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Quercetin, a naturally non-toxic flavonoid within the safe dose range with

antioxidant, anti-apoptotic and anti-inflammatory properties, plays an

important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a

member of NAD+-dependent deacetylase enzyme family, is extensively

explored as a potential therapeutic target for attenuating aging-induced

disorders. SIRT1 possess beneficial effects against aging-related diseases

such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s

disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and

reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have

reported that aging increases tissue susceptibility, whereas, SIRT1 regulates

cellular senescence and multiple aging-related cellular processes, including

SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3b mediated oxidative

stress, SIRT1/NF-kB and SIRT1/NLRP3 regulated inflammatory response,

SIRT1/PGC1a/eIF2a/ATF4/CHOP and SIRT1/PKD1/CREB controlled

phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage,

SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkb-
catenin mediated neuroprotective effects. In this review, we summarized the

role of SIRT1 in the improvement of the attenuation effect of quercetin on

aging-related diseases and the relationship between relevant signaling

pathways regulated by SIRT1. Moreover, the functional regulation of

quercetin in aging-related markers such as oxidative stress, inflammatory

response, mitochondrial function, autophagy and apoptosis through SIRT1

was discussed. Finally, the prospects of an extracellular vesicles (EVs) as

quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for

treating aging-related diseases, as well as discussed the ferroptosis alleviation

effects of quercetin to protect against aging-related disease via activating
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SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the

treatment of aging-related diseases via inhibiting oxidative stress, reducing

inflammatory responses, and restoring mitochondrial dysfunction.
KEYWORDS

quercetin, aging-related diseases, sirtuin 1, oxidative stress, mitochondrial
dysfunction, inflammatory response
Highlights:
1. Quercetin, a naturally non-toxic flavonoid within the safe

dose range with antioxidant, anti-apoptotic, and anti-

inflammatory properties, plays an important role in the

treatment of aging-related diseases.

2. Quercetin exerts neuroprotective effects against chronic

aging-related diseases via targeting SIRT1 to regulate

cellular senescence and multiple aging-related cellular
02
processes such as SIRT1/Keap1/Nrf2/HO-1 and PI3K/Akt/

GSK-3b mediated oxidative stress, SIRT1/NF-kB mediated

inflammatory response, SIRT1/PGC1a/eIF2a/ATF4/CHOP

mediated mitochondrial damage, and SIRT1/FoxO mediated

autophagy.

3. Studies on the preventive and therapeutic effects and clinical

application of natural SIRT1 activator or synthetic SIRT1

activator on aging-related diseases could provide a strong

foundation and basis for investigating further potential target

drugs to attenuate aging-related diseases.
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1 Introduction

Aging in both animals and humans is positively

correlated with a decline in the physiological functions,

thereby increasing the occurrence of aging-related diseases;

such as neurodegenerative diseases (NDS) (1) including

Alzheimer’s disease (AD) (2), Parkinson’s disease (PD) (3),

Huntington’s disease (HD) (4), and Depression (5); as well as

other related diseases such as Osteoporosis (6), Myocardial

ischemia (M/I) and reperfusion (MI/R) (7), Atherosclerosis

(AS) (8), and Diabetes (9). A study reported that aging-

related NDS caused significant morbidity and economic

burden of approximately $25 billion annually in the USA (10).

Therefore, several researchers engaged in studies to explore the

molecular mechanism of various aging related diseases.

Chronological aging cause subtle changes in the neuronal

structure and function of specific neuronal circuits, resulting in

significant decrease in dopamine receptors in the striatum and

reactive microglia and astrocytes, and the overactivation of

proinflammatory microgl ia which tr iggers chronic

inflammation (11). The production and accumulation of free

radicals causes oxidative stress which increases the production of

proinflammatory cytokines, leading to neuronal cell death and

glial cell activation (12, 13). However, Sirtuin 1 (SIRT1) regulates

the expression of proinflammatory cytokines such as tumor

necrosis factor (TNF), interleukin-1 b (IL-1b), and interferon g
(IFN-g) during microglial activation (14), as well as alleviates

degeneration of dopaminergic neurons (15).

Sirtuin (SIRT), a member of the NAD+-dependent

deacetylase enzyme family, regulates various cellular targets

and functions. SIRT1 is the most widely studied Sirtuin in

mammals and is considered as a potential therapeutic target

for aging-associated disorders (16–18). SIRT1 activation was

reported to attenuate other age-associated disorders such as

NDS (19–21). Several aging-related markers such as

neuroinflammation, oxidative stress, activation of glial cell,

inhibition of adaptive neuroplasticity, dysregulation of

neuronal Ca2+ homeostasis, mitochondrial dysfunction, and

cellular senescence elevate the risk of aging-related diseases
Frontiers in Immunology 03
(22). Studies have indicated that SIRT1 silencing intensify the

formation of aging-related inclusions containing alpha-

synuclein, increase the number of age-dependent degeneration

of dopaminergic neurons, which intensify the progression of

related diseases (23). Moreover, excessive production of free

radicals causes cell damage, leading to oxidative and nitrosative

stress, which disrupts the immune function and hence, induces

series of aging-related diseases. SIRT1 modulates the production

and accumulation of reactive oxygen species (ROS) in vitro and

in vivo, thereby attenuating oxidative stress associated with

neurodegeneration (15, 24).

ROS accumulation cause mitochondrial dysfunction and cell

death due to excessive inflammation (25), this allows the

development of aging-related diseases (26). However, SIRT1

promotes mitochondrial function and regulates mitochondrial

homeostasis. Studies have indicated that overexpression of

SIRT1 can effectively inhibit cell death, promote cell survival,

and prolong the lifespan of cells (27). However, available

strategies such as chemical drugs to treat diseases are very

expensive, less clinically effective, and have obvious toxic

effects. Therefore, researchers are currently studying to develop

potent, cheap, safe, and more effective natural alternatives or

novel targets to attenuate aging-induced diseases.

Quercetin (2-(3,4-dihydroxy phenyl)-3,5,7-trihydroxy-4H-

1-benzopyran-4-one) (Figure 1) is one of the major naturally

nontoxic flavonoids which is widely found in fruits (grapes,

peaches) and vegetables (onions, garlic). Quercetin is a lipophilic

compound that could be absorbed by simple diffusion across the

intestinal membrane, however, it is ingested primarily as a

glycoside, which is converted to a glycoside ligand in the

intestine, and then release by absorption into the intestinal

epithelium through the action of b-glycosidase, and both the

intestinal and oral bacteria are involved in this enzymatic

hydrolysis. Studies have shown that poor oral bioavailability of

single doses (28–30). The poor aqueous solubility of quercetin

(~1 mg/mL in water, ~5.5 mg/mL in simulated gastric fluid, and

~28.9 mg/mL in simulated intestinal fluid) and its instability in

the physiological media have limited its application in

pharmacology (31, 32), great efforts have been made in its
FIGURE 1

Chemical formula of quercetin.
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drug delivery systems to address the problem of limited

application (33, 34).

Quercetin plays many beneficial roles such as antioxidant

(35), anti-inflammatory (36), anti-apoptotic (37) and other

biological activities (38) in neuroprotection (39). Reports have

indicated that quercetin contain anti-aging properties (31, 40–

43). However, the mechanisms through which quercetin exert

these functions are complex and the signaling pathways are

intertwined. Therefore, our aim in this review was to clarify how

quercetin targets SIRT1 to prevent aging-related diseases,

elucidate the relationships between the relevant signaling

pathways, provide the possible targets and the theoretical basis

for quercetin to serve as an effective drug for aging-

related diseases.
2 Effects of quercetin on
neurodegenerative diseases

2.1 Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is a neurodegenerative disorder,

characterized by learning and memory dysfunction at an early

stage and eventually evolves into a cognitive disorder. Due to the

progression of the disease and limited treatment options, AD has

become one of the greatest threats to the modern population,

accounting for approximately 45 million patients worldwide.

Studies have predicted that by the year 2050, approximately 150

million people may suffer from AD (2).

The mechanisms of AD are related to the deposition of b-
amyloid (Ab) peptides and intracellular neurofibrillary tangles

consisting of hyperphosphorylated tau protein, which are

important characteristics of AD and can lead to serial

neuronal loss and brain atrophy (44). SIRT1 regulates the

expression of Ab (45) and tau (46), which are associated with

AD. A study using a three-transgenic AD (3XTG-AD) mice

model, reported that quercetin (100 mg/kg) significantly

improved the biomarkers of neurodegeneration and cognitive

and emotional deficits (47).

2.1.1 Regulation of oxidative stress
In addition to its direct toxic effects on neurons, Ab increases

the sensitivity of neurons to harmful factors such as free radicals

and oxidative stress, which play important role during AD.

Quercetin supplementation reduce microglia aggregation

around amyloid plaques in AD mice (48) through various

excess protein pathways (49). Activation of SIRT1 was

reported to counteract oxidative stress induced by Ab
aggregation (50). In addition, Yu et al. reported that quercetin

regulates SIRT1/Nrf2/HO-1 pathway thereby exerting

neuroprotective effects against AD (51). In HT22 hippocampal

neurons, quercetin was reported to show a neuroprotective effect
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by promoting phosphoinositide 3-kinase (PI3K)/Akt which

could downregulate glycogen synthase kinase 3beta (GSK-3b)
activity (52), thereby reducing oxidative stress-mediated

neuronal death.

2.1.2 Regulation of inflammatory response
Ab promotes the activation of microglia and the release of

inflammatory cytokines. Chronic inflammation is associated

with age-related Alzheimer’s disease. Studies have shown that

quercetin exerts an anti-neuroinflammatory effects on LPS-

activated BV-2 microglial cells (53), by attenuating the

production of inflammatory mediators, including nitric

oxide (NO) and TNF, as well as reduce the level of

inducible NO synthase (iNOS) (54). Quercetin reduces ROS

production by promoting the activity of SIRT1 and enhancing

the anti-inflammatory activity of NF-kB acetylation in the

neural and glial cells, thereby reducing neuronal cell

death (55).

2.1.3 Regulation of mitochondrial function
Mitochondria are organelles responsible for ATP

production, calcium regulation, and regulation of redox

homeostasis. Mitochondrial dysfunction is regarded as the

main causative factor of the pathogenesis aging-related AD

(56), as a result could inflict damage to neurons, microglia,

and astrocytes (57). Microglia phagocytose Ab and the

surrounding Ab plaques promote the synaptic and neuronal

loss in the chronic AD process in the mitochondrial dysfunction

and hence, increase LAMP1 immunoreactivity, thereby

preventing the diffusion of soluble amyloid into the

surrounding thin-walled brain (58). In addition, quercetin was

found to improve the cognitive function in the APPswe/PS1De9

transgenic mice model during chronic AD, by reducing

mitochondrial dysfunction via the activation of AMP-activated

protein kinase (AMPK) (59). Moreover, SIRT1 regulates

mitochondrial biogenesis and function by directly controlling

the activity of proliferator-activated receptor gamma coactivator

1alpha (PGC-1a) through phosphorylation and deacetylation

(60), whereas quercetin cause a reduction in the phosphorylation

of the eukaryotic initiation factor 2 alpha (eIF2a), as well as

activate the expression of transcription factor 4 (ATF4) through

the GADD34 induction in the brain, leading to memory

improvement in aged mice and delayed memory deterioration

at the early stage of APP23 AD model mice (61).

2.1.4 Regulation of autophagy function
Autophagy is the main mechanism underlying the onset and

progression of AD (62). FoxO proteins, key substrates of SIRT1,

are prominent and necessary factors in the formation of memory

and cognitive function (63). Studies in a drosophila AD model

have shown that quercetin significantly alleviate chronic AD by

restoring the expression of cell cycle protein including cell cycle
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proteins B located in the FoxO signaling pathway perturbed by

Ab accumulation (64).

In summary, quercetin exerts neuroprotective effects against

chronic AD by targeting SIRT1 to regulate cellular senescence

and aging-related multiple cellular processes, including SIRT1/

Keap1/Nrf2/HO-1 and PI3K/Akt/GSK-3b mediated oxidative

stress, SIRT1/NF-kB mediated inflammatory response, SIRT1/

PGC1a/eIF2a/ATF4/CHOP mediated mitochondrial damage,

and SIRT1/FoxO mediated autophagy (Figure 2 and Table 1).
2.2 Parkinson’s disease (PD)

Parkinson’s disease (PD) is a common progressive

neurodegenerative disease after AD, which affects approximately

1-2% of people at the age ≥ 65 (65). PD is characterized by

dopaminergic (DAergic) neuronal deficits and glial dysfunction in

the substantia nigra (SN), caused by neuroglial dysfunction and

neuroinflammation (66). Studies have shown that a-synuclein
(a-SYN) regulates pathological events that cascade the response
in PD (67), whereas SIRT1 proteins modulates PD (68).

2.2.1 Regulation of oxidative stress
Oxidative stress is a major inducers of PD pathogenesis. This

is because ROS activates a-syn aggregation cascade, together with
Frontiers in Immunology 05
Lewy bodies, promotes neurodegeneration (69). In a 6-

hydroxydopamine (6-OHDA) PD rat model, it was observed

that quercetin alleviated the unilateral medial forebrain tract

(annigra lesion) or the striatum (part lesion) through the

antioxidant, anti-inflammatory, and protective neurotransmitter

mechanisms (70–72). The efficacy of quercetin was tested in

MitoPark transgenic chronic PD mice model, to ameliorate

striatal dopamine depletion and 5-TH neuronal cell loss (73).

Other studies have shown that different doses of quercetin reduce

oxidative damage by regulating SIRT1/HO-1/Nrf2 pathway,

thereby increasing neuronal density (74). Furthermore, Nrf2

modulates ARE/PINK1 expression (75), to restore mitochondrial

homeostasis in chronic PD (76).

2.2.2 Regulation of inflammatory response
PD activates microglia to promote inflammatory processes

by releasing inflammatory cytokines and chemokines (77).

Moreover, degeneration of dopaminergic neurons is induced

by the synergy of ROS, neuroinflammation, and loss of other

trophic factors (78). In the microglial (N9)-neuronal (PC12) co-

culture systems, quercetin downregulates the expression of

proinflammatory cytokines in the N9 microglia, and reduce

apoptosis in the post-neuronal cells (79). Studies have reported

that quercetin alleviates manganese-induced neuroinflammation

by inhibiting apoptosis and oxidative stress through the SIRT1/
FIGURE 2

Mechanisms of quercetin on Alzheimer’s disease (AD). Quercetin exert neuroprotective effects against chronic AD by targeting SIRT1 to regulate
cellular senescence and aging-related multiple cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and PI3K/Akt/GSK-3b mediated oxidative
stress, SIRT1/NF-kB mediated inflammatory response, SIRT1/PGC1a/eIF2a/ATF4/CHOP mediated mitochondrial damage, and SIRT1/FoxO
mediated autophagy. CAT, catalase; GSH-Px, glutathione peroxidase; PI3K, phosphoinositide 3-kinase; GSK-3b, glycogen synthase kinase 3beta;
iNOS, inducible nitric oxide synthase; TNF, tumor necrosis factor; TLR, toll-like receptors; PGC-1a, proliferator-activated receptor gamma
coactivator 1alpha; AMPK, AMP-activated protein kinase; eIF2a, eukaryotic initiation factor 2 alpha; and ATF4, activating transcription factor 4.
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iNOS/NF-kB and HO-1/Nrf2 pathways (80, 81). NLRP3

inflammatory vesicle is one the most characterized

inflammatory vesicles, which can be activated by highly

diverse stimuli. NLRP3 is activated by procaspase-1, which in

turn induces maturation and secretion of inflammatory

cytokines, as well as plays an important role in PD (82).

Studies have shown that quercetin impedes microglial

activation by inhibiting the interaction between the NLRP3

inflammasome and mitochondrial autophagy to reduce

neurotoxicity (39). In aged mice, quercetin was reported to

attenuate neuroinflammation by modulating the SIRT1/

NLRP3 pathway (83).

2.2.3 Regulation of mitochondrial function
Excessive ROS production and accumulation cause

mitochondrial dysfunction by a-SYN, which subsequently

results in neurodegeneration (80, 84, 85). However, quercetin

is significantly induced in MN9D dopaminergic neuronal cells,

two major cell survival kinases, and the activation of PD protein

kinase D1 (PKD1) and Akt (86). The cAMP response element-
Frontiers in Immunology 06
binding protein (CREB) and a transcriptional activator of brain-

derived neurotrophic factor (BDNF), are involved in microglial

activation. Interestingly, quercetin (10 mM) was found to

upregulate BDNF gene expression in the dopaminergic

neuronal cells through phosphorylating CREB by PKD1 or

through st imulat ing mitochondria l biology in the

dopaminergic neuronal cells via regulating SIRT1/PGC-1a
transcriptional activity through CREB generation. Moreover,

mitochondria act as a key regulator for NLRP3 inflammatory

vesicles, whereas mitochondrial dysfunction leads to NLRP3

assembly and activation. Mitochondrial dysfunction in the

astrocytes amplifies the activity of the NLRP3 inflammasome,

as well as promotes IL-1b production.

2.2.4 Regulation of autophagy function
a-SYN regulates autophagosome synthesis, leading to

defective autophagy. Quercetin acts as an autophagy enhancer

in aged PD rat models and modulate the microenvironment

leading to neuronal death (87). PTEN is responsible for

inducing putative kinase 1 (PINK1) that contributes to the
TABLE 1 Pharmacological functions of quercetin on AD.

In vitro and in vivo
model

Quercetin
Dose

Mechanism Effect factors References

3xTg-AD mouse 100 mg/kg
2 w

Prevents b-amyloid aggregation CA1 and tau↓ (47)

APP/PS1 mice 2 mg/g
1 -13 m

Reduce the Ab and amyloid deposition and astrogliosis APP, CTFb, GFAP, Hevin and
SPARC↓
p-Smad2 and p-STAT3↑

(55)

AD mice 2 mg/g
16 w

Reduce microglial cell aggregation around amyloid plaques tau protein↓ (48)

C57BL/6J female mice
Atg5KD/SC100/HEK293 cells

50 mM
12 h

Reduce autophagy impairment or ER stress eIF2a and ATF4↓
APP and IRE1a↑

(61)

APPswe/PS1dE9 transgenic
mouse

20, 40 mg/kg
16 w

Activation of AMPK to improve AD ROA↓
ATP, MMP and AMPK↑

(59)

Drosophila 0.44 g/L
10 d

Decrease extracellular b-amyloidosis, tauopathy, astrogliosis via
FoxO signaling pathway

APP, cyclin B, BACE1, PS1/2,
nicastrin, APH-1, PEN-2 ↓

(64)

Primary Culture of
Hippocampal Neurons

20 mM
24 h

Improves mitochondrial function, reduce oxidative stress and
apoptosis induction through the Sirt1/PGC-1a axis

caspase-3↓
SIRT1, PGC-1a↑

(60)

PC12 cells 10, 20, 40,
80 mM
24 h

Promote cell proliferation, and antagonize the toxicity of Ab via
sirtuin1/Nrf2/HO-1

LDH, AchE ↓
SOD, GSH-P, CAT, T-AOC,
sirtuin1, Nrf2 and HO-1↑

(51)

HT22 cells 5, 10 mM
24 h

Enhancement of PI3K/Akt PSEN1, PSEN2 and APP↓
GST, NQO1, Nrf2, ARE, JNK, AP-
1, PI3K, Akt, GSK-3b↑

(52)

HT22 cells 5, 10 mM
24 h

Induce Tau protein activity and blocked the Ca2+ -calproteinase-
p25-CDK5 signaling pathway

tau protein and Ca2+−calpain−p25
−CDK5↓

(44)

BV-2 microglia cells 35 mM
24 h

Activate BV-2 microglia at G2/M phase, mitigated inflammatory
profile

iNOS, TNF, NF-kB, TLR, NLR,
MHC II, CD11B/CR3, CD68↓

(53)
fr
h, hours; d, days; w, weeks; m, months; SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; PI3K, phosphoinositide 3-kinase; GSK-3b, glycogen synthase kinase
3beta; iNOS, inducible nitric oxide synthase; TNF, tumor necrosis factor; TLR, toll-like receptors; PGC-1a, proliferator-activated receptor gamma coactivator 1alpha; SPARC, secreted
protein acidic and rich in cysteine; ROA, Raman optical activity; MMP, matrix metalloproteinase; AMPK, AMP-activated protein kinase; eIF2a, eukaryotic initiation factor 2 alpha; and
ATF4, activating transcription factor 4. ↓ downregulation; ↑ upregulation.
ontiersin.org

https://doi.org/10.3389/fimmu.2022.943321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2022.943321
development of astrocyte and proliferation, as well as was

identify as an essential protein for the removal of the damaged

mitochondria via autophagy (88). PINK1-parkin-mediated

dysfunction of the mitochondrial autophagy in the astrocytes

can impair the integrity of the mitochondria (89), which leads

neuronal dysfunction and degeneration (90). Reports have

shown that quercetin activates SIRT1, promotes autophagic

PINK1 activation, and reduces cytochrome c release, as well as

enable cystatinase activation to maintain mitochondrial

integrity, thereby preventing apoptosis (91). Quercetin

regulates the protein expression of Bcl2/Bax and the release of

cytochrome c, and nuclear translocation of apoptosis-inducing

factor (AIF) (92). Quercetin also promotes autophagy and

modulates the microenvironment which leads to neuronal

death (87).

Therefore, quercetin is a potential therapeutic strategy for

alleviating PD by targeting SIRT1. Developing therapies have

shown that SIRT1/Nrf2/HO-1 mediated oxidative stress, SIRT1/

NF-kB/NLRP3 pathway ameliorates neuroinflammation SIRT1-

mediated PKD1/CREB phosphorylation and BDNF gene

expression, and regulates mitochondrial disorders in the

dopaminergic neurons and SIRT1-PINK1-Parkin mediated

mitochondrial autophagy in the astrocytes to maintain

mitochondrial function (Figure 3 and Table 2).
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2.3 Effects of quercetin on Huntington’s
disease (HD)

Huntington’s disease (HD) is a neurodegenerative disorder

characterized by a progressive loss of dopaminergic neurons in

the substantia nigra, as well as progressive motor dysfunction,

chorea, dystonia, mood disturbances, memory, and weight loss.

Symptoms of HD in humans usually appear between the ages

30-50 years and increase in severity with chronological age (93).

Current disease palliative therapies for HD focus on reducing the

levels of mutant huntingtin (mHTT) in brain cells (94). The

overexpression of SIRT1 was reported to increase the survival in

R6/2 HDmice and improve neuropathology and reduced mHTT

aggregation in R6/2 models (95).

2.3.1 Regulation of mitochondrial function
In 3-nitropropionic acid (3-NP)-induced HD rat models,

quercetin maintain mitochondrial function by attenuating

oxidative stress and neurobehavioral disorder (96). In addition,

dysfunction of mitochondrial metabolism of mHTT play major

role in the pathogenesis of HD which is primarily associated

with impair respiratory chain function, thereby increasing ROS

production and subsequently results in cell death. Furthermore,

the ubiquitin-proteasome system (UPS) or autophagy reduce the
FIGURE 3

Mechanisms of quercetin on attenuating Parkinson’s disease (PD). Quercetin is a potential therapeutic strategy for PD by targeting SIRT1. Developing
therapies have shown that SIRT1/Nrf2/HO-1 mediated oxidative stress, SIRT1/NF-kB/NLRP3 pathway ameliorates neuroinflammation SIRT1-mediated
PKD1/CREB phosphorylation and BDNF gene expression, regulates mitochondrial disorders in dopaminergic neurons and SIRT1-PINK1-Parkin
mediated mitochondrial autophagy in the astrocytes to maintain mitochondrial function. ROS, reactive oxygen species; 5-HT, 5-hydroxytryptamine;
CAT, catalase; GSH-Px, glutathione peroxidase; TNF, tumor necrosis factor; NLRP3, NOD-like receptor protein 3; IL-1b, interleukin-1 b; CREB, cAMP
response element binding protein; MDA, malondialdehyde; BDNF, brain-derived neurotrophic factor; and GFAP, glial fibrillary acidic protein.
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formation of toxic mHTT aggregates (97). A study showed that

inducement of mHTT could decrease the proteasomal activity of

UPS which could be reverse by the quercetin (20 µM), thereby

attenuating mitochondrial membrane potential damage (98).

2.3.2 Regulation of inflammatory response
It was established that quercetin could alleviate HD in rat

model by regulating inflammatory changes (IL-1b, IL-6, and
Frontiers in Immunology 08
TNF) associated with growth factors released from astrocytes by

the reduction of microglial proliferation, as well as increasing

astrocyte numbers (99). In addition, quercetin reduce anxiety

and depression in patients with 3-NP-induced chronic HD

(100). This indicate that quercetin plays neuroprotective role

in HD by targeting SIRT1 to relieve mHTT aggregation in

patients, and restore mitochondrial function and reduce

inflammation (Figure 4 and Table 3).
TABLE 2 Pharmacological functions of quercetin on PD.

In vitro and vivo model Quercetin
Dose

Mechanism Effect factors References

7-month-old aging mice 35, 70 mg/kg
4 w

Regulates the Sirtuin1/NLRP3 pathway cleaved caspase 1, IL-1b, IL-18, NLRP3, ASC,
MDA and ROS↓
sirtuin1, PSD95, BDNF, NGF and GFAP↑

(83)

parkin+/− x parkin+/− mating mice 5 mM
24 h

Scavenging damaged mitochondria TBK1‐activated OPTN binding of PINK1‐
phosphorylated Ubiquitin.

(91)

6-OHDA rat lesion models 25, 50 mg/kg
6 w

Improves antioxidant and anti-inflammatory
potential and restored neurotransmitters

neuroinflammatory (TNF, IL-1 b and IL-6) ↓
LPO, GSH, Nitrite and neurotransmitter
(dopamine, norepinephrine, serotonin, GABA,
glutamate)↑

(72)

rats to cadmium 25 mg/kg
28 d

Modulates mitochondrial integrity and MAP
Kinase signaling

ROS, MAPK, c-Jun N, p38 and ERK↓
PKCb1, ChAT and AChE↑

(84)

Rotenone- and Iron Supplement–
Induced Parkinson disease in
Experimental Rats

25, 50 mg/kg
28 d

Neuroprotective effect via antioxidant, anti-
inflammatory

TNF, IL-1b and IL-6↑
LPO, GSH, mitochondrial complexes I and IV↑

(80)

rotenone rat model of PD 2 ml/kg
4 w

Augmentes autophagy, ameliorated ER stress-
induced apoptosis with attenuated oxidative
stress

C/EBP homologous protein (CHOP), Beclin-1,
and dopamine↑

(87)

Transient transfections of MN9D cells
12-week-old MitoPark mice

10, 30 µM
24 h

25 mg/kg
6 w

Up-regulates mitochondrial complex-I
activity to repair mitochondrial

Complex-I↓
Cu/Zn- and Mn-SOD, catalase, GSH and
GSSG↑

(73)

Adult male Wistar rats 100, 200, 300
mg/kg
6 d

Decrease oxidative damage resulting in
increased neuron density.

AChE, MDA ↓
GPx, L-dopa, vitamin C, SOD and CAT↑

(74)

PD mouse
authenticated mouse microglia BV2
cells

30 mM
1 h

Reduce mtROS accumulation and alleviated
NLRP3 inflammasome activation.

ROS, iNOS, IL-1b, IL-6, TNF, NLRP3 and
caspase-1↓
Nrf2↑

(39)

mouse dopaminergic MN9D cells 10 µM
1 h

Activate PKD1-Akt cell survival signaling axis PKD1, Akt, PGC-1a, CREB and BDNF↑ (86)

rat pheochromocytoma (PC-12) cells 10, 50,100
µM
24 h

Neuroprotective effects as effective
antioxidants

CuZn-SOD, Mn-SOD, CAT, GSH and GSH-
Px↑

(71)

Microglial (N9)-Neuronal (PC12)
Coculture System

0.1 m M
3 h

Rescue neuronal PC12 cells from glial-evoked
apoptosis

IL-6, IL-1b, TNF or iNOS ↓ (79)

SK-N-MC human neuroblastoma cell
line and Sprague-Dawley (SD) male rat
brain

10, 20 µg/mL
16 w

Alleviate oxidative stress through regulation
of apoptosis, iNOS/NF-kB and HO-1/Nrf2
pathways

ROS, TNF-, TNF, IL-1b, IL-6, COX2, iNOS,
Bax, Cytochrome, Caspase-3 and PARP-1↓
SOD, Bcl-2↑

(79)

Rat PC12 cells 0.1 mM
3 h

Preventive neurodegenerative diseases caused
by oxidative stress and apoptosis.

LDH, Bax, caspase-3, Cytochrome c and AIF↓
Bcl-2↑

(92)

6-OHDA rat lesion models
SH-SY5Y neuroblastoma cells

10–100 mM
50–200 mg/

kg

Reliable neuroprotective effects ROS↓
5-HT, 5-HIAA↑

(70)
fr
h, hours; d, days; w, weeks; ROS, reactive oxygen species; 5-HT, 5-hydroxytryptamine; SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; TNF, tumor necrosis
factor; NLRP3, NOD-like receptor protein 3; IL-1b, interleukin-1 b; CREB, cAMP response element binding protein; MDA, malondialdehyde; BDNF, brain-derived neurotrophic factor;
GFAP, glial fibrillary acidic protein; LDH, lactate dehydrogenase; and AIF, apoptosis-inducing factor. ↓ downregulation; ↑ upregulation.
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2.4 Effects of quercetin on depression

Major depressive disorder may be associated with volumetric

indications of accelerated brain aging (101). Disorders of

depression and anxiety are common mental ailments that

imposes a significant global health challenge. However, current

conventional antidepressants have limited efficacy, significant

side effects and expensive. The structural and functional integrity

of the hippocampus is critical for cognitive functions, as well as

producing antidepressant effects in response to adverse factors

(environmental changes, stress) (102, 103). Moreover, reports
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have indicated that SIRT1 inhibitors reverse sleep deprivation

(SD)-induced depressive and anxiety-like behaviors and

hippocampal neuroinflammation (104). The role and possible

mechanisms of SIRT1 have revealed novel therapeutic strategies

for clinical treatment of depression (105, 106). SIRT1 is required

for normal neuronal excitability and regulates depression-related

behaviors in a sex-specific manner (107). Activation of the

estrogen receptor alpha (ERa)/SIRT1/NF-kB pathway was

involved in LPS-induced depression in aged female mice (108).

Fork head box transcription factor G1 (FOXG1) play

neuroprotective roles by regulating adult hippocampal
FIGURE 4

Mechanisms of quercetin in attenuating Huntington’s disease (HD). Quercetin plays neuroprotective role in HD by targeting SIRT1 to relieve
aggregation of mHTT in patients, restore mitochondrial function, and reduce inflammation. UPS, ubiquitin-proteasome system; mHtt,
Huntington’s protein; ROS, reactive oxygen species; TNF-a, tumor necrosis factor-a; and IL-1b, interleukin-1 b.
TABLE 3 Pharmacological functions of quercetin on HD.

In vitro and vivo model Quercetin
Dose

Mechanism Effect factors References

150Q mutated huntingtin-expressing cells 20 µM
4 d

Improves the activity of the ubiquitin proteasomal system and
upregulated UPS

UPS, mHtt↓ (98)

3‐Nitropropionic Acid‐Induced Rat Model
of Huntington’s Disease

20 mg/kg
4 d

Improves the motor coordination, locomotor functions, and
anxiety

Cd11B and glial
fibrillary acidic↓

(99)

3-NP-induced male Wistar rats 50mg/kg
14 d

Alleviates anxiety and depression body weight and
locomotion count↑

(100)

3-NP-induced female Wistar rats 25 mg/kg
21 d

Against mitochondrial oxidative stress, mitochondrial
dysfunctions and neurobehavioral deficits.

MDA, ATP levels and
ATP/ADP↓
SOD, CAT↑

(96)
fr
d, days; UPS, ubiquitin-proteasome system; mHTT, mutant huntingtin; MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; 3-NP, 3-nitropropionic acid. ↓
downregulation; ↑ upregulation.
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neurogenesis (AHN). Quercetin promotes AHN via FoxG1/

CREB/BDNF signaling pathway to improve chronic

unpredictable mild stress (CUMS)-induced depression-like

behaviors (109). In addition, it has been shown that microglial

inhibitory pathways exert neuroprotective effects, and astrocyte

activation, whereas quercetin significantly reduce the frequency

of spontaneous excitatory postsynaptic currents (sEPSCs) and

spontaneous inhibitory postsynaptic currents (sIPSCs) to

antidepressants (110). Astrocytes secrete neurotrophic factors

such as GDNF and BDNF, of which BDNF combined with

exercise training attenuated 1,2-dimethylhydrazine-induced

depression in rats with colorectal cancer by modulating the

BDNF/tyrosine receptor kinase A (TrKb)/b-catenin axis in the

prefrontal cortex significantly reduced tumorigenesis and

improve depression-like behavior (111), as well as attenuates

LPS-induced depression-like behavior in rats by modulating the

BDNF-related Copine 6 and TREM1/2 imbalance in the

hippocampus and PFC (112), whereas reports showed that

quercetin exert antidepressant and cardioprotective effects (113).

Quercetin reduce doxorubicin-induced anxiety by

enhancing immune function and reducing oxidative stress in

the brain (114). Alteration in the metabolism of monoamine

oxidase (MAO) is associated with aging (115), which

catalyzes monoamine-containing neurotransmitters such as

serotonin 5-hydroxytryptamine (5-HT) (116). Quercetin

possess antidepressant-like effects through its antioxidant, anti-

inflammatory activities, and also reduce excitotoxicity, as well as

increase 5-HT levels (117). Quercetin significantly reduced

MAOs activity and increase the activity of antioxidant
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enzymes (Cu-Zn, SOD, CAT, and GSH-Px) in depressed rats

(118). Some studies in olfactory bulbectomy (OB), the surgical

removal of the olfactory bulbs, cause specific set of behavioral

changes in social behavior, cognitive function, and activity;

whereas quercetin shows an antidepressant-like and

antioxidant effects in bulbectomized mice model via the

glutamatergic and oxidonitrergic pathways (119), and mediate

neuroinflammatory-apoptotic cascade response (120).

Furthermore, quercetin acts as an antidepressant by

targeting SIRT1 to reverse depressive and anxiety-like

behaviors and hippocampal neuroinflammation. The FoxG1/

CREB/BDNF/Trkb-catenin axis clarify the underlying

mechanisms (Figure 5 and Table 4).
3 Effects of quercetin on
osteoporosis

Osteoporosis is also a major aging-related disease (121). The

rate of reduction of osteogenic differentiation and bone

formation is the major cause of aging-related osteoporosis

(122). Bone can act indirectly on the brainstem, midbrain and

hippocampus, thereby affect the synthesis of multiple

neurotransmitters, resulting in neurodegenerative diseases

(123), suggesting that improving the conditions affecting

neurodegenerative process may be a novel target for the

treatment of bone injury. Osteoporosis is characterized by a

reduction in the bone mass and bone mineral loss, and
FIGURE 5

Mechanisms of quercetin on Depression. Quercetin act as an antidepressant by targeting SIRT1 to reverse depressive and anxiety-like behaviors
and hippocampal neuroinflammation. The FoxG1/CREB/BDNF/Trkb-catenin axis clarifies these mechanisms. FOXG1, Forkhead box transcription
factor G1; CREB, cAMP response element binding protein; TrKb, tyrosine receptor kinase A. SOD, superoxide dismutase; CAT, catalase; GSH-Px,
glutathione peroxidase; TNF, tumor necrosis factor; IL-1b, interleukin-1 b; MDA, malondialdehyde; and BDNF, brain-derived neurotrophic factor.
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deterioration of bone microarchitecture, with a greater impact

on postmenopausal women. In the United States, approximately

53 million people are at risk of bone mineral loss, however, this

number will gradually increase resulting in an economic loss of

an annual cost of $25.3 billion (124).

Quercetin is a potential drug for the clinical treatment of

osteoporosis and has a significant effect on the structure and

conformation of bone morphogenetic protein-2 (BMP-2) via

upregulation of bone mineralization which promotes

differentiation of bone marrow mesenchymal stem cells

(BMSCs), as well as osteoblast-specific genes such as osterix

(OSX), dwarf-related transcription factor 2 (Runx2), alkaline

phosphatase (ALP), osteocalcin (OCN), and serum c-terminal

type I collagen cross-linked telopeptides at the mRNA and

protein expression levels (40, 125). Quercetin promotes

osteogenic differentiation and inhibits lipogenic differentiation

of mouse bone marrow mesenchymal stem cells (mBMSCs),

enhancing AMPK protein phosphorylation and upregulating

SIRT1 expression to exert antioxidant effects (126). Thereby

promoting bone marrow mesenchymal stem cell proliferation

and osteogenic differentiation. Rodent oophorectomy is

extensively studied for to determine a reduction in bone mass

and an increase in bone turnover in cancellous bone, which is

similar to osteoporosis in postmenopausal women (127).
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The activation of nicotine and muscarinic receptors

(nAchR) in an osteoclast inhibits the receptor activator of

nuclear factor-kappa B ligand (RANKL)-dependent osteoclast

development, suggesting that it is closely related to sympathetic

nerve activity (128). Quercetin has been shown to inhibit

RANKL-mediated osteoclastogenesis, osteoblast apoptosis,

and inflammatory response, nuclear factor kB (NF-kB)
and activator protein 1 (AP-1) are transcription factors

that regulates osteoclast differentiation, and signaling

pathways associated with b-catenin degradation (129).

Quercetin is inhibits osteoclast differentiation in vitro (130).

The abundance of phosphorylated p38 MAPK and

phosphorylated extracellular signal-regulated kinase (ERK)

could be reverse after quercetin treatment, and trigger

significant restoration of the Wnt/b-catenin pathway by

enhancing the expression of Wnt3, b-catenin, Bax and

cytochrome c expression and decrease the expression of Bcl-

2, Bcl-xL and caspase-3 (131), regulating autophagy and

apoptosis to prevent osteoporosis (132).

In summary, quercetin acts as a therapeutic measure

for treating aging-related osteoporosis by targeting SIRT1,

via antioxidants pathways, thereby inhibits osteoblast

apoptosis, autophagy, and inflammatory responses (Figure 6

and Table 5).
TABLE 4 Pharmacological function of quercetin on depression.

In vitro and in vivomodel Quercetin
Dose

Mechanism Effect factors References

Male ICR mice 15, 35mg/kg
4 w

Promotes adult hippocampal neurogenesis via FoxG1/CREB/BDNF
signaling pathway

FoxG1, p-CREB and
BDNF↑

(109)

Rats 10, 50mg/kg
8 w

Reduces oxidative stress, inhibited inflammation, and regulated a
variety of neurotransmitter systems.

MAO, IL-1b and TNF-a↓
Cu-Zn SOD, GSH-Px,
CAT and GSH↑

(118)

mice 2, 0.5g/kg
8 w

Antidepressant and cardioprotective effects via BDNF-AKT/ERK1/2
signaling

BDNF-TrkB-AKT/ERK1/
2↑

(113)

mice 2, 0.5 g/kg
6 w

Improves mice behavioral performance post CSDS. Decreases sEPSCs
and sIPSCs

sEPSCs and sIPSCs↑ (110)

Mice 25 mg/kg
6 w

Antioxidant, anti-inflammatory activities, reduced excitotoxicity and
augmented 5 HT levels.

TNF and IL-6↓
SOD, GSH, Catalase and 5
HT↑

(117)

depression in rats 40 mg/kg
8 w

Alleviates LPS-induced depression-like behaviors via regulating the
BDN/Copine 6 and TREM1/2

TNF, IL-6, caspase-3↓ (112)

male wistar rat 60 mg/kg
24 h

Against chemotherapy-related complications MDA, TNF, ROS/RNS↓
GSH

(114)

OBX-induced depression in male
Wistar rats

40, 80 mg/kg
14 d

Suppression of oxidative–nitrosative stress-mediated
neuroinflammation-apoptotic cascade

MDA↓
GSH, SOD↑

(120)

Olfactory bulbectomy (OB) 25mg/kg
14 d

Antioxidant effects contribute to its anti-depressive potential LOOH↓
GSH, SOD↑

(119)
fr
h, hours; d, days; w, weeks; FOXG1, Forkhead box transcription factor G1; CREB, cAMP response element binding protein; TrKb, tyrosine receptor kinase A; SOD, superoxide dismutase;
CAT, catalase; GSH-Px, glutathione peroxidase; TNF, tumor necrosis factor; IL-1b, interleukin-1 b; MDA, malondialdehyde; and BDNF, brain-derived neurotrophic factor. ↓
downregulation; ↑ upregulation.
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TABLE 5 Pharmacological functions of quercetin on osteoporosis.

In vitro and in vivo
model

Quercetin
Dose

Mechanism Effect factors References

mice were used for
isolating the primary
BMSCs

2, 5 mM
24 h

Promotes antioxidant via activation of the AMPK/SIRT1 CTX↓
ALP and OC↑

(126)

rat bone cells 15, 7.5 mg/kg
10 w

Prevents osteoporosis by regulating the total number of bone cells,
maybe through regulating autophagy and apoptosis.

LC3, beclin1, and caspase 3↓
Bcl2↑

(132)

human osteoblast cell
line (MG-63)

25-200 ppm
2 d

Activates osteoprotegerin (OPG) and inhibited RANKL expression OC and RANKL↓
ALP, OPG and collagen ↑

(133)

MC3T3-E1 Cells 10, 25, 50 µM
2 h

Inhibition Apoptosis via the MAPK and Wnt/b-Catenin signaling
pathways

OSX, Runx2, ALP and OCN↑
caspase-3, Bax, cytochrome c,
phosphorylated MAPKs and Wnt/b-
catenin↓
Bcl-2, Bcl-XL ↑

(131)

RAW 264.7 cells 1-10 mM
24 h

Decrease osteoclastic differentiation induced by RANKL NF-kB, AP-1↓ (129)

female SD rats 50 mg/kg
8 w

Promotes BMSC proliferation and osteogenic differentiation against
TNF-a-induced impairments

TNF-a, NF-kB and b-catenin↓
Runx2 and Osterix↑

(134)

female SD rats 50, 100, 200
mg/kg
60 d

Downregulates MAPK signaling pathways and preventes the
ovariectomy-induced deterioration of bone mineral density (BMD)

CTX-1, TRAP↓
Ca, P, ALP, and P1NP ↑

(135)
Frontiers in Immunology
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 fr
h, hours; d, days; w, weeks; Runx2, related transcription factor 2; OSX, Osterix; OCN, osteocalcin; Cx43, connexin 43; RANKL, receptor activator of nuclear factor-kappa B ligand; TNF,
tumor necrosis factor; IL-6, interleukin-6; IFN-g, interferon g; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; ALP, alkaline phosphatase; LC3, microtubule-associated protein
light chain 3; OPG, osteoprotegerin; CTX-1, C-terminal telopeptide of type I collagen; P1NP, N-terminal propeptide of type I procollagen; TRAP, Tartrate-resistant acid phosphatase; and
Runx2, related transcription factor 2. ↓ downregulation; ↑ upregulation.
FIGURE 6

Mechanism of quercetin on osteoporosis. Quercetin as a therapeutic strategy for the treatment of aging-related osteoporosis by targeting
SIRT1, via antioxidant pathways, thereby inhibits osteoblast apoptosis, autophagy, and inflammatory responses. Runx2, related transcription
factor 2; OSX, Osterix; OCN, osteocalcin; Cx43, connexin 43; RANKL, receptor activator of nuclear factor-kappa B ligand; TNF, tumor necrosis
factor; IL-6, interleukin-6; IFN-g, interferon g; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; ALP, alkaline phosphatase; LC3,
microtubule-associated protein light chain 3; OPG, osteoprotegerin; CTX-1, C-terminal telopeptide of type I collagen; P1NP, N-terminal
propeptide of type I procollagen; TRAP, Tartrate-resistant acid phosphatase; Runx2, related transcription factor 2.
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4 Effect of quercetin on aging-
related cardiovascular disease

4.1 Myocardial ischemia (M/I) and
reperfusion (MI/R)

Myocardial ischemia is an aging-related cardiovascular

disease and causes sudden death worldwide (136). Myocardial

ischemia (M/I) infarction is caused by an inadequate supply of

oxygen to the heart, leading to apoptosis (137). However,

cardiomyocytes damage is caused by calcium overload, large

amounts of free radical production, and infiltration of

inflammatory cells cause reperfusion. Mitochondrial

dysfunction is considered an important marker of neuronal

death during cerebral MI/R (7).

The cardioprotective effect of quercetin is associated with

attenuating oxidative stress induced by aging (138). In a mice

model, quercetin was reported to attenuate cardiac damage

induced by a high-fat diet (HFD) by restoring myocardial

microcirculation, reducing infarct size and improving left

ventricular function, myofibrillar and mitochondrial structure

(139). Quercetin also improve the tricarboxylic acid cycle and

respiratory chain-related enzyme activity in rats with myocardial

infarction, as well as decrease the expression of biomarkers of

myocardial induced oxidative stress in rats with myocardial

infarction (140). In addition, quercetin protects AC16 cells

from HG-induced oxidative stress by elevating p-SIRT1,
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endothelial NOS, and decreasing iNOS (141) through the

PI3K/Akt/Nrf2 signaling pathway (142).

Pretreatment with quercetin significantly inhibit

inflammatory cascade responses through the downregulation

of HMGB1-TLR4-NF-kB signaling pathway (143). Quercetin

protects against myocardia l apoptosis in vivo via

phosphorylation of JNK and p38, increasing Bcl-2 expression

and directly or indirectly inhibiting the activation of Bax and

caspase 3 (144, 145), as well as ameliorates MI/R-induced

apoptosis through SIRT1/PGC-1a signaling (146).

Evidence shows that sympathetic excitatory reflexes

exacerbate myocardial injury (147). In a neuropathic pain

model a central mechanism through the inhibition of

mitochondrial permeability transition pore (mPTP) opening

(148) or involving the activation of paraventricular thalamic

(PVA) neurons (149) induce cardioprotective effects.

Therefore, quercetin could be used as a potential therapeutic

drug for reducing MI/R injury via SIRT1/PI3K/Akt/Nrf2

mediated oxidative stress, SIRT1/PGC1a and HMGB1/TLR4/

NF-kB mediated inflammatory response, and SIRT1/p38 MAPK

mediated apoptosis pathways (Figure 7 and Table 6).
4.2 Atherosclerosis (AS)

Atherosclerosis promotes mortality and morbidity in aging-

related cardiovascular diseased models (8, 153). Endothelial

dysfunction is an important process involved in atherosclerosis
FIGURE 7

Mechanisms of quercetin on Myocardial ischemia (M/I) and reperfusion (MI/R). Quercetin is potential therapeutic drug that play roles in reducing
MI/R injury via SIRT1/PI3K/Akt/Nrf2 mediated oxidative stress, SIRT1/PGC1a and HMGB1/TLR4/NF-kB mediated inflammatory response, and
SIRT1/p38 MAPK mediated apoptosis pathways. MDA, malondialdehyde; SOD, superoxide dismutase; TNF-a, tumor necrosis factor-a; IL-1b,
interleukin-1 b; iNOS, inducible nitric oxide synthase; GSH-Px, glutathione peroxidase; TLR4, toll-like receptor 4; and PGC-1a, proliferator-
activated receptor gamma coactivator, 1alpha.
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(154). A solute exchange between the blood and nerve tissues

have a direct contact and are intact by the blood-nerve barrier

(BNB), consisting of the endothelium surrounding peripheral

nerve substructures (155, 156). Oxidized low-density lipoprotein

(ox-LDL)-induced oxidative damage to endothelial cells cause

atherosclerosis. Thus, oxLDL-induces the formation of

RAW264.7 macrophage-derived foam cells that exacerbate

cellular lipid accumulation, and elevate the levels of ROS that

lead to oxidation of LDL particles to produce ox-LDL, whereas

quercetin inhibits cholesterol accumulation-induced apoptosis

of macrophages, thereby reducing atherosclerosis (157, 158). In

addition, quercetin enhances cellular antioxidant function

through the Nrf2 pathway (154). Further studies have showed

that quercetin inhibits ox-LDL induced oxidative damage in AS

via activating SIRT1 and modulating the AMPK/NADPH/AKT

signaling pathway (159), as well as inhibits inflammatory/

oxidative stress responses in AS via AMPK/SIRT1/NF-kB
pathway (160), and attenuated AS by increasing the density of

SIRT1 (161). Another reports in mice have indicated that
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quercetin attenuates high fat diet-induced atherosclerosis in

apolipoprotein E knockout mice by alleviating systemic

oxidative stress and also inhibit aortic P47phox by blocking

the activation of NADPH oxidase-P47phox membrane

translocation (162).

During aging, chronic atherosclerosis promotes ROS

production and accumulation which eventually cause

mitochondria damage, due to mtDNA damage. OxLDL

molecules are immunogenic and are associated with innate

immunity to pattern recognition receptors, including

scavenger receptors and TLR, and NF-kB, whereas quercetin

significantly inhibit NLRP3 inflammatory vesicle activation in

the ox-LDL-containing macrophages, thereby attenuating cell

lipoatrophy and IL-1b secretion (163). Ex vivo studies have

reported that quercetin (25 mM) reduce the HUVEC expression

of VCAM-1, where ICAM-1 was significantly enhanced, and

then attenuate oxLDL induced endothelial leukocyte adhesion,

and effectively modulate the TLR-NF-kB signaling pathway by

attenuating the inflammatory process in atherosclerosis (164).
TABLE 6 Pharmacological function of quercetin on myocardial ischemia and reperfusion.

In vitro and in
vivo model

Quercetin
Dose

Mechanism Effect factors References

C57BL/6J mice 50 mg/kg
10 w

Induces angiogenesis and decreased myocardial oxidative stress HOMA-IR↓ (138)

rats 50 mg/kg
7 d

Upregulation of antioxidants and activation of STAT3. NF-kB, p62, TNF-a, IL-6 and
MDA ↓
SOD, GSH‐Px and CAT↑

(150)

a rat with AMI 80 mg/kg
2 w

Ameliorates anti-inflammation and anti-apoptosis factor and regulated TLR4-
NF-kB signal pathway

MDA, IL-6, TNF-a, caspase-3
activity and Bax/Bcl-2↓
SOD ↑

(141)

acute myocardial
infarction (AMI) rats

100, 400 mg/
kg
1 w

Anti-inflammatory and antioxidant myocardial protective mechanisms MDA, TNF-a, and IL-1b↓
SOD and CAT↑

(151)

SD rats 250 mg/kg
1 w

Decrease oxidative stress, repress inflammatory cascade, inhibits apoptosis in
vivo and PI3K/Akt pathway involved in the anti-apoptotic effect

MDA, TNF-a, CRP and IL-
1b↓
SOD, CAT and GSH-PX↑

(145)

AC16 cells 1, 5, 10, or 20
mM 48 h

Against high glucose-induced injury, oxidative stress, and apoptosis by
activation of PI3K/Akt/Nrf2 pathway

ROS, MDA and cytochrome c
↓
SOD, GSH‐Px and CAT↑

(142)

cardiomyocyte 25, 50, 100
mg/kg
2 w

Reduce apoptosis via SIRT1/PGC-1a signaling SIRT1, PGC-1a, Bcl-2↑
Bax↓

(146)

Adult SD rats
H9C2 rat
cardiomyocyte cells

50 mg/kg
5 d

40mM
24 h

Downregulation of the HMGB1-TLR4-NF-kB signaling pathway IL-6, IL-1b, TNF-a, TLR4,
HMGB1 and p-NF-kB ↓

(143)

Male C57/BL6-mice
Myocardial H9C2
cells

40 mM
24 h

Improves cardiac function, diminishes myocardial injury and reduce the infarct
size via suppressing the NF-kB

MDA, PPARg, NF-kB and
PI3K/Akt ↓
SOD, GSH-PX and Bcl-2↑

(152)

H9c2 cardiomyocyte
cells

10, 20, 40, 80,
160 mM
4 h

Inhibition of JNK and p38 Bcl-2↑
Bax and caspase-3↓

(144)
fr
h, hours; d, days; w, weeks; HOMA-IR, homeostasis model assessment of insulin resistance; MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; TNF-a, tumor necrosis
factor-a; IL-1b, interleukin-1 b; iNOS, inducible nitric oxide synthase; GSH-Px, glutathione peroxidase; PPARg, peroxisome proliferator-activated receptor gamma; TLR4, toll-like receptor
4; HMGB1, high mobility group box-1; PGC-1a, proliferator-activated receptor gamma coactivator, 1alpha; ↓, downregulation; ↑, upregulation.
ontiersin.org

https://doi.org/10.3389/fimmu.2022.943321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2022.943321
Quercetin inhibits the formation of atherosclerotic plaque, and

the main mechanism of action is related to the PI3K/AKT-

related regulation of caspase-3 and NF-kB activation (165).

Moreover, quercetin decrease the mRNA expression of TNF-a
and TLR4 in atherosclerotic rats, and the mechanism of action is

related to the TLR4-mediated MAPK pathway by reducing the

levels of expression of pro-inflammatory cytokines (IL-1b, TNF-
a, and IL-10) (166). Dysregulation of TLRs has been reported to

increase inflammation and metabolic syndrome which cause the

development and progression of atherosclerosis (167).

Therefore, quercetin play an important role in the treatment

of atherosclerosis by preventing endothelial cell damage via

SIRT1/AMPK/Nrf2 mediated oxidative stress, SIRT1/PI3K/

Akt/NF-kB and SIRT1/TLRs/MAPK mediated inflammatory

response (Figure 8 and Table 7).
5 Effects of quercetin on diabetes

Diabetes is a metabolic disorder that cause death in human

populace worldwide (mostly in elderly people) (169). The

International Diabetes Federation reported that people

suffering from diabetes equally exhibit neuropathy and

neuropathic pain (170). The most common manifestation of

diabetic neuropathy is distal symmetric polyneuropathy

(DSPN), which affects approximately 30% of diabetic patients
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with the most relevant clinical manifestations, whereas the

incidence of DSPN is approximately 2% per year (171).

However, the pathogenesis is unclear, and clinical and

epidemiological studies have indicated that oxidative stress

and inflammatory processes are important pathological

mechanisms in diabetic neuropathy, which is associated with

distal symmetric sensorimotor polyneuropathy.

ROS is associated with the development of neuropathy in

an experimental diabetes. The findings in streptozotocin

(STZ)-injected diabetic rats suggest that oxidative stress cause

neurotransmission defects (172–174). Quercetin has been shown

to have a beneficial effect on nicotinamide/streptozotocin-

induced antidiabetic and antioxidant capacity in Wistar

diabetic rats (175, 176), reducing dorsal root ganglion (DRG)

neurons damage by oxidative stress (177). Overproduction and

accumulation of ROS and reactive carbonyl compounds induces

endoplasmic reticulum stress (ERs). Quercetin was found to

induce lysosomal defects which triggered ERs and ROS

generation, thereby contributing to glioma cell death (29, 178).

Quercetin can bypass the GLUT4 translocation insulin

regulatory system through the AMPK signaling pathway and

its downstream target p38 MAPK, thereby contributing to the

correction of insulin resistance (179).An increase AMPK, insulin

receptor substrate 1 (IRS-1) and AS160 phosphorylation

increase GSK3b under insulin-stimulated conditions (180).

Quercetin induces insulin secretion by direct activation of L-
FIGURE 8

Mechanisms of quercetin on Atherosclerosis. Quercetin is an important target in the treatment of atherosclerosis by preventing endothelial cell
damage via SIRT1/AMPK/Nrf2 mediated oxidative stress, SIRT1/PI3K/Akt/NF-kB and SIRT1/TLRs/MAPK mediated inflammatory response. TNF-a,
tumor necrosis factor-a; AMPK, AMP-activated protein kinase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde; NLRP3, NOD-like
receptor protein 3; ox-LDL, oxidized low-density lipoprotein; and TLR4, toll-like receptor 4.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.943321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2022.943321
type calcium channels in pancreatic beta cells, thus, quercetin

interacts with L-type Ca2+ channels at a location different from

that of Bay K 8644 to increase Ca2+ influx, which stimulates

insulin secretion (181) and thus, reduce the insulin levels (182).

Quercetin improves endothelial function by inhibiting

endoplasmic reticulum stress-mediated disruptions leading to

the degeneration of islet initiation of the UPR response, and

calcium homeostasis, thereby reducing oxidative stress in

diabetic rats (183).

SOD is the main antioxidant parameter which prevents

neuronal damage (184). Quercetin enhance the expression of

antioxidant indices, thereby protects the mitochondrial function

by increasing intracellular nicotinamide-adenine dinucleotide

(NAD+) (185) and may be involved in regulating NF-kB and

SIRT1 levels (186, 187). Further mechanisms may be related to

the upregulation of SIRT1 activity and protein levels, and its

effects on the Akt signaling pathway (188). In diabetic

neuropathy, axonal and sensory neuron degeneration

pathways are activated, leading to distal axonal lesions. The

NAD+-dependent deacetylase SIRT1 prevents the activation of

these pathways and promotes axonal regeneration (189).
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Recent studies have demonstrated that ferroptosis, a newly

identified form of regulated cell death characterized by iron-

dependent dependence on the overproduction of ROS leading to

irreparable lipid peroxidation, is involved in b-cell death leading

to reduced insulin secretion. The protective effect of quercetin on

mice pancreas occurs partly through the inhibition of

hypertrophy (190).

In general, the application of quercetin at the appropriate

dose could serve as a potential therapeutic agent in treating

diabetes, by attenuating oxidative stress and ferroptosis (Figure 9

and Table 8).
6 Discussion

Aging is an irreversible physiological process, and

the incidence of neurological diseases increases with age (192).

Neurodegenerative diseases have been recognized as a

manifestation of chronological aging (193). Therefore, it

is important to identify suitable anti-aging drugs and

explore their therapeutic mechanisms. Oxidative stress,
TABLE 7 Pharmacological function of quercetin on atherosclerosis.

In vitro and in vivo model Quercetin
Dose

Mechanism Effect factors References

male ApoE KO mice 100 mg/kg
16 w

Inhibits Gal-3-NLRP3 signaling pathway NLRP3↓ (168)

85 patients with CAD 120 mg
2 m

Reduce the transcriptional activity of NF-kB in stable
coronary artery disease

TNF-a, IL-1b, IL-10 and IkBa↓ (166)

male ApoE KO mice 25, 50, 100
mg/kg
24 w

Ameliorates atherosclerotic lesions formation ROS, MDA, NOX4↓
GSH and NADPH↑

(162)

apolipoprotein
E-deficient (ApoE-/-) mice and C57BL/6J
(C57) mice

20 mg/kg/d
8 w

0.3, 1, or 3
mmol/L
48 h

Attenuates AS
by increasing the density of SIRT1

sIcam-1, IL-6, Vcam-1, and
ROS ↓
SIRT1 ↑

(161)

high fat diet−induced atherosclerosis in
the carotid artery of rats

30 mg/kg/day
2 w

Inhibits inflammatory/oxidative stress responses in AS via
AMPK/SIRT1/NF-kB pathway

NF-kB, IL−1b, MDA ↓
IL−10, AMPK, SIRT1↑
SOD, CAT, GPX ↑

(160)

endothelial cells 2.5, 5, 10 mM
24 h

Protects against oxLDL-induced endothelial oxidative
damage by activating
SIRT1

NOX2, NOX4, ROS, NADPH,
and ox-LDL ↓
SIRT1, AKT, AMPK ↑

(159)

LDL receptor knockout (−/−) mice 100 mg
30 d

Alleviates oxidative stress via diverse pathways, including
NF-kB and JAK3

TNF-a, MCP-1, and IL-17a↓
STAT3, SOCS1, PON1 and
SRB1↑

(158)

RAW264.7 Macrophage Foam Cells 25, 50 mmol/L
24 h

Regulates MST1-Mediated Autophagy P53, P21, and P16↓
MST1, LC3-II/I, Beclin1, Bcl-2↑

(157)

male C57BL/6 mice
vascular smooth muscle cells (VSMCs)

50, 100 mg/
kg
7 w

Suppress inflammation and apoptosis via ROS-regulated
PI3K/AKT

ROS, Caspase-3 and NF-kB ↓
PI3K/AKT- Bcl-2↑

(165)
fr
h, hours; d, days; w, weeks; m, months; LC3-II/I, microtubule-associated protein light chain 3-II/I; TNF-a, tumor necrosis factor-a; MCP-1, monocyte chemotactic protein-1; STAT3, signal
transducer and activator of transcription 3; SOCS1, suppressor of cytokine signaling1; PON1, paraoxonase 1; SRB1, class B scavenger receptor type 1; AMPK, AMP-activated protein kinase;
NADPH, nicotinamide adenine dinucleotide phosphate; NOX, NADPH-oxidase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde; NLRP3, NOD-like receptor protein 3; ox-LDL,
oxidized low-density lipoprotein; TLR4, toll-like receptor 4; MPO, myeloperoxidase; COX-2, Cyclooxygenase-2; 5-LOX, 5-lipoxygenase; NOS, nitric oxide synthase; CRP, C-reactive
protein; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion molecule-1; ↓, downregulation; ↑, upregulation.
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neuroinflammation, apoptosis, autophagy, and mitochondrial

dysfunction are significant causative factors related to aging-

related diseases (194–197). Recently, numerous studies have

reported the protective effects of SIRT1 in aging-related

diseases, such as protective effect against neurodegeneration,

regulation of oxidative stress, inflammatory response,

mitochondrial biogenesis, cell death, and autophagy (17, 18,

198–200). Quercetin is an anti-aging flavonoid, because it

possesses antioxidant, anti-apoptotic, anti-inflammatory

properties, as well as can actively participate in the

improvement of mitochondrial dysfunctions, thereby could be

used as a novel therapeutic measure in treating aging-related

diseases (29, 59, 96, 196, 201, 202). Therefore, recently

researchers focus on investigating the medicinal effects

of quercetin and its mechanism in attenuating aging-

related diseases.

Several studies have shown that quercetin protects against

neurodegenerative diseases by enhancing the mechanism of

SIRT1 deacetylase (203, 204). However, low bioavailability and

solubility of quercetin limits its clinical application (205). In

addition, most of the current studies only focused on quercetin

glycosides, however, the functions of the gut micobiota helps

to breakdown quercetin into serious biological metabolites

such as phloroglucinol, 3,4-dihydroxyphenylacetic acid, 4-

hydroxyphenylacetic acid, and 3,4-dihydroxybenzaldehyde

(206). Therefore, it is important to examine the potential

therapeutic effects of these intestinal metabolites obtained

from quercetin.
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6.1 Quercetin regulates oxidative stress
via SIRT1

Oxidative stress, mitochondrial dysfunction, inflammatory,

and cell autophagy and apoptosis are pathophysiological factors

responsible for initiating aging-related diseases (207). There is a

correlation between oxidative stress and aging (208). Thus, with

chronological aging, ROS production and accumulation from

multiple sources increases, whereas the levels of antioxidant

enzymes and repair systems (proteasomal degradation) decline.

Reports have shown that quercetin improve the concentration

antioxidant enzymes and anti-inflammatory cytokines, as well as

improve mitochondrial function by targeting SIRT1 activity via

the SIRT1/AMPK/NF-kB, SIRT1/Keap1/Nrf2/HO-1, and

SIRT1/PI3K/Akt pathways (159, 203).

In a rat model, it was indicated that quercetin inhibited ER

stress to attenuate oxidative stress-induced apoptosis and

prevent the progression of osteoarthritis by activating the

SIRT1/AMPK pathway in rat chondrocytes (209), and

inhibited oxidative stress responses in diabetic high fat

diet-induced atherosclerosis in the carotid artery of rats

by modulating AMPK/SIRT1/NF-kB pathway (160).

Quercetin inhibited oxidative stress to ameliorate diabetic

encephalopathy via SIRT1/ER stress pathway in db/db mice

(210), furthermore, it inhibited oxidative stress damage to

regulate mitophagy and ER stress via SIRT1/TMBIM6

(transmembrane BAX inhibitor-1 motif-containing 6) in

cardiovascular diseases (211), as well as attenuated collagen-
FIGURE 9

The mechanism of quercetin on diabetes. Quercetin play potential therapeutic roles in treating diabetes by targeting SIRT1 via PGC-1a/PPARa/
Nrf2 mediated oxidative stress and SIRT1/NF-kB/NLRP3 mediated ferroptosis. SOD, superoxide dismutase; MDA, malondialdehyde; IL-6,
interleukin-6; GST, glutathione S-transferases; PGC-1a, proliferator-activated receptor gamma coactivator; IRS-1, insulin receptor substrate-1;
GSK3b, glycogen synthase kinase 3 beta.
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induced oxidative stress in mice arthritis by mediating SIRT1

activation (212). Moreover, Quercetin was found to reduce

oxLDL-induced oxidative damage by upregulating AMPK and

SIRT1 activity (159); and reduce oxidative damage in the liver

and kidney tissues, and NF-kB levels by increasing SIRT1 in

diabetes model (187).
6.2 Quercetin regulates inflammatory
response via SIRT1

The attenuation of the inflammatory response is a potential

anti-aging strategy. Senescent cell expression is the most

pronounced in post-mitotic cells, whereas mitochondria and

lysosomes suffer the most significant aging-related alterations in

all organelles. Studies have confirmed that SIRT1 activation can

inhibit NF-kB, TLRs, and NLRP3 pathways to reduce

inflammation. Activation of these SIRT1-dependent signaling

pathways by quercetin result in the modulation of the levels and

functions of the inflammatory cytokines (213). Quercetin

modulates AMPK/SIRT1/NF-kB pathway to inhibit

inflammatory responses in diabetic high fat diet-induced

atherosclerosis in the carotid artery of rats (160). In addition,
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quercetin alleviates inflammatory responses by activating SIRT1

and inhibit NF-kB pathway (159), furthermore, it contributes to

anti-inflammatory effect by modulating SIRT1 activation via

AMPK/SIRT1/Nfr2/TNFa pathway (203), as well as counteracts

cholesterol-induced activation of the NF-kB pathway in the

pancreas and normalized the expression of pro-inflammatory

cytokines by increasing SIRTI expression (214), and reduce

inflammation response in obesity mice through AMPKa1/
SIRT1 pathway (215).
6.3 Quercetin regulates mitochondrial
function via SIRT1

Mitochondrial dysfunction contributes significantly to

aging-related diseases (216–218). However, treatment with

quercetin could reduce ROS generation and mitigate

mitochondrial dysfunction, thereby maintaining the

mitochondrial homeostasis and normal function. Quercetin

suppressed oxLDL-induced mitochondrial dysfunction and

ROS formation by activating SIRT1 and modulating the

AMPK/NADPH/AKT pathway (159), and attenuate

mitochondrial dysfunction via activating AMPK/SIRT1
TABLE 8 Pharmacological functions of quercetin on diabetes.

In vitro and in vivo
model

Quercetin
Dose

Mechanism Effect factors References

Wistar Diabetic Rats 100 mg/kg
4 w

Antidiabetic Potency, Antioxidant Effects TC, TG, LDL-C, VLDL, FFA, HOMA-IR,
HOMA-IS, and HOMA-b↓
GPx, GST and SOD↑

(176)

Wistar Diabetic Rats 100 mg/kg
4 w

Neurodegenerative diseases PON2, JNK, TNF-a↓
PGC-1a, MAPKs, CREB, Nrf2 PI3K/Akt ↑

(175)

Male specific-pathogen-free
C57BL/6J mice

1.5 g/kg
4 m

Alleviates Ferroptosis MDA, HOMA↓
GSH, SOD, VDAC2↑

(190)

Male albino Wistar rats 25, 50 mg/kg
1 w

inhibition of endoplasmic reticulum stress-
mediated oxidative stress

C/ERB, CHOP, ET-1↓
VEGF↑

(191)

Chinese population 20.9 mg/day
2 m

Protective effect in the development of T2DM – (174)

Hyperglycemic Arbor Acre
Broilers

10, 25, 50 mg/kg
1 or 2 w

Decrease oxidative stress. AST, ALT, NO, MDA, MCP-1, IL-6, TNF-a↓
FBG, FINS, SOD, GSH-Px, CAT and
PI3K/PKB↑

(182)

Diabetic rats 100mg/kg
15 d

Decrease oxidative stress, inflammation NF-kB and MDA↓
SIRT1, SOD, CAT↑

(187)

Male Wistar albino rats 100 mg/kg
2 w

regulates insulin metabolism in diabetes MDA, TNF-a, IL-6↓
GSH↑

(186)

Wistar Diabetic Rats 10 mg/kg
6 d

Improves Glucose and Lipid Metabolism Akt, SITR1 and GSK-3b↑ (188)

adult male diabetic rats 10, 25, 50 mg/kg
28 d

Decrease oxidative stress, inflammation and
apoptosis levels markedly

p65-NF-kB, TNF-a, IL-1b and IL-6↓
SOD, CAT and GPx↑

(181)
fr
h, hours; d, days; w, weeks; m, months; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; g-GGT, gamma-glutamyl transferase; LDH, lactate
dehydrogenase; CK, creatinine kinase; TC, total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; CRE, serum creatinine; BUN, blood urea
nitrogen; IRS-1, insulin receptor substrate-1; GSK3b, glycogen synthase kinase 3 beta; NADPH, nicotinamide adenine dinucleotide phosphate; PI3K, phosphoinositide 3-kinase; SOD,
superoxide dismutase; CAT, catalase; MDA, malondialdehyde; MCP-1, monocyte chemotactic protein-1; IL-6, interleukin-6; FBG, fasting blood glucose; FINS, fasting insulin; GSH-Px,
glutathione peroxidase; FFA, free fatty acids; VLDL, very low-density lipoproteins; HOMA-IR, homeostasis model assessment of insulin resistance; GST, glutathione S-transferases; GPx,
glutathione peroxidases; PON2, paraoxonase 2; PGC-1a, proliferator-activated receptor gamma coactivator; VDAC2, voltage-dependent anion channel protein 2; CHOP, C/EBP
homologous protein; ET-1, Endothelin-1; VEGF, vascular endothelial growth factor. ↓ downregulation; ↑ upregulation.
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pathway in osteoarthritis rats (219). Moreover, quercetin

mitigate cerebral ischemia reperfusion injury and reduce ROS

generation in the mitochondria via SIRT1/Nrf2/HO-1

pathway (220).

Quercetin, as SIRT1 agonists, promotes mitochondrial

biogenesis thereby attenuates mitochondrial diseases (221),

prevented cholesterol-induced mitochondrial bioenergetic

dysfunction by upregulating the expression of SIRT1 in the

Min6 cells (214), and promotes mitochondrial biogenesis in the

brain by activating the transcription of SIRT1 (222, 223).

Quercetin as SIRT1/PGC1-a activator was reported to

improved cardiac function in aged Mdx/Utrn+/- mice by

increasing the protein contents and decrease inflammatory

markers NF-kB in the mitochondria (224).
6.4 Quercetin regulates autophagy and
apoptosis via SIRT1

During the occurrence of aging-related diseases, cell become

vulnerable to the accumulation of abnormal proteins and

damage to the phagocytic lysosomal system, which eventually

cause cell death (225). Quercetin-induced autophagy contributes

to apoptosis via SIRT1/AMPK pathway in lung cancer cells

(226), moreover, quercetin inhibits apoptosis and attenuates

intervertebral disc degeneration by promoting SIRT1-

dependent autophagy (227), as well as improve MI/R-induced

cardiomyocyte apoptosis via SIRT1/PGC-1a pathway (146), and

regulate autophagy and mitochondrial ROS homeostasis via

Nrf2/PGC-1a/SIRT1 pathway in sodium iodate-induced

retinal damage (228). A study identify that quercetin could

rescue cardiomyocyte hypoxia by regulating SIRT1/TMBIM6-

related mitophagy (211), and reduce renal tubular epithelial cell

senescence by activating SIRT1/PINK1/Parkin-mediated

mitophagy (229). In addition, other studies have showed that

quercetin exerts protective effects against cholesterol-induced

apoptosis by improving the expression of SIRTI and inhibits

cytochrome c release in Min6 cells (214).
7 Conclusions and future
perspectives

The pharmacological efficacy of quercetin has shown that it

possesses promising therapeutic potentials. In this review, we

highlighted the role of quercetin in targeting SIRT1 with the aim

of preventing aging-related diseases via oxidative stress and

inflammation alleviation, as well as the restoration of

mitochondrial dysfunction. Therefore, SIRT1 may serve as a

potential therapeutic target for the treatment of aging-

related diseases.
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Recent studies on aging-related diseases have indicated that

ferroptosis contributes in the pathogenesis of Alzheimer’s disease

(230–232), Parkinson’s disease (233, 234), Huntington’s disease

(235), Depression (236–238), Osteoarthritis (239), Myocardial

ischemia and reperfusion (MI/R) (240–242), Atherosclerosis

(243, 244), and Diabetes (245, 246). Notably, quercetin shows

iron-chelating activity and effectively decrease iron deposition in

the hearts, kidneys and liver of iron-dextran-overloaded mice

(247), and protects bone marrow-derived mesenchymal stem cells

from erastin-induced ferroptosis through antioxidant pathway

(248). Therefore, quercetin was identified as a ferroptosis

inhibitor to alleviate acute kidney injury (249). Moreover,

activation of SIRT1 inhibits excess iron-induced ferroptosis of

foam cells, thereby providing a novel therapeutic target for

atherosclerosis (250), and fisetin attenuated doxorubicin-

induced cardiomyopathy by inhibiting ferroptosis via the

activation of SIRT1/Nrf2 signaling pathway (251). Thus, acting

as an intracellular iron chelators, as well as stimulating cellular

degradation systems provide novel mechanisms for aging research

and may be potential diagnostic biomarkers for aging-related

disease in the future (252). The future challenge is to establish

models of ferroptosis on disease-specific basis so that the

underlying mechanisms of action can be investigated in detail.

Recently, various studies have suggested that extracellular

vesicles (EVs) have multiple advantages over currently available

drug delivery vehicles, opening new frontiers for modern drug

delivery (253–255). Therefore, EVs can be considered for

quercetin loading and delivery for treating aging-related

disease. In addition, EVs can successfully communicate

between cells and organs in the aging microenvironment and

during the occurrence of aging-related diseases (256). In

particular, neuron-derived EVs can breach the blood-brain

barrier (BBB) and become important carriers of signals

between cell types in the central nervous system (CNS) (257).

Recent studies have shown that EVs can reduce glutamate

expression in the neurons to improve cognitive function and

reduce Ab plaques in AD model mice by activating the SIRT1

pathway (258). The loss of SIRT1 support could accelerated EV

production, which carry pathological a-SYN and preferentially

target microglia to induce microglial inflammation (259). The

release of circulating EVs with oxidative contents alters redox and

mitochondrial homeostasis in the brains of rats, suggesting that

SIRT1-mediated EVs obtained from different donors may also be

promising materials and tools for anti-aging disease therapy.

In this comprehensive review, we have found clues from

separate studies and found that quercetin could regulate

oxidative stress, inflammatory response, mitochondrial

dysfunction, autophagy and apoptosis by activating SIRT1 in

aging-related disease. However, there are limited in vivo clinical

studies on this subject matter, due to limitations such as low

bioavailability and solubility of quercetin and disease

complexity, therefore, several clinical in vivo studies should be

carried out to explore the pharmacological effects and the
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pharmacokinetics of metabolites to establish and identify useful

clinical metabolites released from quercetin catabolism by the

gut microbiota. Moreover, whether EVs could be considered for

quercetin loading and delivery for treating aging-related disease,

and whether quercetin could alleviate ferroptosis to protect

against aging-related disease by activating SIRT1 requires

further studies.
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