearly point to the

slight leftward shift whenever increased turbulence is expected. For

instance, locations slightly off from the centerline upstream of the

valve will experience the high shear regions of the regurgitation jet

during mid-diastole. Similarly, the leftward shifting of Q gð Þ, also

coincides with the shear layer locations downstream of the two

leaflets consistent with the results in a more classical flow problem

[36]. For all the locations, it appears that the smallest eddies are in

the neighborhood of about 40 mm, which is consistent with the

literature [12]. On the contrary, these small eddies appear to be

relatively rare events with most of the dissipative eddies in the

turbulent zones around 80 mm. This may be lower in locations

where significantly greater turbulence exists.

Figure 5 presents the normalized probability density function

Q g=gOð Þ for each of the positions of interest upstream and

downstream at different phases of the cardiac cycle. gO is defined

as gO~LRe{0:72
L where L is the local integral length scale, and

ReL~k1=2L=n as discussed in Refs. [18,26] is a scale very close to

gK~LRe
{3=4
L . Also presented is Q g=gOð Þ for the case of

homogenous isotropic turbulence (HIT) from highly resolved

direct numerical simulations [26] for comparison. Figure 5 shows

very good agreement of the experimentally derived PDFs with the

HIT expectation. The scatter around the HIT expectation may be

attributed to experimental uncertainty as well as weak dependence

of Q g=gOð Þ on local mean shearing [20]. Specifically, we have

shown that this weak dependence occurs when the Corrsin length

scale, gc~ SET=S3
� �1=2

, where S is the mean shear magnitude,

approaches the mean shear-viscosity length scale, n=Sð Þ1=2 [20].

Nevertheless, from a practical standpoint these results confirm the

largely valid assumption of universal small scale structures despite

the highly pulsatile nature of the turbulent flow past a complex

device. This is particularly significant given the classical assump-

tions behind universality of turbulence are highly restrictive (i.e.

very high Reynolds number, fully developed, equilibrium,

stationary etc.).

Figure 6 presents the raw PDFs of tp. The peak (mode) of the

distribution for tp ranges between 5 and 20 dynes/cm2 with the

right tail extending to about 60 dynes/cm2. Tables 3 and 4 list the

maximum observed tp corresponding to the minimum g at each

position for all recorded phases for the cardiac cycle. To assess the

universality of P(tp), we examine the normalized probability

density function P(tp=tp
K
) (see Figure 7) for the different points of

Figure 8. A plot of plasma hemoglobin data from Kameneva et. al (2009) with respect to total energy dissipation rate calculated
from reported wall shear stress and Reynolds numbers. Figure illustrates how total energy dissipation consistently captures blood damage
irrespective of laminar or turbulent flow regimes.
doi:10.1371/journal.pone.0105357.g008
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interest and cardiac phases. tp
K

is defined by substituting

gK~LRe
{3=4
L in equation 2, thus defining a characteristic

Kolmogorov scale shear stress acting on blood cells as:

tpK~

ffiffiffiffiffiffiffiffiffiffiffiffi

mBmp

1{H

r

k1=2

L
ReL

1=2 ð5Þ

The normalized PDFs show strong data collapse indicating a

practical universality which is expected based on the collapse

observed for Q g=gOð Þ. Note that the maximum observable tp was

roughly 2tp
K

regardless of location of measurement or cardiac

phase for the specific problem. The tale of P(tp=tp
K
) drops

exponentially around this magnitude. A theoretical limit to the

maximum shear stress tpmax
may be estimated utilizing the

smallest possible sub-Kolmogorov scale gS~LReL
{1 [26,28] to

yield tpmax
~

ffiffiffiffiffiffiffiffiffiffiffiffi

mBmp

1{H

r

k1=2

L
ReL.

Discussion

Resolving Historically Inconsistent Hemolysis in Laminar
and Turbulent Pipe Flow

The argument introduced to relate turbulence properties to the

shear stress environment is a simple balance of energy dissipation.

Thus, regardless of whether a flow is laminar or turbulent,

isotropic or not, energy dissipated must highly correlate to the fate

of suspended cells. In fact, energy dissipation was classically

recognized as the hemodynamic parameter that dictates hemolysis

based on simple physical arguments [38,39]. We test if this can

resolve one of the paradoxical results published in Ref. [13] where

hemolysis was measured in fully developed laminar and turbulent

pipe flows while maintaining the same wall shear stress. Given that

the total shear stress of the mean flows for both these cases are

identical, the conventional thinking expects the same levels of

hemolysis. However, turbulent cases produced significantly higher

hemolysis [13]. To resolve the lack of an appropriate physical

interpretation, we present a revised graph (Figure 8) that plots the

measured plasma free hemoglobin (a measure hemolysis) as a

function of total energy dissipation rate (in watts) in the pipe based

on available information of wall shear stress and Reynolds

numbers. Briefly, based on the wall shear stress magnitudes,

length of the pipe, and its diameter the pressure drop can be

calculated using a simple force balance. We also calculated flow

rates from the given Reynolds number, viscosity, and pipe

diameter information. The pressure drop and flow rate were

multiplied to yield the total energy dissipation rate in watts.

Figure 8 confirms that indeed, regardless of whether the flow is

laminar or turbulent, the total energy dissipated produces a single

monotonic functional dependence for hemolysis. The functional

form with the best correlation was an exponential fit with

R2 = 0.91 compared to linear, and power fit models. Nonetheless,

this result supports our fundamental assumptions and confirms

that total energy dissipation is the fundamental parameter that

dictates the mechanical environment of suspended cells.

One must note however that in the above pipe flow data,

exposure time was not a relevant quantity as in all the experiments

of ref. [13], the total exposure time was fixed. Thus the resulting

trend shown in Figure 8 reflects the exponential growth in

hemolysis due to the complex instantaneous energy dissipation

‘‘histories’’ of the turbulent cases. Further studies are necessary to

develop appropriate blood damage models that take into account

instantaneous energy dissipation rate histories and exposure times

for pulsatile applications.

In the Context of a Cellular Environment
Cells are highly responsive to changes in their energetic

environment, as demonstrated by the effectiveness of in vivo laser

injury models [40]. Thermal energy is capable of inducing

alterations to RBC morphology and can result in hemolysis in

extreme cases [41,42]. Exacerbating the problem, a cascade of

events can occur upon RBC lysis including platelet activation

stimulated from adenosine diphosphate [43]. More direct studies

of mechanical stress have demonstrated numerous effects on

suspended blood cells, which can be combined with an energy

balance equation, as presented here to determine the degree of cell

activity. High shear stress is known to cause hemolysis and can

further result in shear-induced platelet activation and shear-

induced platelet aggregation, which has become known as SIPA, a

feature that occurs independent of activation agonists. This

process depends on the magnitude and the duration of shear

stress [33]. More complex gradients in shear stress have been

shown to promote activation-independent platelet aggregation

involving the binding protein, von Willebrand factor (VWF) [44],

a feature that may be important for the intermittent nature of

turbulence. Platelets combined with VWF can result in aggrega-

tion while in suspension, independent of an adhesive surface

substrate [45]. For sufficient shear stress, VWF can change from a

globular confirmation to an extended chain [46,47], which can

result in self-association, creating a structure that is very adherent

to platelets and can create a physical barrier for other cells [48].

Shear stress in bulk flow or at a surface will also influence the

inflammatory response. Activated platelets, alone, release a

number of prothrombotic and proinflammatory molecules

through a-granules and microparticles [49–51]. These processes

may interact with mechanotransductive mechanisms in mono-

cytes, which are highly responsive to membrane tension through

cellular activation, signaling, and migration [52,53].

The current model may better predict the local shear stress

environment for these processes and for dictating the function of

binding proteins, platelets, RBCs, and monocytes, especially for

the complex flow environment that can exist in medical devices

and atherosclerosis [54]. As it becomes clear how cells respond to

their mechanical environment, it will be increasingly important to

develop unifying theories, such as the one presented in this paper

to better determine the mechanical conditions for cells in a

physiological or pathophysiological environment. It will further be

critical for medical device development to consider the relation-

ship between the cellular response and mechanics. For example, it

has already been shown that self-association of VWF can result in

acquired von Willebrand Disease in devices, including ventricular

assist devices [55,56], a blood disorder that can be amplified by

shear-induced receptor shedding in platelets [57].

In addition to predicting cellular functional responses to the

local mechanical environment, it is also important to consider the

influence on transport in the fluid flow. The complex biorheology

of blood is highly dependent on the local shear environment [58].

The local environment influences the number of collisions between

cells and the rotational nature of the cells, both of which are

largely dependent on the hematocrit. Transport in the flow may be

critical for thrombus growth rates and the movement of

microparticles or cellular agonists [59,60].

Limitations
The proposed theory assumes that the distribution of eddies are

not largely influenced by factors, such as the mean shear in the
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flow environment, an assumption shown to be reasonably valid for

the mean shear at the points examined. However, there may be

much stronger shearing in medical devices such as LVADs, where

strong mean shear effects need to be accounted for to revise the

distribution function of the dissipative scales of equation 3. In our

probability density functions, we did see slight shifts, which may be

caused by these influences, discussed in detail elsewhere [20,37].

However, the shifts were relatively minor in the current study.

Conclusion

We introduced a theory to predict the mechanical environment

of cells in turbulent blood flows through physical arguments

applicable to any in-homogenous turbulent flow. It is argued that

for the case of physiological blood flow, the dissipative turbulent

eddies are well in the Newtonian regime of blood rheology. We

experimentally showed that the ‘‘universal’’ prediction of dissipa-

tive eddy distributions is valid even in a highly complex flow

generated past a bileaflet mechanical heart valve, and that

consequently the shear stress distributions experienced by blood

cells must follow a practically universal distribution function. The

universal form for shear stress acting on cells is presented and the

theoretical maximum shear stress in a turbulent flow defined.

Finally, the underlying assumption that local energy dissipation

rate is the key to predicting the stress environment of cells is tested

by demonstrating the high correlation between hemolysis and

energy dissipation in pipe flow regardless of laminar or turbulent

flow regime.
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