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Abstract: Following the success of immunotherapies such as chimeric antigen receptor transgenic
T-cell (CAR-T) therapy, bispecific T-cell engager therapy, and immune checkpoint inhibitors in the
treatment of hematologic malignancies, further studies are underway to improve the efficacy of these
immunotherapies and to reduce the complications associated with their use in combination with
other immune checkpoint inhibitors and conventional chemotherapy. Studies of novel therapeutic
strategies such as bispecific (tandem or dual) CAR-T, bispecific killer cell engager, trispecific killer
cell engager, and dual affinity retargeting therapies are also underway. Because of these studies
and the discovery of novel immunotherapeutic target molecules, the use of immunotherapy for
diseases initially thought to be less promising to treat with this treatment method, such as acute
myeloid leukemia and T-cell hematologic tumors, has become a reality. Thus, in this coming era of
new transplantation- and chemotherapy-free treatment strategies, it is imperative for both scientists
and clinicians to understand the molecular immunity of hematologic malignancies. In this review,
we focus on the remarkable development of immunotherapies that could change the prognosis of
hematologic diseases. We also review the molecular mechanisms, development processes, clinical
efficacies, and problems of new agents.

Keywords: hematologic malignancies; immunotherapies; bispecific T-cell engagers; chimeric antigen
receptor transgenic T-cell; immune checkpoint inhibitors; antibody-drug conjugates

1. Introduction

Allogeneic stem cell transplantation is a curative approach in relapsed or refractory
hematologic malignancies. Recently, novel therapeutic regimens were developed with the
combination of intensive chemotherapy with a target agent and lower-intensity therapy to
prevent progression or relapse [1–8]. The assessment of next generation sequencing [9–14],
transcriptomic analysis [15–18], ultra-accurate duplex sequencing [19], optical genome
mapping [20], and measurable residual diseases [21–23] enhanced the accuracy of pre-
diction for prognosis [24,25]. However, survival still remains poor even with progress in
supportive therapy [26–28]. At this stage, none of the immunotherapies used to treat hema-
tological malignancies can completely replace allogeneic stem cell transplantation, but on
the basis of their specific and clear mechanisms of action, they can be developed into more
effective therapies with fewer side effects. Currently, patients undergoing immunotherapy
treatment are sometimes at risk of serious side effects and, realistically, there are many
hematologic malignancies with poor prognoses [29–50] even with novel therapies. In light
of these challenges, it is important to consider what efforts can establish more curative
immunotherapies for hematological malignancies.
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Immunotherapy for hematologic malignancies broadly includes cancer vaccine, cy-
tokine administration, tumor-targeted monoclonal antibody (mAb), antibody-drug conju-
gate (ADC), chimeric antigen receptor transgenic T-cell (CAR-T), chimeric antigen receptor
natural killer cell (CAR-NK), immune checkpoint inhibitor (ICI), bispecific T-cell engager
(BiTE), bispecific killer cell engager (BiKE), dual affinity retargeting (DART), and trispecific
killer cell engager (TriKE) therapies. The structural characteristics of CAR-T/NK, dual
CAR-T/NK, BiTE/BiKE, DART, and TriKE therapies are shown in Figure 1. In this review,
we focus on immunotherapies whose development was particularly remarkable and that
could significantly change the prognosis of hematologic diseases. These immunotherapies
include T-cell or NK-cell redirect therapies, such as BiTEs; CAR gene transfer therapies,
such as CAR-T therapies; ICIs; and ADCs. We also review the molecular mechanisms,
development processes, clinical efficacies, and problems of new agents.
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chain variable fragment (scFv) molecule, a hinge region connected to the transmembrane domain 
and an intracellular receptor portion. One or 2 costimulatory signaling domains, CD28 and/or 4-
1BB, are added within the intracellular domain of CAR. The signaling domain is the zeta domain of 
a T-cell receptor/CD3 complex. BiTEs are composed of a VH domain linked to a VL domain via a 
short, flexible linker. A BiTE is composed of a scFv, whereas DART molecules are synthesized by 
cross-linking 2 variable fragments. It is a dual specificity of BiKE and targets NK cell specific 
antigens such as CD16 to engage NK cells, although its molecular structure is similar to BiKE. TriKE 
has triple specificity because in addition to CD16 and tumor antigen recognition sites specific for 
NK cells, it also has interleukin 15, which sends a proliferation signal to NK cells that are engaged 
by the tumor. 

Figure 1. The structural characteristics of (i) chimeric antigen receptor (CAR) transgenic
T-cell (T)/CAR-natural killer (NK), (ii) dual CAR-T/CAR-NK, (iii) bispecific T-cell engager
(BiTE)/bispecific killer cell engager (BiKE), (iv) dual affinity retargeting (DART), and (v) trispe-
cific killer cell engager (TriKE) therapies. CARs consist of an extracellular domain generated by a
single-chain variable fragment (scFv) molecule, a hinge region connected to the transmembrane
domain and an intracellular receptor portion. One or 2 costimulatory signaling domains, CD28
and/or 4-1BB, are added within the intracellular domain of CAR. The signaling domain is the zeta
domain of a T-cell receptor/CD3 complex. BiTEs are composed of a VH domain linked to a VL
domain via a short, flexible linker. A BiTE is composed of a scFv, whereas DART molecules are
synthesized by cross-linking 2 variable fragments. It is a dual specificity of BiKE and targets NK cell
specific antigens such as CD16 to engage NK cells, although its molecular structure is similar to BiKE.
TriKE has triple specificity because in addition to CD16 and tumor antigen recognition sites specific
for NK cells, it also has interleukin 15, which sends a proliferation signal to NK cells that are engaged
by the tumor.
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2. BiTEs, BiKEs, Checkpoint Inhibitory T-Cell–Engaging Antibodies, TriKEs, and DART
2.1. Development of BiTEs

Bispecific antibodies are small molecules synthesized by combining recognition sites
derived from the variable regions of monoclonal antibodies. The first clinical trial of the
bispecific antibody (BsAb) CD3/CD19BsAb was conducted in non-Hodgkin lymphoma
(NHL) patients in 1995 [51]. Loffler et al. [52] first reported blinatumomab in 2000, and
a clinical trial for blinatumomab was initiated in patients with relapsed or refractory
NHL in 2001 [53]. Blinatumomab was first shown to have a meaningful clinical effect in
patients with NHL in 2004, and it was approved by the U.S. Food and Drug Administration
(FDA) in 2014. Even after the first CD3XCD19BsAb clinical trial in 1995, the development of
molecular biological techniques—including the creation of light and heavy chain pairs using
a common light chain by Merchant et al. [54] in 1998 and the improvement of the accuracy
of light and heavy chain pairing using cross monoclonal antibodies by Schaefer et al. [55]
in 2011—made substantial contributions to the field.

2.2. Characteristics of BiTE, BiKE, TriKE, and DART

A BiTE is a monoclonal antibody that forms a direct link between T cells and tumor
cells. It enables T cells to get close to tumor cells and kill them without major histo-
compatibility complex (MHC)-I mediation. Therefore, it is not affected by the tumor’s
downregulation of the MHC. Another advantage of a BiTE is that it is a synthetic product
that does not need to be tailored for each patient. Recently, BiKE, which targets the activat-
ing receptor CD16 to bring NK cells closer to tumor cells, and TriKE, which proliferates NK
cells via IL-15, have been developed [56,57]. DART, like BiTE, recognizes CD3 and binds
effector T cells to tumor cells, but it is structurally different in that BiTE is composed of a
single-chain variable fragment (scFv), whereas DART is synthesized by cross-linking two
variable fragments [58].

2.3. CD19/CD3 BiTEs

Blinatumomab is a BiTE that binds to both CD19-positive B cells and CD3-positive
T cells. The CD19-positive cells are eliminated by the action of proximal T cells brought
into close proximity. The phase 3 TOWER trial included 405 patients with relapsed or
refractory B-ALL, most of whom had at least 2 relapses. Compared to patients who re-
ceived standard chemotherapy (n = 134), patients in the blinatumomab arm (n = 271) had
a better overall response rate (ORR; 44% vs. 25%), median event-free survival duration
(7.3 months vs. 4.6 months), and median overall survival (OS; 7.7 months vs. 4.0 months).
The rate of cytokine release syndrome (CRS) of grade 3 or higher was 4.9% in the bli-
natumomab group and was not observed in the chemotherapy group, and the rate of
neurologic events of grade 3 or higher was 9.4% in the blinatumomab group and 8.3% in
the chemotherapy group [59]. Additionally, a phase 2, single-arm study in minimal residual
disease (MRD)-positive patients after chemotherapy (NCT01207388) showed significant
improvements in the median durations of recurrence-free survival (RFS; 23.6 months vs.
5.7 months) and OS (38.9 months vs. 12.5 months) in complete MRD responders vs. MRD
non-responders. [60]. Blinatumomab was approved by the FDA for MRD-positive acute
lymphoblastic leukemia (ALL) after chemotherapy. Furthermore, chemotherapy-free regi-
mens combining blinatumomab and tyrosine kinase inhibitors are becoming a frontline
option for Philadelphia chromosome–positive ALL [61]. On the other hand, the combina-
tion of inotuzumab ozogamicin (InO), an ADC that covalently conjugates calicheamicin
to a humanized anti-CD22 antibody, and salvage chemotherapy (mini-hyper-fractionated
cyclophosphamide, vincristine, and dexamethasone [mini-hyper-CVD]) with or without
blinatumomab was superior to InO or the chemotherapy alone in relapsed or refractory
ALL [62]. Furthermore, the combination of InO, mini-hyper-CVD, and blinatumomab was
safe and effective in elderly patients with newly diagnosed Philadelphia chromosome–
negative ALL and resulted in better outcomes compared with standard chemotherapy
with hyper-fractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone
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(hyper-CVAD) [63]. Because of the short half-life of blinatumomab and, hence, the need for
its continuous infusion, more stable agents such as AFM11 have been developed. AFM11
is a tetravalent tandem diabody with two binding sites on both CD3 and CD19 [64].

2.4. CD20/CD3 BiTEs

CD20/CD3 BiTEs are promising next-generation therapeutic options and are under
intense development. Representative agents include odronextamab, mosunetuzumab,
epcoritamab, and glofitamab (Table 1).

Odronextamab (REGN1979) is a hinge-stabilized, fully humanized IgG4-based CD20/CD3
BiTE. In the ELM-1 study conducted in phase I dose escalation and dose expansion
(NCT02290951), 145 patients with CD20-positive relapsed or refractory diffuse large B-cell
lymphoma (DLBCL) treated with weekly dosing of odronextamab within the effective dose
range of 80 to 320 mg, the ORR and complete response (CR) rates were 53% and 100% in
patients who had not received prior CAR-T therapy and 33% and 27%, respectively, in
patients who had received prior CAR-T therapy. The CRS rate was 28% in all 145 patients,
and symptoms were mostly mild to moderate. No neurotoxicity or tumor lysis syndrome
was observed [65]. A phase 2 trial (ELM-2, NCT03888105) is actively enrolled.

Mosunetuzumab (Mosun) is a humanized IgG1CD20/CD3 BiTE. The NCT02500407
trial, a phase 1 dose-escalation study, showed that mosunetuzumab has promising efficacy
and tolerability [66]. A total of 197 patients with relapsed or refractory B-cell non-Hodgkin
lymphoma (B-NHL) were enrolled in the study and received up to 2.8 mg (group A)
and 60 mg (group B) of mosunetuzumab, respectively. In group B (n = 197), the ORR
and CR rates in the 129 high-grade patients were 34.9% and 19.4%, respectively. Overall,
the major adverse events (AEs) were CRS (27.4%; mostly low-grade, with 1.0% having
grade ≥ 3) and neutropenia (28.4%; with 25.4% having grade ≥ 3). Most neurological
AEs were grade 1 or 2, and grade 3 neurological AEs occurred in 4.1% of patients. Other
investigations have combined mosunetuzumab with cyclophosphamide, doxorubicin, vin-
cristine, and prednisone (CHOP) for patients with relapsed or refractory NHL or untreated
DLBCL (NCT03677141) [67]; with polatuzumab vedotin for relapsed or refractory NHL
(NCT03671018) [67]; and with lenalidomide for relapsed or refractory follicular lymphoma.
Combinations of mosunetuzumab with other drugs (NCT 04246086, NCT04712097) have
also been investigated [68,69].

Table 1. CD20/CD3 BiTE therapy for relapsed or refractory NHL.

Characteristic Odronextamab Mosunetuzumab Epcoritamab Glofitamab

IgG human IgG4 human IgG1 human IgG1 human IgG like
Patients, n 145 129 68 171

Prior therapies, median 3 4 NA 3
Prior CAR-T therapy

(%) 29 11.6 NA 1.8 (2.9)

ORR (%) 53 * (33 **) 34.9 68 * (88 **) 53.8* (65.7 **)
CR (%) 100 * (27 **) 19.4 45 * (38 **) 36.8* (57.1 **)

CRS
Any grade (%) 28 27.4 59 50.3 * (71.4 **)
Grade > 3 (%) 5.1 1 0 3.5 * (5.7 **)

NT
Any grade (%) 0 NA 6 43.3 * (31.4 **)
Grade > 3 (%) 0 4.1 3 NA
Clinical trial NCT02290951 NCT02500407 NCT03625037 NCT03075696

Reference [65] [66] [70] [71]

BiTE, bispecific T-cell engager; NHL, non-Hodgkin lymphoma; IgG, Immunoglobulin G; CAR-T, chimeric antigen
receptor transgenic T-cell. NA, not available; ORR, overall response rate; CR, complete response; CRS, cytokine
release syndrome; NT, neurotoxicity. In the “Odronextamab” column; *, in patients who had not received prior
CAR-T therapy; **, in patients who had received prior CAR-T therapy. In the “Epcoritamab” column; *, in patients
treated doses of 12 mg or higher; **, in patients treated doses of 48mg or higher. In the “Glofitamab” column; *, in
patients treated doses of 0.015mg or higher; **, in patients treated doses of 2.5, 10 or 30 mg.



Int. J. Mol. Sci. 2022, 23, 11526 5 of 26

Epcoritamab (GENE3013, DuoBodyCD20/CD3) is a fully humanized IgG1CD20/CD3
BiTE. The EPCORETM NHL-1 trial (NCT03625037), conducted as a Phase I/II dose-
escalation study, demonstrated a promising efficacy and safety profile with subcutaneous
administration; in 68 patients with relapsed or refractory DLBCL treated with doses of
12 mg or higher, the ORR was 68% and the CR rate was 45%. At the recommended phase
2 dose of 48 mg or higher, the ORR was 88% and the CR rate was 38%. Major AEs were
local injection reaction (47%) and fatigue (44%). Fifty-nine percent of patients had grade 1
or 2 CRS, and none had grade 3 or 4 CRS. Neurotoxicity was transient and limited (grade 1,
3%; grade 3, 3%) [70]. Other studies have examined epcoritamab alone vs. bendamustine
plus rituximab or rituximab, gemcitabine, and oxaliplatin (R-GemOx) for relapsed or re-
fractory DLBCL (NCT04628494); and epcoritamab in combination with other standard care
agents in subjects with B-NHL (NCT04663347).

Glofitamab (RO7082859) is a fully humanized CD20/CD3 BiTE with bivalent binding
to CD20 and monovalent binding to CD3. In a phase 1, dose-escalation study of patients
with relapsed or refractory B-NHL treated with glofitamab, 28 patients (73.7%) had high-
grade disease. After a median follow-up of 2.8 months, the ORR was 53.8% at all doses, and
the complete remission rate was 36.8%. The major AEs were CRS (50.3%, with grade 3 or 4
in 3.5%), neurologic adverse events (43.3%), and neutropenia (25.1% with grade 3 or above).
The ORR and complete remission rate were 65.7% and 57.1%, respectively, in the 35 patients
who received the recommended phase 2 dose. The major AEs were CRS (71.4%, with grade
3 or 4 in 4.4%) and neurologic adverse events in 31.4% [71]. Based on these favorable results,
other studies are investigating the effect of glofitamab on untreated B-NHL, alone and in
combination with conventional chemotherapy or new agents (NCT03467373, NCT03533283,
NCT04313608, and NCT04408638).

2.5. BiTE for Acute Myeloid Leukemia

BiTE for acute myeloid leukemia (AML) targets proteins expressed on most AML
blasts, such as CD33 and CD123, and cell surface proteins that are often overexpressed or
mutated on AML blasts, such as FLT3 [72].

AMG330, a BiTE targeting CD33/CD3 [73], was tested in a phase I dose escalation
study in patients with relapsed or refractory AML (NCT02520427) [74]. As a result, eight
of forty-two (19%) evaluable patients responded (CR3, CRi4 and MLFS1) and treatment-
related serious side effects were seen in 89% of patients, including CRS (67%, with grade 3
in 13%). Vixtimotamab (AMV564), another CD33/CD3-targeted BiTE, showed a decrease
in myeloblasts in 17 of 35 (49%) relapsed or refractory AML patients and treatment-related
serious side effects including CRS up to grade 2 in one (5.6%) patient (NCT03144245) [75].
Meanwhile, novel bifunctional checkpoint-inhibitory T-cell–engaging antibodies that com-
bine CD3- and CD33-bispecific proteins with the extracellular domain of PD-1 have recently
been developed and have been reported to improve AML in a mouse xenograft model [76].
The concept demonstrated here promises to circumvent irAEs due to systemic adminis-
tration of ICIs through single-molecule local action of highly potent BiTEs and immune
checkpoint blockade.

CD123 is an IL-3 receptor subunit and a leukemic stem cell (LSC) marker. Found
in 77.9% of patients with AML [77], CD123 is expressed in CD34+CD38- AML cells [78],
and its overexpression is associated with constitutive phosphorylation of STAT5, which
accelerates cell proliferation and leads to a poor prognosis [79]. In a phase 1 dose-escalation
study in patients with relapsed or refractory AML, the CD123/CD3 BiTE, vibecotamab
(XmAb14045), achieved a CR, CRi or MLFS in 7 of 51 (ORR 14%) participants [80].

Flotetuzumab, a CD123/CD3 bispecific DART, has also received attention. In a multi-
center, open-label phase 1/2 study of 88 adult patients with relapsed or refractory AML,
flotetuzumab showed a CR/complete response with a partial hematologic recovery rate
of 26.7% and an ORR of 30.0% in 30 patients treated at the recommended phase 2 dose of
500 ng/kg/day. In patients with primary induction failure or early relapse who achieved a
CR or a complete response with partial hematologic recovery, the median OS duration was
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10.2 months (range, 1.87–27.27 months), and the 6- and 12-month survival rates were 75%
and 50%, respectively. Bone marrow transcriptome analysis showed a 10-gene signature
that predicted a CR for patients treated with flotetuzumab (NCT02152956) [81].

C-lectin-like molecule 1 (CLL-1) has attracted researchers’ attention because it is absent
in normal hematopoietic stem cells and highly expressed in AML [82]. Preclinical data
revealed the antileukemic potential of bispecific antibodies targeting CLL-1 [83]. In addition,
TriKEs which target leukemic CLL-1 and NK cells and have enhanced NK cell activity
(CLEC12A TriKE) induced cell death of AML cells in vitro and in vivo mouse models [84].
As described later, CLL-1 is also being studied as a target for CAR-T therapy.

Fms-related tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase that con-
tributes to normal hematopoietic stem cell survival. It is also expressed in AML cells, and
its internal tandem duplication mutation in particular is a poor prognostic factor [85]. The
BiTE concept of FLT3 was reported to extend survival in a mouse model by two molecules
with and without a molecule capable of modulating the half-life [86]. Recently, the FLT3
BiTE AMG427 Phase I (NCT03541369) was enrolled in patients with relapsed or refractory
AML. As described below, FLT3 is also being investigated for its effectiveness as a target
for CAR-T therapy.

MGD011 (duvortuxizumab) is a DART with a unique structure that induces B-cell
lysis more potently than a single-chain BsAb with the same antibody variable fragment
sequence. It is well-suited for maintaining cell-to-cell contact, which contributes to its
higher killing potential [87,88]. Recent clinical trials of bispecific antibodies in AML and/or
MDS are summarized in Table 2.

Table 2. Summary of recent clinical trials of bispecific antibodies in AML and/or MDS.

Agents Target Author
(Sposor)

Year
(Estimated

Completion
Date)

Phase Objects
Cases

(Estimated
Enroll-
ment)

Survival
Rate (%)

CR/CRi
(%)

Median
Survival
(Months)

Clinical Trial Reference

AMG330 CD33/CD3 Ravandi
et al. 2020 I rrAML 42 NA 19 (8/42) NA NCT02520427 [74]

Vixtimotamab
(AMV564) CD33/CD3 Westervelt

et al. 2019 I rrAML 35 NA 8.6 (3/35) NA NCT03144245 [75]

Vibecotamab
(XmAb14045) CD123/CD3 Ravandi

et al. 2020 I rrAML 104 NA 14 (5/51) NA NCT02730312 [80]

Flontetuzumab CD123/CD3 Uy et al. 2021 III rrAML 30 75 (6 m),
50 (12 m) 26.7 10.2 NCT02152956 [81]

AMG427 FLT3/CD3 (Amgen) (2022) I rrAML (70) NA NA NA NCT03541369 [86]

FLT3, fms-related tyrosine kinase 3; rrAML, relapsed or refractory acute myeloid leukemia. NA, not available; CR,
complete response; CRi, CR with incomplete hematologic recovery; NR, not reached.

3. CAR-T
3.1. Development of CAR-T

CAR-T cells are primarily patient-derived T cells that have been transduced with a
lentiviral CAR construct and modified to have antigen-specific, engineered T-cell receptor
functions. In 1993, Eshhar et al. [89] constructed the first CAR-T cells, and Moritz et al. [90]
published antitumor in vivo studies using HER2 CAR-T constructs. The FDA approved
“the CAR-T cell therapies” axicabtagene ciloleucel (Axi-cel) in October 2017, tisagenlecleucel
(Tisa-cel) in May 2018, brexucabtagene autoleucel in July 2020, and lisocabtagene maraleucel
(Liso-cel) in February 2021 [91–95].

A CAR-T is a genetically engineered peripheral T cell expressing a chimeric antigen
receptor (CAR) that has a scFv derived from a monoclonal antibody as an extracellular
antigen recognition domain and an intracellular signaling domain. The second-generation
CARs currently used in clinical practice have CD28 or 4-1BB as costimulatory structures,
while the third generation CARs under development have CD28 and 4-1BB or OX40. Cur-
rently, clinical CAR-T therapy involves the in vitro expansion of CAR-T cells, followed
by the infusion of CAR-T cells into the patient, where the engineered T cells eliminate
antigen-expressing target cells. Prior to the infusion of CAR-T cells, patients undergo
a pretreatment called lymphocyte clearance, which includes treatment with cyclophos-
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phamide [96]. The advantage of CARs is their human leukocyte antigen–independent
antigen recognition. On the other hand, limitations specific to CAR-T cells include their
lack of appropriate tumor antigens, the difficulty in harvesting T cells from patients after
chemotherapy, and the reduced efficacy of CAR-T cells due to the immunosuppressive
tumor microenvironment and antigen escape [97]. Adverse events associated with CAR-T
cells include CRS, neurotoxicity and other immune-related adverse events, prolonged
thrombocytopenia [98–101], and on-target and off-tumor toxicity [102]. While CAR-T ther-
apy has been successful, resistance has been a problem. Among the resistance mechanisms
of CAR-T therapy, especially in CD19CAR-T, the loss of surface antigens due to mutations
in the CD19 gene or the phenomenon of being covered by adjacent CARs has been reported
as a recurrent mechanism of antigen negativity [103]. Other reports have also reported
cases of CARs being introduced into tumor B cells mixed during CAR-T cell production,
binding to CD19 on tumor B cells, and becoming resistant as unrecognized clones [104].

3.2. Dual-Targeted CAR-T Therapy

To overcome antigen escape in B-cell malignancies, there are strategies that simultane-
ously target two antigens. Two clinical trials have used CD22 or CD20 in combination with
CD19. The AMELIA trial [105] used CD19/22 dual-targeted CAR-T cells and AUTO3 in
15 patients with relapsed or refractory B-ALL, and reported an ORR of 60% and a complete
remission rate of 32%. Thirteen (86%) patients experienced remission. The major AEs were
grade 3 or 4 neutropenia (9 patients, 60%), grade 3 or 4 thrombocytopenia (five patients,
33%), grade 1 or 2 CRS (12 patients, 80%), and grade 1 neurotoxicity (four patients in dis-
ease progression, 27%). Relapse was considered to be due to the limited sustained efficacy
of CAR T-cells, suggesting the need to improve CAR T-cell persistence in dual-targeted
CAR T-cell therapy. On the other hand, a phase 1 trial (NCT03870945) of MB-CART2019.1,
a CD19/20 dual-targeting CAR-T cell, treated 12 patients, including 11 with high-grade
relapsed or refractory NHL and one with relapsed or refractory mantle cell lymphoma [106].
The ORR was 75% and the CR rate was 42%. No grade 3 or higher CRS or neurotoxicity
was observed. The CAR-T cells were generated by lentiviral transduction in a closed
automated CliniMACS Prodigy® System from day-13 to day-1. This approach makes it
more feasible to generate CAR-T cells on-site at each institution. A large phase 2 study is in
progress. In addition, an early clinical trial is underway to evaluate the function of a tandem
CD19/CD20 CAR-T product, also bispecific but structurally distinct, in the treatment of
B-ALL [107,108]. Another dual CAR-T therapy product using anti-CD123/CLL-1 CAR-T
cells is currently being tested in patients with relapsed or refractory AML (NCT03631576).

3.3. Universal CAR-T Cells

To solve problems with autologous CAR-T cells, including possible delays in treatment
initiation, relapses due to antigen escape after recurrent, single-targeted CAR-T therapy,
and difficulties in collecting autologous CAR-T cells, universal CAR-T cells that do not use
autologous blood cells as their source are under development [109]. In particular, genetic
modification techniques are being used to suppress alloimmunity from donor to recipient.
Universal CD19/CD22-targeted CAR-T cells (CTA101) with the TRAC region and CD52
gene disrupted with CRISPR/Cas9 have been administered to patients with relapsed or
refractory ALL [109]. The CR rate at 28 days after administration was 83.3%. At a median
follow-up of 4.3 months, three of the five patients who achieved a CR or a CRi remained
MRD-negative. No genotoxicity or chromosomal abnormalities related to gene editing
were observed. CRS occurred in all patients, but no adverse events related to graft-vs.-host
disease, neurotoxicity, or genome editing occurred.

Universal chimeric antigen receptor (UCART) 22 was derived from a healthy donor
with a human leukocyte antigen–mismatched, CD52-knockout T cell with a CAR targeting
CD22. In BALLI-01 (NCT04150497), a phase 1, open-label, dose-ranging study of UCART22
in patients with relapsed or refractory CD22-positive B-ALL, two of five patients achieved
a CRi [110]. Recently, the results of adding the anti-CD52 antibody alemtuzumab to
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lymphocyte-depleting regimens to enhance the expansion and persistence of UCART22
after patients’ T cells had been depleted have been reported, demonstrating the safety and
efficacy of UCART22 [111]. Future needs for universal CAR-T include the development of
methods to prevent the reduction in persistence and to ensure the safety of genome editing.
Recently, strategies have been reported using T cells that are derived from third-party
healthy donors, but that take advantage of the characteristics of the original subset and do
not require genome editing [112].

3.4. CAR-T Therapy for AML

The application of CAR-T therapy in AML has been hampered by the lack of appropri-
ate surface antigens. Both extracellular (CD33, LeY, CD123, FLT3, CLL1, NKG2D, CD44v6,
CD38, and CD7) and intracellular (PR1 and WT-1, etc.) markers have been reported as
target molecules for CAR-T therapy against AML [113].

CLL-1 is absent in normal hematopoietic stem cells and highly expressed in AML,
making it an ideal target molecule for BiTE and CAR-T therapy. Recently, promising clinical
results have been reported [114,115]. Currently, a phase 1 trial of KITE-222 (NCT04789408)
or other novel Autologous Anti-CLL-1 CAR T-cells is actively enrolling relapsed or refrac-
tory AML patients, and the results are awaited.

GMR (CD116/CD131) is a granulocyte-macrophage colony-stimulating factor (GM-
CSF) receptor found on normal myeloid cells, including progenitor cells, in 63% to 83%
of AML cases [116,117] and 100% of juvenile myelomonocytic leukemia cases [118]. GMR
CAR-T cells with an E21K mutation in the GM-CSF and a G4S spacer optimized for the
affinity and spacer length of the antigen-binding region of the CAR showed excellent
antitumor effects in mice [119].

FLT3 is a type III receptor tyrosine kinase that contributes to normal hematopoietic
stem cell (HSC) survival. It is also expressed in AML cells, and its internal tandem duplica-
tion mutation in particular is a poor prognostic factor [85]. In preclinical studies of AML
models, surface expression of FLT3 was increased specifically in FLT3–internal tandem
duplication–positive AML cells after treatment with the FLT3 inhibitor crenolanib and
was recognized by FLT3 CAR-T cells [120]. FLT3 CAR-T cells recognized normal HSCs
in vitro and in vivo and destroyed normal hematopoiesis in a colony formation assay. This
study suggested that the combination of FLT3 CAR-T cells and FLT3 inhibitors could have
synergistic antileukemic effects. Recently, the FLT3CAR-T Phase I/II trial (NCT05023707)
was enrolled in patients with relapsed or refractory AML.

The proto-oncogene protein c-KIT (CD117) is a type III receptor tyrosine kinase ex-
pressed in 80% to 90% of AML blasts and in hematopoietic progenitors [121,122]. It is also
overexpressed upon the malignant transformation of HSCs [123]. Based on this information,
a second-generation CAR-T targeting c-Kit was developed and almost completely depleted
more than 90% of c-Kit–positive AML cells in vitro and in xenograft mice in preclinical
studies [124].

From the earliest days of CAR-T development, CD123 has attracted many companies
to the field because it is an ideal target molecule that has a limited effect on healthy
bone marrow cells. Overexpression of CD123 in AML cells is associated with constitutive
phosphorylation of STAT5, which accelerates cell proliferation and reduces apoptosis.
CD123 CAR-T cells have been confirmed to have a certain level of safety and efficacy in
humans [125]. On the other hand, UCART123 and TCRαβ-negative T cells were generated
from healthy donors using TALEN® technology to reduce graft-versus-host disease and
express RQR8 to enable elimination. UCART123 effectively eliminated AML cells in vitro
and in vivo, resulting in a significant benefit in overall survival of xenografted mice derived
from AML patients [126]. Recently, the UCART123 Phase I trial (AMELI-01) was enrolled
in patients with relapsed or refractory AML (NCT03190278).

CD33 has been emphasized as a target for CAR-T and other immunotherapies. A clinical
trial of autologous CAR-T therapy targeting CD33 was conducted in a 41-year-old man with
acute myeloid leukemia (NCT01864902). As a result of therapy, the number of blast cells in
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the patient’s bone marrow decreased markedly at 2 weeks posttreatment, then gradually
increased, and the disease had progressed at 9 weeks posttreatment [127]. Another CD33-
CAR-T, single-center, single-arm, phase I clinical trial (NCT03126864) enrolled 10 patients
with relapsed or refractory AML [128], three of whom were eligible. Of these, two had
CRS and one had ICANS, both of which were controllable. Three patients who received
CD33-CAR-T died from disease progression. Strategies that shorten the time from apheresis
to treatment appear essential for CAR-T therapy in these relapsed or refractory AML. In
another study, the safety of CD33 CAR-NK cells was tested in patients with relapsed or
refractory AML. No significant side effects were observed at doses of up to 5 × 109 cells
per patient [129]. Further studies are needed to determine the practical application of CD33
CAR-T therapy in refractory AML.

Other clinical trials have targeted NKG2D, which is expressed on several subtypes of
T cells, NK cells, and NKT cells [130–133]. Recent clinical trials of CAR-T therapy in AML
and/or MDS are summarized in Table 3.

Table 3. Summary of recent clinical trials of CAR-T therapy in AML and/or MDS.

Agents Target Author
(Sposor)

Year
(Estimated

Completion
Date)

Phase Objects
Cases

(Estimated
Enrollment)

Survival
Rate (%)

CR/CRi
(%)

Median
Survival
(Months)

Clinical Trial Reference

CLL1 CAR-T CLL-1 Jin, X et al. 2022 I rrAML 10 60 70 (7/10) 5.8 - [115]

CD123
CAR-T CD123 Budde

et al. 2017 I rrAML 6 NA 50 (3/6) NA NCT02159495 [125]

CD33CAR-T CD33 Tambaro
et al. 2021 I rrAML 10 0 NA NA NCT03126864 [128]

NKG2D
CAR-T NKG2D Baumeister

et al. 2019 I AML,
MM 12 75(3m),

42(6m) NA 4.7 NCT02203825 [132]

CYAD-01 NKG2D Sallman
et al. 2018 I

AML,
MDS,
MM

12 NA 42 NA NCT03018405 [133]

rrAML, relapsed or refractory acute myeloid leukemia; MDS, myelodysplastic syndromes; MM, multiple myeloma.
NA, not available; CR, complete response; CRi, CR with incomplete hematologic recovery; NR, not reached.

3.5. CAR-T Therapy for T-Cell Acute Lymphoblastic Leukemia

The CAR-T cell strategy has been considered challenging for T-cell acute lymphoblastic
leukemia (T-ALL) because of its use of T cells. One candidate target molecule is CD7, which
is expressed on normal and malignant T cells and found in approximately 95% of T-ALL
cases. As a solution to this problem, the generation of CAR T cells targeting CD7 with
genomic disruption of their own CD7 gene (CD7 CAR-T) was shown to prevent fratricide
against CD7 CAR-T and to expand CD7 CAR T cells without compromising their cytotoxic
function [134]. To avoid fratricide, with genomic disruption of CD7, its surface expression
could be prevented by nanobodies retaining CD7 in the cell [134,135]. Furthermore, the
first human phase 1 trial of 7CAR (NS7CAR) T cells naturally selected from bulk T cells
(NCT04572308) enrolled 20 patients with relapsed or refractory T-ALL and relapsed or
refractory T-LBL [136]. Nineteen patients had a CR up to 28 days after administration
of NS7CAR, and 14 of them underwent AlloHSCT without recurrence. Four of the six
transplant-free patients remained in CR for a median of 56 days. CRS was grade 2 in
eighteen and grade 3 in one. Neurotoxicity was grade 1 in two patients. These results
indicated that NS7CAR-T therapy was a safe and highly effective treatment for relapsed or
refractory T-ALL/LBL.

TruUCART GC027 contains a second-generation CAR with genomic disruption of
T-cell receptor α and CD7 by the CRISPR/Cas9 system to avoid graft-vs.-host disease and
fratricide. It has been evaluated in a single-arm, open-label, multicenter, prospective study
in adults with relapsed or refractory T-ALL. To date, in five patients with bone marrow
tumor burdens of 4% to 80.2% (median 5%), a single dose of GC027 has resulted in 80% of
patients demonstrating robust proliferation of CAR-T cells and achieving sustained MRD
and CR without biologics as a bridge to pretreatment therapy or hematopoietic stem cell
transplantation (HSCT). Four patients had grade 3 CRS, and none developed neurotoxicity
or graft-vs.-host disease [137].
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The other candidate fraction is CD1a, which is specifically expressed on cortical
thymocytes and in about 40% of T-ALL cases. Other T cells, including progenitor cells, do
not express CD1a. Therefore, in preclinical studies, we validated a CD1a-specific CAR with
the aim of avoiding fratricide. The results showed robust and specific cytotoxicity in vitro
and antileukemic activity in vivo, circumventing the aforementioned problems [138].

3.6. Adaptor CAR-T Therapy

A new concept in CAR-T therapy is adaptor CAR-T therapy, in which antigen recog-
nition of CAR-T cells is partitioned by linkers into multiple agents (e.g., CD32, CD33,
CD38, CD123, CD135, CD305, and CLL1) for multiple synchronic targeting. Single-targeted
CAR-T to date has created strong selective pressure on tumors, and cancers with hetero-
geneous antigen expression are likely to fail single-target therapy. Multi-targeted CARs
allow for transient on/off switching of drugability and allow for multiple synchronous and
sequential targeting, which is expected to be both safe and effective. Preclinical trials of
adaptor CAR-T therapy are ongoing [139].

3.7. PD-1–Blocking CAR-T Therapy

One problem with CAR-T therapy is that the expression of immunosuppressive sub-
stances such as PD-1 increases as CAR-T cells become exhausted, as mentioned above,
resulting in a decrease in the quality or number of CAR-T cells. Development of therapies
aimed at solving this problem and enhancing therapeutic efficacy is underway. CAR-T cells
capable of secreting PD-1-blocking scFvs enable local checkpoint inhibition and efficient
target killing and have shown excellent preclinical utility [140]. This sophisticated strategy
complements findings from clinical trials combining the PD-1 inhibitor pembrolizumab
with CD19 CAR-T cell therapy and are directed at avoiding CAR-T cell depletion during
the treatment of relapsed or refractory B-cell lymphoma [141].

4. ICIs
4.1. Representative ICI Molecules

Immune checkpoint molecules inhibit autoimmune responses and suppress excessive
immune responses to maintain immune homeostasis. Tumors use these molecules to evade
attacks from the immune system and create a favorable environment for growth. Represen-
tative molecules/ligands include PD-1/programmed death-ligand 1 (PD-L1), CTLA-4/B7,
TIM-3/galectin-9, CD47/signal regulatory protein alpha (SIRPα), and LAG-3 [142]. The
inhibitory action of these molecules eventually depletes effector T cells, creating a favorable
environment for tumor survival. Therefore, by blocking their axis of action, an anti-tumor
effect can be expected by restoring the original function of T cells [143]. While there is a
significant therapeutic effect with ICI, resistance is a problem. Mechanisms of resistance
to ICI therapy include resistance due to the acquisition of gene mutations by tumor cells
and resistance due to changes in immune cells. As an example of the former, a mechanism
has been reported in which JAK-STAT system signals and β2 microglobulin gene mutation
occur after the use of PD-1 antibodies, resulting in changes in IFN-γ production ability and
antigen presentation ability of APC [144,145]. As an example of the latter, a phenomenon
of host immunity in which the expression of other immunosuppressive molecules on T
cells is enhanced after ICI treatment has been observed [146].

4.2. PD-1 and CTLA-4

The inhibitory surface receptor PD-1 is an immune checkpoint molecule that is pri-
marily expressed on T cells and negatively regulates immune responses; when PD-1 binds
to its ligands PD-L1 and PD-L2, it produces a negative signal and inhibits T cell activation.
Many tumor cells have PD-L1 on their surface and have mechanisms to evade host surveil-
lance [147–150]. Its ligand, PD-L1, is detectable in almost all cases of AML [151]. DNA
hypomethylating agents (HMAs) induce upregulation of multiple checkpoint molecules
in patients with AML [152]. In untreated myelodysplastic syndromes (MDS) CMML and
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AML patients, PD-L1 and L2 expression increased more than twofold in 57% of patients
before and after HMA treatment and was associated with poor prognosis. PD-1 expression
on T cells was also more frequent in patients with relapsed AML, and postanalysis of
AML specimens showed that the hypomethylation status of the PD-L1 and PD-L2 gene
promoters in leukemia cells was an independent negative prognostic factor [153]. Against
this background, PD-1/PD-L1 inhibitors, which have tended to be less effective in hemato-
logic tumors when administered alone, are expected to show efficacy when combined with
azacitidine. A clinical trial combining the PD-1 inhibitor nivolumab with the hypomethy-
lating agent azacitidine, performed against this background, showed remarkable efficacy;
the ORR was 58% in HMA–naïve patients [154]. Recent clinical trials combining immune
checkpoint inhibitors and conventional drugs for the treatment of AML and/or MDS are
summarized in Table 4 [155–158].

CTLA-4 is expressed on T cells and inhibits T-cell activation by preventing CD28,
also expressed on T cells, from binding to B7-family ligands (CD80, CD86) on antigen-
presenting cells [159,160]. In the peripheral blood mononuclear cells of patients with AML,
upregulation of CTLA-4 was observed [161], and the CTLA-4 inhibitor ipilimumab showed
specific efficacy in patients with late relapsed AML [162]. Currently, a phase I trial of
ipilimumab in combination with existing therapies (NCT02890329) was enrolled in patients
with relapsed or refractory MDS or AML.

4.3. T-Cell Immunoglobulin and Mucin Domain-3

T-cell immunoglobulin and mucin domain-3 (TIM-3) is an inhibitory receptor on
immune cells, widely expressed on CD4-positive and CD8-positive T cells, Treg cells, NK
cells, dendritic cells, mast cells, and macrophages [163–167], which suppress immune cell
function through galectin-9 [168]. TIM-3 is not upregulated in normal hematopoietic stem or
progenitor cells and found in T cells from patients with AML [169], and galectin-9 is found
in AML blasts [165]. Tim-3 is in the same class of receptors as PD-1 and CTLA-4; however,
they perform unique functions, especially at tissue sites, and regulate different aspects
of immunity. Hence, TIM-3 has recently been considered a very promising therapeutic
target for AML among inhibitory receptors [170,171]. In a phase 1b study of an anti-TIM-3
antibody (MBG453) in combination with decitabine or azacitidine in patients with AML
and high-risk MDS (NCT03066648), 69 patients with high risk-MDS or AML received
MBG453 plus decitabine. A total of 29 patients with high risk-MDS or AML received
MBG453 plus azacitidine [172]. Both combinations showed reliable response rates and
endurance. For MBG453 plus decitabine, ORR was 58% for high risk-MDS, 41% for newly
diagnosed -AML, and 24% for relapsed or refractory-AML; the median exposure duration
was 8.6 months. For MBG453 plus azacitidine, ORR was 70% for high risk-MDS and
27% for newly diagnosed-AML. TIM-3 inhibitors were also evaluated as monotherapy or
in combination with PD-1/PD-L1 inhibitors in patients with advanced tumors [173]. In
the phase 1/2 study to assess safety and estimate the recommended phase 2 dose, the
most common patients enrolled (n = 219) were patients with ovarian cancer (17%) and
colorectal cancer (7%). Patients received sabatolimab (MBG453; n = 133) or sabatolimab
plus spartalizumab (n = 86). There was no response in the sabatolimab arm. Five (6%)
patients who received combination therapy had partial responses lasting 12–27 months;
these patients had colorectal cancer (n = 2), non-small cell lung cancer, perianal malignant
melanoma, and small cell lung cancer. Fatigue (sabatolimab, 9%; combination therapy, 15%)
was a common AE. This clinical trial demonstrated that combination therapy with a TIM-3
inhibitor and a PD-1/PD-L1 inhibitor was well-tolerated and showed a preliminary trend
toward antitumor activity.
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Table 4. Summary of clinical trials combining ICIs and conventional drugs for the treatment of AML
and/or MDS.

Agents Target Author Year Phase Objects Cases Survival
Rate (%)

CR/CRi
(%)

Median
Survival
(Months)

Reference

Pembrolizumab + decitabine PD-1 Lindblad
et al. 2018 I/II rrAML 10 50 20 10 [155]

Nivolumab + azaticidine PD-1 Daver
et al. 2018 PhII rrAML 70 77 21 6.3 [154]Nivolumab + azaticidine +ipilimimab 20 NA 36 NR

Nivolumab + cytarabine + idarubicin PD-1 Assi
et al. 2018 PhII AML,

hrMDS 44 NA NA 18.5 [156]

MBG453 + decitabine TIM-3 Borate
et al. 2019 PhIb AML,

hrMDS 31 35 23 2.1-17.9 [172]

Nivolumab + cytarabine + idarubicin PD-1 Ravandi
et al. 2019 PhII AML,

hrMDS 44 55 78 18.5 [157]

Avelumab + decitabine PD-L1 Zheng
et al. 2021 PhI AML 7 NA NA 3.2 [158]

ICI, immune checkpoint inhibitor; AML, acute myeloid leukemia; MDS, myelodysplastic syndromes; PD-1,
programmed cell-death protein 1; TIM-3, T-cell immunoglobulin and mucin domain-3; PD-L1, programmed
death-ligand 1. NA, not available; CR, complete response; CRi, CR with incomplete hematologic recovery; NR,
not reached.

4.4. Lymphocyte Activation Gene 3

Lymphocyte activation gene 3 (LAG-3) is a type I transmembrane protein expressed
on activated T cells, NK cells, and plasmacytoid dendritic cells [174,175]. Very recently,
stable pMHCII was shown to be a functional ligand for LAG-3 in both autoimmunity and
anti-cancer immunity [176]. In follicular lymphoma, it has been reported that intratumoral
PD-1–positive/LAG-3-positive T cells are functionally suppressed and that intratumoral
T-cell function is enhanced when both PD-1 and LAG-3 are blocked [177]. In a study in
patients with relapsed AML, T cells coexpressing LAG-3 and PD-1 were frequently found
in the patients’ bone marrow samples [178]. Preclinical studies using a mouse lymphoma
model showed that PD-1 blockade exerted antitumor effects on MHC-II-expressing classic
Hodgkin lymphoma with LAG-3-positive/CD4-positive T cell infiltration, indicating that
blockade of both may be effective against MHC-II-expressing tumors [179]. Indeed, in
81 newly diagnosed patients with classic Hodgkin lymphoma enrolled in the NIVAHL trial
(NCT03004833), the phenotype of exhausted T cells monitored by the expression of T-cell
coinhibitory molecules (PD-1, LAG-3, TIM-3, etc.) was persistently reduced during PD-1
inhibitor treatment [180]. Additionally, a dual-targeted antibody specific for both PD-1 and
LAG-3, tebotelimab (previously known as MGD013), is being investigated in a phase 1 trial
in patients with unresectable or metastatic neoplasms, including DLBCL (NCT03219268).
An acceptable safety profile and promising evidence of antitumor activity were reported
for this dual-targeted antibody [181].

4.5. CD47

CD47 is a transmembrane glycoprotein and a ligand for SIRPα. SIRPα is expressed
on macrophages and dendritic cells, and SIRPα–CD47 binding inhibits their phagocytic
function via the immunoreceptor tyrosine-based inhibition motif [182], allowing CD47-
expressing cells to escape phagocytosis by macrophages [183]. CD47 is overexpressed
in a wide variety of cancers, including hematologic malignancies [184], and is primarily
a critical molecule for macrophages to recognize self and non-self. CD47 is attracting
attention as a next-generation therapeutic target [185]. Anti-CD47 monoclonal antibodies
(e.g., Hu5F9-G4: Magrolimab) have been developed, and a phase 1b trial of Magrolimab
in combination with rituximab for relapsed or refractory NHL showed good tolerability
and a CR rate of 36% [186]. In addition, a phase 1 trial of an anti-CD47 antibody in AML
and MDS showed objective responses in 64% of patients with AML and 92% of patients
with MDS when the anti-CD47 antibody was given in combination with azacytidine; a CR
was achieved in 55% and 50% of patients, respectively (NCT03248479) [187]. In addition,
favorable results have been reported in a preclinical study of an anti CD47/PD-L1 bispecific
antibody [188].
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5. ADCs

ADCs usually consist of an antibody against a tumor-specific antigen, an anticancer
drug with potent cytotoxic activity, and a linker portion that connects them. It is a therapeu-
tic strategy to reduce side effects while enhancing the effect of distributing the anticancer
drug, which has too strong a systemic action, to the local tumor site. Its action is deter-
mined by a complex of factors, including the selection of appropriate antigens, the site
where the linker connects and the distance to the payload, and the mechanism of action
of the payload itself. Gemtuzumab ozogamicin (GO) combines an anti-CD33 antibody
with the cytotoxic antitumor antibiotic calicheamicin via a linker and has shown good
results against AML (100,101). A meta-analysis of five randomized trials combining GO
with standard chemotherapy in patients with newly diagnosed AML found that the com-
bination significantly reduced recurrence within 5 years and slightly prolonged OS, but
did not significantly affect the complete remission rate or improve the response rate [189].
Furthermore, in 273 elderly, newly diagnosed patients with AML who were not candidates
for standard chemotherapy, longer survival was seen in the randomized GO monother-
apy arm compared with the best-supportive-care arm (median survival, 4.9 months vs.
3.6 months) [190]. In addition, 57 patients with a first relapse of AML have used GO alone
at a dose of 9 mg/m2 on days 1 and 14. The study showed a 26% response rate and median
RFS was 11.0 months [191]. These results led to FDA re-approval of GO in September
2017 [82].

Lintuzumab Ac225 is a radiolabeled anti-CD33 antibody. A phase 1 trial of lintuzumab
Ac225 in combination with cladribine, cytarabine, and filgrastim with mitoxantrone (CLAG-
M) showed that 10 of 15 (67%) patients with relapsed or refractory AML had a CR or a
CRi [192].

InO is an anti-CD22 antibody coupled with the cytotoxic antitumor antibiotic calicheam-
icin via a linker. CD22 is found in more than 90% of cases of B-ALL and is partially ex-
pressed in 13% of cases [193]. The phase 3 INO-VATE ALL study (NCT01564784) compared
treatment with InO to standard-of-care chemotherapy in 326 adult patients with relapsed
or refractory, CD22-positive B-ALL. The CR/CRi rate was significantly higher in the InO
group than in the standard therapy group (80.7% vs. 29.4%), and the InO group also had
better OS (median, 7.7 months vs. 6.7 months); a higher negative rate of MRD (0.01%
bone marrow blasts; 78.4% vs. 28.1%, p < 0.001); and better progression-free survival
(median, 5.0 months vs. 1.8 months) [194]. Subsequent long-term observational study
results reported that veno-occlusive disease and sinusoidal obstruction syndrome were
more frequent in the InO group than in the standard therapy group (23 of 164 [14.0%]
patients vs. 3 of 143 [2.1%] patients). In addition, more patients in the InO group went
directly to HSCT after achieving a CR or Cri and before undergoing follow-up induction
therapy (39.6% vs. 10.5%; <0.0001) [195]. Thus, InO is very useful as a bridge to HSCT, but
potential veno-occlusive disease and sinusoidal obstruction syndrome risk factors should
be considered when initiating therapy [196].

CLL-1 (also known as CLEC12A and MICL) is an immunoreceptor tyrosine-based
inhibition motif–containing inhibitory transmembrane glycoprotein. Since it does not exist
in normal HSCs but selectively exists in LSCs [197], the side effects caused by its expression
in hematopoietic stem cells and that hinder current CD33-targeted ADCs theoretically do
not occur. Adding a pyrrolobenzodiazepine (PBD) dimer to the anti-CLL-1 antibody at
the cysteine residue of K149C through a disulfide limker resulted in a CLL-1 ADC with
excellent stability and release of the PBD dimer; it showed an almost complete antitumor
effect in mouse and cynomolgus monkey xenograft studies [198]. CLT030, a novel ADC
targeting CLL-1, uses D212 isoquinolizinobenzodiazepine as its payload. It uses a different
mode of DNA damage than existing drugs to form DNA crosslinks with high cytotoxicity.
CLT030, which also binds a cleavable valine–alanine linker and a polyethylene glycol spacer,
inhibited LSC colony formation in vitro and showed robust in vivo effects in a xenograft
model derived from AML patients, suggesting that it has antileukemic activity [199].
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6. Other Emerging Immunotherapies

Finally, we will mention neoantigen vaccines as an area that is not covered individually
but will make significant progress. Neoantigens are derived from somatic mutations in
malignancies. Neoantigens presented via HLA on tumor cell surfaces are considered
very attractive targets for immunotherapy. Genome sequencing has enabled the reliable
identification of somatic mutations in tumor samples, and several approaches have been
explored. As a result, in addition to the in silico prediction of HLA ligands following whole-
genome sequencing, mass spectrometry and other proteogenomic advances have enabled
the identification of a wide variety, including splicing variants [200,201]. Currently, the
range of targets is expanding even in hematologic malignancies, and studies on mutated
NPM1 and mutated IDH in AML have reported the success of these peptide vaccines.
Furthermore, combination therapy with ICI for the preceding neoantigen vaccine Neovax
is the latest achievement [202], and it is believed that this field will join the above four types
of immunotherapy in the future.

7. Discussion

There have been remarkable advances in recent years in immunotherapy for hemato-
logic malignancies (Figure 2). The efforts of many researchers and medical professionals
and the cooperation of many patients have contributed to and benefited from these ad-
vances. However, there are still issues with immunotherapy that need to be addressed.

First, some tumors develop sophisticated antigen-escape mechanisms (i.e., they lose
or downregulate their expression of target antigens). However, there is a lack of knowledge
about the endogenous and exogenous regulatory factors involved in antigen expression,
and this is an issue to be investigated. Antigen escape may also be overcome or alleviated
through treatment with combinations of currently investigated immunomodulators or anti-
cancer drugs or through treatment with drugs that target multiple antigens simultaneously.
For example, in the classic Hodgkin lymphoma cell line and in microdissected primary
Hodgkin and Reed-Sternberg cells, a study showed a reduction in CD19 surface expression
due to hypermethylation of the CD19 promoter, which could be stimulated by the DNA
demethylating agent 5-aza-deoxycytidine [203].

Second, it is not well understood which components of the tumor microenvironment
influence effector T cells and which components are targets for therapy. The tumor microen-
vironment plays an important role in mediating immunosuppression and can be viewed as
a target for enhancing the efficacy of immunotherapy. Thus, it is necessary to understand
the microenvironment not only in the initial onset of cancer but also in the process leading
to its recurrence. Combined approaches to releasing exogenous suppressors that affect
T-cell function are beginning to be explored both preclinically and clinically. In addition
to tumor cell targeting, manipulation of the tumor microenvironment to promote efficient
killing or to enhance effector T-cell responses with proinflammatory properties is being
explored [204,205].

A third issue concerns the role of the bone marrow microenvironment in supporting
hematologic malignancies. The comprehensive mapping of the leukemic bone marrow
microenvironment performed in recent single-cell studies may allow the bone marrow
niche to be targeted to enhance leukemia patients’ response to therapy [206]. As im-
munotherapy becomes more widespread, it is expected that these techniques will be used
to accumulate knowledge on the changes in the bone marrow microenvironment before
and after immunotherapy.

A fourth, treatment-specific problem is ensuring the persistence of CAR-T and CAR-
NK cells in CAR-T and CAR-NK therapy. There is a lack of discussion regarding how to
elucidate the mechanism of exhaustion and the quality control of CAR-T and CAR-NK cells
after transfusion. If the exhaustion of CAR-T and CAR-NK cells is difficult to avoid, then a
shift to cell therapy that can be administered repeatedly (e.g., induced pluripotent stem
cells or UCART) should be considered. In this case, it is necessary to examine feasibility not
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only from the perspective of efficacy, but also from the perspectives of human, economic,
and social resources, and to ensure genome-editing safety [207].
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pseudodimer (IGN), CD30/monomethyl auristatin E (MMAE), CD79b/MMAE, and CD20/90yttrium. 
For chimeric antigen receptor (CAR)-transgenic T and CAR-natural killer (NK) cells, the targets 
include CD19, CD20, and CD22 B cells (B); c-kit, FLT3, CD33, CD123, CLL-1, NKG2D, and LeY 
myeloid (M) cells; CD1a T cells (T); and CD7 and CD38 T and M cells. For bispecific T-cell engager 
(BiTE), trispecific killer cell engager (TriKE), and dual affinity retargeting (DART) therapies, the 
targets include CD19/CD3, CD33/CD3, CLL-1/CD11 and IL-15, CD33/CD2 and IL-15, and 
CD123/CD3. 

First, some tumors develop sophisticated antigen-escape mechanisms (i.e., they lose 
or downregulate their expression of target antigens). However, there is a lack of 
knowledge about the endogenous and exogenous regulatory factors involved in antigen 
expression, and this is an issue to be investigated. Antigen escape may also be overcome 
or alleviated through treatment with combinations of currently investigated immuno-
modulators or anticancer drugs or through treatment with drugs that target multiple an-
tigens simultaneously. For example, in the classic Hodgkin lymphoma cell line and in mi-
crodissected primary Hodgkin and Reed-Sternberg cells, a study showed a reduction in 
CD19 surface expression due to hypermethylation of the CD19 promoter, which could be 
stimulated by the DNA demethylating agent 5-aza-deoxycytidine [203].  

Second, it is not well understood which components of the tumor microenvironment 
influence effector T cells and which components are targets for therapy. The tumor micro-
environment plays an important role in mediating immunosuppression and can be 
viewed as a target for enhancing the efficacy of immunotherapy. Thus, it is necessary to 
understand the microenvironment not only in the initial onset of cancer but also in the 
process leading to its recurrence. Combined approaches to releasing exogenous suppres-
sors that affect T-cell function are beginning to be explored both preclinically and clini-
cally. In addition to tumor cell targeting, manipulation of the tumor microenvironment to 
promote efficient killing or to enhance effector T-cell responses with proinflammatory 
properties is being explored [204,205]. 

Figure 2. Potential target antigens involved in immune therapy against hematological malignan-
cies. For immune checkpoint inhibitors (ICIs), the targets include programmed cell-death pro-
tein 1 (PD-1)/programmed death-ligand 1 (PD-L1), CD200R/CD200, T-cell immunoglobulin and
mucin domain-3 (TIM-3)/galectin-9, SIRPα/CD47, and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4)/B7 (APC). For antibody–drug conjugates (ADCs), the targets include CD33/calicheamicin,
CD33/225actinium, C-lectin-like molecule 1 (CLL-1)/D212, CD123/indolinobenzodiazepine pseu-
dodimer (IGN), CD30/monomethyl auristatin E (MMAE), CD79b/MMAE, and CD20/90yttrium. For
chimeric antigen receptor (CAR)-transgenic T and CAR-natural killer (NK) cells, the targets include
CD19, CD20, and CD22 B cells (B); c-kit, FLT3, CD33, CD123, CLL-1, NKG2D, and LeY myeloid
(M) cells; CD1a T cells (T); and CD7 and CD38 T and M cells. For bispecific T-cell engager (BiTE),
trispecific killer cell engager (TriKE), and dual affinity retargeting (DART) therapies, the targets
include CD19/CD3, CD33/CD3, CLL-1/CD11 and IL-15, CD33/CD2 and IL-15, and CD123/CD3.

Finally, there are disease-specific, difficult-to-address issues unique to immunother-
apy for AML. As with other tumors, there is always the possibility of seeing the results
of complex interactions between tumor immunities, but for AML, the small number of
random antigens is a hallmark of therapeutic difficulty. There is a need to recognize the
underlying clonal heterogeneity of the disease and its impact on both disease emergence
and progression in the presence of therapeutic selective pressure. The existence of genetic
and phenotypic diversity within leukemia subclones may have important implications
for the presence or absence of relapse, and relatively extensive screening of immunosup-
pressive molecules and disease-specific genes from the time of diagnosis would be ideal.
Another noteworthy characteristic of AML is its unique immunosuppressive system [208].
In this system, myeloid-derived suppressor cells express indoleamine 2,3 dioxygenase,
arginase 1, and inducible nitric oxide synthase. Although they inhibit immune responses
by cytotoxic T cells, NK cells, or regulatory T cells [209]. AML blasts also express these
substances and activate myeloid-derived suppressor cells [210]. These factors make AML,
with its few, random antigens and heavily immunosuppressive system, uniquely difficult to
treat. If this property is related to genetic abnormalities that have been extensively studied
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and are believed to control proliferation, combined treatment with immunotherapy and
molecular-targeted drugs targeting specific gene products may be unexpectedly successful.

The advent of immunotherapy has dramatically changed the treatment of hematologic
malignancies. In the next generation, further prognostic improvement is expected through
combination of immunotherapy with existing therapies and among immunotherapies.
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