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Abstract

Background: Induced pluripotent stem (iPS) cells are the novel stem cell population induced from somatic cells. It

is anticipated that iPS will be used in the expanding field of regenerative medicine. Here, we investigated whether

implantation of fetal liver kinase-1 positive (Flk-1+) cells derived from iPS cells could improve angiogenesis in a

mouse hind limb model of ischemia.

Results: Flk-1+ cells were induced from iPS cells after four to five days of culture. Hind limb ischemia was surgically

induced and sorted Flk-1+ cells were directly injected into ischemic hind limbs of athymic nude mice.

Revascularization of the ischemic hind limb was accelerated in mice that were transplanted with Flk-1+ cells

compared with control mice, which were transplanted with vehicle, as evaluated by laser Doppler blood

flowmetry. Transplantation of Flk-1+ cells also increased expression of VEGF mRNA in ischemic tissue compared to

controls.

Conclusions: Direct local implantation of iPS cell-derived Flk-1+ cells would salvage tissues from ischemia. These

data indicate that iPS cells could be valuable in the therapeutic induction of angiogenesis.

Background

There are increasing numbers of patients around the

world with peripheral arterial disease (PAD) [1]. Promo-

tion of collateral vessel formation and angiogenesis in

such patients is an important therapeutic strategy to

minimize tissue injury associated with severe ischemia.

Circulating endothelial progenitor cells (EPCs) have

been discovered in peripheral blood and shown to parti-

cipate in postnatal neovascularization after mobilization

from bone marrow (BM) [2,3]. Based upon those discov-

eries, we conducted therapeutic angiogenesis using auto-

logous BM-derived mononuclear cell (BM-MNC)

implantation (the TACT trial) into the ischemic muscles

in patients with critical limb ischemia [4-6]. However,

patients with very severe PAD undergoing chronic

hemodialysis or uncontrolled diabetes had poor

responses to the TACT procedure [5]. Moreover, recent

data indicate that patients with severe ischemic heart

disease and/or multiple coronary risk factors have a

reduced number of circulating EPCs, diminished angio-

genic function of their EPCs and a poor response to

angiogenic cell therapy [7-9]. Therefore, it is necessary

to discover an alternative source of stem/progenitor

cells for therapeutic angiogenesis.

Recently, novel embryonic stem (ES) cell-like pluripo-

tent stem cells were generated from mouse skin fibro-

blasts by introduction of four transcriptional factors

(Oct3/4, Sox2, Klf4, c-Myc) [10]. Termed induced pluri-

potent stem (iPS) cells, they could be used repetitively

and were capable of differentiating into various kinds of

cells as needed [11-15]. Recently, it was reported that

various cardiovascular cells could be directionally

induced from mouse and human iPS cell-derived fetal

liver kinase-1 positive (Flk-1+) cells in vitro [11,16].

Thus, iPS cells open new possibilities for cell-based
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regenerative medicine that will circumvent the ethical

controversies and immune-related problems associated

with ES cells. Here, we investigated whether implanta-

tion of iPS-derived Flk-1+ cells could augment the pro-

cess of ischemia-induced angiogenesis in vivo.

Results

Differentiation of iPS cells to Flk-1+ cells

Undifferentiated iPS cells were cultured on collagen IV-

coated dishes with DM as described previously [11].

Firstly, we assessed the time course of Flk-1+ cell

appearance by fluorescence-activated cell sorter (FACS).

Flk-1+ cells appeared after 3.5 days of culture and

peaked on day 4.5 (Figure 1A). The average frequencies

of Flk-1+ cells were 11.3% (day 3.5), 27% (day 4.5),

14.9% (day 5.5), 13.2% (day 6.5) and 6.5% (day 7.5), con-

firming a previous report [11]. Based on these findings,

we sorted Flk-1+ cells by magnetic-activated cell sorting

(MACS) at day 4.5 of differentiation in the present

study. FACS analysis of MACS-sorted positive through

cells showed that more than 99% of these cells were

positive for Flk-1 (Figure 1B). We also found that

MACS-purified Flk-1 positive cells were sorted in not

only Nanog-GFP positive population but also Nanog-

GFP negative cell population (Figure 1B).

We also tried to characterize the Flk1+ cells by FACS

analysis. Gated Flk1+ cells showed CD11b negative,

CD45 negative, CD31 negative, VE-cadherin negative,

E-cadherin negative, CD34 negative or CD90 negative

(Figure 2). CD44 positive cells accounted for 39.4% of

gated Flk1+ cells, CXCR4 positive cells for 29.1%, Sca-1

positive cells for 24.8%, SSEA-1 positive cells for 23.5%

and c-kit positive cells for 8.2%. Flk1+ cells are consid-

ered as relatively immature and still have an aspect as

heterogeneous stem cells at the upstream position.

We confirmed the expression of undifferentiated mar-

kers such as Nanog and Oct3/4 on differentiation at day

4, 5, 6 and 7 by RT-PCR (Figure 3). Undifferentiated iPS

cells markers, Nanog and Oct3/4, were strongly

expressed in early phase and started to gradually

decrease with differentiation. We also observed the tran-

sient expression of c-myc.

Figure 1 Purification of Flk-1+ cells from iPS cells. A) Flk-1 expression profiles from 3.5 days to 7.5 days of cultivation as determined by flow

cytometric analysis. (* p < 0.05 Day4.5 vs Day3.5, 5.5, 6.5 and 7.5). B) FACS analysis of pre and post MACS-sorted Flk-1+ cells at day 4.5. More

than 99% of enriched cells were positive for Flk-1. Some of these purified Flk-1+ cells were positive for Nanog-GFP.
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Augmentation of ischemia-induced angiogenesis by Flk-1+

cells derived from iPS cells

We examined whether in vivo implantation of Flk-1+

cells derived from iPS cells could augment ischemia-

induced angiogenesis using a mouse model of hind limb

ischemia. KSN athymic nude mice underwent surgical

induction of unilateral hind limb ischemia. Sorted Flk-1+

cells (6×104cells/mouse) or control PBS were injected

into adductor muscles in the ischemic limb at post-

operative day 1 (Figure 4A). All mice survived from sur-

gery and appeared healthy during the follow-up period.

Body weight and blood pressure did not differ among

the groups. We show the representative LDBF images of

hind limb blood flow of recipient mice just after the sur-

gery and at the different time points after surgery (Fig-

ure 4B). In control mice, hind limb perfusion fell

precipitously after surgery, increased to 20 - 30% of the

nonischemic limb by day 3, and increased to 40-50% of

the nonischemic limb by day 14 (Figure 4C). However,

mice transplanted with Flk-1+ cells showed significant

increases in hind limb blood relative to control at 3, 7

and 14 days after hind limb surgery (Figure 4B,C). We

next assessed dose-dependency of cell transplantation at

7 days after surgery. Smaller doses of cells (2 × 104

cells/mouse) also yielded improvements in blood perfu-

sion (Figure 4D). However, mice treated with 2 × 103

cells did not achieve a significant improvement in blood

perfusion in the ischemic limb compared to control

mice (Figure 4D).

Implanted Flk-1+ cells augmented the expression of VEGF

in ischemic tissues

We investigated whether implantation of Flk-1+ cells

would up-regulate VEGF mRNA expression in ischemic

hind limb tissues in chronological order. At postopera-

tive days 3 and 7, VEGF mRNA expression increased

significantly in mice transplanted with Flk-1+ cells (6 ×

104 cells) compared to that of control mice (Figure 5).

Figure 2 Characterization of Flk1+ cells. Differentiated iPS cells were analyzed by FACS. Differentiated iPS cells were stained with Flk1-APC

and additional cell marker (c-kit, Sca-1, CD11b, CD31, VECAD, CD34, CD44, CD45, CD90, SSEA-1, CXCR4 and ECAD). Additional cell marker was

analyzed after gating Flk1+ cells. Red line shows the result of the negative control and Blue line shows the result of the sample stained by each

antibody.
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Smaller doses of cells (2 × 104 cells/mouse) also slightly

increased VEGF mRNA expression. At day 14, there was

no significant difference between the groups. However,

the dose-dependency for expression of VEGF mRNA

was apparent.

We next examined the synthesis of basic FGF, HGF and

IGF in ischemic muscle after cell transplantation by

real-time PCR. There were no significant difference in

these mRNA levels between mice transplanted with Flk-1+

cells and control mice (Figure 5).

Tracing Flk-1+ cells in vitro and at chronic phase in vivo

We examined whether Flk-1+ cells could be incorpo-

rated into the vascular network in vitro. Figure 6A

shows representative photographs of PKH26-labeled

Flk-1+ iPS cells and HUVECs after 24 hours of co-cul-

ture on a Matrigel. Incorporation of Flk-1+ iPS cells

(red) into the network structures was confirmed.

Using PKH26-labeled Flk1+ cells, we examined

whether in vivo implanted Flk-1+ cells survived and dif-

ferentiated into vascular endothelial cells in ischemic tis-

sues (Figure 6B). Transplanted PKH26-positive cells

were found in the ischemic area even at postoperative

day 21. Immunofluorescence histology revealed that

some of the PKH26-positive cells were co-stained with

the endothelial cell marker CD31 (Figure 6B). These

results indicated that implanted Flk-1+ cells contributed

to vascular structure formation at postoperative day 21.

We could not detect any tumors in the mice trans-

planted with Flk-1+ (6 × 104) cells through the 60 days

after transplantation (n = 3).

Discussion

The present study provides evidence that implantation

of Flk-1+ cells differentiated from mouse iPS cells pro-

mote angiogenesis in a well-established hind limb ische-

mia model. In the model, no tumors were observed.

Mice transplanted with these cells displayed rapid recov-

ery of limb blood perfusion, which was accompanied by

a rapid increase in VEGF mRNA levels in the ischemic

tissues.

Recently, preclinical studies had validated the concept

of “cell therapy for ischemic disease” using stem/pro-

genitor cells to repair and regenerate vascular cells in

patients with severe ischemic cardiovascular disease

[4,17]. However, collection of somatic stem cells in suffi-

cient numbers for cell therapy is difficult and may

require invasive procedures such as bone marrow

aspiration or resection of the liver or pancreas. Addi-

tionally, problems of utilizing somatic stem cell is that

(1) the number of somatic stem cell is very limited in

general, (2) the implanted progenitor cells have low

functions of mobilization capacity from bone marrow as

well as angiogenic potentials in patients with multiple

risk factors for arteriosclerosis [7-9,18]. On the other

hand, iPS cells have an unlimited ability for self-renewal

and expansion [10,19]. Thus, it might be possible to col-

lect large numbers of cells following cultivation in vitro

while maintaining its undifferentiated phenotype. iPS

cells can also be differentiated into various kinds of cells

as needed [11-16]. In addition, autologous iPS cells can

circumvent the ethical controversy associated with ES

cell and reduce immune-related problems [20]. Thus,

iPS cells may have superiority for vascular regenerative

medicine compared to ES cells and somatic stem/pro-

genitor cells.

Therapeutic angiogenesis is likely mediated by multi-

ple angiogenic cytokines released from implanted cells

and host muscle tissues such as VEGF, bFGF and HGF

rather than by direct differentiation of transplanted cells

into mature endothelial cells [21-23]. Consistent with

this notion, our study showed that implanted Flk-1+

Figure 3 Time course RT-CPR in vitro. The expression of Flk-1

was peaked at Day5 from differentiation. Undifferentiated iPS cells

markers, Nanog and Oct3/4, were strongly expressed in early phase

and started to gradually decrease with differentiation. We also

observed the transient expression of c-myc at Day4 and Day5.
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cells generated from iPS cells rapidly augmented expres-

sion of VEGF in ischemic tissues. On the other hand,

the expression of bFGF, HGF or IGF was not affected in

this study. Enhanced VEGF activity would directly affect

hind limb blood flow.

Recently, Narazaki and coworkers showed that Flk-1+

cells derived from mouse iPS cells could differentiate

into both endothelial and mural cells and reproduce the

vascular regeneration process [11]. In the present study,

we confirmed incorporation of Flk-1+ cells generated

from iPS cells into vascular network structures in vitro.

In addition, it was shown that implanted Flk-1+ cells

were successfully incorporated into capillary networks in

the ischemic tissues. Therefore, Flk-1+ cells generated

from iPS cells might stimulate angiogenesis not only by

a paracrine action of cytokines but also by a direct side

supply of endothelial cells. These findings are encoura-

ging since it is possible that implantation of iPS cell-

derived Flk-1+ cells could construct de novo vessels in

ischemic tissues, consistent with postnatal vasculogen-

esis. Further studies will be needed to clarify the differ-

entiation capacity of these cells.

Recently, two studies reported the usefulness of Flk-1
+ cells for promoting angiogenesis in vivo [24,25].

Transplantation of human cord blood-derived Flk-1
+/CD34+ cells could salvage ischemic tissue in severe

combined immune deficiency mice [24]. When Flk-1+

cells generated from ES cells were directly injected

into the heart, significant improvement in cardiac

function was observed in doxorubicin induced cardio-

myopathy, and this was accompanied by an increase in

capillary density [25].

Figure 4 Effects of cell transplantation on blood flow recovery in the ischemic hind limb. A) Strategy to purify Flk-1+ cells and to

transplant them into ischemic hind limb tissues. B) Representative LDBF images. A low perfusion signal (dark blue) was observed in the ischemic

left hind limb of control mice, whereas high perfusion signals (white to red) were detected in Flk-1+ cell-transplanted animals (6 × 104 cells) on

postoperative days 3, 7 and 14. C) Quantitative analysis of the ischemic/nonischemic limb LDBF ratio on pre (Day-1) and post operative days 0, 3,

7 and 14 (n = 4). *p < 0.05 Flk1+ cells (6×104) injected mice vs. control mice. D) Cell dose-dependent effect of transplantation seven days after

surgery. Flk-1+ cells (2 × 103, 2 × 104 or 6 × 104 cells) or PBS as a control were injected into the ischemic limb at postoperative day 1 (n = 4/

each group, **p < 0.05 2×104 or 6×104 vs. control mice).
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We have some limitations in this study. Firstly with

regard to the unexpected lack of difference in VEGF

expression in day 14, self-healing and supplementary

effect by iPS may spontaneously attenuate around 14

days after transplantation. One study showed that dou-

ble immunolabeling for BrdU and CD-31 in ischemic

versus normal murine hindlimbs established that

endothelial cell proliferation peaks at 7 d (1,235 ± 254

versus 8 ± 14 BrdU-positive cells/mm2 for the ischemic

versus normal limbs, respectively, P < 0.001); prolifera-

tive activity is then subsequently reduced at days 14 and

21 [26]. However, detailed biochemical and cellular stu-

dies are required to better understand the underlying

mechanism of these conditions.

Secondly, the KSN nude mice were used for this study

to avoid immunological rejection of the injected iPS

cells, because the genetic background of the MEFs for

iPS generation in this study was 75% DBA, 12.5%

C57BL/6 and 12.5% 129S4 [27]. KSN nude mice were

mostly dead within three month by intestinal infections.

We could not detect formation of any tumors in the

mice transplanted Flk-1+ cells at least until post-operative

day 60. Because more than 99% of MACS-sorted cells

were Flk1+, the contamination of undifferentiated cells-

into injected cells was very rare. The present study indi-

cated the possibility of therapeutic use of iPS cells.

However, we always need very careful observation for

tumor formation in any transplantation studies using iPS

cells in the future.

Conclusion

In conclusion, direct local implantation of mouse iPS

cell-derived Flk-1+ cells has augmented ischemia-

induced angiogenesis in a mouse model. This suggests

that iPS cells would be a potential candidate for use in

therapeutic angiogenesis.

Methods

Reagents

Allophycocyanin (APC) conjugated anti-mouse Flk-1,

Phycoerythrin (PE) conjugated anti-mouse Sca-1 and

PE-CD44 antibodies were purchased from eBioscience

Figure 5 Flk-1+ cell implantation stimulated VEGF, basic FGF, HGF and IGF expression in ischemic tissue. VEGF, basic FGF, HGF and IGF

synthesis in ischemic hind limb muscles was determined by real-time RT-PCR following transplantation of the Flk-1+ cells (2 × 103, 2 × 104 or 6

× 104 cells) or PBS-injection as the control(CNT). Results are expressed as the level of VEGF, basic FGF, HGF and IGF mRNA to day three control.

GAPDH mRNA levels were used as the internal control. *P < 0.05 6×104 vs. CNT at each day (n = 4 in each groups). N.S. = not significant

difference between groups at same day.
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(San Diego, California). Anti-APC microbeads were

purchased from Miltenyi Biotec (Bergisch Gladbach,

Germany). PE conjugated anti-mouse CD11b, PE-CD45,

PE-CD117(c-kit), PE-CD31, PE-CXCR4, Fluorescein

isothiocyanate (FITC) conjugated anti-mouse CD34,

FITC-CD90 and CD31 monoclonal antibodies were pur-

chased from BD Pharmingen (San Diego, California). PE-

SSEA1 antibody was purchased from R&D Systems (Min-

neapolis, Minnesota). PE-VE-cadherin antibody was pur-

chased from Santa Cruz Biotechnology (Santa Cruz,

Figure 6 Tracking Flk-1+ cells in vitro and at chronic phase in vivo. A) Tube formation assay in vitro. PKH26 red-labeled Flk-1+ iPS cells were

co-cultured with HUVECs for 24 hours on Matrigel. iPS cells (red) were confirmed to be incorporated into network structures. The bar indicates

200 μm. B) Double fluorescence staining of CD31 (green) and PKH26 (red) in ischemic adductor muscles on postoperative day 21. Co-localization

is indicated by yellow in the merged images (magnification, ×400; bar indicates 50 μm). Flk-1+ cells (6 × 104 cells) were stained with PKH26 red

and then injected into ischemic adductor muscles. Double positive cells (▲) and single positive PKH26 cells(↑) are indicated.
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California). Alexa Fluor® 555 conjugated E-Cadherin anti-

body was purchased from Cell Signaling Technology

(Danvers, Massachusetts). PKH26 Red Fluorescent Cell

Linker Kit was purchased from SIGMA-ALDRICH (St

Louis, Missouri).

Cell Culture

Germline competent mouse iPS cell lines “iPS-MEF-Ng-

20D-17” generated from mouse embryonic fibroblasts by

introducing the four factors(Oct3/4, Sox2, Klf4 and the

c-Myc mutant c-Myc(T58A) with the use of retroviral

vectors were provided by Riken Cell Bank with the per-

mission of Dr. S. Yamanaka [10,27]. iPS-MEF-Ng-20D-

17 cell is carrying Nanog promoter-driven GFP/IRES/

puromycin-resistant gene (Nanog-iPS cells). iPS cells

were maintained in Dulbecco’s modified Eagle’s medium

(Invitrogen, Van Allen Way Carlsbad, California) con-

taining 10% Knockout Serum Replacement (KSR)(Invi-

trogen), 1% fetal bovine serum (FBS), nonessential

amino acids, 5.5 mmol/L 2-mercaptoethanol, 50 U/mL

penicillin, and 50 mg/mL streptomycin on feeder layers

of mytomycin-C-treated mouse embryonic fibroblast

cells stably releasing leukemia inhibitory factor (LIF).

Cell differentiation was induced as described previously

[11]. In brief, differentiation medium (DM) (a-minimum

essential medium (Invitrogen) supplemented with 10%

FBS and 5 × 10-5 mol/L 2-mercaptoethanol) was used

for iPS cell differentiation. Flk-1+ mesodermal cells were

induced by 96 to 108 hr culture of iPS cells (plated at

1.7 × 103 cells/cm2) in DM in the absence of LIF on

type IV collagen-coated dishes (ASAHI GLASS CO.,

LTD, Tokyo, Japan).

Cell separation and analysis

Cultured cells were harvested after induction of Flk-1+

cells by 96 to 108 hr culture in DM on type IV col-

lagen-coated dishes. Induced cells were stained with

APC conjugated anti-mouse Flk-1 antibody. Flk-1+ cells

were sorted with a magnetic cell separation system and

purity was confirmed by flow cytometric analysis (BD

FACS Canto, BD, Franklin Lakes, New Jersey). For the

detailed characterization, induced cells were stained

with APC conjugated anti-mouse Flk-1 antibody and

additional antibody (CD11b, CD44, CD45, CD117, Sca-1,

SSEA-1, E-cadherin, CXCR4, CD31, VE-cadherin, CD34

and CD90). Stained cells were analyzed by BD FACS

Canto.

Tube formation assay and incorporation of Flk-1+ iPS cells

The formation of vascular-like structures by Flk-1+ iPS

cells on growth factor-reduced Matrigel (BD Bios-

ciences, Bedford, Massachusetts) was performed as

described previously [28]. Briefly, iPS positive cells

(labeled with the PKH26 Red Fluorescent Cell Linker

Kit [SIGMA-ALDRICH, St Louis, Missouri]) and

HUVEC(Cambrex Bio Science Walkersville, Inc., Charles

City, Iowa) were seeded at a ratio of 1:1 on coated plates

at 3 × 104 cells/cm2 in EBM-2 medium containing

EGM-2(LONZA, Basel, Switzerland) and incubated at

37°C for 24 h. Network formation and Flk-1+ iPS cell

incorporation were assessed using an inverted phase

contrast microscope (Biozero BZ8000, KEYENCE Japan,

Osaka, Japan).

Mouse model of hind limb ischemia and cell

transplantation

Male KSN athymic nude mice were used for this study.

Study protocols were approved by the Institutional

Animal Care and Use Committee (IACUC) of Nagoya

University School of Medicine. Mice, ages 8 to 12

weeks, were subjected to operative unilateral hind limb

ischemia under anesthesia with sodium pentobarbital

(50 mg/kg i.p.). In this model, the entire left femoral

artery and vein were excised surgically [29]. Before

surgery and on postoperative days three, seven, 14, and

21, body weight and systolic blood pressure were

determined using a tail-cuff pressure analysis system in

the conscious state. Flk-1+ cells (2 × 103, 2 × 104 or 6

× 104 cells/mouse) or PBS as a control were injected

into four different sites of adductor muscles in the

ischemic limb on postoperative day one. To trace

transplanted cells in the ischemic tissues, sorted Flk1+

cells were labeled with a PKH26 Red Fluorescent Cell

Linker Kit and then injected into ischemic adductor

muscles. Implanted cells were evaluated by immuno-

histochemical analysis 21 days after cells implantation.

The signals were detected and analyzed by fluores-

cence microscopy.

Laser Doppler blood flow analysis

Hindlimb blood flow was measured using a laser Dop-

pler blood flow (LDBF) analyzer (Moor LDI; Moor

Instruments, Devon, United Kingdom). LDBF analysis

was performed on legs and feet. Blood flow was dis-

played as changes in the laser frequency using different

color pixels. After scanning, stored images were ana-

lyzed to quantify blood flow. To avoid data variations

due to ambient light and temperature, hindlimb blood

flow was expressed as the ratio of left (ischemic) to

right (nonischemic) LDBF in a same mouse according

to previous studies [26,29-33]. In addition, in this study,

the each ratio of left (ischemic) to right (nonischemic)

LDBF was normalized to the each day-1(pre surgery)

LDBF value.
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Reverse transcriptase-polymerase chain reaction and real-

time Reverse transcriptase-polymerase chain reaction

Total RNA was isolated from cultured iPS cells using TRI-

zol Reagent (Invitrogen Life Technologies, Carlsbad, CA).

Total RNA from ischemic muscles was extracted using the

of FastRNA Pro Green Kit. (MP Biomedicals, Solon,

Ohio). The cDNA was produced using oligo-dT primers

and superscript II reverse transcriptase (superscript II,

Invitrogen). The cDNA was diluted with DNase-free water

at a concentration of 10 ng/μl. RT-PCR was performed

using the Ex-Taq PCR kit (Takara, Otsu, Japan) according

to the manufacturer’s instructions.

Real-time reverse transcriptase-polymerase chain reac-

tion (real-time RT-PCR) was performed using 1 μg

cDNA in the Mx3000P Real-Time PCR System (Strata-

gene, Agilent Technologies, Santa Clara, California)

using SYBR Green I as a double-stranded DNA-specific

dye according to the manufacturer’s instructions

(Applied Biosystem, Foster City, California).

Primers were as follows: forward 5’-CAGGCTGCTG-

TAACGATGAA-3’ (Location: Exon3, Melting Tempera-

ture:60.01°C) and reverse 5’-GCATTCACATCTGC

TGTGCT-3’ (Location: Exon4, Melting Tempera-

ture:60.02°C), Product size: 140 bp for murine VEGF.; for-

ward 5’-GGCGGTGGTGACAGTATCTT-3’ (Location:

Exon3, Melting Temperature:60.00°C) and reverse 5’-

GTCACTGACAGAGGCGATGA-3’ (Location: Exon4,

Melting Temperature:59.99°C), Product size: 162 bp for

murine Flk-1.;forward 5’-CCAATCAGCTTGGGCTA-

GAG-3’ (Location: Exon5, Melting Temperature:59.97°C)

and reverse 5’-CTGGGAAAGGTGTCCCTGTA-3’ (Loca-

tion: Exon6, Melting Temperature:59.96°C), Product size:

129 bp for murine Oct3/4.;forward 5’-AAGTACCT-

CAGCCTCCAGCA-3’ (Location: Exon3, Melting Tem-

perature:60.01°C) and reverse 5’-GGGGATAGCTG

CAATGGATG-3’ (Location: Exon5, Melting Tempera-

ture:62.66°C), Product size: 199 bp for murine Nanog.;for-

ward 5’-TCCTGTACCTCGTCCGATTC-3’ (Location:

Exon2, Melting Temperature:60.07°C) and reverse 5’-

GGTTTGCCTCTTCTCCACAG-3’ (Location: Exon3,

Melting Temperature:59.84°C), Product size: 195 bp for

murine c-myc.;forward 5’-AGTGTGACGTTGA-

CATCCGT-3’ (Location: Exon5, Melting Tempera-

ture:59.02°C) and reverse 5’-GCAGCTCAGTAACAG

TCCGC-3’ (Location: Exon7, Melting Temperature:61.15°

C), Product size: 298 bp for murine beta actin.; forward 5’-

AACTTTGGCATTGTGGAAGG-3’ (Location: Exon3,

Melting Temperature:59.97°C), and reverse 5’-ACA-

CATTGGGGGTAGGAACA-3’(Location: Exon3, Melting

Temperature:60.09°C), Product size: 223 bp for murine

GAPDH.; forward 5’-AGCGGCTCTACTGCAAGAAC-

3’(Location: Exon1, Melting Temperature:59.79°C), and

reverse 5’-GCCGTCCATCTTCCTTCATA-3’(Location:

Exon4, Melting Temperature:60.04°C), Product size: 183

bp for murine FGF2.; forward 5’-GGCAGCTATAAAGG-

GACGGTA-3’ (Location: Exon5, Melting Tempera-

ture:60.46°C), and reverse 5’-CTTCTTCCCCTCGAGGA

TTT-3’ (Location: Exon6, Melting Temperature:59.65°C),

Product size: 154 bp for murine HGF.

Analyses of mRNA levels of VEGF were normalized to

GAPDH as the internal control and expressed relative

to the quantity of VEGF mRNA at day three in ischemic

adductor muscle injected with PBS (day three control).

Statistical Analysis

All data were obtained from at least three independent

experiments. Statistical analysis of the data was per-

formed using Student’s t test or two-way ANOVA. P <

0.05 was considered significant. All data are shown as

means ± SEM.
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